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ABSTRACT

A higher order theory 1s presented for symmetrical, non-linear
gravity waves As a consequence of the generality employed, the
theory includes the full range of possible wave lengths, water
depths and wave heights that may be encountered, and brings them
into one unified formulation Thus, the theory encompasses both
linear and non=-linear waves, includaing Airy waves, Stokes waves,
cnoidal waves and the solitary wave

Based on the work of Nekrasov, a complex potential in the form
of an infinite series 1s developed to describe the flow field The
potential satisfies the bottom (horizontal) condition as well as
the kinematic surface condition exactly Furthermore, the dynamic
sur face condition 1s satisfied by numerical calculation of the
series coefficients which appear in the complex potential The
calculation of these coefficients 1s accomplished by solving a set
of non-linear algebraic equations, with the aid of a Newton-Raphson
iteration procedure and matrix i1nversion

Coefficients of the complex potential have been obtained for
a fifth order analysis and preliminary results are presented 1n
tabular form A braief discussion of the characterastics of the
waves, including wave speed, wave shape and the height of the highest
possible wave follows

INTRODUCTION

Water waves and their characteristics have receaved a great
deal of attention by mathematicians, geophysicists and engineers
over the past century and a half In particular, numerous theories
have been developed to describe the characteristics of symmetracal,
periodic, progressive waves Anong the more classical papers are
those by Stokes (1847,1880), Rayleigh (1876), Boussinesq (1872),
Korteweg and DeVries (1895), Levi-Caivita (1925}, and Struik (1926)
Reviews of some of these works, as well as many more recent publa=-
cations may be found in publications by Stoker (1957), Wiegel (1964)
Kinsman (1965), Ippen (1966) and Neumann and Pierson (1966) No
attempt wi1ill be made here to review the many recent contributions
However, of particular interest, especially for applications of the
theory, are the works of Mash and Wiegel (1961l), Skjelbreia and
Hendraickson (1962), Laitone (1963) and Dean (1965)

The wealth of literature on the subject of periodic water

waves reflects to some extent the lack of a unified approach An
effort to resolve this problem was made by Nekrasov (1951), followed
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by Milne-Thomson (1969) and Thomas (1968) Nekrasov first formu-
lated the wave problem in general terms, and concluded his analysis
with a non-linear integral egquataion

The present study reexamines the work of Nekrasov and his suc-
cessors and presents 1t 1n a manner which should be more useful in
practice More specifically, a method 1s developed to compute co-
efficients which may be used to calculate the various charactexr-
istics of the waves

Since the theory presented herein 1s general, 1t covers the
entire range of possible wave lengths, water depths and wave heights
that may be encountered Thus 1t encompasses both linear and non-
linear waves including Airy waves, Stokes waves, cnoidal waves and
the solitary wave As a consequence it gives promise of simplifying
the choice of the appropriate theory ~ a problem which currently
faces the practitioner

SOLUTION OF THE WAVE PROBLEM
DEVELOPMENT OF THE THEORY

The wave theory which will be developed herein applies to
progressive, symmetrical, gravity waves moving over the free sur-
face of an inviscid, incompressible laguid, in an oscillatory man-
ner Furthermore the waves are two-dimensional and, except for the
special case of infinite depth, they move over a horizontal bottom
No restriction i1s placed on liguad depth, D, wave length, L, or
wave height, H Hence the theory 1s comprehensaive and includes the
full range of constant-profile waves, from Stokes waves to cnoidal
waves and the solitary wave, as well as from small-amplitude waves
to large-amplitude waves and the so-called "highest wave"

A train of oscillatory waves 1s moving from right to left over

the surface of the liquid 1in guestion with wave speed, ¢ By super-
imposing a uniform flow from left to right of the same speed as
that of the waves, the wave profiles are brought to rest The net

effect 1s to provide a steady flow from left to right, bounded by
the fixed profile formed at the free surface and the impervious
boundary at the bottom The steady flow-field will be seen to be
considerably more amenable to study than would be the unsteady,
progressive-wave field

