
A Higher-Order Approach to Parallel Algorithms

P. G. HARRISON
Department of Computing, Imperial College, London SW7 2BZ

A unified approach to the development of algorithms tailored to various classes of parallel computer architecture is

presented. The central theme is to identify a small set of higher-order functions that can be implemented efficiently on

the target architecture and which can be used to express parallel algorithms - in general via mechanised program

transformation from some higher-level specification. Such higher-order functions enable generic programs to be written

in which much parallelism may be explicit. Although the analysis uses purely functional languages, it is the functional

paradigm that is important and not the particular syntax. The proposed methodology is illustrated with a numerical

problem which is solved directly by a non-recursive program. We also describe schemes that map programs onto both

static and dynamic MIMD architectures which have communication links which are fixed and changeable at run-time

respectively.

Received March 1992, revised May 1992

1. INTRODUCTION

The main obstacle to the successful exploitation of
parallel computer systems is the ease with which they can
be programmed. Existing software technology is in-
appropriate and for such systems ever to become viable
general-purpose products, it is essential that software
tools be developed to reduce the inherent complexity of
parallel program development. There are three aspects of
software development for parallel systems:

• The potential parallelism available in a program must
be identified. In some cases, the parallelism may be
explicit, having been provided by the programmer, but
in general it is necessary to analyse the program to
establish the potential parallelism.

• The available parallelism must have a suitable granu-
larity; that is, each task must be of an appropriate size
for the type of machine being programmed. The grain
size must be small enough to utilise several processors
at once yet large enough to avoid excessive com-
munication overhead. Large grain also makes a
program more portable, enabling it to be executed
efficiently on a wide range of multi-processors.

• The resulting parallel program must be partitioned
into sequential units of computation which must be
scheduled to run efficiently on the available processors.

The present paper applies the functional programming
paradigm and a program transformation methodology
to address these issues in a uniform way. There exist a
number of classes of parallel algorithm and a number of
widely differing types of parallel architecture, ranging
from SIMD, through tightly coupled MIMD with shared
memory to loosely coupled multi-processors. The central
idea of this paper is to identify forms of functional
programs that suit particular architectures, to generate
parallel algorithms by composing them and to develop
program transformations to synthesise such algorithms
from higher-level specifications. Here, the higher-level
specifications will also be functional programs, but the
objective in the longer term is to develop the paradigms
which would become applicable to any flavour of source
language.

In section 2, we demonstrate how the use of higher-
order functions in a functional program can produce

non-recursive forms for many non-trivial algorithms.
This results in clear and concise programs which often
solve a generic class of problems through their
parameterised form; the genericity comes from the
function-valued arguments of the higher-order functions.
We also describe a transformational methodology for
tailoring functional programs to parallel architectures.
We then consider in the following two sections more
concrete problems. We show how to transform divide-
and-conquer algorithms into both dynamic and static
MIMD forms, in which the communication structure is
respectively variable and fixed throughout a program's
execution. In the former case, considered in section 3, the
resulting abstract architecture is essentially parallel graph
reduction of the type realised by ALICE.13 An example
is given which throttles the available parallelism. In
section 4, it is shown how divide-and-conquer algorithms
can also be mapped onto pipelines, a special case of the
static MIMD architecture. The paper concludes in section
5.

We present much of our analysis in a combinator-
based language in the FP style.1 The notation is
reminiscent of APL, and for our numerical example of
section 2, we introduce several more of the APL built-in
functions, hopefully to appeal to a wider readership. The
primitive combinators - higher-order functions - include
function composition (denoted by _o_), conditional
(denoted by _-*_; -) and function-tupling called
construction (denoted by [_, ,_]). Function appli-
cation is denoted by juxtaposition, e.g./x. Although this
syntax is essentially first-order, those higher-order
functions which have function-valued arguments but do
not return functions as results can be expressed by
including the apply function as a primitive. Apply takes
a function and an object as arguments and returns the
result of applying the function to the object.

2. A HIGHER-LEVEL PARADIGM

2.1. Use of higher-order functions

Functional languages provide an ideal medium for
implementing many of the principles of good software
engineering. This is largely a consequence of their high-

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 555

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/6

/5
5
5
/3

5
2
6
5
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

P.G.HARRISON

level, declarative nature and the hierarchical structure of
functional programs.6 However, such properties are not
unique to functional languages and the same (functional)
paradigm can also be applied to more conventional
languages which may include imperative features. The
paradigm merely requires a language to possess some
means for defining functions (including higher-order
functions). Certainly, other features of functional
languages such as strong typing and pattern matching
are desirable since they assist the rapid production of
correct, easy-to-read programs. However, they may be
too expensive for a large organisation to incorporate into
their software production process, in terms of staff
retraining, development of new systems software and
interaction with other software components written
under conventional methodologies. In the sequel, we will
talk about functional programming, but it is the
paradigm that we advocate above all.

Whilst a first-order functional language can be used to
produce good software, far greater expressive power is
available to a language with higher-order functions.
These can take functions for arguments and return
functions as results, and the former capability alone can
endow a language with the power to define generic
algorithms, parameterised by some operation. For
example, consider the factorial function. Whilst its usual
recursive definition is mathematically rigorous and
concise, it is not the intuitive definition which is something
more like 'multiply all the numbers from 1 up to the
number given as argument'. When defining an operation
on a data structure - here a list of numbers - we
frequently would like to iterate over it in some way with
an operator. Moreover, we might want to iterate over it
in the same way with various different operators, for
example we might want to add up all the numbers from
1 to the argument value. It would be nice to be able to
avoid writing a whole new program for each such
operator; we would like to have the operator as a
parameter. This capability is exactly what a higher-order
function (of the first kind above) provides.

To summarise, we would like to avoid the use of
explicit recursion, which should be replaced by a higher-
order function. Of course, we do not really remove the
recursion in this way; it just becomes hidden in the
higher-order function which itself has a recursive
definition, although typically is implemented as a
primitive. In fact just a few higher-order functions,
together with some well-chosen first-order primitives,
suffice to solve a wide range of problems for each
composite data type. This philosophy is not new; it is
very close to that of APL and later FP. The only real
difference from the programming point of view is the
ability for users to define arbitrary higher-order
functions. Even then, we favour the extensive use of a
small suite of such functions, corresponding to a small
number of program-forming structures in 'structured
programming'. However, a major advantage, if a
functional language or a pure functional style is used, is
that we have better scope for optimisation. This is based
upon the extensive set of meaning-preserving trans-
formation techniques developed for functional languages,
which derive from the simple semantics of these languages
and in particular their referential transparency; see ref. 6
for example.

