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Abstract 

A higher-order, lifting-surface method is presented that uses elements with 

distributed vorticity.  As a consequence, the newly developed method is highly 

accurate in force prediction and numerically extremely robust, even when using a 

relaxed wake model.  The accurate prediction is accomplished using lower panel 

densities than other methods require.  The numerical robustness is achieved 

without compromising the irrotationality assumption, unlike other potential flow 

methods do that use discrete vortices with solid core models in the wake. 

The distributed vorticity element of the newly developed method consists 

of a vortex sheet that holds streamwise vorticity that varies linearly over the 

element span.  Transverse vorticity is concentrated in two vortex filaments that 

are located along the leading and trailing edge of the element.  Their spanwise 

circulation distributions vary in a parabolic fashion.  The circulation of the leading 

and trailing edge filaments are equal in magnitude, but opposite in orientations.  

By introducing additional singularities along the edges of the distributed vorticity 

elements, any extreme velocities associated with the edge singularities of the 

vortex sheets are removed.  The velocity induced by a distributed vorticity 

element is determined with an analytical expression.   

One or several spanwise systems of distributed vorticity elements are 

used to model the lifting surface and the wake that is relaxed using a time-

stepping method.  There, the shed vorticity forms an essentially continuous 

vortex sheet.  Thus, because of the elimination of point or line singularities, many 

of the numerical problems are avoided that are encountered with conventional 
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vortex-lattice and panel methods.  In addition, the continuous vorticity distribution 

across the lifting surface yields an accurate load prediction that is relatively 

insensitive to panel density changes on the lifting surface and in the wake.  

Consequently, significantly fewer singularity elements are needed to achieve 

accuracies comparable to other potential flow methods. 

The subsequent method is a relatively fast tool for determining the location 

of the free wake and its interaction with complex wing geometries, especially 

when accurate load predictions are required.  The potential of the method is 

demonstrated with two sample applications.  Especially in the case of the 

formation flight of two aircraft, the relaxed wake model yields performance results 

that differ to those that are obtained with a fixed wake model. 
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1 Introduction 

Lift produced by a wing requires a pressure difference between the upper 

and lower surfaces.  For a wing of finite span, this pressure difference results in a 

flow around the tips and, subsequently, in a general spanwise flow.  Figure 1 

shows the paths of air-particles moving above and below a wing having a 

positive angle of attack.  On the lower surface, particles are deflected towards 

the wingtip, whereas they are deflected away from it on the upper surface.  At the 

trailing edge the difference in direction of the upper and lower surface-flows 

causes a sheet of vorticity to be shed into the wake, which rolls-up further 

downstream.  Although the basic mechanisms have been known and described 

for almost a century,1,2,3 the prediction of the wake and its consequences are of 

considerable interest and still pose quite a challenge in the design and analysis 

of aircraft. 

  

Figure 1:  Streamlines over a wing at a positive angle of attack.4 
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1.1 Consequences from Lift and Wakes 

The energy required to roll-up the wake is directly related to the induced 

drag of a wing.  This effect is, to a large part, independent of viscosity, as can be 

seen in Fig. 2.  In this figure the flow field behind the wing of an agricultural 

airplane is made visible with smoke.  As the wake rolls up, the smoke particles 

move in concentric paths.  With the exception of the very center of the rolled-up 

tip vortex, very little mixing occurs.  This is a good indication that the shear forces 

are small and, consequently, that the flow is largely irrotational.  The irrotational 

nature of the wake roll-up allows the application of potential flow theory for wake 

and induced drag investigations. 

 

Figure 2:  Rolled-up wake behind a crop duster.5 

Induced drag accounts for about 80-percent of the total drag of transport 

aircraft during their critical climb out after take-off and for about 40-percent of 

their cruise drag.6  Although the takeoff and climb out phase represent only a 

minor fraction of the overall operation of a transport aircraft, the large amount of 
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induced drag during this flight portion becomes a driving factor for sizing the wing 

area and the engine thrust.  Thus, even a small reduction in induced drag can 

have major benefits for the overall performance of the aircraft. 

In the case of high-performance sailplanes, the induced-to-total-drag ratio 

ranges from about 80-percent during high-angle of attack thermaling to about 20-

percent during inter-thermal cruise.7  Therefore, an induced drag reduction has 

the potential of increasing the average cross-country speeds with sailplanes.  In 

recent decades, non-planar wing geometries, such as those with winglets and 

polyhedral planforms, have been relatively successful in enhancing fixed-wing 

aircraft performance by reducing their induced drags without excessively 

penalizing their parasite drags.   

Much effort has also been invested into the investigation of the interaction 

between a lifting surface and its subsequent wake, such as is found with 

helicopter blades and wind-turbines.  For example, when a helicopter blade 

passes through the wake of a proceeding one, highly unsteady aerodynamic 

effects result.  These blade-wake interactions contribute significantly to the noise 

and the high vibratory loads of helicopters.8  Structural vibrations mean 

significant wear to the engine, the transmission, and to the hub-blade assembly.   

Another area where good wake prediction is beneficial is air-traffic 

control.9  In order to avoid the upset of an aircraft from encountering the wake of 

a proceeding one, aircraft are currently separated rather conservatively by air-

traffic control.  In the worst case, loss of control and possible structural damage 

can be the result of such an encounter.  The interest is to create a more flexible 
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and efficient separation practice so that the air-traffic capacity can be used more 

efficiently.  A further interest is to tailor a lifting system in a way that its wake-

vortex hazards are mitigated, which is especially a concern with the traffic 

separation that must follow very large commercial airliners. 

1.2 A Brief Overview of Wing Analysis 

According to the Kutta-Joukowsky theorem, when superimposing a 

circulation and a transverse flow in an ideal potential flow, a lift force is 

generated.  For the case of wings with finite spans, Lanchester was the one to 

conceptually realize and describe that the bound circulation of such a wing 

cannot end at the wingtip, but results in a trailing vortex system downstream of 

the wing.3  Essentially, the trailing system is required to satisfy Helmholtz 

theorem at the wingtips.  This theorem states that a vortex cannot end or begin in 

the absence of rotationality.  Lanchester also recognized that the work 

associated with the lift of a wing with a finite span is related to the kinetic energy 

of the flow field. Thus, the induced drag is the kinetic energy added to the wake 

per distanced traveled by the wing. 

Prandtl expanded this model mathematically and his lifting-line theory 

became the first feasible tool for the analysis and design of wings of finite 

spans.1,2  In this method, the wing is represented with a single bound vortex.  As 

the strength of that bound vortex changes, vorticity is shed into the wake.  In 

lifting-line theory, this shed vorticity is aligned with the free-stream and extends to 

infinity, resulting in a drag-free wake.  Betz and Trefftz developed a method to 

determine the induced drag in the far field.10,11  In the so called “Trefftz plane”, 
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any influence of the bound circulation and the streamwise variation of shed 

vorticity have subsided.  Thus, the problem is reduced to a two-dimensional one 

in the transverse plane.  The subsequent induced drag depends solely on the 

shape and spanwise distribution of the circulation in the wake.  This leads to 

Munk’s “stagger theorem”, which states that lifting systems with an identical 

spanwise distributions produce the same induced drag independently of the 

streamwise location of their bound circulations.12  Thus, only the normal 

downwash of the trailing vortex system and the spanwise distribution of the 

bound circulation matter for drag purposes.  The minimum induced drag of a 

planar wing planform is achieved with a wake having a uniform downwash 

distribution along the spanwise direction.  Such a downwash field is produced by 

a wake with an elliptical spanwise circulation distribution.  

Weissinger was able to extend the lifting-line theory to lifting surfaces with 

the introduction of collocation or control points.13,14  By satisfying the flow-

tangency condition in these locations, the strength of the bound circulation can 

be determined.  Weissinger’s approach has ultimately led to vortex-lattice and 

panel methods that use discrete vortex filaments or higher order panels.15-17  

These methods use systems of potential vortices, sources, and sinks, whose 

strengths are determined by satisfying the kinematic condition in control points 

that are distributed across the lifting surface.  The linear nature of vortex-lattice 

and panel methods makes them ideal for the application for computers. 

The fixed, drag-free wake models used by the classical lifting-line 

approach and the subsequent methods do not necessarily capture nonlinear 
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effects that are related to the rollup of the wake.  Although the induced drag also 

depends on the shape of the wake, Prandtl reasoned that the wake rollup occurs 

relatively far downstream of wing, whereas the wake near the trailing edge, which 

has the greatest influence on the induced drag, is not deformed significantly.  

Thus for many applications, the drag-free wake model yields adequately accurate 

performance results.  Nevertheless, the shape of a truly force-free wake is not 

only of interest for the improved performance predictions of planar and non-

planar wing planforms, but also for other purposes, for example when several 

lifting surfaces have strong interactions. 

Kaden studied the roll-up behavior of a zero-thickness vortex sheet in the 

Trefftz plane analytically.18  Very soon after being released, the vortex sheet 

tends to roll-up to an almost axis-symmetric spiral with an infinite number of 

turns.  This behavior is due to the infinitely large velocity gradients at the tip of 

the vortex sheet that has an elliptical circulation distribution in the spanwise 

direction.  Although Krazny demonstrated that an infinitely thin free-wake sheet is 

numerically feasible with the help of smoothing parameters,19 the numerical 

solution appears to be more robust when introducing thickness to the wake 

vortex-sheet.20,21   

Modeling the relaxed wake with discrete vortex filaments can result in 

numerical issues due to the singular solution of the induced velocity in the center 

of a filament.  Although a viscous-core model can eliminate any numerical erratic 

behavior in the wake,22 it is in violation with the irrotationality assumption, one of 

the principles of the potential flow model.  Besides the apparent confusion 
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between the mathematical model that is used to match the flow field and the 

actual flow field, the core size becomes a driving factor for the solution.  Although 

the core size has only limited impact on the induced drag of a single wing, it may 

matter when the wake filaments of a wing pass in the proximity of the control 

points of another wing.  Furthermore, issues like vortex pairing, the joining of two 

filaments in the wake that become close during the relaxation process, remain 

unresolved.  Obviously, the solid core diameter would define the term “close” in 

that case. 

The singularity issues of discrete vortex filaments can be avoided with 

distributed vorticity in the wake.  Yeh developed a relaxed wake model that uses 

triangular elements with varying vorticity strengths.23  The numerical application, 

however, has similar limitations as the discrete vortex model, primarily due to the 

singularities along the edges of the vortex sheets.  Nagati uses smoothing 

functions instead of the singular velocities along the edges of the vortex-sheet 

elements of the relaxed wake model, which is essentially a “solid core” approach 

for distributed vorticity.24 

1.3 Purpose of this Study 

The modern tools for analyzing wakes have evolved quite impressively 

since the early days of induced drag estimation.  In particular, the application of 

modern computers has yielded great gains.  Despite the great advancements in 

computational speeds, better numerical tools are needed to improve wake-

prediction methods that can be incorporated efficiently into the design process of 
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lifting surfaces or into the investigation of unsteady wake phenomena, such as of 

blade-vortex interaction.   

The gains from a fast and precise analytical tool for dealing with the three-

dimensional flow-field of a finite wing are substantial, such as significantly lower 

fuel consumption of transport aircraft, higher average cross-country speeds of 

gliders, reductions in helicopter vibrations and noise development, as well as 

more efficient and safer usage of the airways. 

The development of a new theoretical prediction method of three-

dimensional lift and the subsequent wake are described in this study.  The 

method computes the lift distributions, wake shapes, and induced drag values 

with sufficient accuracy and speed such that it can be incorporated into the 

design process of fixed and rotary wings, including those having non-planar 

geometries.  The computational solutions are achieved relatively fast and 

accurately by employing a refined theoretical model in combination with a simple 

numerical approach.  Numerical accuracy and robustness of the method are 

achieved by using a relaxed, force free wake that is modeled as a vortex sheet.   

In Chapter 2 a general overview is given about existing potential flow 

models.   The newly developed method is introduced in Chapter 3.  This includes 

the basic equations as well as a description of the modeling of the lifting surface 

and the wake.  The validation of the method is discussed in Chapter 4, where the 

computational results are compared with the classical theory, other 

computational results, as well as experiments.  Sample applications are 

introduced in Chapter 5 that demonstrate the potential of the method, in 
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particular its numerical robustness.  A summary of the key results is listed in 

Chapter 6.  



10 

2 Wings and Wakes 

In the past, various methods have been developed to compute the three-

dimensional flow-field around wings and their corresponding wake shapes.  

These methods differ in their prediction accuracy and in their computational 

speed, which are often conflicting qualities.   

The following section describes how wings and their subsequent wakes 

can be modeled using a potential flow model.  These models depend on the 

assumption of the flow being irrotationality and inviscid.  The inviscid flow 

assumption is based on the observation that for a large part the flow field behind 

a wing displays very little viscous effects, as it is visible in Fig. 2.  In this figure, 

the smoke particles on their concentric paths mix very little due to the absence of 

viscosity.  The only exception is the relatively small core region of the tip vortex, 

where mixing occurs due to viscosity.  Another region where viscosity is present 

is in the boundary layer near a surface.  Outside of the viscous boundary layer, 

however, the flow can be considered to be irrotational. 

