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Abstract

The aim of this work is to extract the road network from

aerial images. What makes the problem challenging is the

complex structure of the prior: roads form a connected net-

work of smooth, thin segments which meet at junctions and

crossings. This type of a-priori knowledge is more diffi-

cult to turn into a tractable model than standard smooth-

ness or co-occurrence assumptions. We develop a novel

CRF formulation for road labeling, in which the prior is

represented by higher-order cliques that connect sets of su-

perpixels along straight line segments. These long-range

cliques have asymmetric PN -potentials, which express a

preference to assign all rather than just some of their con-

stituent superpixels to the road class. Thus, the road like-

lihood is amplified for thin chains of superpixels, while the

CRF is still amenable to optimization with graph cuts. Since

the number of such cliques of arbitrary length is huge, we

furthermore propose a sampling scheme which concentrates

on those cliques which are most relevant for the optimiza-

tion. In experiments on two different databases the model

significantly improves both the per-pixel accuracy and the

topological correctness of the extracted roads, and outper-

forms both a simple smoothness prior and heuristic rule-

based road completion.

1. Introduction

The application problem behind this paper is the extrac-

tion of the road network from aerial or satellite images. This

is a challenging vision problem with important applications

in mapping and remote sensing. In spite of more than two

decades of research [1, 7, 10, 18], the problem is largely

unsolved—we are not aware of an operational system for

automatic road extraction.

The most challenging part of the task is to get the net-

work topology right: if existing connections are broken or

inexistent ones hallucinated, then a road map is of little use

for navigation, even if an overwhelming majority of pix-

els are correctly labeled as road, respectively background;

on the other hand, once a correct and complete network of

input data superpixel labeling

unary labeling proposed method

Figure 1. The proposed higher-order CRF favors networks of elon-

gated segments (top). We apply it to road extraction (bottom).

approximate centerlines has been recovered, the exact seg-

mentation can be refined locally (e.g. with active contours

[17]). We point out that this is an instance of a more gen-

eral issue beyond road extraction. It exists in similar form

for other image understanding tasks which involve objects

with a “network” topology, i.e. they are made up of thin seg-

ments linked together by junctions and crossings (Fig. 1).

A main difficulty of image understanding (i.e. semantic

interpretation of the image content) is that the observation

data is noisy, incomplete and ambiguous, such that prior

knowledge about the layout of the observed scenes is neces-

sary to obtain satisfactory results. As a consequence, a main

focus of computer vision research over the past decade has

been how to include such prior knowledge into the (usually

probabilistic) models.

Maybe the simplest form of prior are expectations about

an object’s location, along the lines of “the sky is usually

at the top”. They are conditionally independent between

different pixels and can directly be merged into the per-pixel

likelihood, e.g. [21].

A lot more powerful models can be formulated by taking

into account the relative location of objects, like for exam-

ple “boats are usually found near water” [8] or “neighbour-

ing regions tend to have the same semantic class” [2, 13].

Due to the constraints, the individual variables are no longer

independent but form a conditional random field (CRF).1

1Or a Markov random field; for our purposes the distinction is irrelevant.
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Inference in such models is more complicated, but often

good solutions can still be found efficiently. Arguably,

much progress in image understanding in the last decade

is due to the fact that in CRFs with appropriately restricted

clique potentials (approximate) MAP estimation is possible

with variants of graph cuts [3] or message passing [6, 14].

However, for some object classes more complex priors

are adequate, and these include our target class, the roads on

the earth’s surface. The characteristic feature of the roads is

their network structure: road segments are thin linear struc-

tures with limited and smoothly changing curvature; and a

road segment is usually connected to other road segments

on both sides, sometimes connected only on one side, but

almost never isolated. Note how these expectations differ

qualitatively from standard smoothness assumptions: even

a tiny minority of non-adjacent (super-)pixels with high

road likelihood can be strong evidence for a road, if they

are aligned along a straight line; and the evidence is even

stronger if the first and last of the (super-)pixels lie on po-

tential crossings.

