CHAPTER 33

A HIGHER ORDER THEORY FOR SYMMETRICAL GRAVITY WAVES

by Peter L Monkmeyer
Professor of Cuvil Engineering
University of Wisconsin, Madison

ABSTRACT

A higher order theory 1 s presented for symmetrical, non-linear gravity waves As a consequence of the generality employed, the theory includes the full range of possible wave lengths, water depths and wave helghts that may be encountered, and brings them into one unified formulation Thus, the theory encompasses both linear and non-linear waves, $1 n c l u d i n g$ Airy waves, Stokes waves, cnoldal waves and the solitary wave

Based on the work of Nekrasov, a complex potential in the form of an infinite series is developed to describe the flow field The potential satisfies the bottom (horizontal) condition as well as the kinematic surface condition exactly Furthermore, the dynamic surface condition is satisfied by numerical calculation of the series coefficients which appear in the complex potential The calculation of these coefficients is accomplished by solving a set of non-linear algebralc equations, with the ald of a Newton-Raphson iteration procedure and matrix inversion

Coefficients of the complex potential have been obtained for a fifth order analysis and prelimınary results are presented in tabular form A brief discussion of the characteristics of the waves, uncluding wave speed, wave shape and the helght of the haghest possible wave follows

INTRODUCTION

Water waves and their characteristics have recelved a great deal of attention by mathematicians, geophysicists and engineers over the past century and a half In particular, numerous theories have been developed to describe the characteristics of symmetrical, periodic, progressive waves Among the more classical papers are those by stokes (1847,1880), Raylelgh (1876), Boussinesq (1872), Korteweg and Devries (1895), Levi-Civita (1925), and Struik (1926) Reviews of some of these works, as well as many more recent publıcations may be found in publicatıons by stoker (1957), wiegel (1964) Kınsman (1965), Ippen (1966) and Neumann and Pierson (1966) No attempt will be made here to review the many recent contributions However, of particular interest, especially for applications of the theory, are the works of Mash and Wıegel (l96l), Skjelbrela and Hendrickson (1962), Laitone (1963) and Dean (1965)

The wealth of literature on the subject of periodic water waves reflects to some extent the lack of a unified approach An effort to resolve this problem was made by Nekrasov (1951), followed
by Milne-Thomson (1969) and Thomas (1968) Nekrasov first formulated the wave problem in general terms, and concluded his analysis with a non-linear integral equation

The present study reexamines the work of Nekrasov and his successors and presents it in a manner which should be more useful in practice More specifically, a method is developed to compute coefflcients whlch may be used to calculate the various characterlstics of the waves

Since the theory presented herein $1 s$ general, it covers the entire range of possible wave lengths, water depths and wave helghts that may be encountered Thus it encompasses both linear and nonlinear waves including Airy waves, stokes waves, cnoldal waves and the solitary wave As a consequence it gives promise of simplifying the cholce of the appropriate theory - a problem which currently faces the practitioner

SOLUTION OF THE WAVE PROBLEM

DEVELOPMENT OF THE THEORY

The wave theory which will be developed herein applies to progressive, symmetrical, gravity waves moving over the free surface of an inviscid, incompressible liquid, in an oscillatory manner Furthermore the waves are two-dimensional and, except for the special case of infinite depth, they move over a horizontal bottom No restriction $1 s$ placed on liquid depth, D, wave length, L, or wave helght, H Hence the theory $1 s$ comprehensive and lncludes the full range of constant-profile waves, from stokes waves to cnoıdal waves and the solitary wave, as well as from small-amplitude waves to large-amplitude waves and the so-called "highest wave"

A train of oscillatory waves is moving from right to left over the surface of the liquid in question with wave speed, c by superlmposing a uniform flow from left to right of the same speed as that of the waves, the wave profiles are brought to rest the net effect is to provide a steady flow from left to right, bounded by the fixed profile formed at the free surface and the mpervious boundary at the bottom The steady flow-field will be seen to be considerably more amenable to study than would be the unsteady, progressive-wave field

In Fig 1 the steady wave is depicted and the more mportant constants are defined For convenience in the development the coordinates are described in complex terms and the physical plane is the z-plane, where z is the complex variable and x and y are the real and maginary axes respectively The y-axis is chosen to pass
 free surface is defined by $y_{0}=y_{(x)}\left(x_{0}\right)$ and the still water level is located at $y=y_{\text {, }}$ a distance which Yemains to be determined It should be noted Sthat the depth, d, usually defined as the distance from the still water level to the bottom will equal the sum of y_{s} and D

Fig 1 - The z-Plane

Since the flow is irrotational, an assumption which has been discussed by stokes (1847), the complex potential $1 s$ given by

$$
\begin{equation*}
w=\phi+1 \psi \tag{1}
\end{equation*}
$$

where ϕ is the potential function and ψ is the stream function Furthermore, the complex potential is analytic and so the cauchyRiemann equations, which may be related to the velocity components, u and v, are given by

$$
\begin{equation*}
u=\frac{\partial \phi}{\partial x}=\frac{\partial \psi}{\partial y} \quad \text { and } \quad v=\frac{\partial \phi}{\partial y}=-\frac{\partial \psi}{\partial x} \tag{2}
\end{equation*}
$$

Substatution of these expressions into the continuity and irrotational conditions results in Laplace's equation for each function,

$$
\begin{equation*}
\nabla^{2} \phi=0 \quad \nabla^{2} \psi=0 \tag{3}
\end{equation*}
$$

respectively
At the free surface the kinematic boundary condition requires that the surface be a streamline For convenience, this bounding streamline is defined as

$$
\begin{equation*}
\psi=0 \quad \text { at } y=y_{0} \tag{4}
\end{equation*}
$$

The dynamac boundary condition at the free surface $1 s$ expressed by the Bernoulli equation with pressure equal to zero,

$$
\begin{equation*}
q_{0}^{2}+2 g y_{0}=k_{0} \quad \text { at } y=y_{0} \tag{5}
\end{equation*}
$$

where q_{p} is the speed of a surface particle and K_{o} is a constant (twice the so-called "Bernoulli constant")