In Fig 1 the steady wave 1s depicted and the more important
constants are defained For convenience i1n the development the
coordinates are described in complex terms and the physical plane
1s the z-plane, where z 15 the complex variable and x and y are the
real and imaginary axes respectively The y-axis 1s chosen to pass
through the crest of the wave, C, ain oxder to assure symmetry The
free surface 1s defined by y = y (x ) and the still water level 1s
located at y = y_, a distanc® whi8h femains to be determined It
should be noted Ehat the depth, d, usually defined as the distance
from the still water level to the bottom will equal the sum of Y
and D
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Fig 1 - The z-Plane

Fig 2 - The y-Plane



546 COASTAL ENGINEERING

Since the flow i1s irrotational, an assumption which has been
discussed by Stokes (1847), the complex potential 1s given by

w = ¢ 4+ ayp (1)

where ¢ 1s the potential function and $ 1s the stream function
Furthermore, the complex potential 1s analytic and so the Cauchy-
Riemann equations, which may be related to the velocity components,
u and v, are gaiven by

we 22 L.,
oy

¢ _ 3%
3x Y - (2)

Substitution of these expressions into the continuity and airrota-
tional conditions results in Laplace's equation for each function,

2 2
V¢ =0 Vy=0 (3)

respectively

At the free surface the kinematic boundary condition requires
that the surface be a streamlaine For convenience, thas bounding
streamline 1s defined as

v =0 at y =y, (4)
The dynamic boundary condition at the free surface 1s expressed by
the Bernoulli equation with pressure eqgual to zero,
2
a, + 2gyo = Ko at y = Yo (5)
where q_ 1s the speed of a surface particle and K_ 1s a constant
(twice the so-called "Bernoullai constant”) °

The lower boundary condition 1s kinematic and requires that
the horizontal bottom be a streamlaine In order to reflect the
volume rate of flow between the two bounding streamlines,

Y = =-cD at y = ~D (6)

where "¢cD' equals the two-dimensional flow rate observed in the
z-plane

Up to this point the relevant differential equations, together
with the appropriate boundary conditions which descraibe the flow,
have been presented The two fundamental problems which i1mmedrately
present themselves are that the location of the free surface 1s
unknown and the dynamic boundary condition 1s non-linear In order
to deal wath the first problem a conformal transformation will be
employed The purpose of thais transformation 1s to redefine the
problem in an auxiliary plane, the f-plane, where the location of
the free surface 1s known

The particular conformal transformation to be used, 1s an out-
growth of the work of Nekrasov (1951), as well as a subsequent



SYMMETRICAL GRAVITY WAVES 547

analysis by Milne-Thomson (1969) and Thomas (1968) More specifi-
cally, 1t 1s an extension and generalization of the special deep-
water case considered by Monkmeyer and Kutzbach (1965) The trans-
formation 1s given as follows
7 @ 23K
z = & In{z) + L Z ~L expf1 am(- 1ng)1] (7)
2m 2K 5=1 3 m

where K 1s the complete elliptic integral of the fairst kind and the
a_'s are a set of real coefficients which are as yet unknown More-
over, &, which 1s the complex variable describing the coordinates

of the Z-plane 1s given 1in polar form by

g = r exp{1x) (8)

where r 1s the radial coordinate and X the angular coordinate of
the {-plane as shown 1in Fig 2 Finally, am{ ) 1s the amplitude
of the elliptic integral of the first kind

One may verify, by application of the mapping function, Eq 7,
that the region bounded by ABCDE 1in the z-plane 1s a mapping of the
equivalent region inside the unit circle in the ¢-plane, subject
only to the proper evaluation of the constant coefficients, a In
fact 1t may be shown that the boundaries AB, DE and EA are mapped
exactly from the z-plane to the f-plane, regardless of the values

of the coefficients, a The boundaries AB and DE transform exactly
as a consequence of the periodicity of the transformation The
exact transformation of the lower boundary DE follows from the
characteristics of the elliptic function, am( ) The choice of

this particular conformal transformation was essentially dictated
by the exact transformation of the bottom boundary As a by-product
of the bottom transformation it 1s required that

K 4p

X T (9)

where K'(m) = K(l-m), and m 1s the parameter of the complete ellip~-
tic integral of the first kind This 18 a convenient formula since
1t permits a consideration of the entire range of waves for all

wave lengths and depths In particular i1t facilitates ainclusion of
the two limiting cases, L->~*and D% since K—+®1in the first instance
and K'~»»i1in the second Eq 9 may therefore be used to convert

