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Rationale: Precision-cut lung slices (PCLSs) are a valuable tool in studying tissue

responses to an acute exposure; however, cyclic stretching may be necessary to

recapitulate physiologic, tidal breathing conditions.

Objectives: To develop a multi-well stretcher and characterize the PCLS response

following acute exposure to cigarette smoke extract (CSE).

Methods: A 12-well stretching device was designed, built, and calibrated. PCLS were

obtained from male Sprague-Dawley rats (N = 10) and assigned to one of three

groups: 0% (unstretched), 5% peak-to-peak amplitude (low-stretch), and 5% peak-to-

peak amplitude superimposed on 10% static stretch (high-stretch). Lung slices were

cyclically stretched for 12 h with or without CSE in the media. Levels of Interleukin-1β

(IL-1β), matrix metalloproteinase (MMP)-1 and its tissue inhibitor (TIMP1), and membrane

type-MMP (MT1-MMP) were assessed via western blot from tissue homogenate.

Results: The stretcher system produced nearly identical normal Lagrangian strains

(Exx and Eyy, p > 0.999) with negligible shear strain (Exy < 0.0005) and low intra-

well variability 0.127 ± 0.073%. CSE dose response curve was well characterized by

a four-parameter logistic model (R2 = 0.893), yielding an IC50 value of 0.018 cig/mL.

Cyclic stretching for 12 h did not decrease PCLS viability. Two-way ANOVA detected a

significant interaction between CSE and stretch pattern for IL-1β (p = 0.017), MMP-1,

TIMP1, and MT1-MMP (p < 0.001).

Conclusion: This platform is capable of high-throughput testing of an acute

exposure under tightly-regulated, cyclic stretching conditions. We conclude that

the acute mechano-inflammatory response to CSE exhibits complex, stretch-

dependence in the PCLS.

Keywords: stretcher, IL-1b, MMP-1, mechanotrasduction, emphysema

Frontiers in Physiology | www.frontiersin.org 1 June 2020 | Volume 11 | Article 566

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2020.00566
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2020.00566
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2020.00566&domain=pdf&date_stamp=2020-06-05
https://www.frontiersin.org/articles/10.3389/fphys.2020.00566/full
http://loop.frontiersin.org/people/986748/overview
http://loop.frontiersin.org/people/229974/overview
http://loop.frontiersin.org/people/425699/overview
http://loop.frontiersin.org/people/914274/overview
http://loop.frontiersin.org/people/635407/overview
http://loop.frontiersin.org/people/915164/overview
http://loop.frontiersin.org/people/361299/overview
http://loop.frontiersin.org/people/34472/overview
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


Mondoñedo et al. Lung Slice Stretching With CSE

INTRODUCTION

Precision-cut lung slices (PCLSs) have emerged as a valuable tool
in lung biology (Tepper et al., 2005; Henjakovic et al., 2008; Khan
et al., 2010; Lavoie et al., 2012; Schlepütz et al., 2012; Rosner et al.,
2014; Hiorns et al., 2016; Van Dijk et al., 2016). A key advantage
of this preparation is that the PCLS can be acutely exposed to
disease-modifying conditions, such as enzymatic parenchymal
digestion in emphysema (Van Dijk et al., 2016), while recording
corresponding structural and functional changes in both space
and time (Hiorns et al., 2016; Lavoie et al., 2012). PCLSs
also benefit by preserving the native extracellular environment
(Sanderson, 2011) and retaining nearly all of the resident cell
types in the lung. These technical advantages have thus promoted
widespread adoption of the PCLS in models of exposure
assessment (Langer et al., 2012; Lauenstein et al., 2014; Uhl et al.,
2015; Hess et al., 2016; Watson et al., 2016; Neuhaus et al.,
2017), pharmacologic therapy (Switalla et al., 2010; van Rijt et al.,
2015; Donovan et al., 2016; Kistemaker et al., 2017), and disease
modeling, including chronic obstructive pulmonary disease
(COPD) (Chronic Obstructive Lung Disease [COLD], 2017).