The lower boundary condıtion $1 s$ kinematic and requires that the horizontal bottom be a streamline In order to reflect the volume rate of flow between the two bounding streamines,

$$
\begin{equation*}
\psi=-c D \quad \text { at } y=-D \tag{6}
\end{equation*}
$$

where "cD' equals the two-dimensional flow rate observed in the $z-p l a n e$

Up to this point the relevant differential equations, together with the appropriate boundary conditions which describe the flow, have been presented The two fundamental problems which mmediately present themselves are that the location of the free surface is unknown and the dynamic boundary condition is non-linear In order to deal with the first problem a conformal transformation will be employed The purpose of this transformation is to redefine the problem in an auxiliary plane, the ζ-plane, where the location of the free surface ls known

The particular conformal transformation to be used, is an outgrowth of the work of Nekrasov (l95l), as well as a subsequent
analysis by Milne-Thomson (1969) and Thomas (1968) More specifically, it is an extension and generalization of the special deepwater case considered by Monkmeyer and Kutzbach (1965) The transformation is given as follows

$$
\begin{equation*}
z=\frac{\lambda L}{2 \pi}\left[\ln (\zeta)+\frac{\pi}{2 K} \sum_{\jmath=1}^{\infty} \frac{a}{\jmath} \exp \left[1 \operatorname{am}\left(-\frac{2 \jmath K}{\pi} \ln \zeta\right)\right]\right] \tag{7}
\end{equation*}
$$

where K is the complete elliptic integral of the first kind and the a 's are a set of real coefflcients which are as yet unknown Moreover, ζ, which is the complex variable describing the coordinates of the ζ-plane is given in polar form by

$$
\begin{equation*}
\zeta=r \exp (1 \chi) \tag{8}
\end{equation*}
$$

where r is the radial coordinate and χ the angular coordinate of the ζ-plane as shown in fig 2 Finally, am() is the amplitude of the elliptic integral of the first kind

One may verify, by application of the mapping function, Eq 7, that the region bounded by ABCDE in the z-plane is a mapping of the equivalent region inside the unit circle in the ζ-plane, subject only to the proper evaluation of the constant coefficients, a In fact lt may be shown that the boundaries $A B$, DE and EA are mapped exactly from the $z-p l a n e$ to the ζ-plane, regardless of the values of the coefficients, a The boundaries AB and DE transform exactiy as a consequence of the periodicity of the transformation The exact transformation of the lower boundary DE follows from the characteristics of the elliptic function, am() The cholce of this particular conformal transformation was essentially dictated by the exact transformation of the bottom boundary As a by-product of the bottom transformation it is required that

$$
\begin{equation*}
\frac{K^{\prime}}{K}=\frac{4 D}{L} \tag{9}
\end{equation*}
$$

where $K^{\prime}(m)=K(l-m)$, and m ls the parameter of the complete elliptic integral of the first kind This is a convenient formula since it permits a consideration of the entire range of waves for all wave lengths and depths In particular it facilitates inclusion of the two limiting cases, $L \rightarrow \infty$ and $D+\infty$ since $K+\infty$ in the first lnstance and $K^{\prime} \rightarrow \infty$ in the second 9 may therefore be used to convert Eq 7 and many of the following equations, if the limiting case of the solitary wave is of interest or if cnoldal waves are to be expressed in terms of depth rather than wave length

The transformation can also be applied to the boundary conditions, Eqs 4, 5 and 6, to generate the equivalent conditions in the ζ-plane,

$$
\begin{equation*}
\psi=0 \quad \text { at } r=1 \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
q_{0}^{2}+2 g y_{o}=k_{0} \quad \text { at } r=1 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi=-c D \quad \text { at } \mathbf{r}=r_{C} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{c}=\exp \left(-\frac{2 \pi D}{L}\right) \tag{13}
\end{equation*}
$$

The validity of these representations of the boundary conditions is verified in fig 2 Moreover it should be noted that Eqs io and 12 are precisely the boundary conditions for a portion of a clockwise irrotational vortex in the ζ-plane, so that the complex potential for the flow in this plane may be written

$$
\begin{equation*}
\mathrm{w}=\frac{1 \mathrm{CL}}{2 \pi} \ln \zeta \tag{14}
\end{equation*}
$$

By separating real and maginary parts of this expression and rearranging terms,

$$
\begin{equation*}
x=-\frac{2 \pi \phi}{c L} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
r=\exp \left(\frac{2 \pi \psi}{C L}\right) \tag{16}
\end{equation*}
$$

It is therefore apparent that X is a normalized form of the potential function and r is the exponential of the normalized stream function

To this point the physical problem in the z-plane has been transformed to one in the ζ mplane and two of the boundary conditions, Eqs 10 and 12 , have been satisfied by the complex potential, Eq 14 It therefore remains to satisfy the dynamic surface condition, Eq ll, and this will be done by a proper choice of the coefficients in the conformal transformation The remaining portion of this analysis is devoted to a method for calculating these coefficients so that the dynamic condition will be satisfied, approximately the degree of approximation will depend on the truncation of the infinite series which makes up the conformal transformation The greater the number of terms retained, the more nearly the dynamic condition will be satısfied

Before proceeding to a calculation of the complex velocity, which will be needed in an examination of the Bernoulli condition on the free surface, $1 t$ is necessary to substitute the complex potential In the ζ-plane, Eq 14 , into the conformal transformation, $E q$, in order to obtain the complex potential for the z-plane The result may be regarded as the general wave equation,

$$
\begin{equation*}
z=\frac{w}{c}+\frac{1 L}{4 K} \sum_{J=1}^{\infty} \frac{a}{J} \exp \left[1 \operatorname{am}\left(-\frac{4] K}{c L} w\right)\right] \tag{17}
\end{equation*}
$$

For the limiting case of infinite depth, K approaches $\pi / 2$ and am() approaches its argument Therefore Eq 17 reduces to the deep-water equation,

$$
\begin{equation*}
z=\frac{w}{c}+\frac{1 L}{2 \pi} \sum_{J=1}^{\infty} \frac{a}{J} \exp \left[-1 \frac{2\rfloor \pi}{c L} w\right] \tag{18}
\end{equation*}
$$

