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ABSTRACT 

A higher order theory is presented for symmetrical, non-linear 
gravity waves As a consequence of the generality employed, the 
theory includes the full range of possible wave lengths, water 
depths and wave heights that may be encountered, and brings them 
into one unified formulation Thus, the theory encompasses both 
linear and non-linear waves, including Airy waves, Stokes waves, 
cnoidal waves and the solitary wave 

Based on the work of Nekrasov, a complex potential in the form 
of an infinite series is developed to describe the flow field   The 
potential satisfies the bottom (horizontal) condition as well as 
the kinematic surface condition exactly   Furthermore, the dynamic 
surface condition is satisfied by numerical calculation of the 
series coefficients which appear in the complex potential   The 
calculation of these coefficients is accomplished by solving a set 
of non-linear algebraic equations, with the aid of a Newton-Raphson 
iteration procedure and matrix inversion 

Coefficients of the complex potential have been obtained for 
a fifth order analysis and preliminary results are presented in 
tabular form   A brief discussion of the characteristics of the 
waves, including wave speed, wave shape and the height of the highest 
possible wave follows 

INTRODUCTION 

Water waves and their characteristics have received a great 
deal of attention by mathematicians, geophysicists and engineers 
over the past century and a half   In particular, numerous theories 
have been developed to describe the characteristics of symmetrical, 
periodic, progressive waves   Among the more classical papers are 
those by Stokes (1847,1880), Rayleigh  (1876), Boussinesq (1872), 
Korteweg and DeVries (1895), Levi-Civita (1925), and Struik (1926) 
Reviews of some of these works, as well as many more recent publi- 
cations may be found in publications by Stoker (1957), Wiegel (1964) 
Kinsman (1965), Ippen (1966) and Neumann and Pierson (1966)   No 
attempt will be made here to review the many recent contributions 
However, of particular interest, especially for applications of the 
theory, are the works of Mash and Wiegel (1961), Sk^elbreia and 
Hendnckson (1962) , Laitone (1963) and Dean (1965) 

The wealth of literature on the subject of periodic water 
waves reflects to some extent the lack of a unified approach   An 
effort to resolve this problem was made by Nekrasov (1951), followed 
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by Milne-Thomson (1969) and Thomas (1968)   Nekrasov first formu- 
lated the wave problem in general terms, and concluded his analysis 
with a non-linear integral equation 

The present study reexammes the work of Nekrasov and his suc- 
cessors and presents it in a manner which should be more useful in 
practice   More specifically/ a method is developed to compute co- 
efficients which may be used to calculate the various character- 
istics of the waves 

Since the theory presented herein is general, it covers the 
entire range of possible wave lengths, water depths and wave heights 
that may be encountered   Thus it encompasses both linear and non- 
linear waves including Airy waves. Stokes waves, cnoidal waves and 
the solitary wave   As a consequence it gives promise of simplifying 
the choice of the appropriate theory - a problem which currently 
faces the practitioner 

SOLUTION OP THE WAVE PROBLEM 

DEVELOPMENT OF THE THEORY 

The wave theory which will be developed herein applies to 
progressive, symmetrical, gravity waves moving over the free sur- 
face of an inviscid, incompressible liquid, in an oscillatory man- 
ner   Furthermore the waves are two-dimensional and, except for the 
special case of infinite depth, they move over a horizontal bottom 
No restriction is placed on liquid depth, D, wave length, L, or 
wave height, H   Hence the theory is comprehensive and includes the 
full range of constant-profile waves, from Stokes waves to cnoidal 
waves and the solitary wave, as well as from small-amplitude waves 
to large-amplitude waves and the so-called "highest wave" 

A train of oscillatory waves is moving from right to left over 
the surface of the liquid in question with wave speed, c   By super- 
imposing a uniform flow from left to right of the same speed as 
that of the waves, the wave profiles are brought to rest   The net 
effect is to provide a steady flow from left to right, bounded by 
the fixed profile formed at the free surface and the impervious 
boundary at the bottom   The steady flow-field will be seen to be 
considerably more amenable to study than would be the unsteady, 
progressive-wave field 

In Fig  1 the steady wave is depicted and the more important 
constants are defined   For convenience in the development the 
coordinates are described in complex terms and the physical plane 
is the z-plane, where z is the complex variable and x and y are the 
real and imaginary axes respectively   The y-axis is chosen to pass 
through the crest of the wave, C, in order to assure symmetry   The 
free surface is defined by y  •> y (x ) and the still water level is 
located at y = y , a distance which remains to be determined   It 
should be noted that the depth, d, usually defined as the distance 
from the still water level to the bottom will equal the sum of y 
and D 
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Fig  1 - The z-Plane 