The overwhelming majority of this prior work has examined
the PCLS under static conditions. However, the lung is
continuously and rhythmically stretched during tidal breathing
in vivo and thus, a more accurate recapitulation of native
lung responsiveness demands similar dynamic conditions
be imposed ex vivo (Suki et al., 2013). For example, the
absence of stretch has been shown to influence cellular
and enzymatic maintenance of tissue properties (Yi et al.,
2016; Jesudason et al., 2010) by impacting the biological
phenomenon known as mechanotransduction (Ingber, 2006).
One of the few models incorporating cyclic stretching of
PCLS showed that stretch magnitude in ventilator induced
lung injury (VILI) modulated the nuclear translocation of
NF-κB and oxidative stress responses in lung slices (Song
et al., 2016; Davidovich et al., 2013b). It has been suggested
that analogous mechanisms could facilitate emphysema
progression in the lung via stretch-dependent secretion of
pro-inflammatory cytokines and enzymes accelerating matrix
turnover (Suki et al., 2013). Yet, comparable and potentially
transformative studies aimed at elucidating the possible
role of mechanotransduction in COPD pathogenesis and
progression are lacking.

Here, we report the design and implementation of a
multi-well equibiaxial device to cyclically stretch PCLSs
obtained from excised rat lungs. Its primary advantages include
high-throughput, low variance, and the ability to deliver
complex, user-defined stretch patterns to the entire slice. To
demonstrate the feasibility of this system in studying the
mechano-inflammatory response to an acute pharmacologic
exposure, we use cigarette smoke extract (CSE) during cyclic
stretching to mimic cigarette smoking in vivo. We hypothesize
the corresponding physiological response is stretch-pattern
dependent. To test this, we first confirm tissue viability in this
system and then compare the effects of stretch and CSE exposure
on biochemical changes in several molecular markers known to
play a role in COPD.

MATERIALS AND METHODS

Device Design
The multi-well stretching system pictured in Figure 1 was built
and calibrated based on previous designs (Arold et al., 2009;
Imsirovic et al., 2015). Briefly, one or two 6-well plates with
deformable elastic membranes are secured in the upper stage of
the stretcher. A linear actuatingmotor (A1 Series: Servo Cylinder,
Ultra Motion, Cutchogue, NY, United States) is used to move the
stage vertically. As the stage moves down, the elastic membrane
in each well is stretched around a fixed, cylindrical indenter post.
As the stage moves back up, the elastic membrane relaxes to its
initial configuration. Cyclic stretching is achieved by repeating
this process at a prescribed rate and displacement depth, which
corresponds to the area strain translated to the elastic membrane.
Ball bearings (McMaster-Carr, Elhmhurst, IL, United States)
affixed to the top of the indenter posts reduce friction, heat
generation, and hysteresis. Detailed designs available by request.

A custom software interface (Embarcadero C++ Developer,
Austin, TX, United States) was developed to prescribe any
simple or complex stretch pattern with parameters including

FIGURE 1 | (A) Multi-well device for cyclic stretching of precision-cut lung

slices (PCLSs), see text for design details. (B) Reusable 6-well flexframe with

interchangeable elastic membrane. (C) Ball bearings affixed to the indenter

posts minimized friction during stretch.
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waveform type, frequency, amplitude, and duration. The entire
system was constructed from stainless steel and could be moved
to a cell culture incubator for stretching under controlled,
sterile conditions.

We also designed and fabricated a lightweight, reusable 6-
well plate acrylic “flexframe” with an interchangeable elastic,
silicone membrane (Specialty Manufacturing, Inc., Saginaw,
MI, United States), which we validated by comparison with
a commercially available alternative (BioFlex R© Culture Plates,
Flexcell International Corp., Burlington, NC, United States).
The top and bottom components of the flexframe are
separable, allowing for replacement of the elastic membrane
between experiments.