2.1 Potential Flow 

Potential-flow models generally provide relatively fast and accurate 

results, as long as the influence of any viscous effects, including flow separation, 

remains limited.  These irrotational methods employ combinations of singularity 

elements, such as potential vortices, doublets, and sources, to model the desired 

flow field.  Singularity elements superimpose a velocity field onto the free stream 

that decreases in strength with growing distance from the element.  At the center, 
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the induced velocity often becomes infinite due to the singular nature of the 

element.  An example of such a solution is a potential vortex with its concentric 

streamlines.  The resulting circulation, Γ, remains constant as the tangential 

velocity decreases with growing distance to the vortex center.  The circulation is 

defined as the line integral of the velocity, V, around the closed curve, C:  

 ∫ ⋅≡Γ
C

sdV  (1) 

According to the Kutta-Joukowsky theorem, a potential vortex with the 

circulation Γ that is exposed to a free stream of velocity u and density ρ results in 

a sectional force: 

 Γ×= ∞Vρ'F  (2) 

In the two-dimensional case of an infinite wing, the sectional lift is the 

product of the circulation, Γ, density, ρ, and the free-stream with the velocity V∞.   

The mathematical solution with potential-flow elements is relatively trivial 

due to linear nature of their solutions.  The linearity allows a simple superposition 

of several such elements in order to model even complicated geometries and 

flow problems.  A vortex filament in the wake, however, creates a considerable 

challenge due to the infinitely large velocity at its center, which now bounds the 

region of interest.  In order to avoid the numerical problems associated with 

these large velocities, a vortex core is sometimes modeled as a solid body with a 

finite radius that rotates in the viscous fluid at a constant angular velocity.  In this 

case, the maximum tangential velocity occurs at the interface between the solid-

body and the fluid.  The rotationality is spread out over the finite solid core, as 

opposed to being confined to the infinitesimal vortex center. 
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2.2 Finite Wing Analysis 

The lift produced by a wing can be modeled with a distribution of vorticity 

that is superimposed into the free-stream flow.  Across the wing, the vorticity 

distribution and its magnitude are either pre-defined, or must satisfy certain 

boundary conditions.  These boundary conditions are the flow-tangency 

requirement at the wing surface, the Kutta condition at the trailing edge, and an 

undisturbed free-stream flow at infinity.  Very early on, Ref. 1 demonstrated that 

these boundary conditions lead to an equation with a double integral across the 

wing surface.  Many potential flow methods use simplified vorticity-distribution 

models whose chordwise and/or spanwise vorticity is collapsed into discrete 

vortex filaments. 

2.2.1 The Lifting-Line Model 

The simplest lifting-line model, the horseshoe-vortex system, consists of 

the wing circulation lumped into a single potential vortex.  As depicted in Fig. 3, 

the bound vortex is often assumed to be at the quarter-chord location, although it 

can be placed elsewhere, for example at the trailing edge.25  Two trailing vortices 

coming off the wingtips and a starting vortex satisfy the second Helmholtz 

theorem, which states that an irrotational fluid cannot produce or dissipate 

vorticity.  The starting vortex of the horseshoe-vortex system is considered to be 

located far downstream and, thus, not shown in this figure.   
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Figure 3: A horseshoe-vortex system.7 

Instead of a single horseshoe vortex, the spanwise circulation variation 

may also be represented with several such systems that are distributed along the 

wingspan.  The application of this lifting-line model satisfies the second 

Helmholtz theorem by shedding discrete trailing vortices that have the strength 

equal to that of the local change in bound vorticity.  Taking the limit as the 

distance between the shed filaments goes to zero results in the trailing wake 

being modeled as a continuous vortex sheet.  Whereas the velocities induced by 

a discrete trailing vortex filament become infinite as the singularity at the center 

of each filament is approached, the velocities induced by a vortex sheet remain 

finite with the exception of at the sheet itself, where the tangential velocity is 

singular.  Therefore, the wake analysis is greatly simplified when the distributions 

of the bound vorticity and the subsequently shed vorticity can be described with a 

continuous function, for example, as that given by a Fourier series.1,2,26,27  

Although originally only used for straight wings, this theory has been extended for 

swept wings.13,14 
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The classical lifting-line method gives reasonably accurate predictions of 

the induced drag and lift-distributions of high-aspect ratio wings that are unswept 

and operating in symmetrical flow conditions.26,27  It also predicts rolling moments 

reasonably well.  A single lifting line, however, does not capture any chordwise 

information, such as the de-sweeping of the isobars at the center of a swept 

wing.26,27   

More suitable for wings with sweep, low aspect ratios, or that are under 

asymmetrical flow conditions is the extended lifting-line method.  This method 

uses control or collocation points where flow tangency is satisfied with an 

appropriate circulation distribution.  These points are most commonly positioned 

at the three-quarter chord location, in order to produce the same pitching 

moment as a flat plate.  This method is generally referred to as the Weissinger 

method.13,14  This choice of the control-point locations, however, conflicts with the 

Kutta condition at the trailing edge.  Nevertheless, the method computes 

reasonably good results for the spanwise lift distribution, the rolling moment, and 

the induced drag.  To some extent, the method also provides pitching 

moments.26,27     

2.2.2 The Lifting-Surface Model 

The quality of the chordwise information can be improved with a multiple 

lifting-line method that uses several discrete lifting-lines that are distributed along 

the chord length.28-30  The continuous distribution of the vorticity of the multiple 

lifting-lines in the chordwise direction leads to the lifting-surface method.  This 
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classical approach of Ref. 1 and its double integral can be solved with a multi-

parametric approach that describes the vorticity distribution.31-34   

In general, lifting-surface methods provide accurate predictions for 

induced forces, as well as for the rolling and pitching moments.  The quality of 

the estimated load distributions is quite reliable in both the spanwise and 

chordwise directions.  A significant disadvantage is that the functions describing 

the vorticity distributions are rather complex.  This is especially the case with 

discontinuous or non-planar wing geometries, such as present with flaps, 

multiple-lifting surfaces, or polyhedral planforms.28   

More suited for the numerical investigation of complex geometries are 

vortex-lattice methods that divide a lifting surface into elementary wings in 

spanwise and chordwise direction.  An example is shown in Fig. 4.  Each 

elementary wing consists of a horseshoe vortex, whose bound vortex is placed 

along the quarter-chord location of the element.  A control point is located at the 

three-quarter-chord point of the element midspan.  Solving for flow tangency at 

the different control points leads to a system of linear equations whose solution 

yields the strength of each horseshoe vortex.  The vortex-lattice method is 

capable of modeling relatively complicated geometries, including non-planar 

ones.  Furthermore, it is computationally relatively efficient. 
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Figure 4:  A vortex-lattice method with a system of horseshoe vortices.28 

2.2.3 The Panel Method 

Another class of methods that is well suited for the numerical analysis of 

planar and non-planar geometries is that of panel methods.  They are, 

essentially, an extension of the vortex-lattice method through the introduction of 

thickness to the lifting surface.15,16  The singularities that are used to satisfy the 

boundary conditions are arranged on the wing surface rather than along the 

mean chord, as is the case with vortex-lattice methods.   

The quality of the numerical results for lift distributions and moments of 

planar as well as non-planar geometries for panel methods is similar to that of 

vortex-lattice methods.  Despite the advances in computers, however, panel 

methods still require considerably more processing time than that required of 
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vortex-lattice methods.  Thus, their application is often restricted to analysis 

rather than design problems.  Furthermore, panel codes have numerical 

problems similar to those found with vortex-lattice methods that are due to the 

singular nature of the trailing-vortex elements. 

2.2.4 The Multiple Lifting-Line Method  

Early lifting-line methods made use of circulation distributions described 

by Fourier polynomials and whose shed wakes consist of continuous vortex 

sheets.1,2,14,26,27,31  In general, these methods are numerically well behaved and 

do not have the same numerical problems as do distributions of discrete vortices.  

A significant disadvantage is that the complexity of the function that describes the 

bound-vorticity distribution increases substantially with the increasing complexity 

of the lifting-surface geometry.  Especially with geometric discontinuities, for 

example due to flap deflections or winglets, it becomes difficult to find a function 

that adequately describes the circulation distribution. 

In order to be able to model more complex geometries, the multiple lifting 

line method of Ref. 28 makes use of elementary wings that have a parabolic 

circulation distribution in the spanwise direction, as shown in Fig. 5.  The 

magnitude and slope of the spanwise circulation distribution have to be 

continuous across the common edge of two neighboring elements.  The third 

boundary condition for determining the exact parabolic shape is the flow-

tangency requirement at the control points.  The result is a second-order spline 

for the bound, spanwise circulation.  Consequently, the shed vorticity is a sheet 

with a continuous spanwise vorticity distribution that is a first-order spline.  One 
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of the advantages of this method is that the induced velocities in the wake remain 

finite, even when approaching the sheet itself.  In the plane of the sheet, the 

tangentially induced velocity is undetermined.   

Because of the use of analytical solutions for computing the induced 

velocities, the multiple lifting-line method has proven to be fast and accurate 

enough to be employed in the design of complex wing geometries, such as wings 

with winglets.35,36  A shortcoming of this method is its fixed wake model, which 

does not capture second-order effects that are due to the wake roll-up. 

 

 

Figure 5:  Wing paneling and elementary wings of the multiple lifting-line 
method.28 

2.3 Wake Models 

A free shear layer in the wake cannot support any forces after it has been 

shed from the trailing edge of a lifting surface.  Thus, in order to remain free of 

any forces that are associated with the Kutta-Joukowsky theorem, the shed 
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vorticity is displaced by the local flow field.  The velocities of the local flow field 

are induced by the lifting surface and the wake.  The most evident result is the 

rollup of the vortex sheet soon after leaving the lifting surface.  The behavior of 

the shed vorticity in the wake has a profound influence on the forces acting on 

the lifting surface due to the velocities that the wake induces. 

2.3.1 Fixed Wakes 

Three possible trajectories for the wake leaving the trailing edge of an 

airfoil are shown in Fig. 6.  With a free-stream velocity parallel to the horizontal, 

wake B, which extends along the trailing-edge bisector, supports lift and drag 

loads that result from the induced velocities of the lifting surface and the wake 

itself.  Additionally, the wake induces lift and drag forces onto the bound-vortex 

system.  Although wake B probably models the flow conditions near the trailing 

edge quite realistically, further downstream the wake deviates considerably from 

the flow-field that is expected in reality.  At sufficient distance downstream, the 

wake is most likely descending at a constant rate.  With wake model B, the 

induced lift reduction is overestimated and the induced drag underestimated.  

Furthermore, the forces carried by the wake violate conservation of momentum. 

Because it is aligned with the free stream, wake A is drag free.  Despite 

that, the wake supports sideforces due to the velocities that the bound vortex and 

the wake itself induce.  In the case of a simple horseshoe-vortex system, the two 

trailing vortex filaments carry the same magnitude in sideforce, although with 

opposite signs.  Thus, at least in a global sense, the momentum of the wake is 
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conserved.  Furthermore, forces that the wake induces onto the bound-vortex 

system are plane drag forces with no lift component. 

 

Wake A 

Wake B 

Wake C 

V∞ 

  

Figure 6: Possible wake shapes.17 

The lesser computational effort of a fixed wake may justify the reduced 

accuracy of induced drag estimations.  Although the fixed wake shape can be 

based on empirical results and may be of a non-straight shape similar to wake C 

in Fig. 6, the calculation of induced drag is greatly simplified in the Trefftz plane 

far downstream with a straight wake, such as wake A.17,26,27  Furthermore, only 

the force-free wake that is aligned with the local velocities and the straight wake 

that is aligned with the free-stream ensure the conservation of the overall 

momentum of the wake at all angles of attack.   

2.3.2 Free Wakes 

A growing need exists for more accurate and faster wake-shape prediction 

tools, for example in order to investigate blade-vortex interactions of rotary-wing 

aircraft.  A “true” wake cannot support any forces and, thus, has to be aligned 

with the local flow-field.  The two most commonly used techniques for computing 

the free-wake shapes are spatial-relaxation and time-stepping methods. 
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The iterative spatial wake-relaxation method starts out with an assumed 

wake shape.  The bound-vorticity strength and the velocity field in the wake are 

computed using this initial wake shape.  In the next step, the wake-vortex 

filaments are displaced along the local flow direction in order to keep the wake 

force free.  This process is repeated until a convergence criterion is satisfied. 

In the time-stepping method, the flow-field and vorticity are iterated as the 

wing, which was previously at rest, starts moving instantaneously at the desired 

speed, V∞.  While the wing progresses, the wake evolves with each time step.  

Flow tangency is satisfied at the control points with a sufficient amount of 

circulation.  The second Helmholtz theorem is satisfied with trailing vortex 

elements that are shed along the trailing-edge bisector.  The length of these 

wake elements is the distance the wing progresses each time interval, Δt⋅V∞.  

Based on the wake influence at each time step the wing circulation is adjusted so 

that the flow-tangency requirement is satisfied at the control points.  The newly 

shed wake-vortex elements have the magnitude of the new bound-vortex 

circulation.  After the new wake elements have been shed, the trailing vortex 

elements are aligned with the computed local flow-field.   

The time-stepping method requires less wake computing steps than the 

spatial-relaxation method for the same flow-field size.17  This is illustrated when 

considering n trailing vortices during k time steps.  The time-stepping method 

requires n×k/2 wake-velocity computations, whereas each iteration of the spatial 

relaxation method requires twice as many computations for a wake field of the 

same size. 
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2.4 Induced Forces 

In addition to the free stream, the velocities that are induced onto a lifting 

surface by itself and its wake, result in forces.  Mainly polyhedral or multiple wing 

geometries induce additional velocities parallel to the free stream that result in 

induced lift.  This force is, however, relatively small when compared with the 

overall lift.  