Fig  2 - The C-Plane 
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Since the flow is irrotational, an assumption which has been 
discussed by Stokes (1847), the complex potential is given by 

w = i>   + II/J (1) 

where <j>   is the potential function and <l>   is the stream function 
Furthermore, the complex potential is analytic and so the Cauchy- 
Riemann equations, which may be related to the velocity components, 
u and v, are given by 

34 3i|i 3 4> 3i|i 
u   =   5      =   a and v   =   a      =   "a (2) 3x        3y 3y 3x 

Substitution of these expressions into the continuity and irrota- 
tional conditions results in Laplace's equation for each function, 

2 2 
Vcj> = 0      V i|i = 0 (3) 

respectively 

At the free surface the kinematic boundary condition requires 
that the surface be a streamline   For convenience, this bounding 
streamline is defined as 

<|i = 0      at y = y (4) 

The dynamic boundary condition at the free surface is expressed by 
the Bernoulli equation with pressure equal to aero, 

qo  + 2gyo = KQ      at y = yo (5) 

where q  is the speed of a surface particle and K  is a constant 
o o (twice the so-called "Bernoulli constant") 

The lower boundary condition is kinematic and requires that 
the horizontal bottom be a streamline   In order to reflect the 
volume rate of flow between the two bounding streamlines, 

<|i = -cD       at y «• -D (6) 

where "cD ' equals the two-dimensional flow rate observed in the 
z-plane 

Up to this point the relevant differential equations, together 
with the appropriate boundary conditions which describe the flow, 
have been presented   The two fundamental problems which immediately 
present themselves are that the location of the free surface is 
unknown and the dynamic boundary condition is non-linear   In order 
to deal with the first problem a conformal transformation will be 
employed   The purpose of this transformation is to redefine the 
problem m an auxiliary plane, the C-plane, where the location of 
the free surface is known 

The particular conformal transformation to be used, is an out- 
growth of the work of Nekrasov (1951), as well as a subsequent 
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analysis by Milne-Thomson (1969) and Thomas (1968)   More specifi- 
cally, it is an extension and generalization of the special deep- 
water case considered by Monkmeyer and Kutzbach (1965)   The trans- 
formation is given as follows 

ln(C>    +   lk     £     fexpiiail-^lnOl (7) 

where K is the complete elliptic integral of the first kind and the 
a 's are a set of real coefficients which are as yet unknown   More- 
over, C, which is the complex variable describing the coordinates 
of the C-plane is given in polar form by 

C = r expdx) (8) 

where r is the radial coordinate and x the angular coordinate of 
the C-plane as shown m Fig  2   Finally, am(  ) is the amplitude 
of the elliptic integral of the first kind 

One may verify, by application of the mapping function, Eq  7, 
that the region bounded by ABCDE in the z-plane is a mapping of the 
equivalent region inside the unit circle in the C-plane, subject 
only to the proper evaluation of the constant coefficients, a    In 
fact it may be shown that the boundaries AB, DE and EA are mapped 
exactly from the z-plane to the C-plane, regardless of the values 
of the coefficients, a    The boundaries AB and DE transform exactly 
as a consequence of the periodicity of the transformation   The 
exact transformation of the lower boundary DE follows from the 
characteristics of the elliptic function, am(  )   The choice of 
this particular conformal transformation was essentially dictated 
by the exact transformation of the bottom boundary   As a by-product 
of the bottom transformation it is required that 

where K'(m) = K(l-m), and m is the parameter of the complete ellip- 
tic integral of the first kind   This is a convenient formula since 
it permits a consideration of the entire range of waves for all 
wave lengths and depths   In particular it facilitates inclusion of 
the two limiting cases, L*»and D •+«>, since K-*«in the first instance 
and K' +«in the second   Eq  9 may therefore be used to convert 
Eq  7 and many of the following equations, if the limiting case of 
the solitary wave is of interest or if cnoidal waves are to be 
expressed in terms of depth rather than wave length 

The transformation can also be applied to the boundary condi- 
tions, Eqs  4, 5 and 6, to generate the equivalent conditions in 
the C-plane, 

* = 0     at r = 1 (10) 
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and 

where 

2gy  = K 

exp <-—) 

at r 

(11) 

(12) 

(13) 

