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A method with high convergence rate for �nding approximate inverses of nonsingular matrices is suggested and established
analytically. An extension of the introduced computational scheme to general square matrices is de�ned. �e extended method
could be used for �nding the Drazin inverse. �e application of the scheme on large sparse test matrices alongside the use in
preconditioning of linear system of equations will be presented to clarify the contribution of the paper.

1. Introduction

Computing the matrix inverse of nonsingular matrices of
higher sizes is dicult and is a time consuming task. Appli-
cation of higher order algorithms to solve this problem is
very desirable. Generally speaking, in wide variety of topics,
one must compute the inverse or particularly the generalized
inverses to comprehend and realize signi�cant features of the
involved problems [1]. An example could be in phased-array
radar whereas the target tracking is a recursive prediction
correction process, when Kalman �ltering is extensively
consumed; see [2, 3]. Target equations are modeled explicitly
such that the position and velocity and potentially higher
derivatives of each measurement are approximated by the
track �lter as a state vector. �e approximated error with the
state vector is modeled by taking into account a covariance
matrix, which is then used in subsequent computations. To
be more precise, this matrix gets updated in each iteration
of the track �lter. Finding the inverse in the next iteration
could make use of the inverse in the present iteration. In
this circumstance, fast and ecient iterative algorithms are
required.

�ere are some techniques to tackle this problem, which
are basically divided into two main parts: the direct solvers
such as Gaussian Elimination with Partial Pivoting (GEPP),
which requires a massive load of computations and memory

for large scale problems, and the iterativemethods of the class
of Schulz-type iterations, in which an approximation of the
matrix inverse (by using a threshold) can be found per step
up to the desired accuracy.

Almost all of the direct methods for matrix inversion
require high accuracy in the computations to attain proper
solutions as they are not tolerant to errors in the computed
matrices. In contrast, iterative method compensates for indi-
vidual and accumulation of round-o� errors as it is a process
of successive re�nement.

In this paper, we focus on presenting and demonstrating a
new iterative method to �nd approximate inverse matrices as
fast as possible with a close attention in reducing the compu-
tational time. Toward this goal, a theoretical discussion will
also be given to show the behavior of the proposed scheme.
An interesting point in the contribution is that it could easily
be applied to complex matrices as well as for �nding the
Drazin inverse.

To clarify the procedure, we now remind of some of
the well-known methods in what follows. Perhaps, the most
common technique to compute the inverse of a nonsingular
complex matrix �, is the Schulz method given in [4] as
follows:

��+1 = �� (2� − ���) , � = 0, 1, 2, . . . , (1)
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Table 1: Some of the general ways to choose �0.
Forms Form 1 Form 2 Form 3 Form 4 Form 5

Initial formulation �/‖�‖21 �/‖�‖2∞ �/‖�‖2� ��/(	‖�‖1‖�‖∞ ) �∗/‖�‖22

where � is the identity matrix with the same dimension that
of the matrix �. �e scheme (1) has become popular in the
1980s due to the emerging of parallel machines.

Such iterative methods are sensitive for the initial
guess/value (�0) to start the process and converge to �−1. In
practice, the Schulz-type methods are ecient (specially for
structured matrices) but a diculty lies in the initial approx-

imation of the �−1. �is need was ful�lled by providing
some appropriate initial approximations in the literature. For
example, Rajagopalan in [5] gave some initial approximations
for the inverse matrix by considering di�erent norms as:

�0 = �
‖�‖2∞ . (2)

In fact, by choosing (2), we attain





�0



∞



�−1



∞ = ‖�‖∞‖�‖2∞



�−1



∞ . (3)

Based on the fact that �(�) = ‖�‖‖�−1‖ ≥ ‖�‖ ≥ 1, we could
have 



�0



∞



�−1



∞ = 1�∞ (�) ≤ 1, (4)

which suggests that by choosing (2), the iterative scheme (1)
will be almost always convergent for regular matrices.

Some other ways to choose the initial approximation�0 have been listed in Table 1, where �� and �∗ are the
transpose and the conjugate transpose of the complex matrix�, respectively, and	 stands for the size of the squarematrix.

