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By a new technique, we have found another nonlinear evolution equation which can be 
solved exactly by inverse scattering techniques. This equation has a cubic :nonlinearity 
added to the Boussinesq equation and· can .also be derived from the water-wave equations. 
This eigenvalue problem differs from any studied before, but in some ·aspects it is similar to, 
the sine-Gordon eigenvalue problem in laboratory coordinates. Also, the .solution to the 
inverse scattering problem is given. . ' 

§ 1. Introduction 

In a recent paper, Zakharov1> has demonstrated that the Boussinesq equation2>. 3> 
might be solvable by an "inverse scattering transform" .. 4> ·He has found an eigen
value problem and a time evolution operator which has the Boussinesq equation 
as the integrability condition: However, since this eigenvalue problem is third 
order, the inverse scattenng problem is much -more complicated and is still to be 
solved. The Boussinesq equation is dezivable from the water-wave equations. It 
is indeed interesting (and perhaps significant) that if we include one .more or~er 
of nonlinearity in the derivation of the Boussinesq equation from the water-wave 
equations,3> we obtain another equation whfch can be solved exactly by present 
techniques with an inverse scattering transform. FurtherriJ.Ore, this eigenvalue 
problem is second-order, and the inverse scattering prdblem is readily solvable. 

Originally, this new equation :was found by "scanning" possible eigenvalue 
problems by a linearizing techniq~e developed by the autho~ 5 > for an eigenvalue 
problem which would solve the Boussinesq equation~ Then it was later noted 
that this new equation could also be derived from the wa:ter-waxe equations. To 
show this, we consider the case of water waves propagating in an infinite narrow 
channel of constant mean depth, h.6> The free surface conditions -are 

1JT+Ur;x- V=O, (at Y=h+r;) 

UT+ UxU+ VxV +r;.z!J-p-1t7Jxxx=O, (at Y=h+r;) 

(l·la) 

(l·lb) 

where subscripts indicate partial differentiation, Y is the vertical coordinate, X is 
the coordinate parallel to the channel, r; is the amplitude of the wave, (U, V) 

*> Supported in part under NSF Grant No. GP-32839X2. 
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A Higher-Order Water- Wave Equation and the· Method for Solving It 397 

are. the velodty components, r is the surface tension and p is the mean density 

of the in viscid,' incompressible, irrotational fluid in the channel. One scales (1·1) 

by letting (J be the ratio of depth/wavelength, and e be the ratio of the wave 

amplit~de/depth. Upon introducing the velocity potential by Y¢= (U, V), taking 

units where h=g=1, requiring YY!J=O and expanding Eq. (1·1) in a power series 

of e and 8, one finds that the velocity potential (evaluated at Y=O) will satisfy 

the equation 

(1·2a) 

(1·2b) 

(1·3) 

and (x, t) are the scaled, uni\:less (X, T) coordinates. Of course, due to the e 

term in (1· 2b), (1· 2a) contains a cubic term of order 82, which means we have 

''too much" nonlinearity.7l This shows 'up later in that ,some solutions of this 

equation ,can be singular. 

, Still, there are properties of this equation which merit consideration: i) This 

is the first example of a nonlinear differential evolution equation which allows 

waves to travel in both directions, has a quadratic linear dispersion relation (w 

= ±k.J1-H) and can be solved exactly by an inverse scattering transform; ii) 

The inverse scattering problem is different from any considered before, and its 

soll!tion indicates techniques which may be useful in other problems; iii) For 82 = e 

~o, Eq. (1 · 2) can be transformed into the Boussinesq equation, and the direct 

and inverse scattering problems can be decomposed into the right- and left-going 

KdV8l scattering problems. 

In § 2, we will define the scattering data for this new eigenvalue problem, 

and in many respects, the analytical properties of the eigenfunctions follow from 

similar results for the Schrodinger equation, with appropriate modifications. How

ever, for the inverse scattering problem, done in § .3, it is necessary to significantly 

alter the form of th'e "transformation kernel". Once this is done, it is then rela

tively straightforward to obtain the Marchenko equations. The simple soliton solu

tions will be given in § 4 and the transformation from this equation to the Bous

sinesq equation will be given in § 5, along with the decomposition of this new 

scattering problem into the right- and left-going KdV scattering problems. 