More complicated and of much greater interest is the determination of 

induced drag.  Although generally somewhat larger in magnitude than induced 

lift, it is still relatively small.  Furthermore, lift is fairly easily computed by applying 

the Kutta-Joukowsky theorem along the bound circulation using the free-stream 

velocity as well as any induced component that is parallel to the free stream.  In 

the case of induced drag of a swept bound system, however, computing the 

velocity component that is induced at the bound vorticity and is normal to the free 

stream, becomes a function of the number of singularity elements used in the 

spanwise direction.28,37  In the extreme, the velocity that a trailing continuous 

vortex sheet induces at its bound system is singular unless the bound circulation 

is unswept or remains constant in strength in spanwise direction.   

If the bound system is swept, the velocity that a trailing system induces at 

the location of its bound-vortex system becomes singular.  Despite the singular 

velocity solution, the induced drag of such a swept system remains finite and is 

equal to the value of an unswept system with the same spanwise circulation 

distribution.12,37  For example, the drag of the unswept system A in Fig. 7 

depends solely on the cross product of the bound circulations, Γi and Γii, and the 
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velocities induced by their trailing systems.  The bound vortices cannot induce 

velocities onto each other, since their axes are in line.  System B in that figure 

represents a swept system that has been discretized.  In this case, the bound 

vortices do induce velocities onto each other that are proportional to dΓ~w iii  

and d~w iii Γ  at bound vortices i and ii, respectively.  The subsequent additional 

drag forces that bound vortices i and ii produce are proportional to the cross 

products of the induced velocity and the circulation, d~w~D iiiiii ΓΓΓ  and 

d~w~D iiiiiiiii ΓΓΓ .*  Even with different magnitudes of circulation i and ii, the 

resulting forces are of the same magnitude.  They are, however, of opposite 

orientation and, thus, cancel, since bound vortex i induces velocities at bound 

vortex ii that are coming out of the page, whereas bound vortex ii induces 

velocities at bound vortex i that are into the page.  Besides the additional drag 

due to the velocities that the bound vortices induce on each other, another 

change in the local induced drag of system B in Fig. 7 is due to the bound vortex 

ii being an additional distance, d, further away from the influence of the trailing 

system i.  This reduction in drag, however, is compensated for by the additional 

velocity induction at the other bound vortex i due to the additional length, d, of the 

trailing system ii.  Therefore, the overall induced drags of the vortex systems A 

and B are equal despite the change in spanwise configuration.  In contrast to 

                                            

* To be more precise, the induced velocity has to be computed according to the Biot-

Savart law and requires the integration over the span of the bound vortex that induces the 

velocity.  The subsequent additional drag force is the result of the integral of the Kutta-Joukowsky 

theorem over the span of the load-bearing vortex. 
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that, the computed induced drag of vortex system C in Fig. 7 yields a faulty result 

without any special consideration and separation of spanwise and streamwise 

vorticity of the swept bound-vortex systems.  Thus, and in line with the stagger 

theorem,12 it can be concluded that only the spanwise circulation, which is 

located on a plane perpendicular to the free stream, and the velocities induced 

by the streamwise vorticity affect induced drag.  

 

Γi Γii 

Γi 

Γii 

d 

A 
C B 

Γi 

Γii 

 

Figure 7:  Three vortex systems that ultimately produce identical induced drag. 

A convenient consequence of the stagger theorem allows the computation 

of the induced drag faraway downstream from the lifting surface in the Trefftz 

plane.  The Trefftz plane, which is oriented perpendicular to the trailing vortex 

filaments, is sufficiently far downstream of the wing so that the velocities induced 

in the plane are unaffected by the bound vorticity and the wake shape has no 

streamwise variation.10,11  In the Trefftz plane, the trailing vortices are of infinite 

length in either direction, compared to their semi-infinite nature in the vicinity of 
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the bound vorticity.  Thus, the induced drag is easily computed by integrating the 

velocities of the, essentially, two-dimensional system within the Trefftz plane. 

Many numerical methods compute induced drag by integrating the surface 

pressures at the lifting surface, with drag being the resulting force component 

that is parallel to the free-stream velocity.  This approach exhibits less sensitivity 

to the exact shape of the rolled-up wake compared to the Trefftz-plane drag-

calculation.  The accuracy of the pressure integration, however, depends strongly 

on the numerical resolution, especially around the leading edge.  Thus, the 

precision of this induced-drag prediction method is usually insufficient despite 

extensive computational efforts.38-40  

Another method of induced-drag calculation recognizes that all of the 

vorticity that is produced by the lifting surface is shed into the wake at the trailing 

edge.25, 38-40  This also happens to be the earliest location at which the wake-

induced downward velocity is not blocked by the presence of the wing itself.  

Hence, the cross product of the lumped bound vorticity and the velocity that is 

induced along the trailing edge by the wake yields the induced drag.25, 38-40  This 

drag-prediction method can be applied in vortex-lattice as well as panel codes.  It 

has proven to be much more robust to small changes in the wake shape than, for 

example, is the case with Trefftz-plane drag calculations.  It is also relatively 

insensitive to the paneling density of the lifting surface.39-41  

2.5 Numerical Limitations of Discrete Singularity Solutions 

Many limitations of the numerical methods used to analyze the finite wing 

problem are a consequence of the discrete nature of the singularities that are 
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used to model the flow field.  One example is shown in Fig. 8 for the normalized 

velocities that are induced by a continuous elliptical circulation distribution 

compared to a model with ten discrete horseshoe vortices.  The discretized 

model is found to exhibit significant discretization errors, especially at the wingtip.  

There, the induced velocity of the continuous circulation distribution remains 

finite, while the one of the discretized model deviates significantly.   

An increase in density of the horseshoe vortices only grants a limited 

improvement in computational accuracy, but results in a considerable increase in 

computational effort.28  Additionally, reductions of the elementary-wing aspect-

ratio leads to growing numerical errors, as the influence of the trailing vortices on 

the induced velocity at the control points increases disproportionally. 

 

Figure 8:  Error in induced velocity due to discretization of originally elliptical 
circulation distribution.28 

Other numerical problems are related to the large velocities that are 

induced by the trailing vortices as they pass close by or through the control point 

of another elementary wing.  This problem mainly occurs during the modeling of 
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slipping flight conditions or with non-aligned horseshoe elements and relaxed 

wakes.17.42 

Numerical problems also often arise during the relaxation process when a 

discretized potential flow model is used, as is the case for vortex filaments.  In 

that particular example, the velocities that the filaments induce on one another 

can become very large or infinite, as their cores might get close during the 

relaxation process.  One commonly employed solution is to use a solid core 

model around the core of wake filaments.17  Although the solid core model 

appears to represent the viscous core of a vortex well, it is inconsistent with the 

irrotationality assumption on which the potential flow model and its singularity 

solutions are based.  After all, the potential flow models are mathematical 

solutions for matching the boundary conditions of a specific flow field and not a 

representation thereof.  In addition, the choice of the solid core size becomes the 

factor that drives the solution.  One apparent limitation of such a model is the 

case when two solid cores become close during the relaxation process.  It is 

unclear if the cores stay separate or join and, if they do join, what should the new 

solid core radius be.   
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3 A Lifting-Surface and Drag-Free Wake Model 

A new potential flow method is introduced in this section.  The method 

relies on distributed vorticity elements for modeling the lifting surface and the 

force free wake.  Each element consists of a vortex filament along its leading and 

trailing edge.  In addition, a vortex sheet in between ensures the continuity of the 

circulation.  Using these distributed vorticity elements it is possible to model the 

wake as a continuous vortex sheet.  As a consequence, the induced velocities in 

the wake are finite, avoiding many of the singularity problems of potential flow 

models that use line singularities in the wake, such as vortex filaments.   The 

subsequent wake-rollup behavior is numerically exceptionally robust. 

3.1 Basic Equations 

The lifting-surface method that is presented herein and its relaxed wake 

model are based on the multiple lifting-line method that is discussed in Chapter 

2.2.4.28  This particular lifting-line method uses one or several lifting lines that 

consist of several bound-vortex segments, so called elementary wings.  As 

shown in Fig. 5, the bound-vortex segments are positioned along the quarter-

chord line of the particular surface.  The bound circulation of each elementary 

wing has a spanwise distribution of parabolic shape: 

 ( ) CBA 2η+η+=ηΓ  (3) 

with η being the local span coordinate of that particular segment.  The 

subsequent shed vortex sheet has a linear vorticity distribution in spanwise 

direction: 
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Each shed wake is a semi-infinite vortex sheet that is aligned with the free 

stream and is, therefore, drag-free.  Furthermore, it is noteworthy that circulation, 

Γ, and vorticity, γ, are vector quantities that are oriented in spanwise and 

streamwise direction, respectively. 

The determination of the three circulation coefficients, A, B, and C, that 

describe the bound-circulation and shed-vorticity strength requires three 

boundary conditions.  Similar to other panel or vortex-lattice methods, one of the 

boundary conditions is the flow tangency requirement at the control point that is 

located at the midspan of the ¾-chord line.  The two remaining boundary 

conditions are given by the need of a continuous circulation and vorticity 

distribution across the boundary of two neighboring elementary wings. 

In Ref. 28, analytical solutions are developed for the velocities that are 

induced by the bound vortex and its shed wake.  The velocities that a vortex-

filament segment induces with its parabolic circulation distribution at an arbitrary 

point, P0(ξ0, η0, ζ0), requires the integration over the elementary wingspan from 

−ηi to ηi: 
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A similar integration yields the velocity that the semi-infinite vortex sheet 

induces: 
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with  

 ( ) ( ) 2
0

2

0

2

01 tanr ζ+η−η+ϕη−ξ=  

ξ, η, and ζ are the coordinates in the local reference frame of the vortex filament 

and semi-infinite vortex sheet.  The origin of the local reference frame is located 

at the midspan of the vortex filament and the ξ-axis points downstream along the 

centerline of the shed semi-infinite vortex sheet.  The η-axis is in the spanwise 

direction of the local reference frame, which is a right-hand system.  The bound 

vortex and the leading edge of the vortex sheet intersect the η-axis with the 

sweep angle, ϕ.  The coefficients A, B, and C, describe the circulation and 

vorticity distribution in the spanwise direction, η, as used in Eqs. 3 and 4. 

The analytical solutions of the integrals in Eqs. 5 and 6 are listed in 

Appendices 1 and 2, respectively.  The solutions exhibit several singularities, the 

most obvious of which is at the center of the vortex filament.  Other singularities 

are associated with the vortex sheet and require special attention.  As is 

apparent in Eq. 6, the vortex sheet induces velocities that are normal to the plane 

of the sheet and tangential to it along the spanwise, η-, direction.  Although the 

tangential velocity is singular in the plane of the vortex sheet, it remains finite up 

to the sheet.  On either side of the vortex sheet, the tangentially induced 

velocities are of equal magnitudes, but opposite signs.  In the plane of the sheet, 

the integral of Eq. 6 can be solved in the sense of the Cauchy-principal value.37  
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Additionally, the velocities that the vortex sheet induces normal to its plane-of-

orientation are singular along the edges of the sheet.  One such line of singular 

solutions is located along the leading edge of the semi-infinite vortex-sheet if it is 

swept.  Without sweep, the self-induced velocity along the leading edge is half 

the value of what a double-infinite vortex sheet would induce.  Further 

singularities are present along the side edges of the sheet.  There, the normal 

velocity component is singular if the vorticity at the edge is non-zero. 

In the case of a vortex sheet that has a continuous vorticity distribution, 

the normally induced velocity remains finite, even when modeling it using several 

sheet elements that have singularities along their sides.  As long as the vorticity 

is continuous across the common boundary of two separate elements, the 

velocity singularities of the two neighboring vortex sheets are of equal 

magnitudes but opposite signs and, thus, cancel.  In particular, the normal 

velocity that is induced by the linear spanwise vorticity distribution of a semi-

infinite vortex sheet, depends, in part, on logarithmic terms of the following 

form:28  

 
( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

η+η
η−η

η
2

i0

2

i0
02 ln ~ )(w  (7) 

where η0 is the local span coordinate of the point at which the induced velocity is 

computed, and ηi is the half span of the semi-infinite vortex-sheet element. 

An example of the spanwise variation of the normal velocity that two semi-

infinite vortex sheets induce in their plane some distance from their leading 

edges is shown in Fig. 9.  Plotted are the normal velocities that each individual 



32 

vortex sheet induces, w2 left and w2 right, as well as their combined normal velocity, 

w2 total.  The “left” vortex sheet spans from η = -1 to 1.  Its spanwise vorticity 

variation changes from γleft = 0 to 3.  The “right” vortex sheet is continuous with 

the latter vorticity value at η = 1.  At its free end, η = 4.2, its vorticity becomes 

zero.   