Eq 7 and many of the following equations, 1f the limiting case of
the solitary wave 1s of 1interest or 1f cnoidal waves are to be
expressed 1n terms of depth rather than wave length

The transformation can also be applied to the boundary condi-
tions, Egqs 4, 5 and 6, to generate the equivalent conditions in
the g-plane,

Yy =0 at r =1 (10)
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2
qo + 2gy0 = K0 at r = 1 (11)
and
p = ~cD at r = rC (12)
21D
h = -
where r, exp { I ) (13)

The validity of these representations of the boundary conditions
1s verified 1in Fig 2 Moreover 1t should be noted that Egs 10 and
12 are precisely the boundary conditions for a portion of a clockwise
1rrotational vortex in the ¢-plane, so that the complex potential
for the flow in this plane may be written

icL

2m
By separating real and imaginary parts of this expression and
rearranging terms,

1ng (14)

2nd
X = - {15)

and cL
r = exp (2LY) (16)

It 1s therefore apparent that x 1s a normalized form of the potential
function and r 1s the exponential of the normalized stream function

To this point the physical problem in the z~-plane has been
transformed to one in the g-plane and two of the boundary conditions,
Egs 10 and 12, have been satisfied by the complex potential, Eq 14
It therefore remains to satisfy the dynamic surface condition, Eq 11,
and this will be done by a proper choice of the coefficients in the
conformal transformation The remaining portion of this analysis 1s
devoted to a method for calculating these coefficients so that the
dynamic condition will be satisfied, approximately The degree of
approximation will depend on the truncation of the infinite series
which makes up the conformal transformation The greater the number
of terms retained, the more nearly the dynamic condition will be
satisfied

Before proceeding to a calculation of the complex velocity,
which will be needed 1n an examination of the Bernoulli condation on
the free surface, 1t 1s necessary to substitute the complex potential
in the ¢-plane, Eq 14, 1into the conformal transformation, Eq 7,

1n order to obtain the complex potential for the z-plane The result
may be regarded as the general wave eqguation,
L v 2 43%
=¥, 1 -2 RS
z = T+ e le 7 exply an(~=33 W)l (17)

For the limiting case of infinite depth, X approaches ¢/2 and am( )
approaches 1ts argument Therefore Eq 17 reduces to the deep-water

equation,

L a 2
iL 2 -, 22T
+ o le 3 expl[-1 I wl (18)

N
It
alsg
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On the other hand for the limiting case of infinite wave length, 1t
should be noted that, after Eq 9 1is introduced, K' approaches w/2
and am{ ) approaches gd( ), the gudermannian Therefore, Eq 17
reduces to the solitary wave eguation,

® g
=¥, 12D 3 L
z = =+ = JZI 3 expli gd( 55D w)l (19)
Now along the free surface, $ = 0, where we wish to apply the
dynamic boundary condaition, Egq 17 becomes
© a
- &, 2L 3 K
2= T+ Tx jz 3 expl1 am( T )1 (20)

or 1n terms of the dimensionless potential function, .x,
© a

- Ix , 1L 1 23K
z, o t Tx 321 > expl1 am (=== x)] (21)

Taking real and imaginary parts of Eq 21 one obtains

© a
= X L 2 23K
¥ T Ton 4K z 3 sn( ™ x) (22)
J=1
and
L v 2 259K
= = L ENLS
Y, = 7% ° == en (5= %) (23)
J=1
where sn( ) and cn( ) are Jacobian ellaptac functions These two
equations are parametrically related through x to define the shape
of the free surface In order to make them somewhat more tractable,

1t 1s convenient to replace the elliptic functions by their expan-
sions 1n sine and cosine series respectively (see Milne~Thomson

(1950)) Egqs 22 and 23 therefore become
L 2K TP
= - L_ (2KX 3
X X ( -+ Zl 3 sin Jx) (24)
and J
1 ¢ ¢
= & 31
Y, i 2 3 cos IJX (25)
3=1
where
la 3/2k
27 k %x 4
b = 173 7x (26)
I mt %K k=1 (1-g37%)
a
an 3 3/2k
J a, q
¢ _ 27 Z k k (27)
T a2 k21 (14775
where
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and only integer values of k are included in the summation, and
where