The validity of these representations of the boundary conditions 
is verified in Fig  2   Moreover it should be noted that Eqs  10 and 
12 are precisely the boundary conditions for a portion of a clockwise 
irrotational vortex in the £-plane, so that the complex potential 
for the flow m this plane may be written 

ICL 

2TT 
In? (14) 

By separating real and imaginary parts of this expression and 
rearranging terms, 

X = - 2l± (15) 
and 

exp (—) (16) 

It is therefore apparent that x is a normalized form of the potential 
function and r is the exponential of the normalized stream function 

To this point the physical pro 
transformed to one m the £-plane a 

Eqs 10 and 12, have been satisfied 
It therefore remains to satisfy the 
and this will be done by a proper c 
conformal transformation The rema 
devoted to a method for calculating 
dynamic condition will be satisfied 
approximation will depend on the tr 
which makes up the conformal transf 
of terms retained, the more nearly 
satisfied 

blem in the z-plane has been 
nd two of the boundary conditions, 
by the complex potential, Eq  14 
dynamic surface condition, Eq  11, 

hoice of the coefficients in the 
inuig portion of this analysis is 
these coefficients so that the 

, approximately   The degree of 
uncation of the infinite series 
ormation   The greater the number 
the dynamic condition will be 

Before proceeding to a calculation of the complex velocity, 
which will be needed m an examination of the Bernoulli condition on 
the free surface, it is necessary to substitute the complex potential 
in the C-plane, Eq  14, into the conformal transformation, Eq  7, 
in order to obtain the complex potential for the z-plane   The result 
may be regarded as the general wave equation, 

, 4-jK  , , exp[i am (—*—  w) ] (17) W , 1L  r 
Z = c + 4K  i, 3 = 1 

For the limiting case of infinite depth, K approaches ir/2 and am (  ) 
approaches its argument   Therefore Eq  17 reduces to the deep-water 
equation, 
  °°  a        T 1L  v    1     ,2] 1L  v    1     .  / 

-—  )  —**- exp [ -l- 
2* 3=1 ^ 

w] (18) 
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On the other hand for the limiting case of infinite wave length, it 
should be noted that, after Eq  9 is introduced, K' approaches TT/2 

and am{  ) approaches gd(  ), the gudermannian   Therefore, Eq  17 
reduces to the solitary wave equation, 

co  a 

Z = c + -T- I,    J      6XPU gd("2^ W)1 U9) 
3 = 1 

Now along the free surface, <|> = 0, where we wish to apply the 
dynamic boundary condition, Eq  17 becomes 

lL  v  ~1    r    , 4]K ,,, 
= •?• + T^r  / —^  expti am (—^r 9)1 

4K l     J1 exP[l am(" 

or in terms of the dimensionless potential function, ,i. 

4K ^ j 2ir 
—3- exp[i am(—3— x>) 

Taking real and imaginary parts of Eq  21 one obtains 

LX   L   r   n   , * 
x  = -—— - -.—  >  —•*- sn(- 
o    2i   4K  '  ] X) 

and 

Yo   4K  ', T* 
,2-jK 

X) 

(20) 

(21) 

(22) 

(23) 

where sn(  ) and en(  ) are Jacobian elliptic functions   These two 
equations are parametrically related through x to define the shape 
of the free surface   In order to make them somewhat more tractable, 
it is convenient to replace the elliptic functions by their expan- 
sions m sine and cosine series respectively (see Milne-Thomson 
(1950))   Eqs  22 and 23 therefore become 

,2KX 
4K +  I  r1 Sln DX) 

D = l 

(24) 

where 

and 

where 

y = — 1 yo   4K L 
_JL cos ]X 

3 = 1 

,D/2k 

l/2„ 

2TT 

-1  d-q3A) 

»1/2K k=l   (l+q^*) 

k = :, 1 2 
3' 5 

(25) 

(26) 

(27) 
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and only integer values of k are included m the summation, and 
where 

q = exp(-ir —) 

For the limiting case of deep water waves 

b  = c  = a 
D    D    3 

whereas for the limiting case of the solitary wave 

(28) 

(29) 

J 7T ,._T   k k=l 

3 
KC   - TT   I       i 

k=l 
^k 

(30) 

(31) 

with k defined as for Eqs  26 and 27 

In view of Eqs  24 and 25 it is now possible to reexpress the 
comples variable, z , that was given in Eq  21, as follows 

1L 
o ~ 2TT 

"»  re +D C -D       T 

o   2K  '..    2   lo      2    o 
T = 1 

L -1 
(32) 

where, on the free surface, Eq  8 reduces to 

SQ - expdx) 