\ 

§ 2. The direct scattering problem 

As shown in,5) if we take our eigenvalue problem to be 

(2·1) 

where k IS the eigenvalue, q and r are the potentials, fJ IS a constant, and if we 

take· the time evolution of .P' to. be of the form 
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398 D. J. Kaup 

7Jf, = A7Jf + B7Jf z, (2·2) 

then the integrability condition for (2 ·1), (2 · 2), gives (1· 2) for a suitable choice of 
q and r. We shall work with a slightly more general equation than (1· 2). 
We take 

q=t8-1efDz. 

r= -te8-2 (7r+tefDz2), 

A=a+tefDzz• 

B= -2i8k-r-tefDz, 

(2-3a) 

(2-3b) 

(2·4a) 

(2-4b) 

where a, 8, e and r are constants. Then the integrability condition for (2 ·1), 
(2·2) is 

(2·5a) 

where 

(2-5b) 

As can be seen from (2·5), r could be transformed to zero by a simple Galilean 
transformation. In the water-wave ·problem, r is simply the velocity of the ob
server relative to the water surface. To obtain Eq. (1· 2), we set 

T=O, 

pz=lJ2(t-(J). 

(2·6a) 

(2·6b) 

Thus, pz may be positive, zero or negative, depending on the value of (J, Eq. (1· 3). 
We will now consider the direct scattering problem for (2 ·1). First, we 

eliminate the branch points in the k-plane at k= ± (1/2) i8 by going to a (-plane 
where 

k=HC -1/CffC)J. (2·7a) 

Define 

E=HC + 1/(pz()J, (2·7b) 
so that 

Ez=kz+t8-z. (2·8) 

Now, as functions of (, the eigenstates will not have branch points in the '-plane, 
although they will have an essential singularity at '= 0, as well as at (= oo. 
Note that for 82>0, E(() is real when either ( is real or 1(1 =1/1{11, while for 
82<0, E(() is real only when ( is real. 

For E(() real, we define the right and left eigenstates of (2·1) by 

(2·9a) 

(2·9b) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

4
/2

/3
9
6
/1

8
3
0
4
8
7
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



A Higher-Order Water- Wave Equation and the Method for Solving It 399 

and 

(2·9c) 

(2. 9d) 

· with E(C:J given by (2·7b) and providing that r and q both satisfy the Faddeev 

conditions· 

s_=ooJrJ(l+ JxJ)dx<oo, 

J_00

00
JqJ(l + lxl)dx< oo . 

(2 ·lOa) 

(2·10b) 

From the Wronskian; one finds that </J and (/) are linearly independent solutions, 

thus ¢ and qi must be linearly dependent on </J and (/), or 

¢((, x) =a(t;,)(/J((, x) +b(t;,)</J((, x), 

qi ((, x) =a (0</J((, x) + b (() (/) ((, x). 

(2·1la) 

(2·1lb) 

From the Wronskian of ¢ and qi, we find that 

(2·12) 

and thus the inverse of (2 ·11) is 

</J=aqi-b¢, (2·13a) 

(/i=a¢-bqi. (2·13b) 

Equation (2·1) is invariant under a symmetry transformation on(. If 7Jf((,x) 

is a solution of (2 ·1), then 1Jf ("(,, x) is also a solution where 

Thus, we have 

-e.= - ({32() -1 . (2 ·14) 

¢((, x)=¢((, x), 

(/)((, x) =</J((, x), 

a(() =a((), 

b(() =b((). 

(2·15a) 

(2·15b) 

(2 ·15c) 

(2·15d) 

By well-known techniques,9> one ca:n prove the following theorem, which 

allows us to extend ¢, </J and a into the upper half E-plane. (By ( bein•g in 

the upper half E-plane, we are referring to those values of ( which satisfr Img 

E(() >O where E(() is given by (2·7b). See Figs. 1 and 2.) 