On the other hand for the limiting case of infinite wave length, it should be noted that, after Eq 9 is introduced, K^{\prime} approaches $\pi / 2$ and am() approaches gd(), the gudermannian Therefore, Eq 17 reduces to the solitary wave equation,

$$
\begin{equation*}
z=\frac{w}{c}+\frac{12 D}{\pi} \sum_{j=1}^{\infty} \frac{a}{J} \exp \left[1 \operatorname{gd}\left(-\frac{j \pi}{2 c D} w\right)\right] \tag{19}
\end{equation*}
$$

Now along the free surface, $\psi=0$, where we wish to apply the dynamic boundary condition, Eq 17 becomes

$$
\begin{equation*}
z_{0}=\frac{\phi}{c}+\frac{2 L}{4 K} \sum_{J=1}^{\infty} \frac{a_{J}}{J} \exp \left[1 \text { am }\left(-\frac{4 J K}{c I} \phi\right)\right] \tag{20}
\end{equation*}
$$

or in terms of the dimensionless potental function, X,

$$
\begin{equation*}
z_{0}=-\frac{L X}{2 \pi}+\frac{1 L}{4 K} \sum_{j=1}^{\infty} \frac{a}{J} \exp \left[1 \operatorname{am}\left(\frac{2 J K}{\pi} x\right)\right] \tag{21}
\end{equation*}
$$

Taking real and 1 maginary parts of Eq 21 one obtains

$$
\begin{equation*}
x_{0}=-\frac{L X}{2 \pi}-\frac{L}{4 K} \sum_{j=1}^{\infty} \frac{a}{J} \operatorname{sn}\left(\frac{2 J K}{\pi} x\right) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{o}=\frac{L}{4 K} \sum_{J=1}^{\infty} \frac{a_{J}}{J} \operatorname{cn}\left(\frac{2 J K}{\pi} x\right) \tag{23}
\end{equation*}
$$

where sn() and on() are Jacobian elliptic functions These two equations are parametrically related through x to define the shape of the free surface In order to make them somewhat more tractable, it is convenıent to replace the elliptic functions by their expansions in sine and cosine serıes respectively (see Malne-Thomson (1950)) Eqs 22 and 23 therefore become

$$
\begin{equation*}
x_{o}=-\frac{L}{4 K}\left(\frac{2 K x}{\pi}+\sum_{j=1}^{\infty} \frac{b}{j} \sin J X\right) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{o}=\frac{L}{4 K} \sum_{J=1}^{\infty} \frac{c_{J}}{J} \cos J X \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{J}=\frac{2 \pi}{m^{1 / 2}} \sum_{k=1}^{j} \frac{J_{k} a_{k} q^{J / 2 k}}{\left(1-q^{J / k}\right)} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{J}=\frac{2 \pi}{m^{1 / 2}} \sum_{k=1}^{J} \frac{\frac{J}{k} a_{k} q^{J / 2 k}}{\left(1+q^{J / k}\right)} \tag{27}
\end{equation*}
$$

where

$$
\mathrm{k}=\mathrm{J}, \frac{7}{3}, \frac{\mathrm{~J}}{5} \quad 1
$$

and only integer values of k are included in the summation, and where

$$
\begin{equation*}
q=\exp \left(-\pi \frac{K^{\prime}}{K}\right) \tag{28}
\end{equation*}
$$

For the limiting case of deep water waves

$$
\begin{equation*}
b_{J}=c_{J}=a_{J} \tag{29}
\end{equation*}
$$

whereas for the limiting case of the solitary wave

$$
\begin{equation*}
b_{J}=\frac{4}{\pi} \sum_{k=1}^{J} a_{k} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{Kc}_{\mathrm{J}}=\pi \sum_{\mathrm{k}=1}^{\mathrm{J}} \frac{\mathrm{~J}}{\mathrm{k}} \mathrm{a}_{\mathrm{k}} \tag{31}
\end{equation*}
$$

with k defined as for Eqs 26 and 27
In view of Eqs 24 and 25 it is now possible to reexpress the comples variable, z_{o}, that was given in Eq 21 , as follows

$$
\begin{equation*}
z_{0}=\frac{1 L}{2 \pi}\left[\ln \zeta_{0}+\frac{\pi}{2 K} \sum_{j=1}^{\infty}\left[\frac{c_{j}+b}{2} \zeta_{0} J+\frac{c_{j}^{-b} J}{2} \zeta_{0}^{-j}\right]\right] \tag{32}
\end{equation*}
$$

where, on the free surface, Eq 8 reduces to

$$
\begin{equation*}
\zeta_{0}=\exp (1 \chi) \tag{33}
\end{equation*}
$$

By differentiating Eq 32, the complex operator

$$
\begin{equation*}
\frac{d z_{o}}{d \zeta_{o}}=\frac{1 I_{1}}{2 \pi} \frac{f\left(\zeta_{o}\right)}{\zeta_{o}} \tag{34}
\end{equation*}
$$

is obtained, where

$$
\begin{align*}
f\left(\zeta_{0}\right) & =\frac{\pi}{2 k} \sum_{J=0}^{\infty}\left(\frac{\left.c_{j}^{+b}\right]}{2} \zeta_{0}^{J}-\frac{\left.c^{J^{-b}}\right]}{2} \zeta_{0}^{-\jmath}\right) \tag{35}\\
& =R_{0} \exp \left(1 \theta_{0}\right), \operatorname{say} \tag{36}
\end{align*}
$$

and where

$$
\begin{equation*}
b_{0}=c_{0}=\frac{2 K}{\pi} \tag{37}
\end{equation*}
$$

Moreover, the modulus, R_{0}, of the function $f\left(\zeta_{0}\right)$ is given by

$$
\begin{equation*}
R_{0}^{2}=\left[\frac{\pi}{2 K} \sum_{J=0}^{\infty} b_{J} \cos J X\right]^{2}+\left[\frac{\pi}{2 K} \sum_{J=0}^{\infty} c_{J} \sin J X\right]^{2} \tag{38}
\end{equation*}
$$

and the argument, θ_{0}, of $f\left(\zeta_{0}\right)$ is given by

$$
\begin{equation*}
\theta_{0}=\cos ^{-1}\left[\frac{\frac{\pi}{2 k} \sum_{j=0}^{\infty} b_{\jmath} \cos J x}{R_{0}}\right] \tag{39}
\end{equation*}
$$