A vast discussion on choosing the initial approximation�0 is given in [6]. For instance, Pan and his coworkers
discussed the possible ways to reduce the computational
load of Schulz-type iterationmethods for structuredmatrices
such as Toeplitz or Hankel matrices; see, for example, [7].
To illustrate further, for a symmetric positive de�nite (SPD)
matrix �, one can choose �0 as follows:

�0 = �‖�‖� . (5)

Another interesting choice is based on [8] for diagonally
dominant matrices, which is fruitful when dealing with
large scale sparse systems arising from the discretization of
di�erential equations as follows:

�0 = diag( 1�11 ,
1�22 , . . . ,

1���) , (6)

with ��� as the diagonal elements of �.
Let us now review some of the high order iterative

methods for matrix inversion.�e perception of the need for
higher order methods is the fact that (1) is too slow at the
beginning of the process before arriving at the convergence
phase for general matrices, and this would increase the
computational load of the whole algorithm used for matrix
inversion [9].

Li et al. in [10] investigated an iteration of the form

��+1 = �� (3� − ��� (3� − ���)) , � = 0, 1, 2, . . . (7)

of third-order and also proposed another iterativemethod for
�nding �−1 of the same order as it is given in

��+1 = �� [� + 12 (� − ���) (� + (2� − ���)2)] ,
� = 0, 1, 2, . . . . (8)

Note that a general procedure for constructing such
methods was given in ([11], Chapter 5). Krishnamurthy and
Sen provided the following fourth-order method:

��+1 = �� (� + �� (� + �� (� + ��))) , � = 0, 1, 2, . . . , (9)

in which �� = � − ���. As another example, a ninth-order
method could be presented as

��+1 = �� (� + �� (� + �� (� + �� (� + �� (� + �� (� + �� (� + �� (� + ��)))))))) , � = 0, 1, 2, . . . . (10)

In the sequel, we present a new iteration for matrix inversion.
Actually, the following section covers our main contribu-
tion as a new ninth-order ecient inverse-�nding itera-
tive method. We also prove the main theorem therein.

Next in Section 3, we discuss the complexity of the iterative
methods to theoretically �nd the most ecient method.
In Section 4, we analytically discuss the application of the
new algorithm in the computation of the Drazin inverse,
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which is of interest in numerical analysis. Section 5 applies
the suggested iteration in �nding robust approximate inverses
for large sparse matrices with real or complex entries in
details, while the application of the new scheme in precondi-
tioning of the practical problems will be also given. A clear
reduction in the computational time to attain the desired
accuracy will be observed therein. Finally, in Section 6 our
concluding remarks will be furnished.

2. A New Method for Matrix Inversion

A new scheme must be designed by applying an ecient
nonlinear (scalar) equation solver to the matrix equation�(�) = �−1 − �. �en, one may obtain an iterative process
using proper factorization. In this way, by applying the
iterative scheme

�� = �� − � (��)�	 (��) ,
�� = �� − � (��)2 ( 1�	 (��) +

1�	 (��)) ,

��+1 = �� − � (��)2�	 (��) (2 +
�		 (��) � (��)�	(��)2 ) ,

� = 0, 1, 2, . . .

(11)

on the matrix equation �−1 − � = 0, we are able to �nd the
�xed-point iteration

��+1 = −18�� (−7� + 9��� − 5(���)2 + (���)3)× (12� − 42��� + 103(���)2

− 156(���)3 + 157(���)4 − 104(���)5
+ 43(���)6 − 10(���)7 + (���)8) .

(12)

Now, by simpli�cation, we suggest the following matrix
iteration:

�� = −7� + �� (9� + �� (−5� + ��)) ,
�� = ����,

��+1 = −18���� (12� + �� (6� + ��)) ,
� = 0, 1, 2, . . . ,

(13)

wherein �� = ���, � is the identity matrix, and the sequence

of iterates {��}�=∞�=0 converges to �−1 under some condition.
In numerical mathematics, it is very useful and essential

to know the behavior of an approximate method. �erefore,
we are about to prove its order of convergence in�eorem 1.