In principle, it is of course possible to formalize all the

desired constraints into a probabilistic model, and some re-

search in that direction exists, e.g. [22, 15]. Unfortunately,

the resulting likelihood functions tend not to be amenable to

efficient inference algorithms. Solutions can only be found

with Markov Chain Monte Carlo samplers or annealing-

type methods, which are rather difficult to parameterise cor-

rectly and have high computational cost. In most of the lit-

erature, the network structure of roads is introduced only

after detection, by filling gaps between detected road seg-

ments with heuristic rules (c.f . Sec. 2).

In the present paper, we explore the possibility to con-

struct an intermediate model, which captures important

properties of the road network while still being amenable to

efficient inference techniques. The main contributions are

(i) a formulation of the constraints as non-local higher-order

cliques with asymmetric PN -Potts potentials [13], such that

they can be solved within the graph-cuts framework; and (ii)

a data-driven sampling strategy to find the relevant cliques

and make inference tractable. To our knowledge this is the

first work which exploits the rich modeling possibilities of

the PN -Potts model for network modeling in general and

for road extraction in particular.

2. Related work

There is an extensive body of work on road extraction,

and we can only review a representative selection here. For

a more complete overview please refer to the evaluation pa-

pers [10] (up to 1997) and et al. [18] (1998–2006).

Road detection in images goes back to at least [1], where

road pixels are identified with a sequence of local image

processing operations. Only shortly afterwards [7] was

probably the first work to explicitly incorporate topology,

by searching long 1-dimensional structures. A local road

score is computed at each pixel with a line detector and

roads are found iteratively as minimum cost paths with an

A∗-type algorithm. In [17] road extraction is based on

multi-scale line detection. A heuristic completion scheme

is employed to bridge gaps due to shadows, overhanging

trees etc. Subsequently the road segmentation is refined

with a pair of coupled active contours (“twin-snakes”). De-

tecting oriented road segments also forms the basis of [12].

The most road-like of these segments are then designated

as seeds and the network is iteratively grown from there. In

a final step, the network is pruned with a shape-based clas-

sifier to remove false positives. In [22, 15] marked point

processes (MPP) are introduced as representation for short

road segments. MPPs provide a powerful framework to

construct an object-based probabilistic representation and

allows them to include elaborate priors on the connectivity

and intersection geometry of roads. On the downside, infer-

ence with MPPs is only possible with all-purpose methods

like simulated annealing or reversible jump Markov Chain

Monte Carlo (RJMCMC), which are computationally very

demanding and also brittle to set up, such that in practice

they do not always achieve satisfactory results. In [19, 20] a

deep belief network is trained to detect image patches con-

taining roads. A second network is trained to take the output

of the first one as input and fill small gaps. Using massive

amounts of training data—extracted automatically with the

help of existing road databases—they achieve promising re-

sults, on images with largely unoccluded roads.

The works mentioned so far have focused on rural and

suburban areas, where the road network is relatively sparse

and regular, and less affected by occlusions, shadows, cars

etc. One of the few works on urban roads is [11]. Given

high-resolution images and a height map, road segments are

detected using multiple cues (dark homogeneous areas, val-

ley lines of the height map, lane markings, vehicles). The

segments are then connected by iteratively inserting poten-

tially missing connections and verifying that they have suf-

ficiently homogeneous brightness. Overall, little research

exists on road extraction in dense urban scenes.

Road extraction has also been attempted from other data

sources, e.g. [31] extract road center lines from range im-

ages generated with airborne laser scanning, and [25, 24]

extract roads from synthetic aperture radar (SAR) imagery.

Both approaches are surprisingly similar: detect oriented

lines, link them to straight road segments, hypothesize addi-

tional segments to “fill the gaps” in the network with simple

geometric rules, and select which of the hypotheses to keep

by inference in a pairwise MRF over the segments.

3. CRF Model of the road network

We pose road extraction as a binary labeling problem on

superpixels, linked together in a CRF which encodes the
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prior assumptions about the roads. In the following we de-

scribe each component of the model.

3.1. Image representation and unaries

Rather than working with individual pixels, the raw

image is over-segmented into small, regular superpixels,

which are the atomic units for all further processing. We

use the graphcut-based segmentation algorithm of [26].