Device Calibration
To calibrate the relationship between stage displacement and
membrane surface area, colored acrylic markers (Pēbēo, Cedex,
France) were adhered to the membrane in a circular arrangement
and then tracked during quasi-static stretch to compute local
radial area change. The corresponding area strain-displacement
curve was used to calibrate the stretcher and prescribe area
strains for cyclic stretching. Delaunay triangulation and radial
displacement of individual beads were used to calculate the
Lagrangian strain Eij of the elastic membrane during stretch
according to the following relation (Holzapfel, 2000):

ds2 − ds20 = 2Eijdaidaj

where ds and ds0 are the segment lengths before and after
deformation, respectively, of each triangle, while dai and daj are
the changes in position of the bead vertices. To assess whether
repeated stretch induced plastic deformation of the elastic
membrane, this calibration procedure was repeated following
12 h of stretch.

Animal Protocol
Protocol #16-025 was reviewed and approved by the Boston
University Institutional Animal Care and Use Committee. Male
Sprague-Dawley rats (N = 10) with body weight 343.8 ± 60.2 g
were sedated via intraperitoneal injection of xylazine (10 mg/kg)
and ketamine (90 mg/kg). After ensuring appropriate depth of
anesthesia and analgesia, animals were euthanized via abdominal
aortic exsanguination. The lungs were excised and insufflated
via tracheostomy with 10–12 mL of 1.5% low melt agarose
(HyAgarose, ACTGene Inc., Piscataway, NJ, United States)
in Hanks’ buffered salt solution (HBSS, Sigma) at 37◦C,
according to previous techniques (Watson et al., 2016). Excised
lungs were then placed on ice for 15 min to allow for
solidification of the agarose.

Precision-Cut Lung Slices (PCLSs)
Lung lobes were separated, trimmed to fit the tissue stage, and
then sliced in cooled HBSS with thickness ∼500 µm using a
vibratome (752M Vibroslice, Campden Instruments Ltd., United
Kingdom). The vibratome tissue stage was modified to include
an adjustable, cylindrical sleeve that was filled with agarose to
help stabilize the lung lobe during slicing. PCLSs were then

“punched” using either a 6 or 10 mm coring tool (Acuderm
Inc., Fort Lauderdale, FL, United States) to generate round,
symmetric slices. Punching the tissues after slicing the entire
lobe was found to yield a greater amount of material compared
to coring the lung lobes prior to slicing. PCLSs were then
moved to Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco)
supplemented with penicillin, streptomycin, and amphotericin B
(Antimycotic-Antibiotic, Gibco). To facilitate removal of residual
agarose and other cellular debris, media was changed every
30 min for 0–2 h after slicing, 1 h for 2–4 h, 2 h for 4–8 h,
and 24 h thereafter, similar to previous methods (Davidovich
et al., 2013a,b; Song et al., 2016). Lung slices were incubated
under standard conditions (5% CO2 at 37◦C) and allowed to
recover overnight.

MTS Assay
PCLS viability was assessed viaMTS assay, which is a colorimetric
measure of cell metabolic activity (Berridge et al., 2005). The
formazan product yielded by this reaction is proportional to the
number of metabolically healthy or active cells and is quantified
by measuring the absorbance at 490 nm. The colorimetric
MTS assay was used according to manufacturer’s specifications.
Lung slices (6 mm) were incubated in individual wells with
20 µL of MTS reagent in 200 µL of HBSS for 1.5 h at
37◦C. The supernatant was then removed to a 96-well plate for
measurement of optical density.