�eorem 1. Let � = [��
] ∈ C
�×� be a nonsingular complex

matrix. If the initial approximation �0 satis�es




� − ��0



 < 1, (14)

then the iterative method (13) converges with ninth order to�−1.
Proof. We use notations that  0 = � − ��0 and subsequently � = � − ���. �en,

 �+1 = � − ���+1
= � − �(−18�� (−7� + ��� (9� + ��� (−5� + ���)))

× (12� + ��� (−7� + ��� (9� + ��� (−5� + ���)))
× (6� + ��� (−7� + ��� (9� + ��� (−5� + ���))))) )

= � − �(−18�� (−7� + 9��� − 5(���)2 + (���)3)
× (12� − 42(���)1 + 103(���)2 − 156(���)3

+157(���)4 − 104(���)5 + 43(���)6 − 10(���)7 + (���)8) )
= 18(−2� + ���)3(−� + ���)9

= 18(� + � − ���)3(� − ���)9
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= 18(� +  �)3 9�
= 18 ( 9� + 3 10� + 3 11� +  12� ) .

(15)

Hence, by taking arbitrary matrix norm on both sides of (15),
we attain





 �+1



 ≤ 18 (



 �



9 + 3



 �



10 + 3



 �



11 + 



 �



12) . (16)

In addition, since ‖ 0‖ < 1, by relation (16), we obtain that





 1



 ≤ 18 (



 0



9 + 3



 0



10 + 3



 0



11 + 



 0



12)
≤ 



 0



9 < 1.

(17)

Now if we consider ‖ �‖ < 1, therefore




 �+1



 ≤ 18 (



 �



9 + 3



 �



10 + 3



 �



11 + 



 �



12) ≤ 



 �



9.

(18)

Using mathematical induction, we obtain





 �+1



 ≤ 



 �



9, � ≥ 0. (19)

Furthermore, we get that





 �+1



 ≤ 



 �



9 ≤ ⋅ ⋅ ⋅ ≤ 



 0



9�+1 . (20)

�at is, � − ��� → 0, when � → ∞ and

�� &→ �−1, as � &→ ∞. (21)

�us, the new method (13) converges to the inverse of the
matrix � in the case '(��0) < 1, where ' is the spectral
radius. Now, we prove that the order of convergence for the
sequence {��}�=∞�=0 is at least nine. Let *� denotes the error

matrix *� = �−1 − ��; a�erwards
�*� = � − ��� =  �. (22)

�e identity (22) in conjunction with (15) implies that

�*�+1 = 18 ((�*�)9 + 3(�*�)10 + 3(�*�)11 + (�*�)12) . (23)
�erefore, using invertibility of�, it follows immediately that

*�+1 = 18 (*�(�*�)8 + 3*�(�*�)9
+3*�(�*�)10 + *�(�*�)11) .

(24)

By taking any subordinate norm of (24), we obtain





*�+1



 ≤ (18 (‖�‖8 + 3‖�‖9 



*�



 + 3‖�‖10



*�



2
+‖�‖11



*�



3) ) 



*�



9.

(25)

Consequently, it is proved that the iterative formula (13)

converges to�−1, and the order of thismethod is at least nine.

�e Schulz-type iterations are strongly numerically sta-
ble, that is, they have the self-correcting characteristic and are
essentially based upon matrix multiplication per an iterative
step. Multiplication is e�ectively parallelizable for structured
matrices represented in compressed form.

�e iterative scheme (13) could eciently be combined
with sparse techniques in order to reduce the computational
load of matrix-by-matrix multiplications per step. We should
also point out that even if thematrix� is singular, the Schulz-
type methods, including the scheme (13), converge to the
Moore-Penrose inverse using a proper initial matrix. A full
discussion on this feature of this type of iterativemethods has
been given in [12].

Note that {��}�=∞�=0 produced from (13), under a certain
condition (when ��0 = �0�), may be applied not only
to the le� preconditioned linear system ���- = ��: but
also to the right preconditioned linear system ���; = :,
where ; = ��-. In fact, an important application of the
newmethod (13) is in preconditioning of the linear system of
equations. Practically, experimental results in Section 5 will
show that the preconditioner obtained from (13) may lead
to nicely clustered eigenvalue distributions of the precon-
ditioned matrices and, hence, results in fast convergence of
the preconditioned Krylov subspace iteration methods, such
as GMRES and BiCGSTAB for solving some classes of large
sparse system of linear equations.