If r and q both satisfy the Faddeev conditions, (2 ·1 0), then ¢ ( (, x) eiE<,>x, 

</J((, x)e-iE<c>x and a(t;,) are analytic functions of ( for ( in the upper half 

E-plane [Img E (()>OJ, while for ( on the real E-axis [ Img E ( () =OJ, they, as 

well as b((), are bounded except at the point E=O. At E=O, a(() and b(() 
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400 D. J. Kaup 

ImOC 

Img C 

will have, at worst, simple Poles. 

Fig. 1. The contours C, C and R 
in the complex <:"-plane when 
{3'>0. Note the two segments 
of'c and c. 'Ihe radius of the 

circle for the R contour is /1/ {3/. 
The shaded region corresponds 
to the upper half E-plane 
(double-sheeted). 

Fig. 2. The contours C, C and R 
in the complex <:"-plane when 
{3'<0.- The shaded region cor
responds to the upper half E- . 
plane (double-sheet!'!d), When 
a zero of a(<:") or a(<:") lies on 
the imaginary axis, It is im
material which segment is dis
torted to enclose the zero. 

When q and r are on compact support, by identical techniques we also have 
the following theorem. 

When q and r are on compact support, all the above functions are entire 
functions of ( in the E-plane, except at E=O. Furthermore, at E=O, a(() 
and b(() will each have, at worst, a simple pole. 

Equation (2 ·1) can also have bound states. These occur whenever a(() = 0 
for ( in the upper half E-plane. We designate these zeros of a(() by ((nJ!'~ 1 
and assume N to be finite. At ( = Cn, we have 

which completes the definition of the scattering data. Note that when r and q 
are on compact support, 

(2-17) 

When r and q are given by (2 · 3), then {3q and r. are real, and therefore, if 
</J((, x) is a solution of (2·1), </J* ( -{3(* //3*,x) is also a solution. For {32>0; 
this gives 
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A Higher-Order Water- Wave Equation and the Method for Solving It 401 

a*(-(*) =a((), 

b*( -(*) =;b((), 

(2·18a) 

(2·18b) 

and we see that the bound state eigenvalues must either be pure imaginary or 
( 

occur. in complex conjugate pairs ((2 = - ( 1 *), as for the "breather" state of the 

Sine-Gordon equation.10> If {32<0, then i11stead 

a*((*) =a((), 

b*((*)=b-((), 

(2 ·19a) 

(2·19b) 

and by (2 ·15c), we have that the bound state eigenvalues must either lie on the 

upper half of the circle of radius 1/lf3! or occur in complex conjugate "inverse" 

pairs ((2 = _:___/3- 2/(1*). 

The time dependence of the scattering data follows directly from (2.2rv4). 

For E(() real, 

at(C) =0, 

bt(C) =2E(() [2/3k(() -iT]b((), 

-

while for the bound state parameters 

(Cn)t=O, 

(bn)t=2E(Cn) [2{3k(Cn) -iT]b,. 

for n=1, 2, ···, N. 

(2·20a) 

(2·20b) 

(2 · 21a) 

(2·21b) 

For solving the inverse scattering problem,_ we need the asymptotic forms of 

¢eiEx, <jJe-iEx and a(() as IEf~oo in the upper .half E-plane. These are 

¢((,x)etEx~exp[!; s:=q(y)dyl[1+0(E-1)]. 

¢((, x) e~iEx~exp[! ; I= q (y) dy l [ 1 + O(E-1) ], 

(2·22a) 

(2·22b) 

where k (r,) and E ( 0 are given by (2 · 7) and similar expressions hold for ¢ and 

. ¢in the lower half E-plane. From (2·22) and the Wronskian relation 

2iEa (() = W [¢ (r,, x), <jJ(r,, x)], 

we have 

a(() ~e<k12E>JQ[1 + 0 (E-1) J 

for I El ~= m the upper half E-plane, and where 

.JQ= s_==q(y)dy. 