By differentiating Eq  32, the complex operator 

dz       f(? ) 
O    iL     o 

d?    2ir  C 
o        c 

is obtained, where 

and where 

co c +b        c -b 

lV   2K  '. '  2   ^o      2   '"o  ' 
3 = 0 

= R  exp (16 ), say 

2K 
b   m     C   =   
O      O    7T 

(33) 

(34) 

(35) 

(36) 

(37) 

Moreover, the modulus, R , of the function f(? ) is given by 

Ro2 " \h     2  b  cos ax]  + [^  I  c  sm DXJ
2 

and the argument, 9 , of f(? ) is given by 

(38) 
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-l I*  £n 
b
3 

C°S DX 
(39) 

The above relations may now be employed, together with Eq  14, 
to derive an expression for the complex velocity, as follows 

u  - iv  = 
dw  dC 
TF2" T^ = 7rrr-T  " §~ exp(-i6 )     (40) d?  dz f(z   )   R o o   o      o     o 

and therefore 

u  = —- cos 6 OR       c (41) 

and furthermore 

(42) 

The dynamic free surface condition, Eq  11, may now be written 
2 

S-y + 2gy  = K (43) 
R 2      o    o 
o 

an expression which was apparently first derived by Nekrasov (1951) 
who proceeded to derive a non-linear integral equation   In addition, 
with the aid of the following dimensionless terms 

• '  = 15:      £2 
'o  ~ L   o   D 

4K 

(44) 

2i J3° 
4K  V K' 

O   gL      J_D 
4K      K' 

Eq  43 becomes 

2 2    «     2 
c'  +  2y' R   = K  R o  o     o  o 

where 
co   c 

y' = I   J- cos jx 

and, with the aid of trigonometric identities, 

[CO -i 

DQ   +   2      ^   DD    COS   3XJ 

where 

D     =  b   "   +     T 
k-1 

2 2 
»     b,    +o. 

k        k 

(45) 

(46) 

(47) 

(48) 
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D=A+B+C ]=   1,2,3,4 (49) 
3 D D 3 

n     bk-i   bk   +   Ck-T   Ck 
A     -      J     -£-3      , J        j   =   1,2,3,4 (50) 

3 k-j 

(3-D/2   b     b -co 
j        _£ 1Z* _5 1ZE     j   =   1,2,3,4 (51) 

and 

S   =   ?   (b3/2   "   CJ/2> f°r   3   "   2<4'6'8 

=   0 for   3   =   1,3,5,7 

(52) 

By substituting Eqs  46 and 47 into Eq  45, the problem of the 
general symmetrical wave of finite amplitude is reduced to one of 
finding the solution to the equation, 

°° c K °° 
c,2 + 2[(   I -J- cos JX)~1 t(^r)2(D„ + 2      J    (A   +B   +C   )oos   DX)]    =   ° 

n = l -1 1 = 1      J      3       D 3 J (53) 

It is of interest to note that to this point no approximations 
have been made   Therefore Eq  53 is an exact representation of 
the problem 

In order to solve Eq  53 for a finite number of coefficients, 
it will be necessary to truncate the infinite trigonometric series 
which appear in the equation   Therefore Eqs  46, 47, 48 and 50 
become 

n  c 
y'  ~ J cos ]x 
°    D=i 3 

(54) 

•> IT    7 n 

R~  " <7F> lD„ + 2 I     °  cos 3X1 (55) 
-it=l  ^ 

2   2 
Do " bo2 + X   JL^- <56) 

k=l 

n  bv   bv + ct   cv 
A  = I     -£3 ~ ^ S. 3   =   1,2,3,4   n  (57) 

3        k=3 
Furthermore, by combining and expanding these equations, one 

obtains 

y0
R

0
2 - 'fe>2iJ, C>r\ +  ?  j, !r <VD

+IWcos ^   <58> 
*"-i        ]=1 k=l 

where absolute value signs are omitted on the subscripts of DJ^^-J , and 
furthermore, D( = 0 If [ SL | > n   Since harmonics higher than the 
nth have been omitted, Eq  58 is not exact 
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2 2 
The expressions for R  , Bq  55, and  y' R  , Eq  58, may now 

be substituted into Eq  45   By equating the°coefflcients of the 
harmonics, one obtains 

o'2 + 2(-i-2  I  -£ D,= K (-M1 D  (Oth harmonic)      (59) 
2K  , *•,  k  k    o 2K 

k=l 
n 
J  -r- (D,   + D. , ) = K  D  (]th harmonic,3=1,2,3  n)    (60) 
j^  k   k-3    k+3     o  3 

where absolute value signs are omitted on the subscripts of D,   , 
and furthermore D. vanishes if |l| > n 