Two of the most important higher-order functions

which iterate over linear structures such as lists, sequences
or vectors are map and reduce which we will often
denote respectively by * (in postfix form) and / (in prefix
form). To be concrete, we will take lists for our linear
structure and define map: (a-s-/?)-* list a-> list fi by

map f nil = f* nil = nil
mapf (x::xs) = f (x::xs) = (fx) : : (f*xs)

where nil denotes the empty list and :: is the infix form
of the list constructor function 'cons'. Similarly, right-
fold or right-reduce, written /: /?^(a->/?^/?)^ list a->
/?, is defined by

/bf nil = b
/bfx::xs = f x (/b f xs)

(We adopt the convention that :: has the highest
precedence in expressions where there is ambiguity due
to absence of brackets.) For lists of integers, we define, as
in APL, the function ' iota', denoted by z, that returns the
list of integers from 1 to n when applied to argument n.
We omit its obvious recursive definition. Then, for
example, factorial (!) is defined by

and the function that sums the numbers up to n (sum) is
defined by

sum n = / 0+(i n)

(Actually, since we are using right-fold, we are mul-
tiplying or adding the numbers from n down to 1, but
since + and x are commutative, this is the same as
working upwards from 1. If + and x were not
commutative, we could define a left-fold function
similarly and use it to work upwards from 1 instead.)

If we also introduce the function-composition higher-
order function, o, these definitions become even simpler,
namely

! = (/I x)oi and sum = (/0 +)oz

Denoting the constant function which always returns the
result x by x (following Backus's notation1), the function
length which returns the length of a list is defined by

length = (/0 +)o I*

Not only are these definitions intuitive (and easy to read
when you have got used to the notation, recall APL!),
they also avoid duplication of work since they allow the
definition of generic functions which iterate over a data
structure with whatever functions and values are supplied
as arguments. Here we have parameterised reduce to
multiply numbers, add them or count the number of
items in a list. A more complex example which
triangulates a matrix is given in the next sub-section.

We advocate this approach to software development
whether or not the target machine is a parallel computer.
However, for the parallel case, the absence of recursion
can simplify greatly the identification of parallelism and
partitioning. For example, wherever map is applied to a
known function, we can distribute the computations over
its list argument. It will be noted that reduce is inherently
sequential in nature and so cannot be parallelised in
general. However, if it is applied to an associative
operator, it can be applied to segments of a list
independently and the results combined in a divide-and-
conquer fashion.

556 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/6

/5
5
5
/3

5
2
6
5
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

A HIGHER-ORDER APPROACH TO PARALLEL ALGORITHMS

To sum up, our paradigm for parallel (but not only
parallel) functional programming is to:

(a) Define the appropriate data structures, e.g. vectors,
matrices, trees, as in normal programming practice.

(b) Iterate over these structures using higher-order
functions rather than explicit recursion. The higher-
order functions must be tailored to the structures and
should be few in number. Typically they will include
variants of map or reduce and for standard data
structures, such as vectors or lists, should be provided
as primitives. The same applies to commonly required
first-order functions; see the example in the next
section. This reduces the need for user-defined
functions and increases efficiency.

2.2. A numerical example

To exemplify the previous discussion, let us consider
operations on vectors and matrices. First, we introduce
the data type vector, denoted by angle brackets <,...,>,
which is equivalent for our purposes to the type list. We
assume the following functions are primitive:

• cons (with infix form ::)
• index (with infix form of)
• append (with infix form ||)
• length

Of course, all but the constructor cons could be defined
recursively by the programmer. We also introduce the
following functions for manipulating vectors. These too
could be defined by the user but more likely would be
primitive, as in APL, for example, whence many are
taken. All of these functions are undefined on arguments
which do not have the type specified.

• take (with infix form f), defined by
nt<x, xm> =<x, xn> (n ^ m)

= <0,...,0, x, xm> (n>m)
(n —m zeroes)

• drop (with infix form j) , defined by
n|(x, xm> =<xn+1 xm> (n<m)

= <> (n ^ m)
• copy, defined by

copy n x = <x, ...,x> (a list of length n, each item
equal to x)

• inner_product (with infix form •) , defined by
<x, xn>»<y1 yn>> = (x,*y,) + ...+ (x;yn)

(n^O)
transpose, also written F, defined by

F « x n xln>, <x21 x2n>, ...,<xml xm n»
= «x,, xm1>,...,<xln xmn» (m,n^O)

• i and rev/, defined by
m = <1, ...,n> and rev*n = <n, ...,1> (n ^ 0)

We will also use the higher-order function zip (with
postfix form *2), which is dyadic map, defined by

zipf «x, xn>,<y, yn» = <f<xvy,>

f<xn,vn» (n>0)

It is then easily shown that

• = (/ +)o(zipx)
by applying each side of the equation to an arbitrary pair
of equal length vectors, and that

F pair = (zip id) pair

when pair is a vector of two (equal length) vectors and id
is the identity function.

We define a matrix to be a vector of vectors, and
similarly for higher rank objects, and introduce the
following additional utility functions.

• index n (a 'curried' selector function partially applied
to n) to select the nth item in a list, e.g. the nth row of
a matrix is defined by

index n <x,,...,xm> =xn (1 ^ n ^ m)
index n z = 1 (undefined) for any other form of

argument
• col to select a column, defined by

col = map o index
• replace-row, defined in (partly) curried form by

replace-row (n, v) m = (n - 1) f m || (v :: n i m)
• replace-col, defined similarly by

replace-col (n,v) = Fo (replace-row (n , v)) o F
• matrix-multiply (infix form ®) can now be defined

simply by
ml ® m2 =
F (map (constr (map inner-product ml)) (Fm2))
or
ml ®m2 =
constr (map map (map inner-product ml)) (Fm2)
where constr:list(a^/?)^a-s-list(/?) is a coercion
function defined by

constr <f, fn> z = <f,z fnz> (n > 0)
In words, constr converts a list of functions - which
cannot be applied to an argument - into a construction
which applies each function in the list to the supplied
argument.

Notice that

constr = A ((map@odistr)

where disr, @ and A are the functions distribute right,
apply and curry respectively, defined by

distr «x,,... ,x
@<f,x> = fx
Afxy = f(x,y)

= «x v a>, ...,

With a little more practice, it can also be seen that

F = @ o [constr ocol* o(o length, id]

We conclude this section with a concise, non-recursive
function, tri, which converts a matrix into lower
triangular form. It follows the conventional Gaussian
elimination algorithm without pivoting, but there is no
conceptual problem in writing a non-recursive version
with pivoting. The definition of tri is the following:

tri matrix = /matrix f (rew (d —1))
where d = length matrix

f n m = (n f m) || vsub* (n j m)
where vsub r = zip— <r, zip x <row, copy d

(index n r)>>
row = zip-=-<index n m,copy d (index n

(index n m))>

2.3. Principles of transformational parallel
programming

In transformational programming, first a clear
application-oriented solution to a problem is written,
with emphasis on ease of understanding rather than

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 557

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/6

/5
5
5
/3

5
2
6
5
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

P.G.HARRISON

efficiency of execution. Meaning-preserving (i.e.
semantically sound) transformations are then applied
successively to this program to produce a sequence of
semantically equivalent, but ever more efficient,
programs. Ideally, the transformation process would be
supported by some environment which would ensure
that only semantically verified steps could be applied and
many of these steps would be applied automatically.
Although this has been achieved for some simple
transformations, e.g. ref. 5, in general the process is at
best only semi-automatic. Typically, sub-expressions are
selected by the programmer who also decides which
transformations to apply and judges their success (or
otherwise). Moreover, new transformation steps can be
introduced by the programmer as 'lemmas' which are
specific to his particular application. This is often
necessary to allow progress to be made, but relies for its
correctness on that of the new lemmas. This type of
interactive transformation may be supported by meta-
programming, i.e. a programming language that allows
the user to manipulate programs in a controlled way that
ensures their correctness is preserved. This leads to a
formal approach to software development.