The above relations may now be employed, together with Eq 14, to derive an expression for the complex velocity, as follows

$$
\begin{equation*}
u_{0}-1 v_{0}=\frac{d w_{0}}{d z_{0}}=\frac{d w_{0}}{d \zeta_{0}} \frac{d \zeta_{0}}{d z_{0}}=\frac{c}{f\left(\zeta \zeta_{0}\right)}=\frac{c}{R_{0}} \exp \left(-1 \theta_{0}\right) \tag{40}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
u_{0}=\frac{c}{R_{0}} \cos \theta_{0} \quad \text { and } \quad v_{0}=\frac{c}{R_{0}} \sin \theta_{0} \tag{41}
\end{equation*}
$$

and furthermore

$$
\begin{equation*}
q_{0}^{2}=\frac{c^{2}}{R_{0}^{2}} \tag{42}
\end{equation*}
$$

The dynamic free surface condition, Eq ll, may now be written

$$
\begin{equation*}
\frac{\mathrm{c}^{2}}{\mathrm{R}_{0}^{2}}+2 g y_{0}=k_{0} \tag{43}
\end{equation*}
$$

an expression which was apparently first derived by Nekrasov (1951) who proceeded to derive a non-linear integral equation In addition, with the aid of the following dimensionless terms

$$
\begin{array}{ll}
x_{0}^{\prime} \equiv \frac{4 K}{L} x_{0}=\frac{K^{\prime}}{D} x_{0} & y_{0}^{\prime} \equiv \frac{4 K}{L} y_{0}=\frac{K^{\prime}}{D} y_{0} \\
c^{\prime} \equiv \frac{c}{\sqrt{\frac{g L}{4 K}}}=\frac{c}{\sqrt{\frac{g D}{K^{\prime}}}} & \hat{K}_{0} \equiv \frac{K_{0}}{\frac{g L}{4 K}}=\frac{K_{0}}{\frac{g D}{K^{\prime}}} \tag{44}
\end{array}
$$

Eq 43 becomes

$$
\begin{equation*}
c^{\prime 2}+2 y_{0}^{\prime} R_{o}^{2}=\hat{k}_{0} R_{o}^{2} \tag{45}
\end{equation*}
$$

where

$$
\begin{equation*}
y_{o}^{\prime}=\sum_{j=1}^{\infty} \frac{c}{j} \cos J x \tag{46}
\end{equation*}
$$

and, wath the ald of trigonometric identities,

$$
\begin{equation*}
R_{0}^{2}=\left(\frac{\pi}{2 K}\right)^{2}\left[D_{0}+2 \sum_{j=1}^{\infty} D_{J} \cos J x\right] \tag{47}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{o}=b_{o}^{2}+\sum_{k=1}^{\infty} \frac{b_{k}^{2}+c_{k}^{2}}{2} \tag{48}
\end{equation*}
$$

$$
\begin{array}{ll}
D_{J}=A_{J}+B_{J}+C_{J} & J=1,2,3,4 \\
A_{J}=\sum_{k=j}^{\infty} \frac{b_{k-\jmath} b_{k}+c_{k-J} c_{k}}{2} J=1,2,3,4 \\
B_{J}=\sum_{k=0}^{(J-1) / 2 b_{k} b_{j-k}-c_{k} c_{j-k}} \tag{51}\\
2 & J=1,2,3,4
\end{array}
$$

and

$$
\begin{align*}
C_{J} & =\frac{1}{4}\left(b_{J / 2}^{2}-c_{J / 2}^{2}\right) & & \text { for } J=2,4,6,8 \tag{52}\\
& =0 & & \text { for } J=1,3,5,7
\end{align*}
$$

By substrtuting Eqs 46 and 47 into Eq 45 , the problem of the general symmetrical wave of finite amplitude is reduced to one of finding the solution to the equation,

$$
\begin{equation*}
c^{\prime}+2\left[\left(\sum_{j=1}^{\infty} \frac{c_{j}}{j} \cos J X\right)-\frac{\hat{K}_{0}}{2}\right]\left[\left(\frac{\pi}{2 K}\right)^{2}\left(D_{0}+2 \sum_{j=1}^{\infty}\left(A_{J}+B_{J}+C_{j}\right) \cos j X\right)\right]=0 \tag{53}
\end{equation*}
$$

It is of interest to note that to this point no approximations have been made Therefore Eq 53 is an exact representation of the problem

In order to solve Eq 53 for a finite number of coefficients, it will be necessary to truncate the infinite trigonometric series which appear in the equation Therefore Eqs $46,47,48$ and 50 become

$$
\begin{align*}
& y_{0}^{\prime} \simeq \sum_{j=1}^{n} \frac{c_{j}}{j} \cos j x \tag{54}\\
& R_{0}^{2} \simeq\left(\frac{\pi}{2 k}\right)^{2}\left[D_{0}+2 \sum_{j=1}^{n} D_{j} \cos j x\right] \tag{55}\\
& D_{0} \simeq b_{0}^{2}+\sum_{k=1}^{n} \frac{b_{k}^{2}+c_{k}^{2}}{2} \tag{56}\\
& A_{J} \simeq \sum_{k=j}^{n} \frac{b_{k-j} b_{k}+c_{k-j} c_{k}}{2} \quad J=1,2,3,4 \quad n \tag{57}
\end{align*}
$$

Furthermore, by combining and expanding these equations, one obtains

$$
\begin{equation*}
y_{o}{ }^{\prime} R_{0}^{2} \simeq\left(\frac{\pi}{2 K}\right)^{2}\left[\sum_{k=1}^{n} \frac{c_{k}}{k} D_{k}+\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{c_{k}}{k}\left(D_{k-j}+D_{k+j}\right) \cos j x\right] \tag{58}
\end{equation*}
$$

where absolute value signs are omitted on the subscripts of $\mathrm{D}_{\mathrm{k}-\mathrm{J}}$, and furthermore, $D_{\ell}=0$ if $|\ell|>n$ Since harmonics higher than the nth have been omitted, Eq 58 is not exact