Since the unknown terms in Eqs  59 and 60 are all functions of 
the height of the wave, it is appropriate to add an equation for 
wave height   The wave height is seen to be equal to the sum of the 
displacements of the crest and trough from the x-axis   Therefore, 
using Eqs  23 and 9, 

« - (yj„„ • <-y„>    „ = h   I   ^ - §?•   I   ^ <«> '° x=o 
.        L   y   ] _ 2D   y   3 

"Yo'X=U    2K ;jf1  3    K1 ^  D 

and in dimensionless form, 
3 = 1,3,5,7 

H' = 2 I      -i 3 = 1,3,5,7 (62) 
3 = 1 D 

Eqs 59, 60 and 62 are therefore seen to constitute a set of (n+2) 
equations m (n+2) unknowns (c ' ,K ,a ,a ,a a ) for any desired 
value of the dimensionless wave height, H1 

COMPUTER SOLUTION 

In setting up the equations for computer solution, the co- 
efficient, K ,is eliminated between the first of Eqs  60 (3-1) and 
each succeeding equation (3=2,3    n), thereby reducing Eqs  60 to 
(n-1) equations in (n-1) unknowns (a ,a ,    a   ) for a fixed value 
of a    After the unknown coefficients are assumed, the simultaneous 
solution of these (n-1) non-linear equations is accomplished with 
the aid of a Newton-Raphson iteration   By this technique the prob- 
lem is reduced to one of obtaining the solution of a set of (n-1) 
linear equations at each iteration   The matrix is then inverted 
using triangular decomposition and a solution of the set of equations 
is obtained for corrections on the assumed values of a ,a , 
a    and a      The entire procedure is repeated until the correc- 
tions are small enough to be neglected   After the coefficients have 
been computed, Eqs  61, 60 (first harmonic) and 59 are solved to 
yield H', K  and c' respectively   The entire procedure is repeated 
iteratively until the coefficients K  and c' are evaluated for uni- 
form-interval values of H/L, which are appropriate for tabular 
presentation 
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Computatio 
1108 computer 
preliminary res 
the dimensionle 
± 000001, while 
puted correct t 
that this preci 
height where th 
order solution 
ever, the trunc 
elliptic functi 
the development 
of Eq  53   as 
is only satisfi 
tions, greater 
accuracy can be 

ns were made on the University of Wisconsin UNIVAC 
A fifth order solution was undertaken and some 

ults are shown m Tables 1 and 2   In these tables 
ss wave height, H/L, is calculated correct to 
all other terms appearing in the tables were com- 

o at least the last place shown   It should be noted 
ion is significant for the lower values of wave 

e convergence of the a  series is rapid and a fifth 
is sufficient   As the^wave height increases, how- 
ation of the trigonometric series which replace the 
ons as well as the omission of higher harmonics in 
of (y' R 2) , result in a less accurate satisfaction 

o  o 
a consequence the dynamic boundary condition, Eq  5, 
ed approximately   By developing higher order solu- 
than the fifth order solution considered here, the 
improved 

DISCUSSION 

No specific attempt will be made at this point to compare the 
new theory with those which exist   The primary objective at the 
present is to develop the method of solution and to prepare sample 
tables of the coefficients 

Nevertheless it is already possible to indie 
with the existing theories In an earlier paper 
Kutzbach (1965) compare the theory with that of S 
reveal that the basic equation for deep water, Eq 
both theories Stokes was, of course, limited in 
carry out computations to higher orders, and so r 
tion to the well-known fifth-order theory The s 
in deep water has been the prime stimulus for usi 
approach in the present work Following stokes 
veloped a twelfth order solution for deep water w 
and Kutzbach (1965) developed a fifteenth order s 
higher order computations resulted in little devi 
fifth and third order theories, especially m the 
speed Only in wave shape did the fifteenth orde 
from the lower order theories, as might be expect 

ate some agreement 
Monkmeyer and 
tokes (1880) to 

18, is common to 
his ability to 

estricted his atten- 
uccess of this theory 
ng a fifth order 
Wilton (1914) de- 
aves and Monkmeyer 
olution   These 
ation from the 
prediction of wave 

r theory diverge 
ed 

Wave speed may be computed with the aid of Eq  59   However, 
since this equation demands considerable computation, a more con- 
venient approach is to print out the wave speed together with the 
wave coefficients as shown in Tables 1 and 2   The wave speeds 
obtained in Table 1 show excellent agreement with those of Stokes1 

third and fifth order theories for deep water waves (see Monkmeyer 
and Kutzbach, 1965) 