While our method can in principle be extended to in-

dividual pixels, we prefer to use superpixels for practical

reasons. On the one hand, they yield more stable unar-

ies because of their larger support, on the other hand, they

greatly speed up processing, both during clique generation

(Sec. 3.4) and during inference. Their main disadvantage is

that in certain cases they will lead to jagged and incorrect

road boundaries. We are mainly interested in improved ex-

traction of the network topology, and believe segmentation

boundaries are best cleaned up in a subsequent step with a

stronger shape prior (e.g. [17]).

The next step is to estimate, for each superpixel, the like-

lihood of being road respectively background. To that end

we train a Random Forest classifier [4] with 20 trees. As

features we extract standard color and texture features. In

detail, we convert the image to opponent Gaussian color

space [5] and convolve it with the 17-dimensional filter

bank proposed by Winn et al. [29]. The filter bank con-

sists of Gaussian kernels at three scales, first-order Gaussian

derivatives in x and y at two scales, and LoG responses at

four scales. The Gaussian kernels are evaluated for all three

channel, whereas the derivative filters are evaluated only in

the intensity image. The 34-dimensional feature vector for a

superpixel is made up of the means and standard deviations

of the individual filter channels.

3.2. Higher-order CRF model

CRFs have become a standard tool of computer vision

to represent image priors. Initially researchers concentrated

on first-order CRFs (e.g., [23, 21, 8, 9]), mainly because

efficient inference methods existed only for these. More re-

cently it has turned out that the crucial property for a CRF

to allow efficient inference is not so much the size of the

cliques, but rather how many different states the clique po-

tentials can take on: higher-order CRFs can still be solved

efficiently, if the higher-order potentials are restricted ap-

propriately [13].

Several recent works exploit the rich modeling possi-

bilities of higher-order cliques for semantic pixel labeling,

for example by introducing global co-occurrence statistics

[16], or by simultaneously inferring the scene type of an

image as well as the spatial extent, location, and class of

objects [30]). Here, we adapt higher-order potentials to net-

work extraction. Recall that our aim is to model the poste-

rior distribution P (y|x) of labels y given x. With a slight

Figure 2. Cliques connect superpixels on straight line segments

or 3-junctions. They are sampled by connecting superpixels with

high road likelihood. (marked with black centroids).

abuse of notation we denote both the raw data and the fea-

tures derived from it x (respectively xi for a particular su-

perpixel). In a CRF the posterior is a Gibbs distribution,

P (y|x) ∝ exp (−E (x, y)). In our case the variables to

be labeled are the set S of superpixels, and the label set is

yi ∈ {0, 1}, where 1 denotes road and 0 background. In-

stead of only allowing unary and pairwise potentials, the

Gibbs energy for a higher-order CRF is given by

E (x, y) =
∑

i∈S

ψi (xi, yi) +
∑

c∈H

ψc (xc, yc) , (1)

where H denotes the set of cliques (note, for convenience of

notation we also include possible pairwise cliques in H), ψi

are the unaries, and ψc are the clique potentials that encode

dependencies between the variables of a clique. MAP infer-

ence consists in maximizing P (y|x), which is the same as

minimizing the energy E (x, y).

The aim of our work is to extract roads, i.e. thin elon-

gated objects surrounded by a dominant background. Ob-

viously, a CRF with standard pairwise potentials will not

be able to encode these long-range structures, but rather

tend to smooth away thin structures such as roads, a well-

documented phenomenon in image segmentation (e.g. [27],

see also Sec. 4). Instead, we require a higher-order poten-

tial over long elongated sets of superpixels (Fig. 2), which

encourages them to take on the road label if the cumulative

evidence over the entire clique is strong enough.

Still many such cliques will also contain some back-

ground superpixels, thus the penalty for non-road labels in

the clique should increase gracefully rather than abruptly

with the first deviating superpixel. Furthermore, the prior

is not symmetric: if the dominant label along an elongated

clique is background, then one can not in general deduce

that all superpixels should be labeled background, since

in an urban or suburban environment any sufficiently long

straight segment will intersect several roads, and contain

several superpixels with a strong preference for that class.