The best-established transformation methodology of
this type is the unfold/fold methodology of Burstall and
Darlington,3 which is based solely on partial (symbolic)
evaluation and the substitution of equal expressions.
Being based on such simple principles, its range of
applicability is very wide and typically it forms the
framework for a transformation environment which also
includes more powerful but more specific techniques.
One such technique which we will make use of is
algebraic program transformation. This consists of
simply rewriting combinator-expressions using
equational reasoning (as an inference system) based on
some set of axioms. The algebraic style has been followed
by a number of researchers, for example Bird,2 and
Williams et al." as well as the author,910 and a non-
trivial application of it is required in our example of
section 4. Before such a transformation system can be
applied, it is necessary to prove the semantic soundness
of the axioms by showing that the application of either
side of an axiomatic equation to an arbitrary object
yields the same result. The same approach could be
applied to the expressions of a conventional functional
language in which object-variables appear explicitly, but
these variables often impede the transformation process
since they need to be instantiated to enable certain steps
to proceed, e.g. folding. We therefore abstract all object-
variables to attain a form which resembles the style of
FP.1 For example, two axioms state that

[f, g] oh = [f oh, goh] and (p->q; r) oh
= poh->qoh; roh

and can be verified very simply by applying each side of
an axiom to an arbitrary object x and demonstrating that
the results are equal. The axioms may be primitive,
relating the general combining forms of the language (i.e.
its basic higher-order functions) as above. Alternatively,
they may be data type dependent, relating the type's
constructors, selectors and higher-order functions. From
the axioms, we may derive theorems, i.e. commonly used
compositions of axioms. Two examples are a result
defining a loop which is equivalent to a linear function
and an expression for the inverse of a recursive function.

Such theorems have been developed for sequential
implementations; see for example refs 9, 10, 12.

In the next sections we obtain results which define
equivalent parallel computations for certain kinds of
function. This derivation of axioms in terms of data
types and associated higher-order functions is consistent
with the programming style we have advocated and the
parser-based analysis which is required to determine the
applicability of theorems is conducive to mechanisation.
Transformational programming is particularly relevant
to the exploitation of parallel machines. There is great
diversity in the current range of parallel machine types
available. However, there is no accepted software
development methodology for parallel computation -
not even for specific machines, let alone a common one.
Application-oriented solutions typically do not account
for the properties of the machine on which they run, and
neither should they. Moreover, current parallel
optimisers are too specific to both application and
machine. Hence there is no real alternative to explicit
control of parallelism. Of course, this is disastrous for
software productivity, reliability, evolution and port-
ability, but it is necessary, in compilers' object code, for
satisfactory performance - which is the motivation be-
hind parallel computation in the first place. Successful
exploitation of parallel systems has required a return to
low-level programming: the hardware is presented with
manuals describing processors' languages and
communications protocols and the rest is up to the user.
Although it helps when the languages are at quite a high
level, software tools for performing non-trivial logical
tasks are lacking.

We propose to use the functional paradigm to address
these problems. The methodology comprises three
phases. First, a class of functions that correspond to
efficient code for the target architecture is identified.
Secondly, transformation techniques are developed that
map application-level programs and/or specifications
into functions in that class. A suite of such trans-
formations is necessary for each class, i.e. for each type
of architecture. As well as conventional source-to-source
transformation, this phase includes the annotation of the
transformed program to indicate such execution
characteristics as process placement and scheduling. In
the third phase, the applications programmer should
now be able to write the most' natural' program for the
problem in question. This may already involve higher-
order functions, if the preceding methodology is adhered
to, and so may be suitable for parallel evaluation
immediately. In general, however, we will require
transformation to synthesise an equivalent program that
contains more parallelism. As usual, this program would
be guaranteed correct by the soundness of the trans-
formation rules.

3. TRANSFORMATIONS FOR DYNAMIC
MIMD

There are two types of function which we consider for
parallel execution. The first is linear in the sense of the
graph representing a partially evaluated function ap-
plication. This graph grows down its left spine, reflecting
a sequential computation with a number of nodes
proportional to the size of the argument. Such a function
application gains nothing from execution on a parallel

558 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/6

/5
5
5
/3

5
2
6
5
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

A HIGHER-ORDER APPROACH TO PARALLEL ALGORITHMS

machine since there is never any work to distribute, with
the possible exception of some sub-expressions in the
body of the function which do not call that function
recursively. However, certain linear functions can be
transformed into parallel form if, in some way to be
clarified, they can be 'distributed' over the set of all the
arguments passed in a recursive call. On the other hand,
non-linear functions often generate parallelism directly
by having more than one sub-expression in their body
containing a recursive call. Such functions are called
divide-and-conquer functions. The evaluation graph of
such a function is a tree and the number of parallel
function applications grows exponentially as the graph
unfolds. It is therefore relatively simple to find sufficient
parallelism and the problem becomes one of throttling
the generation of parallelism which, if it becomes too
excessive, will cause a communication bottleneck and
loss of performance. Nonlinear functions of this type are
considered in the next section where parallelism is
controlled by mapping the functions' applications onto a
pipeline. Here we briefly address linear functions,
showing how they can be transformed into divide-and-
conquer form under certain conditions, whereupon
throttling will again be required. Throttling is typically
implemented through annotations to the compiled code
of a program which indicate, for example, the smallest
size of argument for a function that makes remote
evaluation advantageous. The information conveyed by
the annotation is based on some form of complexity
analysis performed at compile time. Moreover, the run-
time decision also depends on the expected communi-
cation time overhead which should be predicted from the
current load on the system using some performance
model. These issues of partitioning and scheduling are
vitally important and difficult problems, but we do not
address them further in this paper.