In order to describe the wave shape or profile of a wave, one 
may choose to use the parametric set of equations, 

= -iX 
2ir 

L 
4K I 

3 = 1 

,2]K . 
(22) 
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Table 1 

FIFTH ORDER WAVE COEFFICIENTS 

L/0 =»   .00000 

H/L 

• 140 

H/D 

.000 

C< 

1.1063 

,130  .000 1.0900 

.120 .000 1.0736 

.110 .000 1.0628 

.100 .000 1.0513 

.090 .000 1.0412 

.080 .000 1.0323 

.070 

.060 

.050 

.040 

.030 

.020 

.010 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

1.0246 

1.0180 

1.0124 

1.0079 

1.0045 

1.0020 

1.0005 

K. 

1.3825 

1.3304 

1.2816 

1.2366 

1.1954 

1.1582 

1.1250 

1.0958 

1.0705 

1.0491 

1.0315 

1.0177 

1.0079 

1.0020 

All) 
BID 
C(l) 

.33811 
.33811 
.33811 

.32414 
.32414 
.32414 

.30833 
.30833 
.30833 

.29086 
.29086 
.29086 

.27177 
.27177 
.27177 

.25101 
.25101 
.25101 

.22855 
.22855 
.22855 

.20440 
.20440 
.20440 

.17861 
.17861 
.17861 

.15131 
.15131 
.15131 

.12270 
.12270 
.12270 

.09299 
.09299 
.09299 

.06246 
.062*6 
.06246 

.03137 
.03137 
.03137 

A(2> 
B(2) 
C(2) 

.25489 
.25489 
.25489 

.23004 
.23004 
.23004 

.20519 
.20519 
.20519 

.18038 
.18038 
.18038 

.15575 
.15575 
.15575 

.13154 
.13154 
.13154 

.10806 
.10806 
.10806 

.08573 
.08573 
.08573 

.06500 
.06500 
.06500 

.04638 
.04638 
.04638 

.03035 
.03035 
.03035 

.01737 
.01737 
.01737 

.00/82 
.00782 
.00782 

.00197 
.00197 
.00197 

A(3) 
B(3) 
C(3) 

.21308 
.21308 
.21308 

.18174 
.18174 
.18174 

.15253 
.15253 
.15253 

.12534 
.12534 
.12534 

.10026 
.10026 
.10026 

.07756 
.07756 
.07756 

.05755 
.05755 
.05755 

.04051 
.04051 
.04051 

.02665 
.02665 
.02665 

.01601 
.01601 
.01601 

.00846 
.00846 
.00846 

.00 365 
.00365 
.00365 

.00110 
.00110 
.00110 

»00014 
.00014 
.00014 

A(4) 
B(4) 
C(4) 

.18215 
.18215 
.18215 

.14753 
.14753 
.14753 

.11702 
.11702 
.11702 

.09024 
.09024 
.09024 

.06712 
.06712 
.06712 

.04772 
.04772 
.04772 

.03207 
.03207 
.03207 

.02009 
.02009 
.02009 

.01149 
.01149 
.01149 

.00582 
.00582 
.00582 

.00248 
.00248 
•00248 

.00081 
.00081 
.00081 

.00016 
.00016 
.00016 

.00001 
.00001 
.00001 

A(5) 
B15) 
C(5) 

.15343 
.15343 
.15343 

.11848 
.11848 
.11848 

.08910 
.08910 
.08910 

.06467 
.06467 
.06467 

.04487 
.04487 
.04487 

.02943 
.02943 
.02943 

.01799 
.01799 
.01799 

.01006 
.01006 
.01006 

.00502 
.00502 
.00502 

.00215 
.00215 
.00215 

.00074 
.00074 
.00074 

.00018 
.00018 
.00018 

.00002 
.00002 
.00002 

.00000 
.00000 
.00000 

VALUES OF THE COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KINO 

""»  1.5707963  K> = INP. .0000000  K</K=INI". 
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Table 2 

FIFTH ORDER WAVE COEFFICIENTS 

L/D « 2.00000 

A All) A(2) A(3) A(4) A(5) 
H/L H/0 c» K„ B(l) B<2> 6(3) 8(4) 8(5) 