3. Complexity of the Methods

Let us consider the computational complexity of the existing
iterative processes (1), (7), (8), (9), (10), and (13), since they

are all convergent to �−1 in the same condition. From a
theoretical analysis, and by assuming a uniform cost for the
arithmetic operations, typical of the �oating point computa-
tions, we consider the inverse-�nder informational e�ciency
index. It uses two parameters ' and � which stand for the
rate of convergence and the number of matrix-by-matrix
multiplications in �oating point arithmetics, respectively.
�en the comparative index could be expressed by

IIEI = '� . (26)

Hence, a favorable method in theoretical point of view
must reach an order ' with fewer matrix multiplications �,
(i.e., � ≤ ').

In Table 2, we furnish a comparison on the order along
the number of matrix multiplications, rate of convergence,
and the index (26) for di�erent methods. �e results show
that the new established method in Section 2 is better than
the others. In fact, by comparing these results, one can see
that the iterative process (13) reduces the computational
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Table 2: Comparison of the computational complexity for di�erent methods.

Methods (1) (7) (8) (9) (10) (13)

Rate of convergence 2 3 3 4 9 9

Number of matrix multiplications 2 3 4 4 9 7

IIEI 2/2 = 1 3/3 = 1 3/4 = 0.75 4/4 = 1 9/9 = 1 9/7 ≈ 1.285

complexity by using less number of basic operations and leads
to the better equilibrium between the high speed and the
operational cost.

4. Application in Finding the Drazin Inverse

In 1958, Drazin in [13] introduced a di�erent kind of general-
ized inverse in associative rings and semigroups that does not
have the re�exivity property but commutes with the element.
�e importance of this kind of inverse and its computation
was later expressed away fully by Wilkinson in [14]. �is was
the motivation of many authors to develop direct or iterative
methods for this important problem; see, for example, [1].

De�nition 2. �e smallest nonnegative integer ?, such that

rank(��+1) = rank(��), is called the index of � and denoted
by ind(�).
De�nition 3. Let � be an	 ×	 complex matrix; the Drazin

inverse of�, denoted by��, is the uniquematrix� satisfying

(1�)���� = ��, (2) ��� = �, (5) �� = ��,
(27)

where ? = ind(�) is the index of �.
Note that if ind(�) = 1, the matrix � is called the group

inverse of �. Also, if � is nonsingular, then it is easily seen

that ind(�) = 0 and �� = �−1. Note that the idempotent

matrix ��� is the projector on R(��) along N(��), where
R(��) denotes the range of �� and N(��) is the null space
of ��.

Wei in [15] proved that the general solution of the square
singular linear system �- = : can be obtained using the

Drazin inverse as- = ��:+(�−���)@, where @ ∈R(��−1)+
N(�).

In 2004, Li andWei in [16] proved that thematrixmethod
of Schulz (1) can be used for �nding the Drazin inverse of
square matrices both possessing real or complex spectra.
�ey proposed the following initial matrix:

�0 = A0 = B�, C ≥ ind (�) = ?, (28)

where the parameter Bmust be chosen so that the condition‖� −��0‖ < 1 is satis�ed. Using the initial matrix of the form
(28) yields to a matrix method for �nding the famous Drazin
inverse with quadratical convergence.

As a consequence, we could present the iterative method
of the form (13) with ninth order of convergence for �nding
the Drazin inverse, where the initial approximation is chosen
as

�0 = A0 = 2
Tr (��+1)��, (29)

wherein Tr(⋅) stands for the trace of an arbitrary square
matrix.

In what follows, we use the following auxiliary results.

Proposition 4 (see [17]). LetD ∈ C
�×� and * > 0 be given.

	ere is at least one matrix norm ‖ ⋅ ‖ such that
' (D) ≤ ‖D‖ ≤ ' (D) + F, (30)

where '(D) denotes the spectral radius ofD.

Proposition 5 (see [18]). If G�,� denotes the projector on a
space H along a spaceD, then

(i) G�,�I = I if and only ifR(I) ⊆ H;
(ii) IG�,� = I if and only ifN(I) ⊇ D.

�eorem 6. Let � ∈ C
�×� be singular square matrix. Also,

suppose that the initial approximationA0 is chosen by means
of (28). 	en the sequence {A�}�=∞�=0 de�ned by the iterative
method (13) satis�es the following error estimate when �nding
the Drazin inverse:






�� −A�








��



 ≤ 



� − �A0



9� . (31)

Proof. Consider the notation �0 = �−�A0 and subsequently
the residual matrix as �� = �−�A�. �en similarly as in (15),
we get

��+1 = � − �A�+1
= � − �(−18A� (−7� + �A� (9� + �A� (−5� + �A�)))

× (12� + �A� (−7� + �A� (9� + �A� (−5� + �A�)))
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× (6� + �A� (−7� + �A� (9� + �A� (−5� + �A�))))) )
= 18(� + � − �A�)3(� − �A�)9
= 18 (�9� + 3�10� + 3�11� + �12� ) .