To be concrete in our parallelisation of linear functions,
we consider list-manipulation functions which have a
tendency to be sequential because of the linear (sequen-
tial) definition of lists:

list a = nil++cons (a, list a)

The transformation of such a function into a parallel
form is exemplified by the recursive function that
computes the length of a list. Let us call this count to
distinguish it from the already defined length function.
Its definition is:

count nil = 0

count x::xs = 1 +count xs

which is equivalent to the FP-like definition

count = is_nil->0; succocountotl
where is_nil is the function that tests for an empty list,
succ is the integer successor function and tl is the
function that takes the tail of a non-empty list. To
achieve a parallel computation, we need a non-linear
tree-structure instead of a list, and we define

tree a = leaf (list <x)++node(tree a, tree a)

For example, one tree corresponding to the list <A, B, C,
D, E, F> is shown in Figure 3.1. Of course, this tree is not
unique, and typically we choose a balanced tree, with list
segment sizes as near to equal as possible at the tips, for
an efficient parallel computation. The optimal segment

[AB] [C] [DE]

Figure 3.1. A tree of segments of a list.

f

[F]

abs. abs,.

f

Figure 3.2. General data type transformation.

abs

Figure 3.3. 'Triangular' data type transformation.

size is a function of the partitioner. It should be just small
enough so that the communication overhead of
distributing the function application on it makes it
cheaper to evaluate locally. As we have said, deter-
mination of this size requires complexity and perform-
ance analysis.

For parallel evaluation of the application of a function
on lists, count in our case, we need to find a corresponding
function on trees. This type of synthesis is often called a
data type transformation. In the general problem, we are
given abstraction functions, absa: a' -»a, which link the
concrete forms of type a' with the abstract forms of type
a. We can then draw a commutative square, shown in
Figure 3.2, which defines a concrete function f: a ->/?'
corresponding to the given (abstract) function f: a-»/?.
Thus, f = abs^of oabsa and the problem is to express
the right-hand side of this equation in a form such that
no function involves an abstract type;11 as it stands, all
three do so! In many cases either a = a! or /? = /?' and the
square becomes a triangle (see Figure 3.3), greatly
simplifying the transformation to f = foabsa.

In our case, /? = /?' = num, the type of non-negative
integers, and absa, abbreviated by abs, is defined by

abs leaf(x) = x

abs node(s,t) = (abss) || (abst)

which has equivalent FP definition

abs = isJeaf -»• id; append o abs*o [lefttree, righttree]
where isJeaf is the predicate that tests if a tree-object is
a leaf and lefttree, righttree are selector functions on
trees formed by the node constructor. (Notice that if we

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 559

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/6

/5
5
5
/3

5
2
6
5
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

P.G.HARRISON

generalised * to map over the tree constructor, node, we
could just write abs* instead of abs* o [lefttree,
righttree]). Now, it is easy to see that if, given f:a-»/?,

fo append = a of* for some function a (which depends
onf)

we can synthesise a function f a' ̂ /? independently of a.
In our case, this condition holds with a = +, integer
addition, since

count (x || y) = (count x) + (count y)

The concrete function f is denned by

f' = foabs =

is_leaf ^ - fo id ; fo append o abs* o [lefttree, righttree]

by the basic FP law f o (a -> b; c) = a -v f o b; f o c for all
functions f, a, b, c. Thus, if the condition stated above is
satisfied,

f = is_leaf->f; aof*oabs*o [lefttree, righttree]
= is_leaf-»f; ao (foabs)* o [lefttree, righttree]

since (fog)* =f*og* for all functions f,g (see section
4.2). Thus we arrive at the definition

f = is_leaf^f;aof*o [lefttree, righttree]

Although this definition still contains a reference to f and
so is not entirely independent of the type a, this reference
occurs only in the 'base case' and not in the recursive
branch. Thus we only need to retain the abstract function
for computations at the leaves of a tree. In fact we could
even avoid this if we chose a tree representation with only
singleton lists at the leaves. Then we would need only the
base case of f for application to the values in the leaves.
However, this would lead to too fine a grain of parallelism
for our purposes.

To be rigorous, the function we have derived for f is
the least fixed point of the functional

Ag. (is_leaf *o [lefttree, righttree])

This is certainly one valid concrete form for f, by
construction, but we have not shown that it is unique.
Indeed, in general, this is not the case.

Finally, in our example, the parallel form of count,
defined on trees, is tree_count (= count') which may be
defined as

tree_count leaf(x) = count x
tree_count node(x, y) = (tree_count x)

+ (tree_count y)

This is a classic divide-and-conquer function of the type
we consider in the next section; in fact it could now be
transformed, if desired, into a pipeline for evaluation on
a static MIMD architecture. The base case of the
recursion still has a call to count which would be
evaluated sequentially in single processors. The linear
recursion could be optimised by applying sequential
transformations such as the conversion of linear recursion
into a loop; see, for example, ref. 12.

4. TRANSFORMATIONS FOR STATIC
MIMD

In static MIMD architectures, processes cannot be
created or destroyed dynamically and the communication
links between the fixed set of processes never change.

Such an architecture can be described abstractly as a
process network in a functional language,815 by defining
a set of mutually recursive functions. The functions
correspond to the processes, their parameters to the
communication links and the data transmitted to the
components of the (list-valued) arguments; such lists
may be infinite and are often called streams. A process
network that includes a cycle will generate an infinite
stream of data and must be described by a functional
program with lazy semantics. We will consider only
process networks with no cycles, i.e. directed acyclic
graphs and it is easy to see that any such network can be
drawn as a pipeline. The order of the processes in the
pipeline is any one that is consistent with the precedence
relation of the graph. Any stages in the pipeline that are
skipped can be combined with other stages which will
acquire a larger number of input and output channels. Of
course, there are still implementation problems, such as
a mismatch of data rates at different stages where, for
example, one stage might require data items two at a time
from its input stream whilst the others consume them
singly. However, we will not be concerned with such low-
level problems here (which is not to deny their difficulty).

We consider divide-and-conquer algorithms f specified
as functional programs of the form

f x = if p x then q x else E, x

where q is a fixed function, i.e. not dependent on f, p is
a boolean-valued fixed function and E, x is an expression
in the variables f and x. Now, Ef x must contain at least
two occurrences of f or else there could be no ' divide'
aspect to the specification. The resulting evaluation
graph is then a tree which is balanced down to instances
of the base case q x. Clearly applications of such a
function are ideally suited to implementation on a
dynamic MIMD architecture without transformation
other than annotation to facilitate throttling, as discussed
in the previous section. We now show how to transform
such functions for implementation on a static, pipeline
architecture.

In the FP-like notation referred to in the Introduction,
the definition of the functions under consideration
becomes:

f = p->q;Hf

where (Hf) x = Ef x. As observed above, H is non-linear
in that Hf contains more than one occurrence off and we
consider a simply defined, yet substantial, extension of
the linear class of functions considered in ref. 12. To
illustrate our approach, we first consider a simple
example, namely mergesort, in section 4.1. This is then
followed by the more formal, general analysis in section
4.2.