C<1) C<2) CO) C(4) C(5) 
140 .280 1.1090 1.3908 .34108 .25736 .21331 .18393 .15467 

.34172 .25784 .21562 .18427 .15496 
.34044 .25688 .21482 .18358 •15438 

130 .260 1.0926 1.3381 .32696 .23229 .18179 .14906 .11954 
.32757 .23273 .18396 .14934 .11977 
•32635 .23186 .18328 .14878 .11932 

120 .240 1.0781 1.2888 •31101 .20722 •15243 .11830 .08997 
.31159 .20761 .15445 .11852 .09014 
.31043 .20683 .15388 .11808 .08981 

110 .220 1.0652 1.2433 .29340 .18219 .12508 .09128 .06536 
.29394 .18253 .12696 .09145 .06549 
.29285 .18185 .12649 .09111 •06525 

100 .200 1.0537 1.2016 .27415 .15734 .09986 .06793 .04540 
.27466 .15763 .10159 .06806 .04548 
.27363 .15704 .10121 .06781 .04532 

,090 .180 1.0434 1.1639 .25322 .13290 .07705 .04833 .02979 
.25369 .13314 .07861 .04842 .02985 
.25275 .13265 .07832 .04824 .02974 

080 .160 1.0344 1.1304 .23058 .10919 .05695 .03250 .01823 
.23101 .10940 .05834 .03256 .01826 
.23015 .10899 .05813 .03244 .01820 

,070 .140 1.0266 1.1008 .20623 .08664 .03986 .02036 .01020 
.20662 .08680 .04109 .02040 .01023 
.20585 .08648 .04094 .02033 .01019 

060 • 120 1.0200 1.0752 .18023 .06570 .02598 .01165 .00510 
.18056 .06583 .02704 .01167 .00511 
.17989 .06558 .02694 .01163 .00509 

.050 .100 1.0144 1.0534 .15269 .04688 .01536 .00590 .00218 
.15298 .04697 .01625 .00591 .00219 
.15241 .04680 .01619 .00589 .00218 

.040 .080 1.0099 1.0356 •12383 .03069 .00787 .00252 .00075 
.12406 .03075 .00858 .00252 .00076 
.12360 .03063 .00855 .00251 .00075 

.030 .060 1.0064 1.0217 •09386 .01757 .00318 .00082 .00019 
.09403 .01760 .00371 .00082 .00019 
.09368 .01753 .00370 .00082 .00019 

.020 .040 1.0039 1.0117 .06304 .00791 .00076 .00017 .00002 
.06316 .00792 .00112 .00017 .00003 
.06292 .00789 .00112 .00017 .00003 

VALUES OF THE COMPLETE ELLIPTIC INTE6RAL OF THE FIRST KIND 

K=  1.5825517  <•»  3.1651034 M» .0294372 KWK"     2.0000000 
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4^ Jx "7 cn(-rx) (23) 

or to avoid the elliptic functions, but at the expense of some 
accuracy, 

(24) 
2ir 

L      n     b 

•«     If SXn   DX 
3 = 1 

L 
4K 

n     c 
1     -2- cos   3X 

3 = 1     3 
(25) 

Numerical values relating x  and y  may be obtained by substi- 
tuting arbitrary values of °;he normalized potential function, x 
This procedure is adequate for a graphical presentation of the wave 
shape   Stokes (1880) suggests that, with the aid of Lagrange's 
theorem (Whittaker and Watson, 1963), the two equations may be 
reduced to one 

It should be observed that the depth, D, differs from the depth 
to stillwater, d, by the elevation of the stillwater level, y  (see 
Fig  1)   The computation of y , and therefore, d, may be accom- 
plished by noting that the net area bounded by the free surface and 
the stillwater level vanishes   Therefore 

L/2 
y„>dx,. (63) 

By substituting the parametric profile expressions, Eqs  24 
and 25, the equation may be solved for the dimensionless stillwater 
elevation 

.   - ii  ?   bk ck 
Ys  - 4K kL_x        k (64) 

Sample profiles for deep water waves are presented by Monkmeyer 
and Kutzbach 

In order to study the characteristics of the highest possible 
wave it will be necessary to add one further restriction to those 
imposed by Eqs  59, 60 and 61   This restriction, which was first 
suggested by Stokes, affects the Bernoulli equation which describes 
the dynamic upper boundary condition   In effect Stokes suggests that 
for a fluid particle on the surface to reach the highest possible 
point above the surface, the wave crest, it must give up all of its 
kinetic energy   Hence at this point it has no velocity and the 
crest is a stagnation point   The dynamic boundary condition, Eq  45, 
therefore reduces to 