(32)

By taking an arbitrary matrix norm on both sides of (32), we
attain





��+1



 ≤ 18 (



��



9 + 3



��



10 + 3



��



11 + 



��



12) . (33)

In addition, since ‖�0‖ < 1, by relation (33), we obtain that‖�1‖ ≤ (1/8)(‖�0‖9 + 3‖�0‖10 + 3‖�0‖11 + ‖�0‖12) ≤ ‖�0‖9.
Similarly, ‖��+1‖ ≤ (1/8)(‖��‖9+3‖��‖10+3‖��‖11+‖��‖12) ≤‖��‖9. Using mathematical induction, we obtain ‖��+1‖ ≤‖��‖9 for each � ≥ 0. �is implies that





��



9 ≤ 



�0



9� , � ≥ 0. (34)

Since A0 is chosen as in (28), R(A0) ⊆ R(��)
immediately follows. Further, using this fact in conjunction
with (12), which implies thatR(A�) ⊆R(A�−1), we conclude
that

R (A�) ⊆R (��) , � ≥ 0. (35)

Similarly, if we rewrite (13) in the form

A�+1 = −18 (−7� + 9A�� − 5(A��)2 + (A��)3)
× (12� − 42�A� + 103(A��)2

− 156(A��)3 + 157(A��)4
− 104(A��)5 + 43(A��)6
−10(A��)7 + (A��)8)A�.

(36)

it is not dicult to verify that

N (A�) ⊇N (��) , � ≥ 0. (37)

Now, an application of the well-known results from [12]

��� = ��� = G
R(��),N(��) (38)

in conjunctionwith Proposition 5 and (35), (37), immediately
follows

A���� = A� = ���A�, � ≥ 0. (39)

�erefore, the error matrix L� = �� −A� satis�es
L� = �� −A� = �� − ���A� = �� (� − �A�) = ����.

(40)

From the last identity and (34) we have





L�



 = 




��




 



��



 ≤ 




��




 



�0



9� , (41)

which is a con�rmation of (31).

�e following result is a consequence of �eorem 6.

Corollary 7. If the conditions of 	eorem 6 are satis�ed and
the initial iterationA0 is chosen such that





�0



 = 



� − �A0



 < 1, (42)

the iterative method (13) converges to ��.
�erefore, our goal is to �nd initial approximations A0

satisfying (42). In accordance with Proposition 4, A0 must
satisfy the following inequality to ensure the convergence in
the Drazin inverse case:

max
1≤�≤�

MMMM1 − N� (�A0)MMMM < 1, (43)

where rank(�A0) = O and N�(�A0), P = 1, . . . , O are
eigenvalues of �A0.
�eorem 8. Let � ∈ C

�×� be a singular square matrix
with ind (�) = ?, and the sequences ��, L� are de�ned as
in 	eorem 6. 	e sequence {A�}�=∞�=0 de�ned by the iterative

method (13) converges with ninth order to �� if the initial
approximationA0 is in accordance with (42).

Proof. Now, by considering L� = �� −A� as the error matrix
for �nding the Drazin inverse, we have

�L�+1 = ��� − �A�+1 = ��� − � + � − �A�+1
= ��� − � + ��+1. (44)

Taking into account (32) and using elementary algebraic
transformations, we further derive

�L�+1 = ��� − � + 18 (�9� + 3�10� + 3�11� + �12� )
= 18 ((�9� + 3�10� + 3�11� + �12� ) + 8 (��� − �))
= 18 ((�9� + ��� − �) + 3 (�10� + ��� − �)

+ 3 (�11� + ��� − �) + (�12� + ��� − �)) .
(45)
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n = 5000; number = 10; SeedRandom [123]
Table[A[j] = SparseArray[{Band[{−100, 1100}] -> RandomReal[20],

Band[{1, 1}] -> 2., Band[{1000, −50}, {n − 20, n − 25}] -> {2.8, RandomReal[] + I},
Band[{600, 150}, {n − 100, n − 400] -> {-RandomReal[3], 3. + 3 I}}, {n, n},
0.], {j, number}];

Algorithm 1

Now, using the idempotent property (�−���)� = (�−���),O ≥ 1, and the following consequence of (39)

(� − ���)�L� = (� − ���)� (�� −A�)
= A� − ���A� = 0, (46)

we obtain for each O ≥ 1 the following:
(��)� + ��� − � = (� − �A�)� + ��� − �

= (� − ��� + ��� − �A�)� + ��� − �
= ((� − ���) + �L�)� + ��� − �
= � − ��� + (�L�)� + ��� − �
= (�L�)�.