4.1. Transformation into a pipeline: an illustrative
example

The ' mergesort' function sorts a list of objects with an
order relation, e.g. the integers with 'less than'. It works
by first splitting the list into two parts, recursively sorting
the parts and finally merging the two sorted lists that
result. The idea of our transformation is first to convert
the recursive program into a non-recursive form (using
higher-order functions) and then map this into a pipeline

560 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/6

/5
5
5
/3

5
2
6
5
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

A HIGHER-ORDER APPROACH TO PARALLEL ALGORITHMS

t possible wave of
I parallel execution

<X2> <Xn_,> <Xn>

Figure 4.1. Dynamic MIMD computation of 'mergesort'.

by a simple data type transformation. The definition of
the mergesort function, ms, is the following:

mx<x> = <x>
ms xs = merge (ms u, ms v)

where (u,v) = split xs

where split is the function that divides a list into two
parts 'as equally as possible', defined by:

split xs = (u,v) such that
xs = u || v and 0 ^ length u - length v < 1

and merge is the function that merges two sorted lists
into a single sorted list, defined by:

merge (nil, ys) = ys
merge (xs, nil) = xs
merge (x::xs, y::ys)

= if x < y then x::merge(xs,
y::ys) else y::merge(x::xs, ys)

For simplicity, we assume ms is applied to a list with
length n a power of 2 so that its evaluation tree is
perfectly balanced; see Figure 4.1. The computation
consists of two phases. In the first, the tree unfolds until
the leaves contain singleton lists. In the second phase, the
tree folds as the merge functions, abbreviated to m in the
figure, are applied to their arguments across each level in
the tree, progressively working upwards. The com-
putation terminates when the fold phase applies the
merge at the root of the tree. We wish to construct a
pipeline to perform the fold phase, given the singleton
lists at the bottom of the fully unfolded tree as input.

Each stage in our pipeline will correspond to one level
in the tree and so we begin by defining a function that
maps the collection of lists entering the merge functions
at any level into the corresponding collection entering
the next level up. Each collection may be viewed as a list
of pairs (of lists), each pair constituting the arguments to
one instance of merge. The required function, d-stage
say, is therefore defined by:

d-stage m <p> = m p
d-stage m ps = pairs (m* ps) = (pairs om*) ps if

length ps > 1

where the function pairs is defined by

pairs nil = nil

pairs x : : y : : t = (x,y)::pairs t

In fact, we can just define d-stage m = pairs om* if we
extend the definition of pairs to singleton lists by the
equation

pairs <p> = p

To define mergesort in a non-recursive way, all we have
to do is to 'fold' d-stage m over the 1 +log2(n) levels of
the tree. That is, we require a Iog2(n)-fold composition
of d-stage m, i.e. of pairsom*, which is given formally
by the function comp as follows:

comp f< x> = f <x>
comp f xs = comp f (fxs) = ((compf) of) xs if

length xs > 1

The mergesort function is now defined non-recursively
by

ms = (comp (pairsom*)) opairs

This is all very well, but we have not performed any
transformation yet. The computation is exactly the same
as for the original recursive definition and proceeds
' dynamically' in that the number of parallel processes is
determined by the function pairs. The basis for it is the
successive mapping of a list of pairs. Since the list is of
unknown size, the degree of parallelism is also unknown
before run-time and will vary from stage to stage in the
computation. This suggests considering instead a map-
ping on a pair of lists. This would enable the compilation
of functions of two arguments (corresponding to the
pairs) for each stage, which would process a stream of
unknown length of pairs at run time.

In other words, we need a data type transformation of
the kind described in section 3 to map (abstract) lists of
pairs to (concrete) pairs of lists. This is a common
transformation, for example used in VLSI design, for
which the abstraction function, abs, is transpose (T),
provided we regard pairs as lists of two items. It is also
analytically very convenient since transpose has a
number of useful properties, not least of which is that it
is its own inverse.

36

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 561

CPJ 35

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/6

/5
5
5
/3

5
2
6
5
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

P.G.HARRISON

Now, ms = (comp (pairsom*)) o pairs, and it is easy
to verify that the concrete form of a composition of
functions is the composition of their concrete forms.
Thus the concrete form of mergesort, ms', is defined by:

ms'= (comp (pairs'om*')) opairs'

Thus we need to find expressions for pairs' and m*'.
Now, pairs' is given by a 'triangular' transformation
since the argument type is the same for both pairs and
pairs', namely a list. Thus,

pairs' = To pairs

(The 'triangle' is a different one from that in Figure 3.3).
Thus, pairs' takes a list as argument and outputs the
transpose of the list of pairs returned by pairs: assuming
the input list contains an even number of items. This
value is the pair of lists formed by adding successive
items of the input list at the end of alternate lists in the
pair. If the argument is a singleton list, no data type
transformation is involved so pairs and pairs' both
produce the value of the list-item.

Similarly, m* and m*' share the same result type and
so, as in Figure 3.3, we have

m*' = = m*2

compile time, and a fixed number of stages loaded, some
or all of which could be multiplexed to provide several
logical stages. For example, the pipeline could be
implemented by one physical stage, the outputs of which
would be fed back into its inputs for a fixed number of
cycles. Of course, a one-stage pipeline would not provide
any speed-up since there would be no parallelism.

4.2. The general result

The mergesort example was particularly simple because
the only references to the argument xs in the recursive
equation also appear in the argument expression for the
recursive call to the mergesort function itself. To
generalise and make rigorous the preceding analysis, we
first define the class of functions we are considering. This
is an extension of the linear class defined in ref. 12.

Definition 4.1

A divide-and-conquer functional H (DCF), together
with its predicate transformer functional Ht and its
body-function EH, is defined inductively to be any of
the following cases:

(«)
(b)
(c)

id)

(e)

if)

(g)

H=ID

Hf=(Gf)oa
Hf=ao(Gf)
fff=\g»-,gj
where gt = at or HJ

Hf=p->Af;Bf
Hf=Pf^Af;Bf
where Pt = At = Bt

Hf=[HJ,...,Hnf\

Ht = ID
HJ=(GJ)oa
Ht = Gt

Ht = Htl for any i

such that gt = HJ

HJ=p-*AJ;BJ
U D
"t ~

 r
t

HJ={H1J...,Hntf)

EH

EH

EH

EH

for

EH

EH

EH

= 1
= EGo[l,ao2]
= aoE(

= [Fir •

Si
 u

i>

= po2-
= EP->

= [£»,<

..,Fn] where Fi = aio2, EH{

HJ respectively
•*EA;EB

EA;EB

>[l'ol,2],...,£//no[«'ol,2]j

(see Lemma 4.5). Our final form for mergesort is therefore

ms '= (comp (pairs'om*2)) opairs'

which is a multiple composition realisable by a pipeline.
Each stage, other than the first, in the pipeline is the same
and has two input streams of sorted lists. It merges
corresponding lists in the input streams (according to
m*2) and outputs the results on alternating output
streams (according to P). These stages are depicted in
Figure 4.2. The first stage just applies pairs' to the list of
singleton lists formed from the input to ms by applying
[id]*. It will also be apparent that the last stage could be
simplified to m.