The expressions for $R^{2}{ }^{2}$, Eq 55 , and $Y^{\prime} R^{2}{ }^{2}$, Eq 58 , may now be substituted into Eq 45° By equating the coefficients of the harmonics, one obtains
where absolute value signs are omitted on the subscripts of D_{k-j}, and furthermore D_{ℓ} vanishes if $|\ell|>n$

Since the unknown terms in Eqs 59 and 60 are all functions of the helght of the wave, $1 t$ is appropriate to add an equation for wave helght The wave helght is seen to be equal to the sum of the displacements of the crest and trough from the x-axis Therefore, using Eqs 23 and 9,

$$
\begin{equation*}
H=\left(y_{0}\right)_{X=0}+\left(-y_{0}\right)_{X=\pi}=\frac{L}{2 K} \sum_{J=1}^{n} \frac{a_{J}}{J}=\frac{2 D}{K^{\prime}} \sum_{j=1}^{n} \frac{a_{J}}{J} \tag{61}
\end{equation*}
$$

$$
J=1,3,5,7
$$

and 1 n dimensionless form,

$$
\begin{equation*}
H^{\prime}=2 \sum_{J=1}^{n} \frac{a}{\jmath} \quad J=1,3,5,7 \tag{62}
\end{equation*}
$$

Eqs 59,60 and 62 are therefore seen to constitute a set of ($n+2$) equations in ($n+2$) unknowns ($c^{\prime}, \hat{K}_{0}, a_{1}, a_{2}, a_{3} \quad a_{n}$) for any desired value of the dimensionless wave height, ${ }^{2}{ }^{\prime}{ }^{3}$

COMPUTER SOLUTION

In setting up the equations for computer solution, the coefficient, \hat{K}, is eliminated between the first of Eqs 60 (J-l) and each succeeding equation ($j=2,3 \quad n)$, thereby reducing Eqs 60 to ($n-1$) equations in ($n-1$) unknowns (a_{1}, a_{2}, a_{n-1}) for a fixed value of a After the unknown coefficients are assumed, the simultaneous solution of these (n-1) non-linear equations is accomplished with the ald of a Newton-Raphson iteration By this technique the problem is reduced to one of obtaining the solution of a set of (n-l) linear equations at each iteration The matrix is then inverted using triangular decomposition and a solution of the set of equations is obtarned for corrections on the assumed values of a, a, a_{n-2} and a_{n-1} The entire procedure ls repeated until the correc-
 been computed, Eqs 61, 60 (first harmonic) and 59 are solved to yleld H^{\prime}, \hat{K} and c^{\prime} respectuvely The entrre procedure $1 s$ repeated iteratively ${ }^{\circ}$ until the coefficients \hat{K}_{0} and c are evaluated for uni-form-interval values of H / L, which are appropriate for tabular presentation

$$
\begin{align*}
& c^{\prime}{ }^{2}+2\left(\frac{\pi}{2 K}\right)^{2} \sum_{k=1}^{n} \frac{C_{k}}{k} D_{k}=\hat{K}_{o}\left(\frac{\pi}{2 K}\right)^{2} D_{o}(0 t h \text { harmonic) } \tag{59}\\
& \sum_{k=1}^{n} \frac{c_{k}}{k}\left(D_{k-j}+D_{k+\jmath}\right)=\hat{k}_{0} D_{j}(\jmath \operatorname{th~harmonic,j}=1,2,3 n) \tag{60}
\end{align*}
$$

Computations were made on the University of Wisconsin UNIVAC 1108 computer A fifth order solution was undertaken and some
 the dimensionless wave height, $H / L, ~ i s ~ c a l c u l a t e d ~ c o r r e c t ~ t o ~$ ± 000001, while all other terms appearing in the tables were computed correct to at least the last place shown It should be noted that this precision $i s$ significant for the lower values of wave helght where the convergence of the a series is rapid and a fifth order solution is sufficient As the wave height increases, however, the truncation of the trigonometric series which replace the elliptic functions as well as the omission of higher harmonics in the development of ($y_{0}^{\prime} R_{0}^{2}$), result in a less accurate satisfaction Of Eq 53 As a consequence the dynamic boundary condition, Eq 5 , is only satisfied approximately By developing higher order solutıons, greater than the fifth order solution considered here, the accuracy can be improved

DISCUSSION

No specific attempt will be made at this point to compare the new theory with those which exist The primary objective at the present 1 s to develop the method of solution and to prepare sample tables of the coefficients

Nevertheless it is already possible to indicate some agrement with the existing theories In an earlier paper, Monkmeyer and Kutzbach (1965) compare the theory with that of stokes (1880) to reveal that the basic equation for deep water, Eq 18, is common to both theories stokes was, of course, limited in his ability to carry out computations to higher orders, and so restricted his attention to the well-known fifth-order theory the success of this theory in deep water has been the prime stimulus for using a fifth order approach in the present work Following stokes, Wilton (1914) developed a twelfth order solution for deep water waves and Monkmeyer and Kutzbach (1965) developed a fifteenth order solution These higher order computations resulted in little deviation from the fifth and third order theories, especially in the prediction of wave speed only in wave shape did the fifteenth order theory diverge from the lower order theories, as might be expected

Wave speed may be computed with the ald of Eq 59 However, since this equation demands considerable computation, a more convenient approach is to print out the wave speed together with the wave coefficients as shown in Tables 1 and 2 The wave speeds obtained in Table 1 show excellent agreement with those of stokes' third and fifth order theories for deep water waves (see Monkmeyer and Kutzbach, 1965)

In order to describe the wave shape or profile of a wave, one may choose to use the parametric set of equations,

$$
\begin{equation*}
x_{0}=-\frac{L \chi}{2 \pi}-\frac{L}{4 K} \sum_{J=1}^{n} \frac{a}{J} \operatorname{sn}\left(\frac{2 \jmath K}{\pi} \chi\right) \tag{22}
\end{equation*}
$$