Preparation and Potency of Cigarette
Smoke Extract (CSE)
Cigarette smoke extract solutions were prepared fresh by
bubbling two cigarettes (Marlboro Red, Philip Morris USA,
Richmond, VA, United States) with the filters removed, through
20 mL of DMEM at a rate of 1.0 L/min to yield a stock
solution of 0.1 cig/mL. Next, the solutions were sterile filtered
using a 0.22 µm pore size membrane vacuum filtration system
(Steriflip, EMD Millipore) to remove large tobacco debris and
other small particles. To determine the CSE dose response
curve, the stock solution was diluted and 6 mm lung slices
(N = 93) were incubated in 6-well plates for 12 h with CSE
concentrations ranging from 0.001 to 0.050 cig/mL (∼3 slices per
3 mL of solution in each well). Following incubation, individual
slices were rinsed with warmed HBSS to remove any residual
solution containing the CSE-media mix. PCLS were transferred
to a 96-well plate for assessment of viability via MTS assay as
described above.

Experimental Protocol
Individual lung slices were attached to the center of the elastic
membranes in each well using four evenly spaced beads of
cyanoacrylate glue along the tissue perimeter. Initial pilot studies
confirmed appropriate local tissue stretch with this preparation
(Supplementary Figure S1). PCLSs were covered with 3 mL
of media with or without CSE (0.01 cig/mL) for the treated
and control groups, respectively, then sinusoidally stretched for
12 h at 1 Hz under standard incubation conditions. To assess
the effect of different stretch patterns, PCLS were randomly
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assigned to one of the following three stretch amplitude groups:
unstretched (US); low-stretch (LS), 5% peak-to-peak amplitude
with no static stretch; and high-stretch (HS), 5% peak-to-peak
amplitude superimposed on 10% static stretch. These waveforms
were arbitrarily selected to simulate regions of lung experiencing
different stretch during tidal breathing; a schematic is shown
in Figure 2. Following cyclic stretch, the PCLSs were collected
from each well for biochemical analysis (N = 48). Protease
inhibitors EDTA and Halt Protease Inhibitor cocktail (Thermo
Scientific) were added to the homogenized tissue samples, then
stored at −20◦C until further use. PCLSs were also collected
to assess tissue viability after stretching (N = 49). Lung slices
were trimmed using a 6 mm coring tool to reduce edge effects
from slicing and the attachment procedure, then evaluated
via MTS as before.

Western Blot
Protein concentrations for the homogenized tissues were
determined using the BCA colorimetric protein assay kit
(Pierce, Thermo Scientific). The assay was used according
to manufacturer’s specifications. Equal amounts of protein
(∼3.7 µg) from each sample were separated via sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE),
transferred to a polyvinylidene difluoride (PVDF) membrane,
and blocked using 5% bovine serum albumin in phosphate
buffered saline containing 0.05% Tween 20 (PBS-T). All groups
were run on the same membrane. After blocking for 2 h,
the membrane was incubated for 1 h at room temperature
with primary antibodies anti-IL-1β (1:250, Abcam), anti-MMP-
1 (1:1000, Thermo Fisher Scientific), TIMP1 (1:1000, Abcam),
MT1-MMP (1:5000, Abcam), and anti-GAPDH (loading control,
1 µg/ml, Abcam), washed in PBS-T 4 × 15 min, incubated with
secondary antibody (anti-mouse, 1:7000, anti-rabbit, 1:10000,
Vector Laboratories) for 1 h, and again washed in PBS-
T 4 × 15 min. Quantitative densitometry was performed
after chemiluminescence detection (SuperSignal West Pico
Chemiluminescent Substrate, Pierce) with picomolar sensitivity

FIGURE 2 | Lung slices were randomly assigned to one of three stretch

patterns: unstretched (0%), low stretch (0–5% area strain), or high stretch

(10–15% area strain).

similar to that of ELISA, with corrections for background and
loading control.