§ 3. The inverse scattering problem 

(2·23) 

(~·24) 

(2 ·25) 

To solve the inverse scattering problem for (2 ·1), we will assume r and 
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402 D. J. Kaup 

q to be on compact -support so that we can make full }lse of our· second theorem, 
and use the power and simplicity of· contour integral~. As one could note, our 
derivation will still be valid for the case of noncompact support, provided one 
decomposes all contour integrals into ·integrals along the real E"axis and any con
tributions from all poles. 

We define three contours in the (-plane C, C and R, which will depend on 
the sign of {32• In general, they are always defined so that in the double-sheeted 
E-plane, C lies in the upper half E-plane and passes above all zeros. of a((), C 
lies in the lower· half E"plane and passes under all zeros o£ a ( (), and R will 
always be along the real E-axis. These contours are illustrated in Fig. 1 for 
the case {32>0, and in Fig. 2 for the case {32<0. In Fig. 1, the radius of the 
circle is 1/31, and note that C and C consist of two segments, The shaded part 
in each figure indicates the regions in the (-plane which map ini:o the upper 
half of the double-sheeted E-plane. 

We shall proceed by first constructing the integral representations for cf; and 
~. and then shall show that there exists "transformation kernels" for 1/J and ~
From these, we can then obtain the inverse scattering equations of the Marchen,lw 
type.w 

Consider the contour integral 

I(( x) = 'I' .,, x e d(' i ,~, (" ) 1.E<r'l"' 

' a (('-()a((') 
(3·1) 

for r and q on compact support and for ( "under" C. [By "under", we mean 
that if ~>O, ( must lie under the upper part of C (see Fig. 1) as well as to 
be exterior to th~ part of C passing through the origin. And if ~<O, ( must 
simply be under C (see Fig. 2).] By (2·22a), (2·24), its. value is 

. I((, x) = -irre-112Q<:tJ>' (3·2) 

where 

Q(x) = J.,''"q(x)dy. (3·3) 

From (2 ·lla), we also have 

r Z("' ) ·1.E(r')"' f ,,, ("' ) 1.EW).>: 
I((, x) = Jc '~' "'(:C-~ d(' + Jl((') 'I' "',:_e( d(', (3·4) 

where 

p((') ==b((') /a((') (3·5) 

and is the "reflection coefficient". Now, by continuously distorting the contour 
C in the first integral, we can reach the contour R, and from R, the contour C, 
and eventually encircling the pole at (' = ( as well. Then by (2 ·14), (2 ·15), 
(2 · 22b) , we finally obtain 
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A Higher-Order Water- Wave Equation and the Method for Solving It 403 

for t: "under" C. Similar considerations will give an integral representation of 

<jJe-iEx, but due to (2 ·15), it will simply be the transformed form, (2 ·14), of 

(3·6). 

Now, let us assume that the two "transformation kernels", K(x, s) and L(x, 

s), exist such that 

where G(x) is to be determined. Requiring (3 · 7) to satisfy (2 ·1) gives as neces

sary and sufficient conditions 

lim K(x, s) =0, 

·-00 
lim L(x, s) =0, 
·-00 

G(x) =!Q(x), 

L(x,x) =t(1-e-Q<xl), 

(3·8a) 

(3·8b) 

(3·9a) 

(3 ·9b) 

K(x,x) = -!R(x), (3·9c) 

[ax2-a/-q(x) (ax+a.) -Rx(x)]K(x, s) -l/3-2q(x)L(x, s) =0, (3·10a) 

[ax2 -a/-q(x) (ax-a,) -Rx(x)]L(x, s) -l;q(x)K(x, s) =0, (3·10b) 

where Q (x) is defined by (3 · 3), and 

R(x) = J.,oo[r(y) -lqv(Y) +tq2 (Y)]dy · (3 ·11) 