Before giving the formal analysis in the next section,
let us summarise the main steps we have taken to
synthesise a pipeline for a divide-and-conquer type of
function:
• determine the evaluation tree of the function, including

the values in the leaves;
• transform the function into non-recursive form by

determining the mapping between levels in the tree
and folding over all levels;

• apply a data type transformation from lists of pairs (in
general tuples for functions of arity greater than 2 at
the nodes of the tree) to pairs (or tuples) of lists.

The functions on tuples then define the stages in the
pipeline, the length of which is the depth of the evaluation
tree which, of course, will not be known until run-time.
However, the code for each stage can be generated at

The functional {...} is defined by

Objects of the form <§;... 3> are called <C S>-trees which
are isomorphic to untyped lists of the form <...>. The
corresponding selector functions, denoted by /', are
defined by:

"<&!, -..,Xn^> = Xi (1 ^ / ^ r t)
= 1 otherwise

The reason we introduce {...} rather than just using [...]
is to allow for the possibility of having < >-lists at the tips
of a nested <§; 3>-tree structure. In particular,
applications of Ht idmust be distinguishable from normal
lists. It is case (g) of Definition 4.1 that allows non-linear
functions to be defined, but we are not restricted to
functionals explicitly in this form. For example, the
functional H defined by:

Hf=[[Af,a],[Bf,Cf\,b]oc

for DCFs A, B, C and fixed functions a, b, c, can be
rewritten as:

tf/=[[lol,ao2],[2ol,3ol], bo2]o[[Af,Bf,Cf\,id]oc

We define a DC-function to be one defined by an
equation of the form/ = p^-q; ///"where H is a DCF and
p, q are fixed functions. The DCFs constitute an extensive
subclass of the degenerate multi-linear functionals
studied in refs 9, 14, 16. We define the degree of a DCF

562 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/6

/5
5
5
/3

5
2
6
5
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

A HIGHER-ORDER APPROACH TO PARALLEL ALGORITHMS

m(x,.x2)

m<X2i-3- x2i-2>

m(x3,x4)

m (x2i-1 'X2i)

X3

X2i-1

X2

Figure 4.2. The pipeline implementation.

H to be m i f / / /can be written in the form {fx, ...,fm} for
some positive integer m and functions/((1 ^ / ^ m).

The transformation into non-recursive form requires
some higher-order functions, some of which correspond
to those used in the mergesort example of the previous
section. They are denned as follows:

Definition 4.2
(a) The 'deep map function' deep is defined by the

recursion equations:

d e e p / < x x , . . . ,x n > = < d e e p / x 1 , . . . , d e e p / x n »
deep/z = / z if z is not a <g. 3>-tree, i.e. z # <^Xj,

...,*„;» for any xx, ...,xn

(b) The postfix function A :(ax/?-•}>)->•((£-*a) x (e->-
/?)-*(£->• y)) lifts a function of two arguments. The
lifted form of a function b is denoted by b

A and
defined by

(c) repeat: (a-xx^a-s-list^, a is defined by

repeat /= [id] ||A (repeat f)of) = [id,f,f,...]

(d) trunc: (a->bool)->list a ->• list a truncates a list at
the first element that satisfies the predicate passed as
first parameter and is defined by

trunc p =
null •nil; pohd^[hd]; [hd] ||A (trunc p)otl

(e) upto: (a -»• bool) -> (a -» a) -> a -> list a first generates
a list by repeated application of its second argument,
then truncates it using the predicate of its first
argument and finally returns the reverse of this list
(for future mathematical convenience). Its definition
is

u pto pf = reverse o (tru nc p) o (repeat/)

where reverse is the usual list-reversal function.
Alternatively, we can define upto without appealing
to any laziness in the semantics of our language
(repeat produces infinite lists) by

Thus, in particular, if eqO denotes the predicate that
tests an integer value for zero and subl subtracts 1
from an integer, upto eqO subl is the reversed 'iota'
function of APL which delivers the first n + 1 non-
negative integers in reverse order when applied to
argument n.

\ : 0 9 x a H ^ - ^ x l i s t a - > j ? i s a left-fold function,
defined on finite lists by

V(b,n\\) = b

This function is dual to right-fold, / , defined in
section 2, with some uncurrying introduced for
future convenience of notation.

(g) The w-adic map function *m is defined by

/*m = nullol^nTT; [fohd*] ||A (J*
m
otl*)

where / is an /w-argument function with type
a x ... xa^ / ? . Note that *x = *.

(h) We also define the first-order function match that
'pairs' two <C3>-trees of compatible shapes by:
match <M,v)> = <w, u> if u is not a <^C^>-tree or v

is not a <C 3>-tree
= <Cmatch <x1,;;1>)...,

match < x n , > ' n »
if u = <CXj,..., xn^> and

= 1 otherwise •

upto pf=]; ((upto/>/)o/) ||* [id]

Notice that we are working with untyped lists so that
we make no distinction between finite lists and tuples. In
fact we can, and will, overload ||, * and *m to operate on
<̂C ^>-trees. We also overload the transpose function T
so that it can operate on either <§C ^>-trees or standard
lists. The functions deep and match have some important
properties given by the following lemma. The proofs are
easy inductions, based on extensionality.

Lemma 4.3
(a) deep id = id
(b) deep o deep = deep
(c) deep (fog) = deep/odeepg
{d) deep [f,id] = match o [deep f,id]

Under appropriate conditions, a non-recursive form
can be obtained for a DC function. This is given by the
following theorem which is proved in ref. 7. (It can also
be proved by induction fairly easily.)

Theorem 4.4

Let/be defined b y / = p^q; ///where H is a strict DCF
of degree m which satisfies:

• Vx.[(H
t
ap)x^(H<;

l
p)x] for i ^ 0

• Vx. [p x => q x = Hq x]

where HJ= HJ &....&.Hmf and & denotes 'lifted
logical-and', i.e. & = AA. Then we have

/ = \((deep EH)omatch)o[(deepq)ohd,tl\o(upto (y/p)h)

where h = deep (//, id) and i// is defined by
if/ p = ((deep/?) = A (deep f)).

The class of functions H defined in the theorem was
called overrun tolerant by Williams.18 Now, the

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 563

36-2

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/6

/5
5
5
/3

5
2
6
5
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

P. G. HARRISON

applications of h in the list generated by upto will
produce <̂C ^>-trees whereas in a pipeline we require
streams. Thus we flatten the <§C ^>-trees in a data type
transformation which defines new versions of the
functions h, deep, match, and EH. The other functions q,
hd, tl, upto, \ do not apply to <C 3>-trees and so are not
involved in the transformation. Let the type <C ^>-tree
be the abstract type and its flattened form the concrete
type. In this transformation we will use properties of the
functions * and *m given in the following lemma.