Kl
q = exp(-ﬂf—) (28)
For the limiting case of deep water waves
b =c¢c_ = a (29)
J J J
whereas for the limiting case of the solitary wave
3
4
b. =2 7 a (30)
3 Ty X
and
3 3
Ke_ = Z = a (31)
J kel k "k

with k defined as for Egqgs 26 and 27

In view of Eqs 24 and 25 1t 1s now possible to reexpress the
comples variable, L that was given in Eq 21, as follows

1L ¥ [P, S, -
zo T lnco + 2K Z [ 2 co * 2 co ] 32

J=1

where, on the free surface, Eq 8 reduces to

Ly < exp (1x) (33)
By differentiating Eq 32, the complex operator
dzo _ 1L f(co) (34)
dco 2w co
1s obtained, where
" ® c_+b J c_=-b
= — - ~3J
£z ) = 37 I 1 T, ~2-1 £, (35)
3=0
= R° exp (160), say (36)
and where
2K
b° =c = (37)

Moreover, the modulus, Ro, of the function f(co) 1s given by
T ki
R°2 = [ﬁ Z b  cos ]'X] + [E-E Z c_ sin JX] (38)
j=0 7 j=0 3
and the argument, 90, of f(co) 1s given by
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o
"
3% z b] cos JX
-1 =0

8 = cos (39)
o

R
o

The above relations may now be employed, together with Eq 14,
to derive an expression for the complex velocity, as follows

dwo dw dco c c
- = e = e D 2 e = - 40
ug v i T az T30 R exp ( 160) (40)
o o o o
and therefore
¢ = S
w, o= R cos eo and v, = g sin eo (41)
o o
and furthermore
2
2
a,” = =5 (42)
R
[<]
The dynamic free surface condition, Eq 11, may now be wratten
c2
— + 2gy° = K° (43)
R
o
an expression which was apparently first derived by Nekrasov (1951)
who proceeded to derive a non~linear integral equation In addition,
with the aid of the following dimensionless terms
x"' =é_lsx—£x L :-4.5 =K-—'-
o L o D o Yo * 1 Yo b Yo
K K (44)
, = ¢ _ ¢ & - O _ <]
c' = = K = =
gL 9o o gbL gD
4K X' 4K K*

Eq 43 becomes

2 2 s 2
v v =
c + 2y R K, Ry (45)
where " il
y! = Z cos J¥X
o 321 (46)
and, with the aid of trigonometric identities,
2 2 <
m
R = (EE) [Do + 2 E DJ cos jX] {47)
3=1
where
2 o© bk2+c 2
p,=b "+ Z 3 {48)
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D. =A_ +B_+¢C =1,2,3,4 (49)
J J J J J ’ ’ ’
® b b, + ¢ [+
A= Z k=2 k L k j =1,2,3,4 (50)
J 2
k=3
(3-1)/2b_b__. -c¢c ¢
B, = yook—azk Xk 3tk 5 .,2,3,4 (51
3 k=0 2
and
1 2 2
C_ == (b - ¢ for = 2,4,6,8
3 2 ( 1/2 j/2) J 14,6, (52)
= 0 for 3 = 1,3,5,7

By substituting Eqs 46 and 47 into Eq 45, the problem of the
general symmetrical wave of finite amplitude 1s reduced to one of
finding the solution to the equation,

2

©0 c X 0o
c’2+2[( Z -1 cos JX)-—gl[(l—)z(D +2 Z (A_+B_+C_)cos 3jx)] =0
521 J 2 2K [} 321 J 1 )
(53)
It 18 of i1nterest to note that to this point no approximations
have been made Therefore Eq 53 1s an exact representation of

the problem

In order to solve Eq 53 for a finite number of coefficients,
it will be necessary to truncate the infinite trigonometric series
which appear in the egquation Therefore Egqs 46, 47, 48 and 50
become

n ¢
y' = ] L cos yx (54)
o J
J=1
2 T 2 2
Ro P (Ef) [D° + 2 Z DJ cos 3xl (55)
3=1
2 2
n b, ~+c
b, ~b %+ ] EE (56)
k=1
n b b, + ¢ c
A = k-3 "k k-3 'k 3=1,2,3,4 =n (57)
J k=3 2