The higher order potential ψc (xc, y) that we propose has

the following form:

169816981700



ψc(xc,yc) =

{

min
(

α, Pb ·
α−β
γ

+β
)

if Pb < Pr

0 else
(2)

with Pr =
∑

(wi
c ·yi) the weighted sum of road superpixels

in the clique and Pb =
∑

(wi
c · (1− yi)) the weighted sum

of background superpixels. The wi
c are weights that deter-

mine the influence of individual superpixels on the clique

potential (c.f . Sec. 3.3). α is an upper bound on the poten-

tials, and β, γ are the remaining parameters of a truncated

linear cost function. Using a truncated linear function en-

sures the desired graceful increase of the penalty, while pe-

nalizing only background pixels in road-dominated cliques

introduces the desired asymmetry.

The potential (2) is designed in such a way that it is a

special case of the robust PN -Potts model, a class of higher-

order CRFs introduced in [13] whose energies can be mini-

mized in low polynomial time with graph cuts.

3.3. Contrast-sensitive node weighting

In order to avoid over-smoothing, we use contrast sen-

sitive node weights wi
c. The intuition is the following: if

a superpixel has high background likelihood and its fea-

tures deviate a lot from the other ones in the clique, then

it probably belongs to the background, i.e. labeling it as

background should not have a large impact on the energy

(for example, think of a small roundabout on a major road).

Empirically we found the following weighting scheme to

work best: we compute the mean feature vector xc of the

clique, and for each superpixel measure the deviation of its

feature vector xi from that mean, using the Euclidean dis-

tance dic = ‖xc − xi‖ in feature space. With the standard

deviation σc of all such distances in a clique, the weight is

then determined as

wi
c =

⎧

⎪

⎨

⎪

⎩

wmax if dic < σc

wmax(2− dic/σc) if σc < dic < 2σc

0 if dic > 2σc

(3)

Along rather homogeneous roads, many feature vectors are

very similar and close to the mean, whereas superpixels

on vegetation, building features etc. stand out. The trun-

cated linear weighting function gives full weight to super-

pixels within one standard deviation σc, a linearly decreas-

ing weight to pixels between σc and 2σc, and zero weight to

nodes outside two standard deviations—effectively remov-

ing them from the clique. The contrast sensitive weighting

significantly reduces false positives.

3.4. Clique sampling

The remaining problem of the proposed model is that the

number of potential cliques is huge. It is infeasible to con-

sider all possible straight chains of superpixels in an image.

The basic insight is the following: most possible cliques

will be irrelevant to the problem, because an overwhelm-

ing majority of their unaries will have a preference for the

background class. Since cliques where the background la-

bel dominates have potential ψc = 0, such cliques will

not change the energy in reasonable regions of the solution

space near an energy minimum.

Furthermore, note that many cliques will have (up to the

mild influence of the contrast-sensitive weights) the same

potential value: consider a road segment with, say, two de-

viating superpixels labeled as background. By shifting the

line segment along the road, slightly rotating it within the

road surface, or shrinking/extending it one can generate a

large number of cliques which also have dominant label

road, the same two background members, and similar wi
c

because they are mostly supported by the same pixels.

We thus obtain a representative sample of the relevant

cliques (i.e. those which could conceivably coincide with

a road) in a data-driven fashion. To that end, we return

to the definition adopted above: a road network consists

of (nearly, locally) straight segments between junctions.

Based on this prior we sample cliques either in form of

elongated straight segments (“network cliques”) or junc-

tions (“junction cliques”).

For the network cliques two seed nodes with sufficiently

high road likelihoods are sampled randomly and connected

with a straight corridor. Setting the width of the corridor

to the mean super-pixel diameter yields stable performance.

All super-pixels whose area lies >50% inside the corridor

are considered members of the same clique (Fig. 2).

Junction cliques are star-shaped configurations with

three corridors meeting in a central node. They are gen-

erated by randomly sampling a central superpixel and three

additional ones to define the incoming corridors. Note that

any crossing with > 3 branches can be represented with

multiple junction cliques. Figures 3(a) & (b) show the den-

sities of sampled network and junction cliques, respectively.