Table 1
FIFTH ORDER WAVE COEFFICIENTS

				L/D =	. 00000			
H/L	H/D	C'	\hat{K}_{0}	$A(1)$ B(1)	$A(2)$ $B(2)$	$A(3)$ $B(3)$	$A(4)$	A(5)
H/L				C(1)	C(2)	C(3)	$C(4)$	$\begin{gathered} 8(5) \\ c(5) \end{gathered}$
-140	. 000	1.1063	1.3825	. 33811	. 25489	. 21308	. 18215	. 15343
				. 33811	- 25489	- 21308	. 18215	. 15343
				. 33811	. 25489	.21308	-18215	. 15343
. 130	. 000	1.0900	1.3304	. 32414	. 23004	. 18174	. 14753	. 11848
				- 32414	- 23004	-18174	-14753	-11848
				. 32414	. 23004	. 18174	. 14753	-11848
. 120	. 000	1.0756	1.2816	. 30833	. 20519	-15253	. 11702	. 08910
				. 30833	- 20519	-15253	-11702	. 08910
				. 30833	. 20519	-15253	-11702	. 08910
. 110	. 000	1.0628	1.2366	. 29086	. 18038	. 12534	. 09024	. 06467
				. 29086	. 18038	- 12534	. 09024	. 06467
				. 29086	. 18038	. 12534	. 09024	. 06467
. 100	. 000	1.0513	1.1954	. 27177	. 15575	-10026	. 06712	. 04487
				. 27177	- 15575	. 10026	.06712	. 04487
				. 27177	. 15575	. 10026	.06712	. 04487
. 090	. 000	1.0412	1.1582	- 25101	. 13154	. 07756	.04772	. 02943
				. 25101	-13154	. 07756	. 04772	.02943
				. 25101	. 13154	.07756	. 04772	. 02943
. 080	. 000	1.0323	1.1250	. 22855	. 10806	. 05755	. 03207	. 01799
				- 22855	- 10806	. 05755	-03207	-01799
				. 22855	. 10806	. 05755	-03207	. 01799
. 070	. 000	1.0246	1.0958	. 20440	. 08573	. 04051	. 02009	. 01006
				- 20440	. 08573	.04051	. 02009	.01006
				. 20440	. 08573	. 04051	- 02009	. 01006
.060	. 000	1.0180	1.0705	. 17861	. 06500	. 02665	.01149	. 00502
				. 17861	. 065500	. 02665	. 01149	. 00502
				. 17861	. 06500	. 02665	-01149	. 00502
. 050	. 000	1.0124	1.0491	- 15131	. 04638	. 01601	. 00582	. 00215
				. 15131	. 04638	. 01601	. 00582	. 00215
				. 15131	. 04638	. 01601	.00582	.00215
. 040	. 000	1.0079	1.0315	. 12270	. 03035	. 00846	. 00248	. 00074
				-12270	. 03035	. 00846	. 00248	. 00074
				- 12270	. 03035	. 00846	.00248	. 00074
. 030	. 000	1.0045	1.0177	. 09299	. 01737	. 00365	. 00081	. 00018
				. 09299	. 01737	. 00365	. 00081	. 00018
				.09299	. 01737	. 00365	. 000081	.00018
. 020	. 000	1.0020	1.0079	. 06246	. 00182	. 00110	. 00016	. 00002
				. 06246	. 00782	.00110	. 00016	. 00002
				. 06246	.00782	. 00110	. 00016	.00002
.010	. 000	1.0005	1.0020	. 03137	. 00197	. 00014	. 00001	. 00000
				. 03137	. 00197	. 00014	-00001	. 00000
				.03137	. 00197	. 00014	. 00001	. 00000

values of the complete elliptic integral of the first kind

```
K=1.5707963 K'=INF. M= .0000000 K'/K=INF.
```

Table 2
FIFTH ORDER WAVE COEFFICIENTS

L/D = 2.00000								
H/L	H/D	C'	\hat{K}_{0}	A(1)	A (2)	A (3)	A(4)	A (5)
				B(1)	B(2)	B(3)	$8(4)$	B(5)
				C(1)	C(2)	C(3)	C(4)	C(5)
- 140	. 280	1.1090	1.3908	. 34108	. 25736	. 21331	. 18393	. 15467
				. 34172	. 25784	. 21562	. 18427	. 15496
				. 34044	. 25688	. 21482	. 18358	. 15438
. 130	. 260	1.0926	1.3381	. 32696	. 23229	. 18179	. 14906	. 11954
				. 32757	. 23273	. 18396	. 14934	. 11977
				. 32635	. 23186	. 18328	. 14878	. 11932
- 120	-240	1.0781	1.2888	. 31101	. 20722	- 15243	. 111830	.08997
				- 31159	. 20761	. 15445	. 11852	. 09014
				. 31043	. 20683	. 15388	. 11808	. 08981
. 110	. 220	1.0652	1.2433	. 29340	. 18219	- 12508	. 09128	. 06536
				. 29394	-18253	- 12696	-09145	.06549
				-29285	. 18185	. 12649	. 09111	. 06525
. 100	. 200	1.0537	1.2016	$.27415$.15734 .15763	$.09986$	$.06793$	$.04540$ $.04548$
				. 27363	. 15704	. 10121	.06781	. 04532
. 090	. 180	1.0434	1.1639	. 25322	. 13290	. 07705	. 04833	. 02979
				- 25369	-13314	. 07861	. 04842	. 02985
				. 25275	-13265	. 07832	. 04824	. 02974
. 080	. 160	1.0344	1.1304	. 23058	. 10919	. 05695	. 03250	.01823
				. 23101	- 10940	. 05834	. 03256	. 01826
				. 23015	. 10899	.05813	. 03244	.01820
. 070	. 140	1.0266	1.1008	. 20623	. 08664	. 03986	. 02036	. 01020
				- 20662	. 08680	-04109	-02040	. 01023
				. 20585	.08648	. 04094	. 02033	.01019
. 060	. 120	1.0200	1.0752	. 18023	. 06570	. 02598	. 01165	. 00510
				. 18056	. 06583	. 02704	. 01167	. 00511
				-17989	. 06558	. 02694	. 01163	. 00509
. 050	. 100	1.0144	1.0534	. 15269	. 04688	. 01536	. 00590	. 00218
				. 15298	. 04697	. 01625	. 00591	. 00219
				. 15241	. 04680	. 01619	.00589	. 00218
. 040	. 080	1.0099	1.0356	. 12383	. 03069	. 00787	. 00252	. 00075
				. 12406	. 03075	. 00858	. 00252	. 00076
				. 12360	. 03063	. 00855	.00251	. 00075
. 030	. 060	1.0064	1.0217	. 09386	. 01757	. 00318	. 00082	. 00019
				. 09403	. 01760	.00371	-00082	.00019
				.09368	. 01753	. 00370	.00082	. 00019
. 020	. 040	1.0039	1.0117	. 06304	. 00791	. 00076	. 00017	. 00002
				. 06316	. 00792	.00112	. 00017	. 00003
				. 06292	. 00789	. 00112	.00017	.00003