Statistical Analysis
Data analysis and fitting were performed using MATLAB
(R2016a, MathWorks, Natick, MA, United States) and
SigmaPlot (SigmaPlot v12.3, Systat Software, Inc., San Jose,
CA, United States). CSE dose response data was fitted using a
four-parameter logistic regression as follows:

y = a +
b − a

1 +
(

x
c

)d

where y is normalized absorbance; x is CSE concentration a and
b are the minimum and maximum values possible, respectively,
c is the point of inflection; and d is a coefficient characterizing
the slope of the curve. Two-Way analysis of variance (ANOVA)
was used to evaluate the influence of stretch and CSE on PCLS
viability as well as on IL-1β, MT1-MMP, MMP-1, and TIMP1.
Holm-Sidak method was used for post hoc comparisons. For all,
p < 0.05 was considered significant.

RESULTS

Figure 3 presents the calibration and validation of the multi-
well stretcher and FlexFrame devices. Vertical displacement of
the actuating stage yielded a non-linear relation between area
strain and motor position (Figure 3A), which was used to
prescribe waveforms for cyclic stretching. Note the minimal
hysteresis between loading and unloading of the flexframe
elastic membrane, 6.34%. Normal Lagrangian strains, Exx
and Eyy, were nearly identical, ρ > 0.999, with negligible
shear strain, Exy < 0.0005, demonstrating equibiaxial strain
of the elastic membrane (Figure 3B). Compared to the
commercially available BioFlex Culture Plates, our custom
fabricated flexframe demonstrated lower intra-well variance for
area strain, 0.473 ± 0.717% vs. 0.127 ± 0.073% (Variance
Mean± SD), particularly at larger prescribed strains (Figure 3C).
Finally, there was no detectable plastic deformation of the
membrane due to stretch as there was no difference in measured
area strains before and after 12 h of cyclic stretching (slope: 0.998
with R2 = 0.997; Figure 3D).

Figure 4 shows the effects of CSE and cyclic stretch on
tissue viability. We first established a sub-toxic concentration
mimicking acute cigarette smoke exposure in vivo (Figure 4A).
As expected, PCLS viability decreased with CSE concentration.
The corresponding dose response curve was well characterized
by a four-parameter logistic model (R2 = 0.893), yielding
an IC50 value of 0.018 cig/mL corresponding to the CSE
concentration at half-maximal viability. Based on this curve,
the CSE concentration was selected to be 0.01 cig/mL for all
subsequent experiments. We then confirmed tissue viability
following 12 h of cyclic stretching ± CSE (Figure 4B). Two-
way ANOVA detected no statistical difference in PCLS viability
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FIGURE 3 | (A) Calibration curve used to prescribe membrane area strain as a function of motor position. Symbols represent means of N = 6 wells with standard

deviations smaller than symbol sizes. (B) Nearly identical normal strains, Exx and Eyy, and negligible shear strain, Exy, as estimated by Delaunay triangulation,

confirmed equbiaxial strain of the elastic membrane. (C) The reusable flexframe exhibited lower variance of area strain in comparison to a commercially available

disposable alternative. (D) There was no observable mechanical change in the elastic membrane after 12 h of cyclic stretching.

among different stretch patterns (p = 0.070), CSE exposure
(p = 0.594), or their interaction (p = 0.277).

As shown in Figure 5, Two-Way ANOVA detected a
significant interaction between stretch pattern and CSE exposure
on the tissue content of all measured molecular markers (IL-
1β, p = 0.017; MT1-MMP, MMP-1, TIMP1, p < 0.001). Each
had a unique response to stretch and CSE. We found that IL-
1β (Figure 5A) exhibited the greatest response to stretching
(p < 0.001) among the group, and was statistically higher with
CSE exposure (p < 0.001) for all stretch patterns. CSE also had a
significant effect (p < 0.001) on MT1-MMP (Figure 5C), though
regulation directionality depended on stretch pattern (p< 0.001).
In contrast, stretch pattern had a significant effect on MMP-
1 (Figure 5B) in the presence of CSE (p < 0.001), whereas it
only had an effect on TIMP1 (Figure 5D) in the absence of

CSE (p < 0.001). The enzymes MT1-MMP and MMP-1 had the
greatest tissue content for LS with CSE exposure, while the tissue
content of the inhibitor TIMP1 was the greatest for the same
stretch pattern when CSE was absent.