Furthermore, by combining and expanding these equations, one
obtains

2 w2 E °x % E °x
v'R = (5—) [ — D, + — (D___+D Ycos 3xli (58)
°%o 0 T - N - k=3 k+3

where absolute value signs are omitted on the subscripts of Dg~g« and
furthermore, Dy = 0 if 2] > n Since harmonics higher than the
nth have been omitted, Eq 58 1s not exact
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2 2
The expressions for Ro , Eq 55, and y R , Eq 58, may now
be substituted into Eq 45 By equating the®cofficients of the
harmonics, one obtains

12 3 Xopo- ok (&
fe] + 2(2K§ Z m Dk Ko(zxg D (0th harmonic) (59)
k=1
noocp -
Z = (Dk-j + Dk+3) = Ko DJ (3th harmonic,3j=1,2,3 n) (60)

k=1

where absolute value signs are omitted on the subscraipts of D

and furthermore D, vanishes 1f [2] > n

k-3’

Since the unknown terms in Egs 59 and 60 are all functions of
the height of the wave, 1t 1s appropriate to add an equation for
wave height The wave height 1s seen to be equal to the sum of the
displacements of the crest and trough from the x-axis Therefore,
using Egs 23 and 9,

L ? il 2D % a]
H= (y ) o+ (-y )} _ =3¢ = - (61}
o’ x=0 o' y=m 2K J=1 b K 1=1
3 = 1,3,5,7
and 1n dimensaionless form,
n a
At =2 ) =L 3 =1,3,5,7 (62)
3=1

Egqs 59, 60 and 62 are therefore seen to constitute a set of (n+2)
equations ain (n+2) unknowns ‘LR a_) for any desaired
value of the dimensionless wave helgét n

COMPUTER SOLUTION

In setking up the equations for computer solution, the co-
efficient, K ,1s eliminated between the first of Egs 60 (3j-1) and

each succeeding equation (3=2,3 n), thereby reducing Egs 60 to
(n-1) equations in (n-1) unknowns a, } for a fixed value
of a After the unknown coefflclen%s are assumed, the simultaneous

soluBion of these (n-1) non-linear equations 1s accomplished with
the aid of a Newton-Raphson iteration By this technigque the prob-
lem 1s reduced to one of obtaining the solution of a set of (n-1)
linear equations at each 1teration The matrix 1s then inverted
using triangular decomposition and a solution of the set of equations
1s obtained for corrections on the assumed values of a_,a,,

a_ _, and a_ The entire procedure 1s repeated until thé correc-
tions are small enough to be neglected After the coefficients have
been computed, Egs 61, 60 (first harmonic) and 59 are solved to
yield H', K and c¢' respectively The entire procedure 1s repeated
1terataively until the coefficients K and c¢' are evaluated for uni-
form-interval values of H/L, which afre appropriate for tabular
presentation
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Computations were made on the Unaversity of Wisconsain UNIVAC
1108 computer A fifth order solution was undertaken and some
preliminary results are shown ain Tables 1 and 2 In these tables
the dimensionless wave height, H/L, 1s calculated correct to
+ 000001, while all other terms appearing in the tables were com-
puted correct to at least the last place shown It should be noted
that this precision 1s signaificant for the lower values of wave
height where the convergence of the a_ series 1s rapid and a fifth
order solution 1s sufficient As the“wave height increases, how-
ever, the truncation of the traigonometric series which replace the
elliptaic functions as well as the omission of higher harmonics in
the development of (y' R _“), result in a less accurate satisfaction
of Eq 53 As a conseéguénce the dynamic boundary condaition, Eq 5,
1s only satisfied approximately By developaing higher order solu-
tions, greater than the fifth order solution considered here, the
accuracy can be improved

DISCUSSION

No specific attempt will be made at this poaint to compare the
new theory with those which exist The praimary objectaive at the
present 1s to develop the method of solution and to prepare sample
tables of the coefficients