To show that K and L exist and are unj.que, we use (3 · 9) as the initial data 

along the characteristic x- s =zero. Then (3 · 8), (3 ·10) will allow us to find 

K and L for all s>x and the solution will be unique. We note that while it is 

clear that (3 · 8'""' 10) are clearly sufficient conditions, to prove necessity, it is 

necessary to take a transform with respect to eiEC~>•at;. along the contour R and 

use 

teiE<'.,.dt: = 8ntJ (z), 

r eiE<t)z dt: = 0 
JR r: ' 

teiE<n•~; = -8n{32tJ(z), 

where iJ(z) is the Dirac delta function. 12> 

(3 ·12a) 

(3 ·12b) 

(3 ·12c) 

To obtain the Marchenko equations, we insert (3 · 7) into (3 • 6), using (2 ·15b) 
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404 D. J. Kaup 

to determine (jj from (3 · 7). Then, upon taking a transform with respect to 
e•E<e>""d(, using (3 ·12) and 

(3·13a) 

(3 ·13b) 

which are valid for (' along e, we have 

L(x, y)+F<1>(x+ y)+ fo[K(x,s)F< 1>(s+ y)+L_(x, s)F<2>(s+ y)]ds=O, (3 ·14a) 

K(x, y)+F<2>(x+ y)+ Ioo[K(x, s)F<2>(s+ y)+L(x, s)F<3>(s+ y)]ds= 0, (3 ·14b) 

where 

(3 ·15) 

Once a solution of the integral equation (3-·14) is obtained, the potentials can be 
recovered from K and L by (3 · 9). 

When fiq and r are real, from (2·14, 15, 18, 19) we have 

· (3·16a) 

and 

(3·16b) 

We note that when m >O or m<2, (3 ·15) may be ill defined unless p ( () 
vanishes sufficiently rapidly as ( --70 or ( --700, althoug~ (3 ·15), do.es exist for 
m = 0, 1 and 2. In these other cases, one may instead use the recursion relation 

(3 ·17) 

§ 4. Soliton solutions 

When p is zero along R, a clo.sed form solution of (3 ·14) is possible, since 
all kernels are degenerate. When flq and r are real, - we. have from (3 ·15Y, 

(4·1) 

where [(n]~=l are the hound state eigenvalues, 

i ( /3-2) 
ten= -4 (n +Yn , (4·2) 

and en is a constant. For {Jq and r real; en and ten are real when (n= -(n* for 
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A Higher-Order Water- Wave Equation and the Method for Solving It 405 

/l>O or when i;'n*i;'n= -/3~ 2 for /32<00 
The one-soliton solution corresponds to N=1 'and the solution of (3o14) IS 

then (since C1 and /Cr must be real) 

K(x,y)= - _z_oc-=1--'JCl=-- -·· <"' +v> 
e ' 1;'1/3D(x) 

·where 

Defining 

G(x) = 1-ii;'r/3C1e-2ilc,,, 

--then the solution for .q and r is 

2[ 2 2 3 3- 2 ] 
r=IC1 G + D - G2 - D 2 + GD . 

Solving (2 o 3) for rD.., and (Dt gives 

where 

fD~= lCl'X' 

fDt+TfD,=wx, 

x=4:(~- ~). 

w- !3(,2 1) - - 8 'o.l - /34(/ ' 

and from (2 · 21), the time dependence of C1 is 

.. (4o3a) 

(4o3b) 

(4o4a) 

(4·4b) 

(4·5a) 

(4o5b) 

(4·6a) 

(4o6b) 

(4o7a) 

(4o7b) 

Cr(t) =Croe- 2tc.,-nc,> o (4·8) 

·-
Let us now look at the, solution when /32>00 Scaling both /3 and e to unity, 

and letting 

(r=ir;, (4·9a) 

Cro = ± e.t•"'• ( 4· 9b) 

(since C10 may be positive or. negative), we .have 

(4o10a) 
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406 D. J. Kaup 

(4·10b) 

(4·10c) 

When 1<'17<oo, the soliton is moving to the left, and when -1<'17<0 (see 
Fig. 1), the solitpn is moving to the right, if r = 0. If C10 is negative for 1 < '17< 

oo, or positive for -1<'17<0, then (4·10c) is singular.13> In this case, we have 

an exact balance~ between the highest nonlinearity (cubic) and the ([Jxxxx term in 

(2 · 5) at these singularities. Of course, for the Boussinesq equation, this cubic 

term is not present, so this balance is not possible, and singular solutions of this 
type will not occur. Furthermore, in the case of water waves (1· 2), they are 

unphysical. 