Although the individual velocities of each vortex sheet approach plus and 

minus infinity at their common boundary of η = 1, the total induced velocity, 

w2 total, remains finite since the singularities of w2 left and w2 right cancel.  As the 

common boundary of the two neighboring elements is approached, the 

numerator of the logarithmic expression, as listed in Eq. 7, of one of the vortex-

sheet elements becomes zero.  Simultaneously, the denominator of the other 

element approaches zero as well.  Consequently, since the logarithmic terms of 

are of equal size and opposite sign, the terms will cancel if the vorticities are of 

equal strength.   
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Figure 9:  A spanwise distribution of the normal velocity that is induced in the 
plane of two semi-infinite vortex sheets.  The “left” sheet spans from η = -1 to 1, 
the “right” one from η = 1 to 4.2.  The dashed line denotes the spanwise vorticity 
distributions, the solid line the total induced velocity.  

Although the singularities along the side edges of a semi-infinite vortex 

sheet have little effect on the overall induced velocity of a larger vortex-sheet 

system whose continuous vorticity distribution is modeled with several such 

semi-infinite vortex sheets, the numerical implementation of such a discretized 

model requires further treatment of the logarithmic terms in Eq. 7.  One possible 

approach is to add an additional singularity to either side edge of an individual 

semi-infinite vortex sheet in order to cancel the original singularities.  Overall, in 

combination with the original and the added singularities of the neighboring 

vortex sheets, all the singularities cancel each other and the combined induced 
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velocity remains unaffected.  Adding additional singularities to either side edge of 

a vortex sheet modifies the logarithmic term of Eq. 7: 
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where k is a positive constant.  As a result of this modification, the velocity that is 

induced by a vortex sheet remains finite, even along the side edges of the sheet, 

as indicated by the “modified” induced velocities in Fig. 9.  Despite the changes 

to the individually induced velocities, the combined velocity, w2 total, remains 

unchanged.  This “modification” is included in the complete solution of the 

integral equation of Eq. 6 that is listed in Appendix 2. 

 The rate at which the influence of the additional singularity diminishes 

with increasing distance to its location depends on the size of the constant k.  A 

smaller k reduces the impact on the induced flow field further away, but also 

increases the induced velocity peak at the edge itself.  Either “modified” induced 

velocity distribution displays such a peak at η = 1.  The lessening of the impact 

further away is especially an issue in order to minimize the impact of the 

additional singularity that is located at a wingtip.  Unless the vorticity is zero at 

the wingtip, which despite the circulation being zero, is usually not the case, the 

vortex sheet at the wingtip has the only additionally introduced singularity that is 

“unbalanced” by a neighboring vortex sheet.  Its influence can significantly affect 

the entire circulation distribution by distorting the flow field at the control points 

further inboard.  In contrast to that, the induced velocity peak is a concern when 

computing the local velocity at a side edge of a vortex sheet that has an 
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“unbalanced” newly introduced singularity.  This can occur when two neighboring 

vortex sheets align improperly, for example, due to panel leakage.  More 

commonly, the velocity peak becomes an issue in the wake downstream of a 

wingtip where, for example, the local velocity peak of the “unbalanced” singularity 

of the tip might distort the wake-relaxation process.   

A k-value of one-percent of the vortex-sheet half-span has yielded good 

results in the computed overall velocity distribution.  This value reduces the 

impact on the circulation distribution to a minimum without causing major local 

velocity peaks in the flow field.  The latter is helped by the fact that the locally 

computed flow field is the composition of the influences of many vortex-sheet 

elements. 

The above-described treatment of the singularities along the side edges of 

a vortex sheet allows the numerical representation of a first-order continuous 

vortex sheet using vortex-sheet elements that have linear spanwise vorticity 

distributions.  The velocities that such a modeled continuous vorticity distribution 

induces are finite everywhere.  Although the tangential velocity is undetermined 

in the plane of the sheet, in a numerical implementation it can be averaged with 

the finite velocity values that are present just above and below the sheet.  The 

leading edge singularity of a swept semi-infinite vortex sheet is treated in the 

same way as are the side edges, that is by introducing an additional singularity in 

order to cancel the original one. 
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3.2 Distributed Vorticity Elements 

In the method presented here, the lifting surfaces and the wake are 

modeled using what are termed here as distributed vorticity elements.  As shown 

in Fig. 10, a distributed vorticity element has vortex filaments along its leading 

and trailing edges.  These filaments have spanwise circulation distributions that 

are parabolic and of opposite orientations.  Between these filaments, a vortex 

sheet with a linear spanwise vorticity distribution satisfies the Helmholtz vortex 

theorem.  The vorticity of the sheet is aligned with one of the primary local axes, 

the ξ-axis, which is oriented along the local flow direction.  The sheet lies in the 

ξ-η plane and, thus, the ζ-axis is normal to the plane of the vortex sheet of the 

distributed vorticity element.  The reference point, x 0, that is located at the 

geometric center of the element serves as the origin of the local ξ-η-ζ-reference 

frame.  The vortex filaments at the leading and trailing edges intersect the η-axis 

at the respective sweep angles, ϕl.e. and ϕt.e..  The two sides of the element are 

parallel to the ξ-axis.  The span, 2ηi, is the shortest distance between the sides, 

and the chord, 2ξi, is measured along the centerline of the element. 
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Figure 10:  The distributed vorticity element. 

  Three rotations relate the global reference frame to the local one: the 

dihedral angle, ν, about the x-axis, the incidence angle, ε, about the y’-axis, and 

the yaw angle, ψ, about the z”-axis.  All coordinate systems are right-hand 

systems.  Based on this convention the following coordinate transformation 

relates the wing-fixed reference frame to that of the local distributed-vorticity 

element:  
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The inverse transformation is: 
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Two points of significance are the mid-chord locations of the left and right 

side edge of the distributed vorticity element, x1 and x2, respectively.  In the local 

reference frame of the distributed vorticity element, these points have the 

following coordinates: 
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where ϕ0 is mid-chord sweep angle. 

Numerically, the velocity that such a distributed vorticity element induces 

at a given point is composed of the influences of two vortex filaments and two 

semi-infinite vortex sheets.  As shown in Fig. 11, one vortex filament and one 

semi-infinite vortex sheet begin at the leading edge of the distributed vorticity 

element.  The second set that has the opposite circulation and vorticity 

distribution, begins at the trailing edge of the element.  Consequently, the two 

vortex sheets cancel each other downstream of the trailing edge.  The 

subsequent induced velocities are computed with the analytical solutions of Eqs. 

5 and 6,28 modified in accordance with Eq. 8, in order to manage the singularities 
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along the edges of the distributed vorticity element.  A more detailed description 

of the induced velocity calculation is given in Appendix 3. 
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Figure 11: A distributed vorticity element is composed of vortex filaments along 
its leading and trailing edges, as well as of two semi-infinite vortex sheets. 

3.2.1 The Lifting Surface 

A lifting surface is modeled using distributed vorticity elements similarly to 

how it is done in the multiple lifting-line method.28  In the spanwise direction, the 

parabolic circulation distributions of the vortex filaments form a second-order 

spline.  The subsequent vortex sheets between the leading and trailing edge 

filaments have a continuous spanwise vorticity distribution that is a first-order 

spline.  Several such spanwise systems can be positioned at different chordwise 

locations, as shown in Fig. 12.  

The circulation coefficients of each distributed vorticity element, A, B, and 

C, are determined by solving a system of linear equations that satisfies three 

boundary conditions.  One of the boundary conditions is the requirement for flow 

tangency at the center of each distributed vorticity element.  The two additional 
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boundary conditions are provided by the need to maintain a continuous 

circulation and vorticity in the spanwise direction across the boundaries of each 

distributed vorticity element.  A more detailed description of the system of linear 

equations, whose solution holds the bound circulation distribution, is included in 

Appendix 4. 

As is the case with panel methods, it is possible to model thickness by 

placing distributed vorticity elements around the contour of the wing.  In this 

study, however, the elements are distributed over the chord, or zero-lift, surface 

in order to limit the computing time.  Thus, it is essentially a vortex-lattice 

method, as it is shown in Fig.  12.  In the example presented there, the wing is 

modeled using three elements across the half-span and two along the chord.  

Similar to the vortex-lattice method shown in Fig. 4, the leading edge-vortex 

filament of each distributed vorticity element is located at the quarter-chord 

location of that particular element.  Its trailing edge filament, however, coincides 

with the location of the leading edge filament of the next element downstream.  

The surface elements that are located along the trailing edge of the wing reach 

into the wake in order to satisfy the Kutta condition.   
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Figure 12:  Paneling of the lifting surface (solid lines) with distributed vorticity 
elements (dashed lines). 

Leakage may occur between the distributed vorticity elements of a lifting 

surface that has twist, since the elements remain planar and are, in fact, only 

truly continuous in the spanwise direction along their leading edge-vortex 

filaments.  Nevertheless, the amount of leakage will be limited and negligible if a 

sufficient number of spanwise panels is used. 

3.2.2 The Wake 

The wake model with distributed vorticity elements is similar to that of the 

lifting-surface.  In order to reduce the computational effort and eliminate 

singularities, however, the leading and trailing vortex filaments are omitted.  This 

is permissible under steady-state conditions with constant streamwise vorticity 

distributions.   

The wake shape is developed using a time-stepping method.17  As the 

wing progresses forward each time step, a new spanwise row of distributed 

vorticity elements is emitted from the trailing edge into the wake.  The vorticity 
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distribution of the wake elements depends on the strength of the circulation of the 

surface elements that are located along the trailing edge.  Depending on the 

trailing edge shape and the direction of motion, the wake elements are 

trapezoidal and planar in shape.  The spanwise row of elements that has been 

released into the wake during the first time step consists of semi-infinite vortex 

sheets that are aligned with the free stream velocity.  This expedites the 

convergence of the forces during the time-stepping method. 

In order to achieve a force-free wake, the distributed vorticity elements are 

displaced with the local velocity, uind, during each time step.  Consequently, the 

displacement is uind Δt, where Δt is the time-step size.  More specifically, the mid-

chord points at the side edges of each distributed vorticity element, x1 and x2 in 

Fig. 10, are displaced along the local induced flow field.  The new reference point 

is placed between the new locations of the side-edge points, x1 and x2.  Their 

relative location to each other also defines the new roll attitude of the element, as 

well as its new span, ηi.  The new pitch attitude depends on the relative vector 

between the new reference point and the midspan location of the trailing edge of 

the next upstream element.  Despite stretching and tilting during the wake roll-up 

process, each wake element remains planar.   

As the wake elements are stretched and compressed, their vorticity 

distribution must be adjusted for the change in span to satisfy the Helmholtz 

theorem.  This theorem requires that the total circulation be unchanged.  Thus, in 

the particular case of a distributed vorticity element, the following integral must 

remain constant: 
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where ηi is the half span of the distributed vorticity element with its spanwise 

circulation distribution Γ(η).  This condition and the two additional requirements 

of continuous circulation and vorticity distributions across the spanwise 

boundaries between the distributed vorticity elements allows the formulation of a 

linear equation system whose solution yields the “stretched” circulation-

distribution coefficients, A, B, and C.  Under steady conditions, to satisfy the 

Helmholtz theorem in the streamwise direction, the integral value of Eq. 12 is 

constant for the wake elements of a particular span location.  It depends on the 

value of the surface element of that particular span location that is located at the 

trailing edge of the lifting surface. 

Similar to the lifting surface, leakage can occur between the wake 

elements, which remain planar as they rotate and stretch during the relaxation 

process.  This, however, only becomes an issue when computing the local 

velocities in such a gap between wake elements.  In such a case, the velocity 

peaks that are induced by the edge of one distributed vorticity element may be 

unbalanced.  Although this particular contribution to the total induced velocity is 

finite, it may nevertheless be large compared to the contributions of the 

remaining flow field.  Thus, in order to minimize any such problems during the 

relaxation process, the wake elements are attached in the spanwise direction at 

their mid-chord locations and in the streamwise direction at their midspan 

locations.  Downstream of the wingtip, however, the distributed vorticity elements 
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in the wake display velocity peaks that are self-induced and are due to the 

unbalanced singularities at the edge of the wake.  For example as shown in Fig. 

9, the induced velocity of each individual vortex sheet peaks at η=1.  Although 

these peaks cancel in the presence of a neighboring element, this is not the case 

at the tips of the wing and wake.  Fortunately, the influence of this self-induced 

velocity peak on the role-up behavior is limited, in that, the self-induced 

contribution is only part of the total induced velocity that is the result of the 

induction by the entire wake and the lifting surface. 

3.3 Forces 

The normal force of a lifting surface is the sum of all the forces that arise 

from the Kutta-Joukowsky law being applied at each vortex filament of the 

surface elements.  The force is comprised of a part due to the free-stream flow 

and one due to the induced velocity.  The free-stream force-contribution uses an 

analytical solution to integrate the lift force across the span of each bound 

vortex.28  The induced lift of each surface element is determined with a numerical 

integration.  Using Simpson’s rule for this integration requires that the locally 

induced velocities be determined at three locations along the bound-vortex span 

of the surface element.  The three locations are at the midspan and at 0.8ηi on 

either side of it.  The choice of the latter two points eliminates the chance of 

issues with the singularities at the edges of each surface element. 