In order to reduce the computational burden during in-

ference, we introduce additional criteria to discard irrele-

vant cliques. First, we only sample seed points from the set

of all nodes that have unary road probabilities above 0.5.

Second, we limit the distance between two seeds; empiri-

cally two thirds of the image diagonal works well. More-

over, we discard cliques whose median unary road likeli-

hood is below a threshold; for junction cliques, we addi-

tionally require a minimum angle between incoming corri-

dors, to avoid pseudo-junctions where two corridors lie on

the same road; in our experiments we use a threshold 30◦.

4. Experiments

We evaluate our approach on aerial ortho-images from

two different urban test sites, generated by dense matching

and ortho-rectification. Both consist of 500 × 500 pixels
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(a) (b) (c) (d)
Figure 3. (a) Aerial photo of GRAZ, (b) overlaid with segmentation [26], (c) density of network cliques, (d) and density of junction cliques.

Red indicates high density, blue low density.

tiles with a ground resolution of 0.5 m. The first dataset

of the city VAIHINGEN, Germany, contains 14 color in-

frared tiles. 4 tiles were used for training and 10 for testing.

The second dataset contains 18 RGB tiles from the city of

GRAZ, Austria. 4 tiles were used for training and 14 for

testing.2

We compare the proposed approach (abbreviated HOP)

to three different baselines (Tab. 1 & 2, Fig. 4). The first

baseline (RF) is the classification based only on the Ran-

dom Forest unaries. The second baseline (Potts) also uses

the same unaries, but smooths them with a standard first-

order contrast-sensitive Potts model. The third baseline

(Rules) simply samples promising straight road segments

and assigns all their pixels to the road class. Sampling

follows the same rules also used to generate our higher-

order cliques, but with stricter thresholds that yield better

performance (the standard clique sampling thresholds con-

servatively aims to include all potentially useful cliques and

would create an excessive number of false positives). This

baseline emulates the often used heuristic completion of the

road network and allows one to separate the effect of our

clique sampling scheme from the effect of the subsequent

CRF inference.

We designate all superpixels with P (road) > 0.5 as

seeds and sample 10 network cliques, respectively 1000

junction cliques, per seed. After pruning unlikely cliques

(Sec. 3.4), between 1000 and 5000—depending on image

content— remain as higher order potentials. The parame-

ters for our CRF model were determined by grid search and

kept constant for all experiments in both datasets: α = 2,

β = 1, γ = 0.45 and wmax = 2.

4.1. Evaluation measures

We conduct 4-fold cross-validation and employ several

different performance metrics to assess our results. First,

2The VAIHINGEN data are part of the ISPRS benchmark http:

//www.itc.nl/ISPRS_WGIII4/tests_datasets.html; The

GRAZ data has been kindly provided by Microsoft Photogrammetry, Graz.

Data and ground truth will be made available upon publication.

we compute the completeness, correctness, and quality
measures introduced by Wiedemann et al. [28] and widely

used in the literature on road extraction, e.g. [17, 18, 12, 19,

20]. They are defined as follows: Completeness is a variant

of recall, which accounts for the fact that road boundaries

are noisy and ill-defined. The estimated road segments as

well as the ground truth are skeletonized to obtain center-

lines. Ground truth centerline pixels are deemed true pos-

itives (TP ) if they lie within a buffer of width B around

the estimated centerline, and false negatives (FN ) other-

wise. Then, completeness = TP/(TP + FN). Cor-

rectness is the equivalent variant of precision: Estimated

centerline pixels are TP if they lie within B pixels of

the ground truth centerline, or false positives (FP ) oth-

erwise, and correctness = TP/(TP + FP ). Quality

combines both criteria into a single number according to

quality = TP/(TP +FP +FN). The buffer width is set

to B = 5 pixels, corresponding to the narrowest roads we

wish to extract.