Lemma 4.5
(a) For all functions/, g, (fog)* =/*og*
(b) For all functions g and w-argument functions f(m ^

2),g*or
m
 = (go/)*

m

(c) For all functions g and w-argument functions f(m ^
2),/*""og** = (/°g*)*m

(d) For all functions/,/*™ = / * o F .

The proofs simply apply both sides of the identities to an
arbitrary list (tuple of lists in cases (b-d)), and use
extensionality. For other argument types both sides
return the undefined object. •

Denoting the abstract type <|C 3>-tree with leaves (i.e.
objects which are not <̂ ; ^>-trees) of type a by T(CT) and
its flattened form, a 'flat' <gc;§>-tree, by t'(a), we have
(dropping the subscript r(a) from abs):

• abs is some function such that flatten o abs = id,
where flatten is defined by

flatten x = flatten < J C » = <^x2> if x is not a
-C »-tree

flatten ^ x ^ ...,xn» = (flatten x j ||...|| (flatten
x j otherwise

We call a flat <C »-tree a <§: »-list.
• Although the inverse of flatten is not unique, we can

define abs uniquely by

abs = is_sing->hd'; abs*osplit

where is_sing is the predicate that tests for a singleton
<§C3>-tree and split is determined by Htid, cor-
responding to the way in which the -C 3>-tree is built
up; see ref. 7 for a rigorous description.

• h':a-+z(o) is defined by h' - flatten o(HJd)*. This
function will require simplification in specific cases
where the definition of Ht is known. For example, for
the mergesort function it reduces to id.

• deep': (a^p)->x'(a)^T'(P) is defined by deep '=
map. However, note that the argument of deep' (here
EH) may itself require transformation if a or /?
involves r.

• match' requires a more subtle derivation and the
details are given in Appendix 1. The result is

match'= is_singo2^ir;{(tmol)|r(ti°2)}
||A match'o[|raol, | lO2]

where fm denotes the function 'take' that returns the
first m components of a list or <C 3>-tree and [m the
function 'drop' that returns the remainder; compare
section 2.

• E'H is now defined by EH = EHo[hd', abs of/']. This
transformation merely involves changing the way EH

accesses its second argument, in particular, how it uses
selector functions to access a flat <^3>-tree rather

than a deep one. An inductive definition is given in
Appendix 2 for the general case, but the above
argument is sufficient if a fully automatic program
derivation is not necessary.

In fact we now have a form of pipeline as an
implementation of/. Each stage is a composition of two
sub-stages: match' which produces a <§; ^>-list of <§; ^>-
lists of known length m+\ and E'*. The m+] items of
each component list must enter a sub-stage serially and
so we transform the list of (w+ l)-tuples into a (m+ 1)-
tuple of lists of length dependent on the argument
supplied to / In other words we transpose the result of
match'. This corresponds exactly to the data type
transformation we performed in the mergesort example
of the previous section. We therefore obtain the following
function definitions:

• match" = To match'
= E'*oT = E'*) by lemma 4.5.

Thus (£*,)" o match" = E'* o match', but no further trans-
formation of EH is necessary since it is mapped over its
list-argument: the transposition is handled by the (m + 1)-
adic mapping function according to lemma 4.5. We have
therefore achieved the following pipeline:

/ = \(E'*
im+1)omatch")o[q*ohd,tl\o(upto (y/p)h')

This pipeline is illustrated in Figure 4.3. In this pipeline
there are two preliminary stages which form the initial
input to the main pipeline from the input x supplied to
the original function. The main pipeline consists of
stages i = l,...,n from the right, and the final result
emerges as rn. For example, in the case of mergesort, q
= id, E'H = merge o[l, 2] and x0 is the result of repeatedly
applying h' = flatten o split until a <g. 2>-list of singleton
lists is obtained, match" batches together the elements of
the <CS>-Hsts iv, (together with X; which is actually
redundant), into tuples (in this case, pairs) which are
distributed over the inputs of the function Ê by P. The
inputs X; for i > 1 are not used, and it is the handling of
these that introduces a significant amount of the extra
complexity into the general transformation. In particular,
the function match' is almost trivial without i t - 'pairs'
in the mergesort example. The much more complicated
quicksort program, which is also easily expressed in
divide-and-conquer form, does use the inputs x; in the
pipeline. However, the general transformation presented
above also handles this example straightforwardly, the
details being in ref. 7.

5. CONCLUSION

We have described methodologies and techniques to
exploit a range of parallel architectures using functional
programming and program transformation. First, many
problems can be mapped onto parallel architectures if
their solutions are written in the 'parallel functional
style' using a small suite of higher-order functions
tailored to the data structures used. This style has many
other advantages, in particular allowing generic
programs to be written, and is not unique to functional
programming: it is also typical of the APL philosophy
for example. Parallelism can be extracted from such a
program directly from certain of the higher-order
functions used, for example 'map'.

564 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/6

/5
5
5
/3

5
2
6
5
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

A HIGHER-ORDER APPROACH TO PARALLEL ALGORITHMS

ro

o
h

d
.t

l]

-- x° x"
o.
-3.
oQ .

Figure 4.3. The divide-and-conquer pipeline.

However, in general, a program must be manipulated
to run efficiently on a given type of parallel machine.
Different transformations will be required for different
machine types and the ability to transform a single
program onto each would provide a uniform treatment
of parallel computation. We considered two common
types of parallel architecture - static and dynamic
MIMD - and derived transformations tailored to each
for well defined classes of functions, namely linear and
divide-and-conquer. Of course, divide-and-conquer
functions are well suited to dynamic MIMD architectures
without transformation; the only problem is how to
throttle the parallelism. This involves some form of
complexity analysis and performance modelling (to
account for current run-time loading) which was not
addressed here.

Clearly, the results given here only begin to address the
problem of parallel computation. At the higher level, we
propose to identify types of function that correspond to
particular modes of parallel execution, for example
processor farm, message-passing and master-slave, to
complement pipeline and divide-and-conquer discussed
here. These would be higher-order functions (they would
be parameterised by the functions in the individual
processors, e.g. stages in a pipeline) called 'skeletons',
and would enable source-to-source transformations to

be written from applications programs.4 There are then
the problems of implementing the skeletons efficiently on
specific hardware. These would be considerable, but at
least the effort would not have to be repeated for every
new application, as is currently the tendency.