The induced drag is computed in a manner similar to that of the induced 

lift by applying the Kutta-Joukowsky law along the trailing edge of the lifting 
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surface.  To do this, the cross product is taken between the circulation that is 

shed into the wake at the trailing edge and the velocity that the wake induces 

there.38,40,43  The total drag force is determined using a numerical spanwise 

integration, just as it is done for the induced lift.  As can be observed in Fig. 13, 

the results agree well with those obtained using an analytical approach in the 

Trefftz plane.  The figure shows the forces and span efficiencies computed using 

the multiple lifting-line method of Ref. 28.  The drag forces of the wing that has 

an elliptical chord distribution and a straight trailing edge are computed in the 

Trefftz plane as well as along the trailing edge as discussed in Ref. 38.  As the 

number of spanwise panels varies, the two drag-calculation methods and the 

subsequent span efficiencies display differences that are less than half of a 

percent. 
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Figure 13:  Forces and span efficiencies of an elliptical wing with a straight 
trailing edge computed using the multiple lifting-line method.28  The induced drag 
is computed in the Trefftz-plane and by applying the Kutta-Joukowsky law along 
the trailing edge of the wing.   
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Special attention is required when determining the induced drag of a wing 

with a swept trailing edge.  In that case, the normal velocity that the shed semi-

infinite vortex sheet induces along the swept line is singular.28  In spite of the 

singular velocity, the induced drag, which is the spanwise integral of the cross 

product of the induced normal velocity and the lumped circulation, is finite.37  

Indeed, as discussed in Chapter 2.4, the induced drag of the swept wing is 

identical to the one of an unswept wing with the same spanwise circulation 

distribution.12,37  An example of this is shown in Fig. 14, which shows the forces 

and span efficiencies of wings with elliptical chord distributions and varying 

sweeps.   xt/cr = 0 denotes a straight leading edge, whereas xt/cr = 0.25 is a 

straight quarter-chord line, and xt/cr = 1 a straight trailing edge.  The drag force in 

the Trefftz plane and the lift force were computed using the multiple lifting-line 

method of Ref. 28.  In addition, the drag force was computed using the Kutta-

Joukowsky theorem along a “de-swept” trailing edge.  Despite the varying 

sweeps, the far and near field results of the two agree well.  The near field 

method, however, is much more suitable for a relaxed wake than a Trefftz-plane 

integration.  The latter requires the knowledge of the exact shape of the shear 

layer far away from the lifting surface and is relatively sensitive to even small 

shape changes.44  In comparison to that, the drag estimation along the trailing 

edge is less dependent on the numerical accuracy of an “aged” wake that is 

distant from the lifting surface of interest. 
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Figure 14:  Forces and span efficiencies of the multiple lifting-line method28 using 
results from the Trefftz-plane and Kutta-Joukowsky along the trailing edge of a 
wing with an elliptical chord distribution and varying trailing-edge sweeps.  
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4  Validation 

This section deals with the validation of the method introduced in Chapter 

3.  The primary interest is the accuracy in forces and wake-shape prediction.  

Three basic criteria are considered for the accuracy assessment in this section.   

First, the model has to realistically represent the particular physical 

problem in its geometry and boundary conditions.  In the case of the newly 

developed method, the potential flow problem of the wing and its trailing wake 

allows the investigation of the physical events of interests: induced drag and the 

flow field in the wake.   

The second accuracy criterion requires that the computed solutions be 

insensitive to input parameter changes, such as the variation of the panel 

density.  In addition the convergence behavior of the method must be robust.  

This means that, if the posed problem is a steady one, the long-term 

computational solution, once it has converged, should approach a constant 

value.   

A third accuracy assessment is how well the results of the new method 

compare with results attained using other methods.  These results can be 

theoretical, computational, or experimental in nature.  In this study, the classical 

lifting-line theory results of an elliptical lift distribution having a span efficiency of 

1.0 serves as a benchmark for the force prediction of the elliptically-loaded wing.  

Additionally, a comparison of the computed loads is performed with other 

numerical methods.  Beyond that, the computed flow fields behind wings are 

compared with experimental results.  Whereas the results of the classical lifting-
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line theory and the other numerical methods are inviscid, the experiments are 

subject to viscous effects, especially for the flow over the lifting surface.  This 

makes a comparison of drag forces difficult, since a separation of viscous from 

inviscid drags is difficult in the experiments.  In the wake, however, the viscous 

effects subside within a short distance behind the trailing edge of the wing, and 

the wake is largely inviscid.  Thus, if the experimental and theoretical bound 

vorticity distributions of the wings match, the shed vorticities should produce 

similar flow fields in the wake. 

4.1 The Elliptical Wing 

In order to validate the method described in the previous section, the 

forces on wings having elliptical chord distributions were computed and 

compared with results obtained elsewhere.28,44,45  The elliptical planforms 

considered have aspect ratios of 7 and various amounts of sweep. An angle 

attack of 4 degrees is used, which corresponds to a cruise-lift coefficient of 

approximately 0.32.  The distributed vorticity elements are distributed linearly 

along the span and the chord of the lifting surface. 
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Figure 15:  Elliptical planforms with various tip locations. 
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The respective planforms are shown in Fig. 15, where xt/cr = 0 denotes the 

wing with an unswept leading edge, and xt/cr = 1 is the crescent wing that has an 

unswept trailing edge.  Only the latter planform has a fixed, drag-free wake that 

has a planar trace in the Trefftz plane independently of angle of attack.  In 

comparison, the straight wake shed from the forward swept trailing edge of the 

classical elliptical wing, that is xt/cr = 0.25, has growing dihedral with increasing 

angles of attack.  Its subsequent trace in the Trefftz plane has an elliptical 

dihedral distribution.  Conversely, the Trefftz-plane projection of an aft-swept 

trailing edge has anhedral with positive angles of attack.  Thus, the elliptical 

planform with a straight trailing edge matches most closely the assumptions 

made in the classical lifting-line theory regarding a planform having an elliptical 

circulation distribution.   

4.2 Convergence Study 

The wake is developed using a time-stepping method and, consequently, 

the strength of the shed vorticity changes dramatically in the early stage of the 

wake evolution.  The convergence behaviors of induced drag coefficient, lift 

coefficient, and the span efficiency are shown in Fig. 16 for different step sizes in 

the wake for a wing with an elliptical chord distribution and a straight trailing 

edge, xt/cr = 1.  The lifting surface was modeled with mxn = 18X3 distributed 

vorticity elements across the halfspan and the chord, respectively.  Three 

different wakestep sizes were used in order to develop the relaxed, force-free 

wake: 0.5, 1, and 2 percent of the wingspan.  Also shown in the figure is the 

convergence behavior of the equivalent values of a fixed, drag-free wake that is 
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shed from the trailing edge of the wing along the direction of the free stream.  

This is in contrast to the multiple lifting-line method of Ref. 28, whose wake is 

shed from the lifting line. 

The fixed wake model reaches its converged values after approximately 

20 time steps, whereas the relaxed wake models require roughly 60.  Any 

oscillatory behavior is strongly dampened with the exception of occasional peaks 

of the relaxed wake model that uses the smallest step size of 0.5 percent of the 

wingspan.  Although these outliers are most likely the result of leakage issues in 

the relaxed wake, it is significant to notice that they remain limited in value.  

Overall, the convergence behavior is numerically well behaved and the 

converged forces are relatively independent and robust to the choice of step size 

in the wake.  Within the first 20 time steps, all models are within half-a-percent of 

their converged value.   

The computation time required for the results that are discussed above is 

plotted at the top of Fig. 16.  The computations were performed on a computer 

with dual GenuineIntel processors with processing speeds of 3 Ghz.  The 

computational time increases exponentially as the number of wake elements 

grows with each time step.  Despite the need of nearly five days for the 

simulation of 500 time steps, 20 and 60 time steps only require approximately 5 

and 47 minutes, respectively. 

Based on these results and in order to speed up the simulations, the 

results that are discussed in the following sections were computed with wakes 
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that were modeled with at least 60-time steps, each of which was set to 2 percent 

of the wingspan in streamwise direction. 
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Figure 16: Convergence behavior of drag and lift forces, as well as span-
efficiency factor of a wing with an elliptical chord distribution and straight trailing 
edge using various step sizes in the relaxed wake. 
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4.3 Panel-Density Effects 

The influence of the spanwise paneling density on lift and drag coefficients 

and the span efficiency is shown in Fig. 17.  The wing has an elliptical planform 

with a straight trailing edge and an aspect ratio of seven.  The linear spanwise 

panel distribution varies from 3 to 30 panels per halfspan, with three panels used 

along the chordwise direction of the lifting surface.  The force and span-efficiency 

values rise asymptotically with an increasing number of spanwise panels.  

Although lift and drag appear to be leveling off at the higher panel density in the 

spanwise direction, the span-efficiency factor keeps approaching the theoretical 

value of one. 
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Figure 17: Behavior of lift, drag and span efficiency as function of varying panel 
density in spanwise direction of a wing with an elliptical chord distribution and 
straight trailing edge. 

The effect of varying the panel density in chordwise direction is shown in 

Fig. 18.  The linear chordwise distribution is increased from 1 to 10 panels.  The 

spanwise panel density is 18 panels across the halfspan of the wing.  The 
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computed values are relatively constant for three or more panels in the 

chordwise direction.  
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Figure 18: Behavior of lift, drag and span efficiency as function of varying panel 
density in chordwise direction of a wing with an elliptical chord distribution and 
straight trailing edge. 

4.4 Angle of Attack Effects 

The influence of the angle of attack on the span efficiency is shown in Fig. 

19.  Besides the results that were obtained with the relaxed, force-free wake 

model that uses distributed vorticity elements (thus denoted with subscript DVE), 

the figure also shows the values derived using the multiple lifting-line method of 

Ref. 28.  In the latter case, the span efficiency was computed using two different 

methods that compute the induced drag either in the Trefftz plane28 or along the 

trailing edge of the wing.38  Theoretically, the span efficiency of the elliptical wing 

with a straight trailing edge is unaffected by the change in angle of attack. In the 

numerical application, however, a change is likely to occur at small angles of 

attack due to inaccuracies in computing the small aerodynamic loads.  The span 
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efficiencies of the three models are very similar in value and are relatively 

insensitive towards changes in the angle of attack.  The results of the fixed wake 

models remain constant, whereas the relaxed wake model displays a drop off at 

higher angle of attacks most likely due to the influence of a more strongly rolled-

up wake. 
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Figure 19:  Effect of angle of attack on the span-efficiency factor of a wing with 
an elliptical chord distribution and straight trailing edge; comparison of results of 
the relaxed, force-free model and the multiple lifting-line method of Ref. 28, 
denoted DVE and MLL respectively. 

4.5 Lift Distribution 

The spanwise lift distribution for case of the wing with an elliptical chord 

distribution and a straight trailing edge is plotted in Fig. 20.  The lifting surface is 

modeled with 10, 18, and 36 distributed vorticity elements along the span and 

three along the chord.  Also plotted in this figure is the theoretical case of an 

elliptical lift distribution.  The differences between theory and the calculated 

solution are small and occur mainly in the very tip region, where the second-

order splines of the models fail to follow the infinite slope of the theory.  In order 

to better demonstrate the agreement of the computational method with the 
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theory, the spanwise distributions of the section-lift coefficients are also plotted in 

Fig 20.  The theoretical case, which would be a constant line, is not plotted in this 

figure.  The calculated values of the wing with elliptical chord distribution match 

well the theory and remain constant over most of the span.  Only near the 

wingtip, the calculated values deviate noticeably from the theory, especially in the 

cases with lesser spanwise panel densities. 
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Figure 20:  Comparison of spanwise distribution of lift and lift coefficient of an 
elliptical wing with aspect ratio 7 and different panel densities. 

An example of the chordwise load distribution is shown in Fig. 21 for the 

center section of the wing with an elliptical chord distribution.  The number of 

distributed vorticity elements in chordwise direction is 3, 5, and 10.  In spanwise 

direction, 18 distributed vorticity elements were used across the halfspan of the 

lifting surface.  The local section-lift coefficients essentially represent a 

discretized solution of the differential pressure coefficients between upper and 

lower surface of a flat plate.  Thus for comparison reasons, the solution arising 

from thin airfoil is also plotted in this graph.  The discrete models using 
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distributed vorticity elements agree well with the theory.  As it is to be expected, 

the results obtained using the higher numbers of chordwise elements are in 

better agreement with the thin airfoil-theory results.  Differences occur mainly 

towards the leading edge, at which point the analytical solution approaches 

infinity. 
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Figure 21: Comparison of the theoretical chordwise load distribution of a flat plate 
and the chordwise load distribution at the center section of an elliptical wing with 
aspect ratio 7 that was modeled using distributed vorticity elements.  

4.6 Comparison with Other Methods 

The influence of different planforms with elliptical chord distributions on 

the span-efficiency factor is shown Fig. 22.  In this figure, the results of the 

relaxed wake method that uses distributed vorticity elements are compared with 

the results of other references.  As discussed in Chapter 2.2.4, the multiple 

lifting-line method of Ref. 28 uses a second-order spline for the spanwise 

distribution of the bound circulation.  Its subsequent drag-free wake is modeled 

with semi-infinite vortex sheets that have linear vorticity distributions.  The drag is 
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determined along the trailing edge, the result of which agrees well with the 

Trefftz-plane drag-results, as it has been demonstrated in Figs. 13 and 14.  The 

results of Ref. 44 were derived with a panel code using a force-free and a drag-

free wake model.  The method uses higher-order panels for modeling the lifting 

surface and discrete vortex filaments with solid cores in the wake.  Induced drag 

is computed in the Trefftz-plane after converting the wake-vortex filaments into 

panels whose doublet strengths vary piecewise linearly in the spanwise direction.  