Nevertheless 1t 18 already possible to indicate some agreement
with the existing theories In an earlier paper, Monkmeyer and
Kutzbach (1965) compare the theory with that of Stokes (1880) to
reveal that the basic equation for deep water, Eq 18, 1s common to
both theories Stokes was, of course, limited in hais ability to
carry out computations to higher orders, and so restricted his atten-
tion to the well-known fifth-order theory The success of this theory
in deep water has been the prime stimulus for using a fifth order
approach in the present work Following Stokes, Wilton (1914) de-
veloped a twelfth order solution for deep water waves and Monkmeyer
and Kutzbach (1965) developed a fifteenth order solution These
higher order computations resulted in little deviation from the
fifth and thaird order theories, especially in the prediction of wave
speed Only 1n wave shape did the fifteenth order theory diverge
from the lower order theories, as might be expected

Wave speed may be computed with the aid of Eq 59 However,
since this equation demands considerable computation, a more con-
venient approach i1s to praint out the wave speed together with the
wave coefficients as shown in Tables 1 and 2 The wave speeds
obtained in Table 1 show excellent agreement with those of Stokes'
third and fifth order theoraies for deep water waves (see Monkmeyer
and Kutzbach, 1965)

In order to descraibe the wave shape or profile of a wave, one
may choose to use the parametric set of equations,

n a

X = Lx L Z 31 sn(aﬁﬁx) (22)
J=1
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Table 1

FIFTH ORDER WAVE COEFFICIENTS

N~

Ke

1.3825

143304

1.2816

1+2366

11954

1.1582

141250

1.0958

1.0705

10491

10315

140177

10079

140020

L/D =

All)
B{1)
)
33811
«33811
33811
032414
032414
032414
+30833
+30833
+30833
229086
29086
29086
027177
027177
027177
«25101
«25101
25101
22855
022855
022855
220440
020440
020440
+17861
«17861
+17861
015131
e15131
e15131
«12270
«12270
«12270
«09299
09299
« 09299
206246
206246
«06246
«03137
003137
003137

+00000

AL2)
B(2)
cl2)
+25489
025489
25489
¢23004
23004
«23004
»20519
»20519
20519
+18038
+18038
»18038
¢15575
¢15575
«15575
«13154
¢13154
+ 13154
+10806
+10806
«10806
+08573
+ 08573
«08573
+06500
«06500
+ 06500
«04638
« 04638
«04638
«03035
+03035
«03035
201737
+01737
«01737
+00/82
» 00782
« 00782
»00197
» 00197
«00197

Al3)
B{3)
Cc(3)
»21308
«21308
21308
+18174
«18174
+18174
015253
215253
+15253
¢12534
+12534
012534
«10026
+10026
+10026
«07756
+07756
«07756
¢05755
205755
«05755
+ 04051
«04051
«04051
202665
02665
202665
+01601
«01601
«01601
+ 00846
200846
+ 00846
«00365
«00365
+ 00365
+00110
+00110
+00110
+00014
» 00014
+ 00014

Aly)
B(4)
Cl4)
+18215
«18215
e18215
014753
«14753
014753
011702
«11702
¢117062
«09024
+ 09024
+ 09024
«06712
+06712
«06712
e 04772
04772
004772
+03207
03207
«03207
«02009
+02009
«02009
«01149
«01149
201149
00582
» 00582
«00582
«00248
«00248
«00248
+00081
«00081
«00081
+00016
«00016
+ 00016
+00001
«00001
« 00001

555

Al5)
B{5)
ci5)
015343
+15343
215343
+11848
+11848
«11848
+08910
«08910
«08910
+ 06467
« 06467
206467
204487
004487
e 04487
+02943
+02943
e 02943
+01799
+01799
»01799
+ 01006
«01006
«01006
+00502
«00502
+ 00502
«00215
«00215
«00215
« 00074
« 00074
« 00074
+ 00018
«00018
«00018
+ 00002
+00002
« 00002
+ 00000
+« 00000
«00000

VALUES OF THE COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND

155707963

k*'=INF.