Additionally, we also assess the pixel-wise segmentation

accuracy of our road extraction. To that end we compute

the κ-coefficient, widely used as a performance metric in

remote sensing. The κ-value measures how much the pre-

dicted labels differ from a random label image with the

same class frequencies. By measuring the improvement

over a chance agreement, as opposed to the one over a 100%

wrong result that is measured by the overall accuracy, κ
compensates frequency biases.3

Although widely used in mapping, these metrics com-

pletely disregard the topological correctness of the extracted

network, which is crucial for routing and navigation pur-

poses. Consider the case when a short piece of road is

misclassified, creating two dead ends. Such a mistake will

cause map users to take long detours, while only marginally

influencing the completeness (respectively recall). To mea-

3Formally, κ =

N
∑

i cii−
∑

i(
∑

j cij ·
∑

j cji)

N2
−

∑
i(

∑
j cij ·

∑
j cji)

, where the cij are the

entries of the confusion matrix and N is the number of pixels. Consider

an image with 10% road and 90% background pixels. A classifier which

always returns background will have 90% overall accuracy, but κ=0%.
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Method Qual. Compl. Corr. κ

RF 58.0 70.5 76.9 72.7

GRAZ Potts 56.2 63.2 83.4 71.6

Rules 39.9 62.3 52.7 57.6

HOP 59.9 76.9 73.5 78.6

RF 51.7 61.3 78.5 66.6

VAIHINGEN Potts 49.2 55.1 83.5 64.8

Rules 49.2 63.4 68.9 66.5

HOP 55.6 69.4 75.0 71.6

Table 1. Detection performance of road extraction methods: qual-

ity, completeness, correctness, κ. All numbers are percentages.

sure how well the topology of the road network has been

estimated we define additional error metrics that quantify

the topological quality of the extraction results. These are

computed in the following way: we randomly sample two

points which lie both on the true and the estimated road

network, and check whether the shortest path between the

two points has the same length in both networks (up to a

deviation of 5% to account for geometric uncertainty). We

then keep repeating this procedure with different random

points and record the percentages of correct, too short, too

long and infeasible paths, until these percentages have con-

verged. Infeasible and too long paths indicate missing links,

whereas too short ones indicate hallucinated connections.

4.2. Graz

The GRAZ dataset depicts a city center with major roads

and large building blocks. RF fails for narrow roads and in

cases of occlusion due to cars, shadows or trees (c.f . 4, left

column, upper two rows). As expected, a contrast-sensitive

Potts prior smooths away even more of the road superpix-

els and is unsuitable for the task. Note that we already use

very low weight for the pairwise terms. Stronger smoothing

leads to even worse results, i.e. even larger parts of the road

network are labeled as background. Obviously, this method

nevertheless achieves the highest correctness, because it ag-

gressively relabels road superpixels as background, which

inherently reduces the false positive rate (Tab. 1).

Heuristically bridging gaps in the Random Forest unar-

ies result (Rules) leads to many false positives, c.f . Fig. 4.

Consider the falsely detected road (blue stripe) in the upper

right part of the first GRAZ image in Fig. 4. The real road

happens to be pointing at the inner courtyard near the upper

image border, suggesting that the road should be extended

(e.g. in our framework superpixels on either side of the gap

will be sampled as seeds). The proposed HOP model does

contain such cliques. Still, no false connection is created,

since the unaries strongly attract the superpixels in the gap

to the background class, and due to the contrast-sensitive

node weights they only incur a small penalty for not chang-

ing to road. The effect occurs more often in the second

GRAZ example. Again, the HOP model copes a lot bet-

ter with the situation. HOP also performs best in terms of

Method Correct 2long 2short NoConn

RF 49.7 10.9 0.0 39.0

GRAZ Potts 56.1 10.1 1.3 32.6

Rules 42.0 1.0 56.8 1.0

HOP 75.8 2.6 6.8 14.8

RF 27.1 7.5 0.0 65.4

VAIHINGEN Potts 30.6 4.0 0.0 65.3

Rules 53.6 3.3 26.8 16.3

HOP 58.4 3.9 8.5 29.2

Table 2. Topological performance of road extraction methods: Per-

centage of paths that are correct, too long, too short, infeasible.

topological correctness, outperforming the baselines by 20-

34 percent points (Tab. 2). Note that Rules has the highest

percentage of too short paths (56.8%) because of the many

false positives (c.f . Fig. 4).