In comparison to the method of Ref. 44, the drag and lift forces of the higher-

order panel-code of Ref. 45 were computed using a surface-pressure integration.  

Similar to the herein introduced method, the code of Ref. 45 models the lifting 

surface and the wake with higher-order elements.  The results of Ref. 40 were 

derived with a panel method that models the force-free wake using discrete 

potential vortices.  The induced drag was computed along the trailing edge, in a 

similar manner as done in the higher-order lifting surface method that is 

introduced here. 

Overall, the different methods agree well over the range of investigated 

wingtip locations.  The force-free results of the distributed vorticity-element 

method are in good agreement with the results of the drag-free wake-models of 

Refs. 28 and 44.  The results of the latter case, however, deviate increasingly 

with more aft wingtip locations.  In that region, the results obtained with the 

method using distributed vorticity elements are in better agreement with those of 

the force-free wake-results of Refs. 40, 44, and 45.  Although the method 

introduced here agrees well with the drag-free results of Refs. 28 and 44 in the 
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case of the unswept quarter-chord line, xt/cr=0.25, noticeably small differences of 

less then two percent exist when compared with the results of the three relaxed-

wake methods of Refs. 40, 44, and 45.  Varying the panel density of the lifting 

surface and in the wake of the distributed vortex-element method has no 

apparent influence on these small differences.  Thus, it is assumed that the 

differences are inherent to the methods, for example due to thickness effects. 

The new method that uses distributed vorticity elements clearly requires 

fewer elements in the spanwise direction in order to achieve an accuracy that is 

similar to the other relaxed wake models of Refs. 40, 44, and 45.  In addition, the 

induced drag computation using the method of Ref. 38 is less sensitive to 

changes in the panel density of the lifting surface and the wake.  
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Figure 22:  Effect of tip location on the span-efficiency factor of a wing with an 
elliptical chord distribution at a lift coefficient of approximately 0.33; comparison 
of results derived with the relaxed, force-free model using distributed vorticity 
elements and other methods of various references. 
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4.7 Comparison with Experimental Results 

It is difficult to distinguish induced drag from the overall drag of an 

experiment.  Even the adjustment with skin-friction and pressure drag 

assumptions is likely to have larger inaccuracies than is required for the 

assessment of a potential flow method.  Thus, in order to assess the new method 

that uses distributed vorticity elements, other physically measurable phenomena 

are used for comparison purposes.  Such observable facts are, for example, the 

shapes of the shear layers in the wake, the circulation in the rolled-up tip vortex, 

and crossflow velocity fields. 

4.7.1 Shear-Layer Shape 

One of the objectives of the method presented herein is to predict the 

shape of the wake accurately.  A comparison between experimental46,47 and 

computational results of the wake shapes that are shed by a rectangular wing 

with an aspect ratio of 2.4 is shown in Fig. 23.  In this figure, the calculated 

shear-layer cross-sections of the wake are superimposed onto the corresponding 

photographic results presented in Ref. 46.  The wing of the computation model 

was modeled with one row of 42 distributed vorticity elements in spanwise 

direction. The wake extends for 250-time steps 12.5 spans downstream.  The 

original photograph was produced using hydrogen bubbles to visualize the shear 

layer of the wake coming of the wing.  In the experiment, the wake separates 

from the wing surface just aft of the mid-chord.46,47  The angle of attack is 9 

degrees.  Although the shed vortex sheet is initially turbulent, it has largely 
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relaminarized at the locations of the pictures in Fig. 23, which are 5.5, 11.2, and 

21-chord lengths downstream of the trailing edge.46,47 

   

Figure 23: Computational and experimental47 wake shapes of a rectangular wing 
with aspect ratio 2.4.  The cross sections of the wake are 5.5, 11.2, and 21-chord 
lengths downstream of the trailing edge region.  

In general, the theoretical and experimental shapes of the trailing shear 

layers agree well, especially in the locations of the rolled-up tip vortex.  

Differences exist, however, towards the center of the wing, most likely due to the 

flow being separated on the wing and the initially turbulent wake of the 

experiment.  The turbulent wake and its finite thickness have lesser downwash 

effects than the theoretical wake model with zero thickness.  This effect is more 

dominant along the centerline, where the thinning of the initially turbulent wake-
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vortex sheet takes longer than near the tip vortices with its higher induced 

velocities.  Consequently, experiment and theory agree better in that region.  

As it can be observed in Fig. 23, the shear layer of the theoretical wake 

intersects with itself as it rolls-up into the tip-vortex.  This behavior is not 

necessarily physical.  In reality, the high velocity gradients and viscosity result in 

dissipation and a reduction of induced velocities in the vortex core.  

Nevertheless, even the irrotational model shows a reduction in induced velocities 

towards the center of the tip vortex, as becomes apparent from the overlaid 

crossflow velocity-vector field in Fig. 23.  More importantly, the numerical solution 

is well behaved despite the self-intersection.  This is an excellent example of the 

numerical robustness of the method using distributed vorticity elements, which 

allows the self-intersection of its potential flow solutions in the wake without 

singularity issues.  This robustness is achieved without any violations of the 

irrotationality assumption of potential flow, as is the case, for example, with solid 

cores models. 

4.7.2 Circulation Concentration in Tip Vortex 

Another comparison of the distributed vorticity-element method with 

experimental results is shown in Fig. 24.  In the wind-tunnel experiment, 

rotational speeds were measured with a vorticity meter in four transverse planes 

behind the 1/12-model of an L-19 wing.48,49  In contrast to that, the computational 

results show contours of the crossflow velocities in the same four transverse 

planes that are 1, 2, 3 and 4 inch aft of the trailing edge.  The root chord of the 

wing is 5.33 inch.  For the computation, the wing geometry, the free-stream 
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velocity of 110 ft/sec, and the angle of attack of 12˚ are matched with the 

experiment.  The theoretical model used 25 distributed vorticity elements along 

the halfspan. 

The theoretical model predicts the location of the rolled up tip vortex quite 

well, although its exact position is difficult to determine.  The agreement with the 

experiment exists despite the closeness to the trailing edge of less than a chord 

and, thus, the presence of lingering viscous effects in the wake of the 

experiment.  Those effects are indicated by the significant rotational speed 

contours that were measured further inboard from the wingtip.  They are caused 

by the shear layer coming off the trailing edge that is not rolled up in the tip 

vortex, yet.  The locations of the shed shear layer of the experiment coincide with 

the locations of the vortex sheet of the theoretical prediction that are indicated 

with dash-dotted lines in Fig. 24.   

The experimental and theoretical amounts of circulation that are 

concentrated in the rolled-up portions of the wakes agree reasonably well.  

According to Ref. 48, the circulation concentrated the tip vortices is 

approximately 18.4 ft2/sec in the four transverse planes.   The corresponding 

values of the theoretical model are determined by computing the contour integral 

of Eq. 1 along the 17.5 ft/sec contour lines.  The subsequent results yield 

circulation values of 21.8, 19.1, 26.3, and 24.5 ft2/sec in the four transverse 

planes that are 1, 2, 3, and 4 inch aft of the trailing edge, respectively.  A more 

consistent agreement with the experiment is found for the 3 and 4 inch 

transverse planes if the integration path along the 17.5 ft/sec contour line is 
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modified along the thick, dashed lines in Fig. 24.  In those cases, the circulation 

values are 20.1 and 20.4 ft2/sec, respectively. 
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Figure 24:  Crossflow-velocity and constant rotational speed contours in four 
transverse planes behind the trailing edge of a 1/12-model L-19 wing.  The 
crossflow velocities on the left are of computational origin using distributed 
vorticity elements, whereas the experimental data on the right were measured 
with a vorticity meter.48,49 
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4.7.3 Crossflow Velocities 

A good quantitative measure of the force-free, potential-flow method that 

uses distributed vorticity element is given in Fig. 25.  The figure shows the 

experimental50 and theoretical crossflow velocity-vector fields that are located 

approximately two-wingtip chords, or approximately 32 inches, behind the trailing 

edge of a wind-tunnel model of a second-generation jet-transport wing having 

half span of 156 in.  A top view of the wind-tunnel model is shown in Fig. 26.  As 

part of an investigation of the effectiveness of winglets, crossflow velocity-vector 

fields were measured with a special wake rake.  The computational wing model 

consists of one row of 40 distributed vorticity elements in the spanwise direction.  

The planform geometry and twist are the same as those of the original tests. 

The two vector fields agree comparatively well in magnitude and direction.  

The major differences appear to be the locations of the centers of rotation and 

the shear-layers.  The greatest differences exist near the centers of rotations, 

where the velocity gradients become large.  Thus, small numerical errors and the 

influence of viscosity in the experiment dominate and can cause some 

deviations.  To aid the comparison, the computed wake has been adjusted 

upwardly by 3.5 inches in Fig. 25.  A plausible explanation for the small vertical 

offset of the wakes is that the wind-tunnel model wing bends approximately 1.5° 

under the aerodynamic loads, whereas the theoretical model remains rigid.  

Further inaccuracies are introduced by differences in the spanwise circulation 

distributions as well as in the streamwise location of the crossflow surveys. 
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Figure 25: Computational and experimental50 crossflow-velocity vectors 
approximately two-wingtip chords behind a second-generation jet-transport wing, 
M∞ = 0.700, CL = 0.53. 

  

Figure 26: Top view of wind-tunnel model with a 156-in half-span that was used 
for crossflow measurements.50  The experimental and computational surveys 
whose results are shown in Fig. 25, were performed approximately two wingtip 
chords or 32 inches behind the trailing edge in the wingtip region.   
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5 Sample Applications 

In this section, several sample applications demonstrate the potential and 

numerical robustness of the relaxed wake method that uses distributed vorticity 

elements.  In particular, the examples show the advantage of modeling wakes 

with vortex sheets that are allowed to rollup.  Despite very strong interactions 

between different wakes and lifting surfaces, the numerical solutions are 

extremely well behaved. 

5.1 Wing-Horizontal Tail Interactions 

The higher-order lifting-surface method that uses distributed vorticity 

elements is used to investigate the wing-horizontal tail combination of a small, 

low-cost uninhabited aerial vehicle, or UAV.  The UAV considered here is meant 

as a cost effective alternative for the inspection of pipelines or power lines.  The 

aircraft has a maximum takeoff weight of 55 pounds, a range of 200NM, and 

cruises at approximately 50kt.  In order to simplify transport and handling, the 

maximum dimension of the stowed aircraft is 5ft.  For this purpose, the 8ft wing 

has 1.5ft wingtips that are foldable.  Several wing-horizontal tail geometries are 

investigated for their induced drag at cruise and potential maximum lift for takeoff 

and landing.   

Three wing-horizontal tail configurations were investigated.  The basic two 

planforms are shown in Fig. 27.  Wing 1 has a rectangular planform that was 

investigated with and without 3º washout.  The second planform, wing 2, has 

three trapezoids per halfspan, with taper breaks at y/b = 0.35 and 0.475.  Both 
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wing planforms have the same area as well span and, consequently, identical 

aspect ratios of 8.  The horizontal-tail area is an eighth of the wing area and has 

an aspect ratio of 4.  Its taper ratio is 1/3.  All surfaces have straight trailing 

edges. 

The computations were performed with 20 distributed elements across the 

halfspans of the main wings and five across the halfspan of the horizontal tail.  

Only one chordwise row was used.  The streamwise step size in the wake was 

0.025b.  The convergence criterion for developing the wake was a change in 

span efficiency of less than 0.0001.  In the case of the wing-horizontal tail 

combinations, the lift and induced drag forces were computed for each surface.  

In order to achieve longitudinal trim, the horizontal-tail incidence-angle was 

iteratively adjusted until the residual pitching moment was less than 0.005.   
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Figure 27:  The planforms of the wing-horizontal tail geometries that were 
investigated.  Wing 1 was examined with and without 3º washout.  Wing 2 has no 
twist. 

The span efficiencies of the individual lifting surfaces alone are plotted in 

Fig. 28.  The three wing geometries, as well as the horizontal tail, have 
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efficiencies that are close to unity.  Very obvious is the sharp drop-off in the span 

efficiency that can be observed for wing 1 with washout at lift coefficients less 

than 0.4.  Wing 2 performs best with respect to its span-efficiency factor over the 

investigated lift range. 
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Figure 28:  Span efficiency versus lift coefficient of the different surfaces alone.   

The corresponding normalized spanwise circulation distributions are 

plotted in Figs. 29 and 30 for the lift coefficients of cruise and high lift, 

respectively.  Also shown in both plots are elliptical distributions.  Wing 1 with 3º 

washout and wing 2 follow the elliptical distributions relatively closely.  All three 

versions exhibit an increased tip loading in comparison to the elliptical circulation 

distribution. 
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Figure 29: The normalized, spanwise circulation distributions of the different wing 
geometries at the cruise-lift coefficient.    
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Figure 30: The normalized, spanwise circulation distributions of the different wing 
geometries at high lift. 