M= «0000000 K1/K=INFo.
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«080
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1.1090

140926
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10652

1.0537

1l.0434

1.0344

1.0266

10200

1l.0144

1.0099

10064
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Table 2

FIFTH ORDER WAVE COEFFICIENTS

A

Ko

1.3908

1.3381

1.2888

1. 2433

12016

141639

1. 1304

11008

10752

1.0534

1.0356

140217

1.0117

L/D =

All)
B8(1)
C(1)
«34108
«34172
¢ 34044
©32696
«32757
«32635
«31101
«31159
«31043
©29340
«29394
«29285
«27415
027466
«27363
025322
©25369
¢25275
«23058
«23101
«23015
«20623
020662
«20585
«18023
«18056
«17989
«15269
«15298
e15241
¢12383
«12406
«12360
«09386
«09403
«09368
06304
«06316
006292

200000

A(2)
B(2)
c(2)
«25736
«25784
«25688
023229
023273
«23186
020722
«20761
«20683
«18219
«18253
«18185
«15734
«15763
«15704
«13290
«13314
«13265
«10919
«10940
«10899
«08664
«08680
« 08648
« 06570
« 06583
«06558
«04688
004697
« 04680
+«03069
«03075
«03063
«01757
«01760
«01753
+00791
«00792
«00789

A(3)
8(3)
C(3)
«21331
021562
«21482
e18179
«18396
«18328
¢15243
«15445
«15388
«12508
«12696
»12649
«09986
«10159
«10121
«07705
«07861
«07832
«05695
«05834
«05813
«03986
«04109
«04094
«02598
«02704
« 02694
«01536
«01625
«01619
«00787
«00858
«00855
«00318
«00371
«00370
«00076
«00112
«00112

Ala)
B(4a)
Cla)
«18393
«18427
«18358
«14906
«l4934
« 14878
11830
«11852
«11808
«09128
«09145
«09111
06793
+ 06806
«06781
« 04833
« 04842
«Q4u824
«03250
«03256
« 03244
«020136
«02040
«02033
«01165
«01167
+011563
«00590
«00591
+00589
«00252
«00252
« 00251
«00082
«00082
«00082
«00017
«00017
+«00017

A(S)
B8(5)
ci(s)
015467
«15496
+15438
«11954
«11977
«11932
«08997
« 09014
+0898)
« 06536
«06549
«06525
«04540
«04548
«04532
« 02979
«02985
002974
«01823
«01826
«01820
«01020
«01023
+01019
«00510
200511
«00509
«00218
«00219
«00218
«00075
«000786
«00075
«00019
«00019
«00019
«00002
+«00003
«00003

VALUES OF THE COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND

145825517

K'=z 31651034 M=

«0294372

Kt/K=

20000000
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n a
- 1 2)K
iE le 3 on (=5=X) (23)

Yo

or to avoid the elliptic functions, but at the expense of some
accuracy,

L § 2
x  =-35 - o ) -+ sin )X (24)
3=1
Loy %
Yo = iF 321 3 cos J¥ (25)

Numerical values relating x_ and y_ may be obtained by substi-
tuting arbitrary values of €he normalized potential function, ¥
This procedure 1s adegquate for a graphical presentation of the wave
shape Stokes (1880) suggests that, with the aid of Lagrange's
theorem (Whittaker and Watson, 1963), the two equations may be
reduced to one

It should be observed that the depth, D, differs from the depth

to stillwater, d, by the elevation of the stillwater level, y_ (see
Fig 1) The computataion of Ygr and therefore, d, may be accom-
plished by noting that the net  area bounded by the free surface and
the stillwater level vanishes Therefore
L/2
0 = £ (v, - v dax, (63)

By substituting the parametric profile expressions, Eqgs 24
and 25, the equation may be solved for the dimensionless stillwater
elevation

y' = ﬁ f b————k K (64)
s TR k

Sample profiles for deep water waves are presented by Monkmeyer
and Kutzbach

In order to study the characteristics of the highest possaible
wave 1t will be necessary to add one further restriction to those
imposed by Egs 59, 60 and 61 This restriction, which was first
suggested by Stokes, affects the Bernoulli equation which descrabes
the dynamic upper boundary condition In effect Stokes suggests that
for a fluid particle on the surface to reach the highest possaible
poaint above the surface, the wave crest, 1t must give up all of aits

kinetic energy Hence at this point 1t has no velocity and the
crest 1s a stagnation point The dynamic boundary condition, Eq 45,
therefore reduces to
1= R o= =
2y R at r 1, x 0 (65)

or substituting for yo' with the aid of Eq 23

n ak N
2 ) = = K (66)
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Since this equation adds no new unknowns to those already appear-
ing an Egs 59, 60 and 62 1ts ainclusion results in a set of (n + 3)
equations with (n + 3) unknowns, H' no longer being arbitrary but
now considered as an unknown