(47)

From (47) and (45),

�L�+1 = 18 ((�L�)9 + 3(�L�)10 + 3(�L�)11 + (�L�)12)
(48)

�erefore,





�L�+1



 ≤ 18 (



�L�



9 + 3



�L�



10 + 3



�L�



11 + 



�L�



12)
≤‖ �L�‖9.

(49)

Finally, applying (39), it is now easy to �nd the error
inequality of the new scheme (13) using (49) and the second
condition of (27), when �nding theDrazin inverse, as follows:





L�+1



 = 




A�+1 − ��




 = 




���A�+1 − �����





= 




�� (�A�+1 − ���)





≤ 




��




 



�L�+1




≤ 




��




 ‖�‖9



L�



9.

(50)

�erefore, since (42) is satis�ed, from (31) follows L� →0. Furthermore, the inequalities in (50) immediately lead to

the conclusion thatA� → �� as � → +∞ with the ninth
order of convergence.

5. Numerical Aspects

Using the programming package Mathematica 8 [19] in this
section, we apply our iterative method on some practical
numerical tests and compare it with the existing methods
in order to manifest the applicability and the consistency of
numerical results with the theoretical aspects illustrated in
Sections 2–4.

For numerical comparisons in this section, we have used
the methods (1), (7), (8), (9), (10), and (13) denoted by
“Schulz”, “Li et al. I”, “Li et al. II”, “KMS4”, “KMS9,” and the
“Proposed method”, respectively. We have carried out the
numerical tests with machine precision on a computer with
Pentium 4. In fact, the computer characteristics areMicroso�
Windows XP Intel(R), Pentium(R) 4 CPU, 3.20GHz with
4GB of RAM. In all computations, the running time in
seconds using AbsoluteTiming[] was attained.

In sparse-matrix algebra, the iteration methods such as
(1), (7), (8), (9), (10) and (13) should be coded in sparse form
using some well-known commands such as SparseArray[]
to reduce the computational burden and preserve the sparsity
feature of the approximate inverse per computing step. �is
is done herein along with a threshold by applying Chop[] on
each approximate inverse ��.

Now, we apply the above inverse �nders for �nding the
approximate inverses of the following large sparse matrices.

Test Problem 1. In this test, 10 large sparse random complex
matrices of the dimension 5000 are considered as shown in
Algorithm 1.

Note that � = √−1. In this test, the stopping criterion is‖��+1 − ��‖1 ≤ 10−6 and the maximum number of iterations
allowed is set to 75. Note that in this test the initial choice has
been constructed using di�erent available ways as discussed
in Table 1.

�e results of comparisons for this test have been pre-
sented in Figures 1, 2, 3, and 4. In Figure 1, we show the
number of iterations required by di�erent methods to attain

the desired accuracy when �0 = �/‖�‖21. As it is obvious that
higher order methods require lower number of iterations to
converge, we then put our focus on the computational time
needed to satisfy the desired tolerance using three di�erent

initial approximations �0 = �/‖�‖21, �0 = �/‖�‖2∞, and�0 = �/‖�‖2�. As could be observed for all the three forms
of the initial guesses and in all the 10 test problems (given
in Figures 2–4), our iterative method (13) beats the other
existing schemes, which immediately follows the theoretical
results of Table 2.
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Figure 1: Comparison of the number of evaluations for solving the
Test Problem 1 using �0 = �/‖�‖21.
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Figure 2: Comparison of the elapsed time for solving the Test
Problem 1 using �0 = �/‖�‖21.

�e attained results have reveri�ed the robustness of the
proposed iterative method (13) by a clear reduction in the
number of iterations and the elapsed time.