Overall, the HOP model clearly extracts the road net-

work most faithfully. There are two main failure modes:

(i) if long continuous stretches of road are not detected by

the unaries, the model in its current form will not be able

to remedy this, since no cliques can be constructed which

contain enough road evidence (e.g. Fig. 4, bottom row, top

right corner). We point out that the requirement Pb < Pr

in eqn. (2) does not mean that only roads with > 50% sup-

port in the unaries are detected: all that is required is that

for every edge of the road network there exist enough sub-

segments with at least 50% support. (ii) dead ends unde-

tected by the unaries cannot be repaired, since cliques are

only sampled between seed pixels (e.g. Fig. 4, first row, top

left corner). Another possible cause of failure is due to the

definition of a “road”. The proposed prior is designed for

roads that are elongated and/or connect junctions. Short,

isolated regions like courtyard parking lots, which are often

also labeled as roads (as is the case in our ground truth), are

not covered and are neither encouraged nor discouraged.

4.3. Vaihingen

The VAIHINGEN road network has a different, more ir-

regular and complex structure. There are many short and

narrow roads, with cast shadows and overhanging trees.

Building shapes and sizes are more diverse than those of

GRAZ, making road extraction more challenging. Quantita-

tive results are given in the bottom half of table 1.

The HOP model outperforms all three baselines on all

performance measures except correctness, again because of

the standard Potts model’s excessive bias towards the back-

ground class (Tab. 1 & 2). Qualitative results in Fig. 4 con-

firm that the Potts model clearly performs worst, in spite of

the high correctness numbers. The results conform with our

assertion that pairwise smoothing potentials are counter-

productive for the extraction of thin structures.

The Rules baseline again erroneously cuts across objects.

Consider the center of the first VAIHINGEN image where

blue stripes indicate that buildings and tree rows surrounded
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by road and parking lots are misclassified. The effect is ob-

servable once more in the second VAIHINGEN image. HOP

overcomes various challenging situations not solved by RF

and Potts. For example, consider the narrow road in the bot-

tom left of the first VAIHINGEN image. RF wrongly labels

many superpixels as background, and consequently the road

is cut into several small pieces. Another situation leading to

misclassification by RF (and Potts) can be observed on the

major road diagonally crossing the image from bottom cen-

ter to upper right. High buildings and trees cast dark shad-

ows on the road resulting in false negatives. The HOP prior

extracts the entire road successfully.

HOP also again shows the highest topological correct-

ness, improving between 5 and 31 percent points over the

baselines. Note that Rules has the lowest percentage of “no

connections” because it generates many wrong roads across

the background (c.f . Fig. 4), which is reflected in the high

rate of too short paths (26.8%).

5. Conclusion and outlook

We have formulated an effective and efficient model for

road network extraction based on the PN -Potts model. The

proposed method significantly outperforms standard base-

lines, both in terms of segmentation accuracy and of a newly

introduced measure of topological correctness.

At present, the prior kicks in only if the dominant la-

bel in a clique is road. In future work, we plan to extend

it such that even less evidence is required, if its distribu-

tion (especially alignment) suggests the presence of a road.

We also plan to include additional cues in the prior, e.g. the

canyon-shaped profile of roads in a height map, if they are

surrounded by buildings or trees.

Moreover, we have manually determined the parameters

for clique sampling. It seems feasible to learn these pa-

rameters automatically from the vast amounts of existing

digital map data, and to eventually develop a probabilisti-

cally motivated sampling scheme without hard thresholds.

In the same vein one could also try to learn more complex

patterns in the road network, such as rectangular loops or

the T-junctions at highway exits. It is still unclear where

the sweet spot lies between a tractable and efficiently com-

putable model and one that closely approximates the highly

complex distribution of local road patterns.

Finally, the proposed model is not per se limited to roads

in overhead images, and it would be interesting to adapt it

to other domains that exhibit linear network structures, such

as blood vessels or neurons in medical imagery, or material

inspection (crack detection) in aerospace engineering.
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