DISCUSSION

In this study, we present the design and implementation of a
multi-well stretcher to investigate the mechano-inflammatory
response in lung tissue following an acute pharmacologic insult.
This is the first report to combine CSE exposure with cyclic
PCLS stretching as an ex vivo model of the dynamic changes
in lung volume that occur during cigarette smoke inhalation
in vivo. First, we demonstrated this device delivered repeatable,
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FIGURE 4 | (A) Lung slice (N = 93) viability decreased with CSE concentration and was well characterized (R2 = 0.893) by a four-parameter logistic curve (solid line)

shown with 95% confidence intervals (dashed lines). Binned data across multiple CSE concentrations are shown, vertical and horizontal error bars represent SE and

SD, respectively. (B) The sub-toxic CSE concentration was selected to be 0.01 cig/mL. Two-way ANOVA detected no effects for stretch and CSE at this

concentration, indicating tissue viability was not compromised with this system. Error bars represent SD.

low-variance, equibiaxial stretch. We then characterized the
CSE dose response curve in PCLSs and confirmed that cyclic
stretching did not compromise tissue viability. Finally, we found
the interaction between stretch pattern and CSE exposure had
a significant effect on all of the molecular markers, with each
exhibiting a unique response pattern. Together, these findings
demonstrate the feasibility of using this system to recapitulate
tidal breathing-like conditions in PCLS, while identifying specific
stretch-dependent molecular responses to acute CSE exposure.

Various approaches have been reported for stretching PCLS.
Techniques range from suturing (Davidovich et al., 2013a,b)
or clamping (Dassow et al., 2010) the PCLS to a deformable
elastic membrane, to compressing it between a polyacrylamide
gel and a hollow indenter (Lavoie et al., 2012). While such
devices allow for real-time imaging, they can be time consuming,
limited to a single lung slice, or constrained to a small area-of-
stretch. In contrast, the multi-well device described here provides
simultaneous, whole-slice stretching of up to 12 samples with
minimal preparation time. A commercially available alternative
capable of accommodating multiple lung slices operates by
applying a negative pressure vacuum to deform an elastic
membrane around a rigid post. However, we found that indenter
posts with integrated ball bearings improved hysteresis, stretch
homogeneity, and inter-cycle repeatability compared to other
designs using grease to reduce friction, which can also cause heat-
induced cell damage (Arold et al., 2009). Moreover, the flexframe
design introduced here is considerably more economic, easy to
build, reusable, and customizable with significantly lower intra-
well variance. Although stretcher selection is generally dictated
by application and familiarity, our device as described above is
ideal for higher throughput testing of acute exposures, either
pathologic or therapeutic, under tightly-regulated, physiologic
stretching conditions.

This platform is uniquely appropriate for investigating
mechano-inflammatory interactions, such as those underlying

COPD. Biomechanical forces are known to facilitate emphysema
progression (Mishima et al., 1999; Kononov et al., 2001; Yi et al.,
2016) along with inflammatory stimuli (i.e., cigarette smoking)
that weaken and predispose tissue to failure (Suki et al., 2003).
Yet, there is a paucity of data describing their relationship. CSE
has been used with in vitro (Nana-Sinkam et al., 2007; Stringer
et al., 2007; Thaikoottathil et al., 2009; Farid et al., 2013; Ballweg
et al., 2014; Chen et al., 2014) and small animal (Chen et al.,
2009, 2010; Hanaoka et al., 2011; Lee et al., 2012; He et al., 2015;
Chai et al., 2016) models of cigarette smoke exposure given its
relatively short incubation time and similarity to pathophysiology
in vivo. As a proof of concept, we used our system to characterize
the PCLS response to acute CSE exposure under various stretch
patterns, simulating cigarette smoke inhalation during tidal
breathing-like conditions.