On the other hand, when /32<0, the one-soliton solution does not have a 
singular solution. If we scale /3 = i and e = 1, we have 

and 

1 . {) 
/C1=- Sill. 

2 ' 

(I)=_!_ sin 2{) 
4 ' 

4 sin{) 
x=~--------------

cosh [2JC1 (x- x 0 - Tt) + 2wt] +cos {) 

(4·Ila) 

(4·11b) 

(4 ·12a) 

(4·12b) 

(4 ·12c) 

Lastly, we should note that for case /32>0, when (is real, the time dependence 
of b(() is exponentially increasing if ( 2 >1/~, and exponentially decreasing if 

( 2<1//32• Thus, the solution appears to be unstable if b(() =1=0 when ( 2>1//32• 

Of couse, the same problem is also present in the linearized form of (2 · 5). 

§ 5. The Boussinesq and the KdV limit 

Since the Boussinesq equation is given in Lagrangian coordinates,3> and not 

local coordinates (which we are using), it is necessary to transform our coordinates, 

as well as the function ([J, to obtain the Boussinesq equation. If we let 

z=x, 

r=t+e([J 

and define {) by 

(5·1a) 

(5·1b) 

(5·1c) 
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then, upon taking a time derivative, (1· 2) becomes 

e"' =e •• + a2 Ct- (J) e .... - te (e2) •• + o (e 2, ea2 , a4), (5·2) 

which is the Boussinesq equation. 

Although our scattering problem cannot be reduced to the scattering problem 
for the Boussinesq equation/> it can be reduced to the scattering problem for the 
right- and 'left-going KdV scattering problems.8> To show this, we let r = 0 and 
assume a solution to (2 · 5) of the form 

Then, we find 

@(x, t) = U(x"Tt, et), 

(32 =0(e). 

which is the KdV equation where 

x=x"Tt, 

r=et. 

To obtain the limit for (2·1), (2·2), we let 

k= ± (1-2(32,1,) 

2i(3 

and from (2·3), (2·4), we have 

¢xx+[l± ~ ux(;) +O(e)]¢~0 
and 

(5·3) 

(5·4) 

(5·5) 

(5 · 6a) 

(5·6b) 

(5·7) 

(5·8a) 

(5·8b) 

which are the eigenvalue problem and time evolution equation for the KdV equa
tion.8> 

From (2·7), (5·8a), (5·7), we can see how the (-planes in Figs. 1 and 
2 break up into the right- and left-going KdV planes. For (3 small 

(5·9) 

For (32 >0, the right-going (left-going) KdV plane is the region [of a radius of 
order unity for A= 0 (1)] around ( = - i/ (3 (( = i/ (3) (see Fig. 1). For {32< 0, the 
right-going (left-going) KdV plane is the region [again of order unity J around 
the point (= -1/(3 ((:;= +1/(3). 

Finally, to decompose the Marchenko equations into the left- and right-going 
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KdV problems, we simply no.te that for small /1, (3 ·15) becomes 

F<m) (z) -:::::.f12( ~ 1) mF± (z), 

where 

with 

P± ( .JI) =p{ +i/{3+ 2.JI)' 

(5 ·10) 

(5.-11) 

(5·12) 

and c± as the appropriate part of the contour c which passes "above" the point 

(- +i//1. From (5·10) and (3·14), we obtain 

K± (x, y) +F ± (x+ y) + J.,ooK± (x, s)F ± (s+ y)ds-::::::.0, (5 ·13) 

where 

K±(x,y) =K(x,y) +L(x,y)//1 (5 ·14) 

and Ux is recovered by 

u = 4ff dK± (x, x) 
x e dx .. 

(5·15) 
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