values of the complete elliptic integral of the first kind

```
K=1.5825517 K'= 3.1651034 M= .0294372 K'/K= 2.0000000
```

$$
\begin{equation*}
y_{o}=\frac{I}{4 K} \sum_{J=1}^{n} \frac{a}{J} \operatorname{cn}\left(\frac{2 J K}{\pi} x\right) \tag{23}
\end{equation*}
$$

or to avoid the elliptic functions, but at the expense of some accuracy,

$$
\begin{align*}
& x_{0}=-\frac{L X}{2 \pi}-\frac{L}{4 K} \sum_{j=1}^{n} \frac{b}{J} \sin J x \tag{24}\\
& y_{0}=\frac{L}{4 K} \sum_{j=1}^{n} \frac{c}{J} \cos J x \tag{25}
\end{align*}
$$

Numerical values relating x_{0} and y_{o} may be obtained by substituting arbitrary values of Che normalized potential function, X This procedure $1 s$ adequate for a graphical presentation of the wave shape stokes (l880) suggests that, with the ald of Lagrange's theorem (Whittaker and Watson, l963), the two equations may be reduced to one

It should be observed that the depth, D, differs from the depth to stillwater, $d, b y$ the elevation of the stillwater level, y_{s} (see Fig l) The computation of Y_{s}, and therefore, d, may be accomplished by noting that the net area bounded by the free surface and the stillwater level vanishes Therefore

$$
\begin{equation*}
0=\int_{0}^{L / 2}\left(y_{0}-y_{s}\right) d x_{0} \tag{63}
\end{equation*}
$$

By substituting the parametric profile expressions, Eqs 24 and 25 , the equation may be solved for the dimensionless stillwater elevation

$$
\begin{equation*}
Y_{s}^{\prime}=\frac{\pi^{2}}{4 K} \sum_{k=1}^{n} \frac{b_{k} c_{k}}{k} \tag{64}
\end{equation*}
$$

Sample profiles for deep water waves are presented by Monkmeyer and Kutzbach

In order to study the characteristics of the highest possible wave lt will be necessary to add one further restriction to those lmposed by Eqs 59, 60 and 61 This restriction, which was first suggested by Stokes, affects the Bernoulli equation which describes the dynamic upper boundary condition In effect stokes suggests that for a fluid particle on the surface to reach the highest possible point above the surface, the wave crest, it must give up all of its kinetic energy Hence at this point it has no velocity and the crest is a stagnation point The dynamic boundary condition, Eq 45, therefore reduces to

$$
\begin{equation*}
2 y_{0}^{\prime}=\hat{\mathrm{k}}_{0} \quad \text { at } r=1, x=0 \tag{65}
\end{equation*}
$$

or substituting for $y_{o}{ }^{\prime}$ with the ald of Eq 23

$$
\begin{equation*}
2 \sum_{k=1}^{n} \frac{a_{k}}{k}=\hat{k}_{o} \tag{66}
\end{equation*}
$$

Since this equation adds no new unknowns to those already appearing in Eqs 59,60 and 62 its inclusion results in a set of ($\mathrm{n}+3$) equations with ($n+3$) unknowns, H ' no longer being arbitrary but now considered as an unknown

For the deep water case using the fifteenth order theory Monkmeyer and Kutzbach show that

$$
(H / L)_{\max }=01442
$$

This compares well with Machell's (1893) result of
$(\mathrm{H} / \mathrm{L})_{\text {max }}=0142$
and Havelock's (1919) conclusion that
$(H / L)_{\text {max }}=01418$
No precise computations of the highest wave have been made for the finite waves considered herein However, Eq 57 has been used to determine whether or not the wave data obtained in the preliminary computations includes waves that exceed the highest This check showed for example that for $L / D=60$, the maximum wave lies between $H / L=13$ and 14 , which is in good agreement with the breaking index curve of Reid and Bretschnelder (1953)

CONCLUSION
A higher order wave theory has been developed for the full range of waves from Stokes waves to cnoldal waves to the solitary wave and from small amplıtude waves to finıte amplıtude waves and the "highest wave' By means of a conformal transformation the problem is reduced to obtaıning a solution to a non-linear set of equations Solutions of these equations using a high speed digital machine have been obtained to fifth order for L / D values of $00,20,40$ and 60 , and samples of this data are presented in tabular form

A consideration of some preliminary results as well as earlier results of the deep water case, suggest that the theory is in good agreement with existing theories Furthermore, it appears that this theory may provide a comprehensive practical means for wave analysis of the full-range of symmetrical waves from deep-water to shallow-water

ACKNOWLEDGEMENTS

The derivation of the basic theory was completed while the writex was a guest researcher at the River and Harbor Laboratory of the Technical University of Norway, Trondheim, Norway In particular the writer wishes to thank Director H Berge and Dr T Carstens for providing him with the opportunity to complete the theoretical analysis

Also, this research was supported in part by the National science Foundation and the State of Wisconsin under the University of Wisconsin Sea Grant Program