IL-1β andMMP-1 expression are often upregulated in patients
with COPD (Imai et al., 2001; Ostridge et al., 2016), while MT1-
MMP and TIMP1 imbalance can lead to improper lung tissue
maintenance (Vandenbroucke et al., 2011; Woode et al., 2015).
We observed that the interaction between stretch pattern and
CSE exposure had a significant effect on these markers. IL-
1β increased with CSE and showed the most robust response
to stretch, whereas the enzymes MT1-MMP and MMP-1 and
the inhibitor TIMP1 could be either up- or down-regulated
by CSE depending on the level of stretch. Interestingly, the
low stretch group showed the greatest tissue content of MT1-
MMP and MMP-1 when CSE was present, and conversely
when it was absent for TIMP1, suggesting this stretch pattern
may be most sensitive to an acute exposure. Additional silver
staining revealed similar regulatory effects on protein species
across a range of molecular weights (Supplementary Figure S2

and Supplementary Table S1). While not a comprehensive
model of COPD, the stretch-dependent response to acute CSE
exposure observed here suggests a role for mechanotransduction
in modulating regional inflammation and enzyme burden on
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FIGURE 5 | Effects of stretch pattern, CSE, and their interaction on tissue content of IL-1β (A), MMP-1 (B), MT1-MMP (C), and TIMP1 (D). Representative bands

with loading controls are also shown. Data (N = 8) are shown as normalized mean and SD (*†p < 0.05 and **‡p < 0.001 for CSE and Control groups, respectively).

For presentation purposes the original images were cut to smaller ones including representative bands in the desired order and, according to standard publication

guideless, white spaces were left between them.

the alveoli. One may speculate this could further exacerbate
structural disease heterogeneity and emphysema progression,
particularly in tissue experiencing abnormal stretch (Mishima
et al., 1999; Suki et al., 2003; Bhatt et al., 2016, 2017; Bodduluri
et al., 2017; Mondoñedo and Suki, 2017). In any case, these
findings show a clear and definitive difference in PCLS response
to an acute exposure between cyclically stretched and unstretched
conditions, highlighting the need to provide a comparable
dynamic environment as experienced by the lung during tidal
breathing in vivo.

There are some limitations of this study. (1) Bathing the lung
slices directly in media simultaneously exposes all cell types to
CSE, whereas exposure to inhaled cigarette smoke initially occurs

at the airway and alveolar wall interfaces primarily involving
epithelial cells. This is an inherent limitation of the PCLS design.
Similarly, the MTS analysis does not specify local tissue viability,
but could be extended with immunohistochemistry to verify cell
origin. (2) The low-melt agarose is likely incompletely removed
despite frequent media changes after slicing as in previous studies
(Tepper et al., 2005; Sanderson, 2011; Davidovich et al., 2013b),
which could affect the apparent stiffness and residual area of
the lung slice. Thus, excised lungs were carefully prepared in
the same manner each time to minimize disparities between
animals. (3) The lack of circulation in the PCLS limits the study
of chemotactic factors, including neutrophil recruitment, which
participate in the inflammatory response to cigarette smoking
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(van der Vaart et al., 2004). (4) While this platform does
not facilitate real-time imaging, flexframes are easily removed
to visualize lung slices immediately after stretching. (5)
Although the deformation provided by the equibiaxial stretching
is not 3-dimensional uniform expansion, cells experience
physiologically appropriate stretch as the aspect ratio is
approximately 1 to 16.

In summary, we demonstrated the feasibility of using
this device to perform high-throughput testing of an acute
exposure under tightly-regulated, cyclic stretching conditions.
We showed that pro-inflammatory and enzyme expression-
related effects of acute exposure to cigarette smoke extract
are stretch-dependent. These findings identify a fundamental
difference between static and tidal breathing-like conditions
in precision-cut lung slices. Additional studies in PCLS
are required to determine whether mechanotransduction
could be a key mediator in COPD disease pathogenesis
and progression.
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