At high angles of attack, the spanwise lift distribution is of great interest 

with regard to predicting the stall behavior of the wing.  Due to the relatively low 

chord Reynolds numbers, that range from approximately 350,000 at slow speeds 

to roughly 500,000 at cruise, the maximum lift coefficient of the chosen airfoil is 
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limited to about cl max = 1.2.51  As shown in Fig. 31, approximately three-quarters 

of the span of wing 1 operates beyond that maximum lift coefficient, whereas 

wing 2 is largely within the limits.  Thus, wing 2 has a lower stall speed or, 

alternatively, requires less wing area for the same stall speed as wing 1.  The 

subsequent smaller wing area would have less cruise drag than the larger wing 

1. 
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Figure 31: The normalized, spanwise lift distributions of the different wing 
geometries at high lift. 

In order to assess their performances, each wing-horizontal tail 

configuration is trimmed for the different angles of attack by iteratively adjusting 

the horizontal tail-incidence angle until the longitudinal pitching moment is less 

than 0.005.  Each configuration has a 10-percent static margin.  The wings have 

zero-lift moment-coefficients of -0.1.   

In this study, the neutral point location was determined by finding the 

center of gravity location with a zero diht/dCL-derivative.  This approach is very 

similar to what is done in flight test.  It requires the determination of longitudinal 



73 

trim solutions of different center of gravity locations, as shown as an example in 

Fig. 32 for the wing 1-horizontal tail configuration.  In this figure, the horizontal-

tail incidence-angles for trim, iht, are plotted over the angle of attack range of 

three different center of gravity positions.  Unlike in flight test, the computational 

approach safely allows center of gravity locations aft of the neutral point.  

Subsequently, the zero-diht/dCL derivative is determined through a simple 

interpolation, as shown in Fig. 33, in which the horizontal-tail incidence-angle 

derivatives are plotted for different centers of gravity.  The neutral points of the 

three configurations that were investigated in this study are located 

approximately at the midchords of the wing roots. 
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Figure 32: Horizontal-tail incidence-angles for trim at different lift coefficients and 
center-of-gravity locations of Wing 1 without washout. 

  

 



74 

 

xCG/cmac upstream of 

wing-trailing edge

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

diht/dCL [
o]

-20

-10

0

10

20 Wing 1, no washout
Wing 1, 3o washout
Wing 2

 

Figure 33: Horizontal-tail incident-derivatives at different center-of-gravity 
locations. 

An example of the shape of the vortex sheets that are shed by the wing 2 

and its horizontal tail is shown Fig. 34.  The trailing edge of Wing 2 is located at 

the top of the figure.  The figure does not depict any of the lifting surfaces and 

only the right half of the wake is shown.  Clearly visible is the rollup of the 

waketip of the wing on the right of the figure.  Furthermore, because of the 

download carried by the horizontal tail, its wake induces upwash, although it is 

relatively small.  Thus, the horizontal tail-wake tip rolls downward.  Despite the 

relatively small velocities induced by the tail, the main wake is deformed in this 

region, especially where the horizontal tail-tip wake interacts. 
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Figure 34:  Looking upstream along the vortex sheets that are shed into the wake 
from Wing 2 and its horizontal tail under trimmed conditions at CL = 0.6.  The 
wing-trailing edge is at the top of the figure.  The left edge of the vortex sheet that 
is depicted in the figure borders the symmetry plane of the wing-horizontal tail 
configuration. 

The computed combined span efficiencies of the wing-horizontal-tail 

configurations are plotted in Fig. 35.  The lift-coefficients of the horizontal tails 

that are required for trim at the corresponding lift coefficients are plotted in Fig. 

36.  The most significant result is the sharp drop-offs of the span efficiencies at 

the lower lift coefficients.  Although the three wings have circulation distributions 

close the ideal one, as shown in Fig. 37 for a lift coefficient of 0.6, the relatively 

large downloads at the horizontal tails that are required for trim are detrimental to 

the overall efficiencies of the wing-horizontal tail configurations.  In particular, the 

span efficiencies of wing 1 without twist and wing 2 suffer under the relatively 

large tail load at lift coefficients less than 0.5. 
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Figure 35:  Span efficiency versus lift coefficient of the different wing-horizontal 
tail configurations.   

 

CL

0.2 0.4 0.6 0.8 1.0 1.2 1.4

C*
L HT

-0.2

-0.1

0.0

0.1

0.2

Wing 1, no washout
Wing 1, 3o washout

Wing 2

10% Static Margin

 

Figure 36: Horizontal-tail lift-coefficients required for trim of the three wing-
horizontal tail configurations with 10%-static margin.  The horizontal-tail 
coefficient is with respect to the tail-surface area. 
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Figure 37: The normalized, spanwise circulation distributions of the different wing 
geometries at the cruise-lift coefficient. 

The detrimental influence of the horizontal tail subsides at higher lift 

coefficients, as indicated in Fig. 35.  At a lift coefficient of 0.8 and higher, the 

wing-horizontal tail configurations of wing 1 without twist and wing 2 perform as 

well as the wings independently, as observed by comparing the results presented 

in Fig. 35 with those of Fig. 28.  The normalized spanwise circulation distributions 

that the different surfaces produce at a lift coefficient of 1.2 are plotted in Fig. 38.  

In the case of the wing 2 configuration, the high efficiency of the nearly elliptical 

circulation distribution of the main wing is largely undisturbed by the tail surface 

and its relatively small amount of circulation.  The additional lift produced by the 

horizontal tails of the Wing 1 configurations, as shown in Fig. 39 for CL=1.2, is 

relatively insignificant, especially when considering that the lift coefficients in this 

plot are with respect to their corresponding surface areas.  Thus, they contribute 

only very little to the overall lift and cannot compensate for the loss in lift of the 

main wings that are possibly stalled for a large part. 
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Figure 38: The normalized, spanwise circulation distributions of the different 
wing-horizontal tail configurations at high lift. 
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Figure 39: The normalized, spanwise lift distributions of the different wing-
horizontal tail configurations at high lift. 

In summary, of the configurations considered, wing 2 satisfies best the 

requirements for the UAV.  As shown in Fig. 40, this wing planform has a high 

span efficiency at high lift coefficients, where induced drag is most significant.  

Only a moderate induced-drag penalty is paid at a cruise-lift coefficient of 0.6, 
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especially when considering that induced drag is proportional to the square of the 

lift coefficient.  Beneficial of this wing planform is its efficient lift production at high 

lift.  As is also apparent from Fig. 40, the use of the relaxed wake model has only 

a small influence on the computed span efficiencies of the wing-horizontal tail 

configurations.  A fixed, drag free wake model underestimates the span-

efficiency factor by roughly one percent. 
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Figure 40: Span efficiencies of wing 2 with and without horizontal tail. 

Independent of the wake model, the performance of wing 2 with a 

horizontal tail is considerably worse than that of the plain wing at lower lift 

coefficients, as it is apparent in Fig. 40.  This loss in performance is primarily due 

to the penalty of trim drag.  At the lower lift coefficient, the horizontal tail caries a 

considerable download, as it is visible in Fig. 41.  Consequently, the main wing 

has to work harder and the overall induced drag performance of the configuration 

suffers.   Possible ways to reduce this degradation at low lift coefficients are 

either a reduction of the zero-lift pitching moment of the wing with a trailing edge 
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flap that is deflected upward, or with a more aft location of the center of gravity.  

The latter is, however, limited by the flight control system, whereas the former 

might carry a profile-drag penalty, especially at higher flight speeds. 
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Figure 41: The normalized, spanwise lift distributions of the wing 2 with and 
without a horizontal tail at lower lift coefficients. 

5.2 Formation Flight 

Formation flight can increase the span efficiency of a system of flight 

vehicle considerably.52  As migrating birds demonstrate on a regular basis, a 

significant amount of effort can be saved by flying in the upwash field that exists 

beyond the rolled up tip vortices of a leading aircraft or bird.  Such upwash fields 

are visible in Figs. 23 and 25.  Ultimately, the upwash tilts the lift vector of the 

follower forward and, thus, reduces its induced drag.  The induced drag 

reduction, however, is not limited to the follower, since the leader is similarly 

subjected to the upwash field that the bound circulation of the follower produces.  
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Obviously, this effect is less pronounced and decreases quickly with increasing 

streamwise spacing in the formation.   

Especially with regard commercial aviation, formation flight has the 

potential of improving the span efficiencies without the structural and aeroelastic 

issues that usually accompany high aspect-ration wings.  With modern flight-

control systems a close enough, but safe, spacing has become feasible in order 

to realize the performance benefits of formation flight.   

Modern competition sailplanes commonly make use of the advantages of 

formation flight.  Besides extending their gliding range, formation flight helps in 

the detection of thermals.  An example of such a formation is shown in Fig. 42, 

with two Standard Cirrus sailplanes. 

A formation of two such sailplanes was investigated using the relaxed 

wake method with its distributed vorticity elements.  The wing of the Standard 

Cirrus has a span of 15 meters and an aspect ratio of 21.9.  Its wing has 3º 

dihedral, and the planform consists of two trapezoids per halfspan with taper 

breaks at about 60-percent of the halfspan.  The outer wing panel has 1.5º 

washout.  The formations investigated were separated by half a span in 

streamwise direction.  Several lateral separations were assessed at a lift 

coefficient of approximately 0.58, which is slightly less than the lift coefficient of 

the best lift-to-drag ratio.  The lateral separations that were considered ranged 

from the aircraft centerlines being inline to being 1.2 spans apart.  The vertical 

spacing was zero.  Each aircraft wing was modeled with 20 distributed elements 

in the spanwise and one in the chordwise directions.  In the wake, the 
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streamwise length of the distributed vorticity elements was 2.7-percent of the 

span.   

  

Figure 42: Two Standard Cirrus sailplanes in formation flight. 

In the case of a lateral offset in the formation, both aircraft must be 

trimmed for roll.  Primarily, the wake of the lead aircraft interacts with the lifting 

surface of the follower, although the follower aircraft, especially its bound 

vorticity, has a limited impact on the lift distribution of the lead aircraft.  

Obviously, the latter interaction diminishes quickly with increasing streamwise 

distance between the aircraft.  The rolling moments are adjusted by changing the 

incidence angles of the outer wing panels, in the present case, using the outer 

40-percent of the span, which corresponds with the location of the ailerons.  

Similar to an aileron deflection, the incidence angles are adjusted in opposite 

directions on the left and right outer panels.  In addition to roll, the pitch attitude 

of the follower aircraft must be adjusted in order to match the speeds of the two 

aircraft.  Thus, three separate iteration loops are required to obtain a converged 

wake shape, zero rolling moment, and matched lift coefficients.    
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The computed span efficiencies of the formations with varying spanwise 

stagger are plotted in Fig. 43.  Shown are the span efficiencies of each wing and 

of the combined formation.  The combined value is not necessarily the simple 

average of the two single span efficiencies, rather, when both aircraft operate at 

the same lift coefficients and have equal wing areas, the total efficiency of the 

formation is related to the single efficiencies of each aircraft by: 
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As expected, the formation has its worst performance when the following 

aircraft is directly in the wake of the leader.  Even the lead aircraft performance 

suffers slightly with a span efficiency of 0.88 in comparison to nearly one of a 

single aircraft.  The follower-aircraft span efficiency is 0.37.  This value improves 

considerably as the aircraft start to move apart in the spanwise direction.  Even 

the lead aircraft performance improves slightly as both aircraft move apart.  

Primarily, however, the follower aircraft benefits from the performance gains.  

When the aircraft are spaced laterally by one span, the follower span efficiency 

becomes nearly twice as good as that of the base wing alone.  A further increase 

in spanwise spacing reduces the gains in span efficiency.   
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Figure 43: The span efficiency of a formation of two Standard Cirrus sailplanes 
that are half a span apart in streamwise direction with different lateral spacings. 

The largest differences due to the wake model exist when the tip regions 

of the wakes interact, as shown in Fig.  44.  This figure shows the shapes of the 

computed, free vortex sheets that are shed by the two-wing formation with a 

lateral spacing of Δy=b.  Although the computed performance of the lead aircraft 

does not depend significantly on the wake model, the span efficiency of the 

follower aircraft exhibits some differences, as presented in Fig. 43.  The fixed, 

drag-free wake model results in an approximately 7.5-percent higher span 

efficiency than is predicted using the free wake model.  A further notable 

difference between the results of the two wake-models can be observed in Fig. 

43 for the case of the aircraft centerlines being aligned.  The fixed, drag-free 

wake model slightly underestimates the span efficiency.  On the other hand, 

cases having a large overlap do not necessarily result in significant differences in 

predicted efficiencies, despite the strong interaction between the vortex sheets.  

The shapes of the computed, free vortex sheets of such the formation with a 
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lateral spacing of Δy=b/2 is shown in Fig. 45.  Despite the obvious strong 

interaction, the span efficiencies of both wake models are essentially equal in 

Fig. 43.   

  

Figure 44:  Looking upstream along the vortex sheets that are shed by the wings 
of a two Standard Cirrus sailplanes that are flying in formation with a lateral 
spacing of Δy=b.  The trailing edges of the wings, which are not shown in the 
figure, are located at the top of the figure.   

  

Figure 45:  Looking upstream along the vortex sheets that are shed by the wings 
of a two Standard Cirrus sailplanes that are flying in formation with a lateral 
spacing of Δy=b/2.  The trailing edges of the wings, which are not shown in the 
figure, are located at the top of the figure.   