As well as formal transformation of the type considered
in this paper, other means of mapping programs
efficiently onto the target machine will be necessary. The
transformation system cannot hope to have as much
information about program and architecture as an
intelligent user. In particular, the user should be able to
'annotate' a transformed program to indicate particular
properties of the architecture and execution requirements.
For example, information about process placement might
be important; two processes that communicate frequently
should be placed on either the same processor or on two
connected by a high-speed link. Similarly, a process with
a lot of numerical computation should be placed on a
processor with a floating point unit if available. As well
as annotation, the user should be provided with the
ability to apply 'new', application-specific transform-
ation steps which should ideally be verifiable. Both the
formal and informal types of program transformation
need to be supported by a transformational programming
environment which would have the potential to unify
parallel applications, programming and architectures.

REFERENCES

1. J. Backus, Can functional programming be liberated from
the Von Neumann style? Communications of the ACM 21
(8), 613-641 (1978).

2. R. S. Bird, Lectures on Constructive Functional Program-
ming. Lecture Notes, International Summer School on
Constructive Methods in Computing Science (1988).

3. R. M. Burstall and J. Darlington, A transformation system
for developing recursive programs. JACM 24 (1) (1977).

4. M.I. Cole, A 'skeletal' approach to the exploitation of
parallelism. In Proc. CONPAR 88, pp. 667-675. British
Computer Society Workshop Series (1989).

5. J. Darlington el al., A functional programming environ-
ment supporting execution, partial execution and trans-
formation. In Proc. PARLE 89, pp. 365-366. Parallel
Architectures and Languages Europe, Eindhoven, The
Netherlands. LNCS, Springer-Verlag (June 1989).

6. A. J. Field and P. G. Harrison, Functional Programming.
Addison-Wesley (1988).

7. I. P. Guzman, P. G. Harrison and E. Medina, submitted
for publication (1992).

8. P. Henderson, Functional Programming: Application and
Implementation. Prentice-Hall (1980).

9. P. G. Harrison, On the expansion of non-linear functions.
Ada Informatica (1991).

10. P. G. Harrison, Towards the synthesis of static parallel
algorithms: a categorical approach. In Proc. IFIP TC2
Working Conference on Constructing Programs from
Specifications. Pacific Grove, CA, USA, (May 1991).

11. P. G. Harrison and H. Khoshnevisan, The transformation
of data types. Computer Journal (1992).

12. P. G. Harrison and H. Khoshnevisan, A new approach to
recursion removal. Theoretical Computer Science (1992).

13. P. G. Harrison and M. J. Reeve, The parallel graph
reduction machine, ALICE. In Proc. Workshop on Graph
Reduction. Santa Fe (September 1986), LNCS 279,
Springer-Verlag.

THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992 565

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/6

/5
5
5
/3

5
2
6
5
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

P.G.HARRISON

14. H. Khoshnevisan, Automatic transformation systems
based on function-level reasoning. PhD Thesis, Imperial
College, University of London (1987).

15. G. Kahn, The semantics of a simple language for parallel
programming. In Information Processing 74. North Hol-
land (1974).

16. J. H. Williams, On the development of the algebra of
functional programs. ACM Transactions on Programming
Languages and Systems 4, 733-757 (1982).

17. J. H. Williams, E. Wimmers and A. Aitken, In Proc. ACM
Symposium on Principles of Programming Languages
(1988).

APPENDIX 1. DERIVATION OF THE
CONCRETE FORM OF MATCH

Referring to section 4.2, we know that the two arguments
supplied to match are <g; ^>-trees with matching struc-
ture, the second of which is smaller than the first in the
sense that its leaves match with subtrees of the second.
This is because the first has one more application of
Ht id at its leaves. We can therefore write the definition
of match as

match = not_<$C^>-treeo2^W; match*2

where not_<C 3>-tree = ~ o is_tree, ~ denoting the
usual logical negation connective. The result of match
has type T(T X /?), i.e. is a <g 3>-tree with pairs at its
leaves, the first component of which is a <C 3>-tree.
Thus, the data type transformation for match has, in the
notation of section 3,

and = abs*oabsabsa = abs* ^

Hence,

match' = not_<§:3>-treeo2o abs* -»flatten oflatten*o
abs*; flatten oflatten* o match*2oabs*

Now, not_<S »-tree(abs x) is true if and only if x is a
singleton ^C ̂ >-tree. Hence, the else branch of match' is
always applied to a pair of non-singleton <g; ^>-trees, so
we can replace abs* by (abs* o split)*. (It should be noted
that this type of conditional analysis makes automation
through term-rewriting difficult and here we have a
typical situation in which user interaction through a
transformational environment is desirable). By lemma
4.5 and basic FP laws we now have

match' = not_<^^>-treeoabso 2 ̂ f latten o id* ;
flatten o (flatten o match o abs*)*2 o split*

= is_sing o 2 -»{ | | } ; flatten o match'*2osplit*

Now match' itself has been expressed as a DC function
which, in the light of the above discussion, we can write
as

\((deep flatten)o 1)o[{hd}, tl\o(upto y//? split*)

after some simplification - we again have a 'merge-sort'

class of function. Suppose now that the <§; 3>-tree
generated by application of Ht id has arity m > 1. Then
it follows that split divides a <C3>-Hst into another
<g[»-list of <§: 3>-lists of length m. (The number of
components in every such <§C 3>-list must be a power of
m). Thus match' may be defined by

match' = is_sing02^{W};{[tmol,M'o2]}||Amatch'o

Urn
0 U ll°2]

(We assume that m is not greater than the length of a
list). In fact we transform match' a little further by
flattening the pairs it outputs into <S 3>-lists of length
m + 1. This gives:

match'=is_singo2^||A;{(tmol)||A(t1o2)}|r match'

APPENDIX 2. AN INDUCTIVE
DEFINITION FOR E^

The following inductive definition is due to Eduardo
Medina of Fujitsu-Espana and the University of
Malaga. Let S' be defined by S'(i,j) {*„ ...,*„} = {*,,....
t+,-i} (1 «S/««, 1 ̂ j^n-i+\). We then have the
properties that, wherever 5' is defined,

hd'oS'{i,j) = i'

S'iUd o IIA o [S\i2,j2), k] = S'ii, + i2 -1,7l)
for all functions h and i1+jl- 1 ^j2

Now let m, m{ be the «C»-tree arity of Ht,Hit

respectively (as defined in Appendix 1). Then, for each
of the cases of Definition 4.1 we have respectively that
E'H =

(a) V
(b) E'GoV o[SX\,m),
(c) aoE'a
(d) [bv...,bn] where bt = a?oS'(m+ 1,1) ifg, = at and b(

= eHi if g, = J
(e) p(+])'

1,1)] , ...,E'H(g)

t This case requires the additional assumption that At and Bt have
the same <§; ̂ >-tree arity. This is not unreasonable since A and B would
normally be of the same type, being the branches of a conditional.

566 THE COMPUTER JOURNAL, VOL. 35, NO. 6, 1992

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

jn
l/a

rtic
le

/3
5
/6

/5
5
5
/3

5
2
6
5
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2