�e practical application of the new scheme (13) falls
withinmany problems as discussed in Section 1. For instance,
in solving second-kind integral equations by Wavelet-like
approach, the problemwill be reduced to �nd that the inverse
of a large sparsematrix possesses a sparse inverse as well [20].
In the rest of this section, we apply our new iterative method
as a robust technique to produce accurate preconditioners
for accelerating modern iterative solvers such as GMRES or
BiCGSTAB for solving large scale sparse linear systems; see,
for example, [21].
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Figure 3: Comparison of the elapsed time for solving the Test
Problem 1 using �0 = �/‖�‖2∞.
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Figure 4: Comparison of the elapsed time for solving the Test
Problem 1 using �0 = �/‖�‖2�.

Test Problem 2. Consider solving the following Boundary
Value Problem (BVP) using discretization. In such problems,
and in order to capture all the shocks and the behavior of the
solution, a very �ne grid of points is required in FD approach:

;		 = 3; − 2;	, O ∈ [�, :] ,
; (�) = R3,
; (:) = R−3,

(51)

where the domain of the solution is � = 0 and : = 2. To solve
(51) using 3-point FD discretization, we assume that in the
grid points O�, the exact solution is denoted by ;(O�) and the
approximate solution is de�ned by S�, for any P = 0, 1, . . . , �,� + 1.
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h = (2. − 0)/(n + 1); Subscript[t, 0] = 0; Subscript[w, 0] =
E∧3; Subscript[w, n + 1] = Exp[−3];

Table[N[(Subscript[w, i − 1] − 2 Subscript[w, i] + Subscript[w, i + 1])/
h∧2 − 3 Subscript[w, i] +
2 (Subscript[w, i + 1] − Subscript[w, i − 1])/(2 h) == 0], {i, 1, n}];

Algorithm 2

Table 3: Comparison of the computational time in solving the linear system resulting of discretization of (51) when � = 1500.
Methods GMRES PGMRES-(1)-VI

PGMRES-(7)-
IV

PGMRES-(8)-
III

PGMRES-(9)-
III

PGMRES-(13)-
II

Total time Fail 3.50 1.78 1.53 2.62 1.31

�us, (51) can be written in discretized form in
Mathematica language (see Algorithm 2), wherein � is the
number of grid points which result in an � × � sparse linear
system of equations. In this test, we consider the tolerance as10−8 for the �nal solution of the linear systems. �e results
of solving this system “without preconditioning” and “with
le� preconditioning” are given in Tables 3 and 4. Note that in
Tables 3 and 4, for example, PBiCGSTAB-(8)-II stands for
the le� preconditioned linear system (��- = �:) applying
the preconditioner (approximative inverse) obtained by the
scheme (8) a�er 2 iterations, while it is solved by the iterative
solver BiCGSTAB.

�e numerical results clearly support the eciency of
the method (13). A clear reduction in the elapsed time is
observable. Even for the case of GMRES solver which had
failed (not convergent a�er 1500 iterations to the considered
tolerance), a simple preconditioner obtained by the new
method (13) signi�cantly improved the problem. Note that in
this test, we have constructed �0 for the compared methods
using (6).

Test Problem 3. �e aim of this example is to apply the
discussions of Section 4, for �nding the Drazin inverse of the
following square matrix (taken from [16]):

� =

[[[[[[[[[[[[[[[[[[[
[

2 0.4 0 0 0 0 0 0 0 0 0 0−2 0.4 0 0 0 0 0 0 0 0 0 0−1 −1 1 −1 0 0 0 0 −1 0 0 0−1 −1 −1 1 0 0 0 0 0 0 0 00 0 0 0 1 1 −1 −1 0 0 −1 00 0 0 0 1 1 −1 −1 0 0 0 00 0 0 −1 −2 0.4 0 0 0 0 0 00 0 0 0 2 0.4 0 0 0 0 0 00 −1 0 0 0 0 0 0 1 −1 −1 −10 0 0 0 0 0 0 0 −1 1 −1 −10 0 0 0 0 0 0 0 0 0 0.4 −20 0 0 0 0 0 0 0 0 0 0.4 2

]]]]]]]]]]]]]]]]]]]
]

,

(52)

with ? = ind(�) = 3. To simplify the process, we write a
general code in the programming package Mathematica for
the iterative process (13), to �nd the (pseudo-)inverse or the
Drazin inverse of arbitrary matrices (see Algorithm 3).