The span efficiency of the follower aircraft in the formation with a lateral 

spacing of Δy=b/2 is greatly compromised by the control inputs that are needed 
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to compensate for the rolling moment resulting from the interaction with the lead 

aircraft wake.  The required control inputs are plotted in Fig. 46 for the different 

lateral spacings.  The predicted control inputs are essentially identical for the 

fixed and relaxed wake models.  The pitch adjustment in order to match the lift 

coefficients of both aircraft is relatively small.  The exception is the case without 

any lateral spacing, when the follower aircraft has to increase its pitch attitude by 

almost 1º in order to compensate for the downwash that the lead aircraft wake 

induces.  As expected, the roll corrections required by the lead aircraft are small.  

The lead aircraft of the Δy=b/2 formation, however, requires a small amount “right 

aileron” or Δitip=0.05º in order to compensate for the upwash field that the bound 

vorticity of the follower aircraft induces on the lead aircraft right wing.  In contrast 

to that, the follower aircraft in the same formation has to adjust its outer 40-

percent span with a differential incidence angle of Δitip=1.17º.  This corresponds 

to the amount of “right aileron” that is needed to compensate for the flow field 

that the wake of the lead aircraft induces onto the follower.  The “aileron” 

correction is greatly reduced and reversed as the lateral spacing is increased. 
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Figure 46: The required control inputs for trimmed flight of a formation of two 
Standard Cirrus sailplanes with different spanwise staggers and that are half a 
span apart in streamwise direction. 

The detrimental effect of the relatively large roll correction of the follower 

aircraft of the Δy=b/2 formation also becomes apparent in the spanwise 

circulation distribution that is plotted in Fig. 47.  This figure shows the normalized 

spanwise circulation distribution of the base wing alone, as well as those of the 

follower aircraft that are in formations with lateral spacings of half a span and one 

span.  The large changes in spanwise circulation distribution of the Δy=b/2-

formation results in a relatively large induced drag penalty that offsets any 

possible gains of this formation, as is indicated in Fig. 43.  Additionally, the 

spanwise variation of the induced drag results in an adverse yawing moment 

because of the spanwise variation of the induced drag.  Although not considered 

in the results that are discussed here, the rudder input for compensating the 

adverse yaw would result in additional drag and compound the performance 

penalty.  
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In contrast to that, the follower aircraft of the formation with a lateral 

spacing of Δy=b benefits from the upwash field of the lead aircraft wake without 

the need of any large aileron inputs, as apparent in Fig. 46.  Thus, its adverse 

yaw penalty should be much smaller as well, as is suggested by its spanwise lift 

distribution in Fig. 47.  The spanwise lift distribution is indeed relatively close to 

that of the base wing.  In addition to the greater performance gain, the larger 

spacing of this formation ensures a safer operation than the closer formation 

would. 
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Figure 47: The normalized, spanwise circulation distributions of the following 
aircraft of a two aircraft configuration with varying lateral spacing.    

 



89 

6 Conclusion 

A higher-order, lifting-surface method is introduced that uses elements 

with distributed vorticity in order to model lifting surfaces as well as the vorticity 

that is shed into the wake.  One or several spanwise systems consisting of such 

elements are used to model the lifting surface.  The elements are placed along 

the zero-lift plane of the wing, thus essentially making this a vortex-lattice 

method.  In the wake, the distributed vorticity elements are displaced with the 

local flow field in order to realize a force-free wake.  The induced drag is 

computed along the trailing of the lifting surfaces by applying the Kutta-

Joukowsky theorem using the velocity induced there by the wake and the 

vorticity that is shed from the wing at this location.   

The new method shows good agreement with the elliptical-loaded wing 

results of the classical lifting-line theory.  Likewise, good agreement exists when 

results of the method are compared with those of other theoretical methods.  In 

addition, this agreement is reached using considerably fewer panels than the 

other methods considered.  In particular, the drag computation along the trailing 

edge is less sensitive to paneling-density variations of the lifting surface and in 

the wake.  The most apparent advantage of the reduced number of panels 

required is an increase in computational speed. 

In comparison with experimental results, the newly developed method 

yields similar flow fields in the wake of a wing.  It identifies correctly the location 

of the tip vortex and of the shear layer behind the wing-trailing edge.  Besides the 

qualitative assessments, the method predicts the amount of circulation that is 
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concentrated in the tip vortex well, and also yields very good agreement with the 

experiment when comparing the actual crossflow-velocity vector fields in the 

wake.  

Besides its accuracy, the biggest advantage of the new method over other 

potential flow methods is its numerical robustness despite the free-force wake 

model.  The relaxed wake that is modeled as a vortex sheet rolls up without any 

of the erratic behavior common to many other singularity methods.  

Simultaneously, the numerical stability is achieved without compromising the 

potential flow assumptions, as, for example, it is the case with models that use 

vortices with solid cores.  Thus, even multiple wing systems can be modeled 

easily and correctly, since the distributed vorticity elements induce finite 

velocities throughout the entire wake.  Consequently, the rollup is extremely 

stable, even when the wake-vortex sheet intersects itself and an increasing 

amount of it becomes concentrated in the tip-vortex region.   

Overall, the numerical accuracy and stability of this method make it 

suitable for applications with strong interactions between the lifting surfaces and 

their subsequent wakes.  Because the method is capable of modeling wakes for 

long distances downstream without problems with singularities, it is well suited 

for the adaptation to the modeling of wake interactions with regard to helicopter 

rotors.  Thus, it could be useful for dealing with rotorcraft issues, such as blade-

vortex interactions and vibratory loadings.  Likewise, its extension to a panel 

method that models the thickness of the wing is desirable.  In order to streamline 

the computational effort, it might be possible to modify the induced drag 
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computation.  This modification would take advantage of the Kutta condition that 

has to be satisfied along the trailing edge and, thus, determines the bound 

vorticity.  The Kutta condition might allow the substitution of the velocities that the 

wake elements induce along the trailing edge with a combination of the free-

stream velocity and the velocities induced by the surface elements.  

Consequently, the computational speed could be further improved, since there 

are generally fewer surface than wake elements. 
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Appendix 1: Induced Velocities of a Vortex Filament with a Parabolic Circulation 

Distribution 

The solution of the integral of Eq. 5 yields the velocity at a point that is 

induced by a vortex filament having a parabolic circulation distribution in 

spanwise direction, 2CBA η+η+=Γ .  As described in Ref. 28, the analytical 

integration can be written in the following way: 
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Point P0( 000 ,, ζηξ ) is expressed with respect to the local reference frame of the 

vortex filament as indicated in Fig. A1-1.   

In accordance with Ref. 28, the coefficients in Eq. A1-1 are computed 

using the following relationships: 
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The coefficients )(rand,c,b,a 111 η  are: 
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Figure A1-1:  Local reference frame of a vortex filament. 
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Appendix 2: Induced Velocities of a Semi-Infinite Vortex Sheet with a Linear 

Vorticity Distribution 

The integral in Eq. 6 yields the velocity at a point that is induced by a 

semi-infinite vortex sheet having a linear varying vorticity distribution in spanwise 

direction, C2B η+=γ .  As described in Ref. 28, the analytical integration can be 

written in the following way: 
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Point P0( 000 ,, ζηξ ) is expressed with respect to the local reference frame of the 

semi-infinite vortex sheet as indicated in FigA2-1.   

In accordance with in Ref. 28, the coefficients in Eq. A2-1 are computed 

using the following relationships: 
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The remaining relationships are also according to Ref. 28.  The only 

extension is the positive constant k in Eqs. A2-5 and A2-9, which is part of the 

treatment of the singularities along the side edges of the semi-infinite vortex 

sheet as discussed in Chapter 3.1: 
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where k is a positive constant.  The special case k=0 is the original solution that 

is introduced in Ref. 28.  Furthermore: 
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 1227 ttG −=  (A2-11) 

The coefficients a2, b2, c2, and the variable r(t)  are: 
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The remaining variables of Eq. A2-2 are defined in the following way: 
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Figure A2-1:  Local reference frame of a semi-infinite vortex sheet. 
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Appendix 3: Induced Velocities of a Distributed Vorticity Element 

The influence that a distributed vorticity element with index j has at a 

particular location P( ζηξ ,, ) is the compounded induction of two vortex filaments 

and two semi-infinite vortex sheets, as indicated in Fig. 11.  Point P is expressed 

in the local reference frame of the distributed vorticity element as depicted in Fig. 

10.  The same figure shows the general relations and characteristics of the 

distributed vorticity element.  The transformations between the local and global 

reference frames are listed in Eqs. 9 and 10.  The subsequent induced velocity 

is: 

 

( ) ( ) ( )

( ) ( )
.e.tjjjj2.e.ljjjj2

.e.tjjjjj1.e.ljjjjj1j3
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ϕ−−−ζηξ+ξ+ϕζηξ−ξ=ζηξ

 (A3-1) 

The velocities that the vortex filaments, 1w , and the semi-infinite vortex 

sheets, 2w , induce, can be computed with the methods listed in Appendices 1 

and 2, respectively.  The computed velocities are expressed with respect to the 

local reference frame of the distributed vorticity element.  The transformation into 

the global coordinate system is similar to the one in Eq. 10: 
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Under steady conditions, the vorticity remains constant in the streamwise 

direction.  Thus, the influence of a vortex filament that, for example, is located 

along the leading edge of a distributed element is canceled by the influence of 

the filament along the trailing edge of the element that is directly upstream.  

Similarly, the influence of the vortex filament along the trailing edge is canceled 

by the leading edge vortex filament of the next distributed vorticity element 

downstream.  Consequently, the first two terms on the right-hand side of Eq. A3-

1, are disregarded in the wake, simplifying the velocity computation. 
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Appendix 4: Determining the Bound Circulation 

In order to determine the circulation coefficients, A, B, and C, of distributed 

vorticity elements of a lifting surface, three boundary conditions are needed.  The 

first one is the kinematic flow condition that requires the flow to be tangential to 

the surface at the control points of the bound distributed vorticity elements: 

 0nwnV iii =⋅+⋅∞  (A4-1) 

The index i denotes the control point at which the kinematic flow condition is 

satisfied.  ni is the local surface normal and V∞ the velocity of the free stream.  

The velocity, wi, that is induced at control point i consists of two components: one 

that is induced by the distributed vorticity elements of the lifting surface, wi surface, 

and one that is induced by the distributed vorticity elements of the wake, wi wake.  

Since the latter induced velocity depends on the vorticity that has been shed into 

the wake during the previous time step, Eq. A4-1 can be separated into known 

and unknown velocity components: 

 iwakeiiisurfacei nwnVnw ⋅−⋅−=⋅ ∞  (A4-2) 

The velocity induced by the wake at the control point i is, wi wake, is: 

 ∑=
waken

j
i000j3i000wakei )z,y,x(w)z,y,x(w  (A4-3) 

where w3j is the velocity component that the j-th wake element induces at the i-th 

control point.  The wake consists of nwake distributed vorticity elements.  Each 

velocity component, w3j, is computed as described in Appendix 3 using the wake 

vorticity distribution of the previous time step.  The velocities induced by the 
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nsurface distributed vorticity elements of the lifting surface at the control point i 

remain unknown for now: 

 ∑=
surfacen

j
i000j3i000surfacei )z,y,x(w)z,y,x(w  (A4-4) 

The velocity that the j-th surface element induces at the i-th control point 

is: 
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This velocity can be transformed from the local reference frame of the j-th 

element to the global frame using Eq. A3-2.  Similar to the description in 

Appendix 3, the influence coefficients, a3, b3, and c3, are the compounded result 

of two vortex filaments and two semi-infinite vortex sheets.  Thus, Eq. A4-5 can 

be rewritten as: 
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The influence coefficients in Eq. A4-6, a3, b3, and c3, can be transformed to the 

global reference frame with Eq. A3-2.   
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Ultimately, Eq. A4-2 leads to nsurface linear equations when combined with 

Eqs. A4-3 and A4-4.  Further boundary conditions are required, however, in order 

to solve for the 3nsurface unknown circulation coefficients of the distributed vorticity 

elements of the lifting surface.  In a manner similar to that of the multiple lifting 

line method of Ref. 28 and as shown in Fig. 5, the spanwise continuity of the 

bound circulation and of the vorticity provides the additional 2nsurface equations.  If 

indices i and i+1 denote the properties of two neighboring distributed vorticity 

element of the lifting surface, their circulations and vorticities are equal at their 

joined border: 

 0CBACBA 1i
2

1i1i1i1ii
2
iiii =η−η+−η+η+ +++++  (A4-7) 

 0C2BC2B 1i1i1iiii =η+−η+ +++  (A4-8) 

The circulation of a distributed vorticity element that is located at the 

wingtip becomes zero, thus: 

 0
2 =η+η+ tiptiptiptiptip CBA  (A4-9) 

Equations A4-2 through A4-9 can be formulated in matrix form: 

 [ ] { } { }RxE =⋅  (A4-10) 

The influence matrix [ ]E  depends solely on the wing geometry and has 3nsurface x 

3nsurface elements.  The vector { }x  consists of the unknown circulation coefficients 

of the lifting surface elements, A, B, and C.  One third of the elements of the 

resultant vector { }R  depend on the scalar products of the local surface normal 

and the sum of the free-stream and wake induced velocities.  The remaining 

2nsurface elements are zero.   
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The system of 3nsurface equations can be solved for the vector { }x  using 

either a Gaussian algorithm or a lower-upper decomposition.  The latter method 

reduces the number of computational steps, especially for a time-stepping 

application. 
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