REFERENCES

Airy, G B (1845) Tides and waves Encyclop Metropol, London
Boussinesq, J (l872) Theorle des onde et de remous qui se propagent le long d'un canal rectangulalre horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J Math Pures Appliquees, ser 2 , vol 17 , pp 55-108
Dean, G (1965) stream function wave theory valıdity and applıcation Proceedings - A S C E Coastal Englneering Conference, Santa Barbara, 1965, pp 269-300
Havelock, T (1919) Perıodic irrotational waves of finite helght proc Roy Soc London, ser A, vol 95, pp 38-5l
Ippen, A (1966) Estuary and coastiıne hydrodynamics McGrawHill Book Co , New York
Kınsman, B (1965) Wınd waves Prentice-Hall, Inc , Englewood Cliffs, $N J$
Korteweg, $D J$ and G DeVries (l895) on the change of form of long waves advancing in a rectangular canal and on a new type of long statıonary waves Phıl Mag, 5th ser, vol 39, pp 422-443
Laitone, E (1963) Higher approximation to nonlinear water waves and the limiting heights of choidal, solitary and stokes' waves Technical Memorandum No l33, Beach Erosion Board, Corps of Engineers, $U S$ Army (now Coastal Engineering Research Center)
Levi-Civita, T (1925) Determination rigoureuse des ondes d'ampleur finle Math Annalen, vol 93, pp 264-314
Mash, F and R Wlegel (1961) Cnoldal waves-Tables of functions Council on Wave Research, The Engineering Foundation, University of Calıfornia, Rıchmond, Calıfornia
Mıchell, J H (1893) On the highest waves in water Phil Mag, ser 5, vol 36, pp 430-437
Milne-Thomson, L M (1969) Theoreticalhydrodynamics Fifth edition, Macmillan Co, New York, pp 428-435
Mılne-Thomson, L M (1950) Jacobian elliptic function tables Dover Publications, Inc, $p 13$
Monkmeyer, P and $J E$ Kutzbach (1965) A higher order theory for deep water waves Proceedings - AS CE Coastal Engineering Conference, Santa Barbara
Nekrasov, A (1951) The exact theory of steady waves on the surface of a heavy fluld Izdat Akad Nauk, SSSR, Moscow, Mathematical Reviews 15 (1965), 654 (translated by Math Res Ctr U S Army, Univ of Wls)
Neumann, G and W Principles of Physical Oceanography Prentice-Hall, Inc, Englewood Cliffs, N J
Rayleigh, Lord, (1876) On waves Phil Mag, ser 5, vol 1 , pp 257-279, also Scientific Papers, vol l, Cambridge University Press, 1899, pp 252-271
Reid, $R \quad 0$ and C Bretschnelder (1953) Surface waves and offshore structures, Texas $A M$ Research Foundation, Technical Report, October
Skjelbreia, L and J A Hendrıckson (1962) Fifth order gravity wave theory with table of functions National Engineering Scıence Co, Pasadena, Calıf
Stoker, J J (1957) Water waves Interscience Publishers, Inc , New York

```
Stokes, G G (1847) On the theory of osclllatory waves Trans
    Camb Phil Soc, vol 8, p 44l, also Mathematical and Physical
    Papers, vol l, Cambrldge Unlversity Press, l880, pp 197-229
Stokes, G G (l880) Supplement to a paper on the theory of
    oscillatory waves Mathematical and physical papers, vol l,
    Cambridge Unlversity Press, pp 3l4-326
strulk, D J (1926) Determination rigoureuse des ondes irrotation-
    nelles periodiques dans un canal a profondeur finle Mathematische
    Annalen, vol 95, pp 595-634
Thomas,J W (l968) Irrotational gravity waves of finite height
    a numerical study Mathematıka, vol l5, part 2, Dec , pp l39-
    148
Whittaker, E T and Watson, G N (l963) A course of modern
    analysis 4th edition, Cambridge University Press, Cambridge
Wiegel, R L (l964) Oceanographical englneering Prentice-Hall,
    Inc, Englewood Clıffs,N J
Wilton, J R (1914) On deep water waves Phil Mag, ser 6,
    vol 27,pp 385-394
                                    APPENDIX - NOTATION
AJ see Eq 50
a, coefficlent of the Jth harmonicc-see Eq}
am( ) amplitude of the elliptic integral of the first kind
BJ see Eq 5l
b coefficrent - see Eq 26
CJ see Eq 52
c wave speed 
c_ coefficient - see Eq }2
cn( ) Jacoblan ellıptlc function
D depth measured from the origin
        see Eqs 48 and 49
d depth measured from stıllwater
f(\zeta) see Eq 35
g acceleration due to gravity
gd( ) gudermannian
H wave helght
H' dimensionless wave helght - see Eq 62
    \sqrt{}{-1}
    integer which identifies the Jth harmonic - see Eq }
    complete elliptic integral of the first kind (parameter - m)
    complete ellıptlc integral of the first kind (K'(m)=K(l-m))
    Bernoulli constant for free surface streamline
    see Eq 44
    integer which identifies the kth harmonic
    wave length
    integer which ldentifies the lth harmonic
    parameter of the complete elliptic integral of the first kind, K
```

```
lnteger which ldentıfles the highest harmonic and the order
    of the analysis
magnitude of the particle velocity at the free surface
modulus of f(\mp@subsup{\zeta}{0}{\prime}) - see Eq 38, also = c/qo
radial coordinate in the }\zeta-plan
radius of AE In the \zeta-plane
Jacobian elliptic function
x-component of the particle velocity
x-component of the particle velocity at the free surface
y-component of the particle velocity
y-component of the particle velocity at the free surface
complex potential 三 
horizontal coordinate in the z-plane
dimensionless horizontal coordinate
horizontal free surface coordinate in the z-plane
dimensionless horizontal free surface coordinate
vertical coordinate in the z-plane
dimensionless vertical coordinate
vertical free surface coordinate in the z-plane
dimensionless vertical free surface coordinate
still water elevation in the z-plane
dimensionless still water elevation
\equivx + ly and refers to the physlcal plane
complex variable at the free surface
\equivrexp (ix) and refers to the auxiliary plane
= exp (IX), or \zeta at the free surface
argument of f(\zeta, - see Eq 39, also local slope angle of
    the free surface in the z-plane
# 3 1415927
potential function
tangential coordinate in the \zeta-plane, also a normalized form
    of the potential function
stream function
```