2y. = K at r = 1, X = 0 (65) 

or substituting for y ' with the aid of Eq  23 

n  a, 
2   I   -r- * 

k=i  k 
(66) 
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Since this equation adds no new unknowns to those already appear- 
ing in Eqs  59, 60 and 62 its inclusion results in a set of (n + 3) 
equations with (n + 3) unknowns, H' no longer being arbitrary but 
now considered as an unknown 

For the deep water case using the fifteenth order theory 
Monkmeyer and Kutzbach show that 

(H/L)    = 0 1442 
max 

This compares well with Michell's (1893) result of 

(H/L)    = 0 142 
max 

and Havelock's (1919) conclusion that 

(H/L)    = 0 1418 
max 

No precise computations of the highest wave have been made for 
the finite waves considered herein   However, Eq  57 has been used 
to determine whether or not the wave data obtained in the preliminary 
computations includes waves that exceed the highest   This check 
showed for example that for L/D =6 0, the maximum wave lies between 
H/L =  13 and  14, which is in good agreement with the breaking index 
curve of Reid and Bretschneider (1953) 

CONCLUSION 

A higher order wave theory has been developed for the full 
range of waves from Stokes waves to cnoidal waves to the solitary 
wave and from small amplitude waves to finite amplitude waves and the 
"highest wave'   By means of a conformal transformation the problem 
is reduced to obtaining a solution to a non-linear set of equations 
Solutions of these equations using a high speed digital machine have 
been obtained to fifth order for L/D values of 0 0, 2 0, 4 0 and 6 0, 
and samples of this data are presented in tabular form 

A consideration of some preliminary results as well as earlier 
results of the deep water case, suggest that the theory is in good 
agreement with existing theories   Furthermore, it appears that this 
theory may provide a comprehensive practical means for wave analysis 
of the full-range of symmetrical waves from deep-water to shallow-water 
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APPENDIX - NOTATION 

A       see Eq  50 
3 

a       coefficient of the -jth harmonic - see Eg  7 
3 

am(  )  amplitude of the elliptic integral of the first kind 
B       see Eq  51 
3 

b       coefficient - see Eq  26 
3 

C       see Eq  52 
3 

c       wave speed 
c1      the dimensionless wave speed - see Eq  44 
c coefficient - see Eq  27 
3 

en(  )  Jacobian elliptic function 
D depth measured from the origin 
D see Eqs  48 and 49 
3 

d depth measured from stillwater 
f(C) see Eq  35 
g acceleration due to gravity 
gd(  )  gudermannian 
H wave height 
H1 dimensionless wave height - see Eq  62 
i AT 
] integer which identifies the jth harmonic - see Eq  8 
K complete elliptic integral of the first kind (parameter - m) 
K' complete elliptic integral of the first kind (K'(m) = K(l-m)) 
K       Bernoulli constant for free surface streamline 
Ao 
K       see Eq  44 
^o 
k integer which identifies the kth harmonic 
L wave length 
I integer which identifies the £th harmonic 
m parameter of the complete elliptic integral of the first kind,K 
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n integer which identifies the highest harmonic and the order 
of the analysis 

q magnitude of the particle velocity at the free surface 

R modulus of f(c ) - see Eq  38, also = c/q 

r radial coordinate in the C-plane 
r radius of AE in the 5-plane 

sn(  )  Jacobian elliptic function 
u x-component of the particle velocity 
u x-component of the particle velocity at the free surface 

v y-component of the particle velocity 
v y-component of the particle velocity at the free surface 

w complex potential = $ + it|i 
x horizontal coordinate in the z-plane 
x' dimensionless horizontal coordinate 
x horizontal free surface coordinate in the z-plane 

x1 dimensionless horizontal free surface coordinate o 
y vertical coordinate in the z-plane 
y' dimensionless vertical coordinate 
y vertical free surface coordinate in the z-plane 

y' dimensionless vertical free surface coordinate 

y still water elevation in the z-plane 1 s " 
y' dimensionless still water elevation s 
z = x + ly and refers to the physical plane 
z complex variable at the free surface o 
5 5 r exp dx) and refers to the auxiliary plane 
C = exp dx), or C at the free surface 

6 argument of f(C ) - see Eq  39, also local slope angle of 
the free surface m the z-plane 

it = 3 1415927 
$ potential function 
X tangential coordinate in the £-plane, also a normalized form 

of the potential function 
i|) stream function 