�e two-argument function DrazinInverse
[A ,tolerance ] takes the arbitrary matrix � and the
tolerance from the user to obtain its Drazin inverse by
knowing the index ?. In this case, by choosing tolerance= 10−8, we obtain

�� =

[[[[[[[[[[[[[[[[[[
[

0.25 −0.25 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.1.25 1.25 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.−1.66406 −0.992187 0.25 −0.25 0. 0. 0. 0. −0.0625 −0.0625 0. 0.15625−1.19531 −0.679687 −0.25 0.25 0. 0. 0. 0. −0.0625 0.1875 0.6875 1.34375−2.76367 −1.04492 −1.875 −1.25 −1.25 1.25 1.25 1.25 1.48438 2.57813 3.32031 6.64063−2.76367 −1.04492 −1.875 −1.25 −1.25 1.25 1.25 1.25 1.48438 2.57813 4.57031 8.5156314.1094 6.30078 6.625 3.375 5. −3. −5. −5. −4.1875 −8.5 −10.5078 −22.4609−19.3242 −8.50781 −9.75 −5.25 −7.5 4.5 7.5 7.5 6.375 12.5625 15.9766 33.7891−0.625 −0.3125 0. 0. 0. 0. 0. 0. 0.25 −0.25 −0.875 −1.625−1.25 −0.9375 0. 0. 0. 0. 0. 0. −0.25 0.25 −0.875 −1.6250. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.25 1.250. 0. 0. 0. 0. 0. 0. 0. 0. 0. −0.25 0.25

]]]]]]]]]]]]]]]]]]
]

. (53)
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Table 4: Comparison of the computational time in solving the linear system resulting of discretization of (51) when � = 2000.
Methods BiCGSTAB

PBiCGSTAB-
(1)-III

PBiCGSTAB-
(7)-III

PBiCGSTAB-
(8)-II

PBiCGSTAB-
(9)-II

PBiCGSTAB-
(13)-I

Total time 1.98 0.53 0.60 0.53 0.54 0.46

PM[X ] :=
With[{Id = SparseArray[{{i , i } -> 1.}, {n, n}]],

X1 = A.X; X2 = −7 Id + X1.(9 Id + X1.(−5 Id + X1)); X3 = X1.X2;

(−1/8) X.X2.(12 Id + X3.(6 Id + X3))];
InitialMatrix[A ] := 1/SingularValueList[A, 1][[1]]∧2 ConjugateTranspose[A];
InitialDrazin[A ] := 2/Tr[MatrixPower[A, k + 1]] MatrixPower[A, k];
DrazinInverse[A , tolerance ] := If[k == 0,

Module[{X0 = InitialMatrix[A]}, FixedPoint[(PM[#] &), X0,

SameTest -> (Norm[#1 - #2, Infinity] <= tolerance &)]],
Module[{X0 = InitialDrazin[A], FixedPoint[(PM[#] &), X0,

SameTest -> (Norm[#1 − #2, Infinity] <= tolerance &)]]];
Algorithm 3

Checking the conditions of De�nition 3 yields to






��+1�� − ��




∞ = 1.48415 × 10−12,





����� − ��




∞ = 1.20264 × 10−10,





��� − ���




∞ = 8.93836 × 10−11,

(54)

which supports the theoretical discussions.

6. Conclusion

In many engineering applications, extracting the diagonal or
the whole entries of the inverse of a given matrix (basically
large and sparse) is an important part of the computation, for
example, in electronic structure calculation and especially for
models based on e�ective one-electron Hamiltonians such as
the tight-binding models, or in modern statistics, and thus,
developing high-order ecient Schulz-type methods is of
practical interest.

In this paper, we have studied a high-order iteration
method (13) for matrix inversion. Convergence analysis of
our iterative algorithm has been studied and a discussion on
the choice of the initial value in order to start the process
and preserve the convergence order has been given. We also
discussed that under what conditions a new method could
be applied for �nding the Drazin inverse of square matrices
having real or complex spectra.

As a result, the total time consuming of the suggested
iteration (13) is remarkably low in contrast with the existing
methods of this type in the case of constructing approximate
inverses and in preconditioning.

Working on the extension of the proposed method (13)
for interval matrix inversion [22] can be considered as future
works in this �eld of study.
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