For the deep water case using the fifteenth order theory
Monkmeyer and Kutzbach show that

(H/L)max = 0 1442

This compares well with Michell's (1893) result of
(H/L)max = 0 142

and Havelock's (1919) conclusion that
(H/L)max = 0 1418

No precise computations of the highest wave have been made for
the finite waves considered herein However, Eq 57 has been used
to determine whether or not the wave data obtained i1in the prelaminary
computations includes waves that exceed the haghest This check
showed for example that for L/D = 6 0, the maximum wave lies between
H/L = 13 and 14, which 1s 1n good agreement with the breaking index
curve of Reid and Bretschneader (1953)

CONCLUSION

A higher order wave theory has been developed for the full
range of waves from Stokes waves to cnoidal waves to the solitary
wave and from small amplitude waves to finite amplitude waves and the
"highest wave' By means of a conformal transformation the problem
1s reduced to obtaining a solution to a non-linear set of equations
Solutions of these equations using a high speed digital machaine have
been obtained to fifth order for L/D values of 0 0, 2 0, 4 0 and 6 O,
and samples of this data are presented in tabular form

A consideration of some preliminary results as well as earlier
results of the deep water case, suggest that the theory 1s in good
agreement with existing theories Furthermore, 1t appears that thais
theory may provide a comprehensive practical means for wave analysis
of the full-range of symmetrical waves from deep-water to shallow-water
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APPENDIX - NOTATION

A see Eq 50
a coefficient of the jth harmonic - see Eg 7

am( ) amplitude of the elliptic integral of the first kind
BJ see Eq 51

bJ coefficient - see Eq 26

CJ see Eq 52

c wave speed

c’ the dimensionless wave sSpeed - see Eq 44

cJ coefficient - see Eq 27

cn( ) Jacobian ellaiptic functaon

D depth measured from the origan

DJ see Egs 48 and 49

d depth measured from stillwater

£(Z) see Eq 35

g acceleration due to gravity

gd( ) gudermannian

H wave height

H' dimensionless wave height - see Eq 62

1 V-1

J integer which identifies the jth harmonic - see Eq 8

K complete elliptic integral of the first kind (parameter - m)
K' complete elliptic integral of the first kind (K'(m) = K(1l-m))
Ko Bernoulla constant for free surface streamline

K, see Eq 44

k integer which i1dentifaies the kth harmonac

L wave length

2 integer which i1dentifies the 2th harmonic

m parameter of the complete elliptic aintegral of the first kand, K



=3

woQ
o o0

RB

)

@ XY NN M KK MK X O XNMNXE d4d 2880
o o0 o) n-w 0-0 - 0-~0 - ) [o] B a

> e

SYMMETRICAL GRAVITY WAVES 561

integer which 1dentifies the highest harmonic and the order
of the analysais
magnitude of the particle velocity at the free surface

modulus of f(;o) - see Eq 38, also = c/q°

radial coordinate 1n the g-plane
radius of AE 1n the g¢-plane

Jacobian elliptic function
x-component of the particle velocity
x-component of the particle velocity at the free surface

y-component of the particle velocity
y=component of the particle velocity at the free surface

complex potential = ¢ + 1y

horizontal coordinate in the z-plane
dimensionless horizontal coordinate

horizontal free surface coordinate in the z-plane

dimensionless horizontal free surface coordinate

vertical coordinate in the z-plane
dimensionless vertical coordinate
vertical free surface coordinate in the z-plane

dimensionless vertical free surface coordinate
st1ll water elevation 1n the z-plane
dimensionless still water elevation

x + 1y and refers to the physical plane
omplex variable at the free surface

a m

r exp (1) and refers to the auxiliary plane
exp (1X), or § at the free surface

nom

argument of f(f ) - see Eq 39, also local slope angle of
the free surface i1n the z-plane

= 3 1415927

potential function

tangential coordinate in the f-plane, also a normalized form
of the potential function

stream function






