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Abstract. We develop an axiomatic formulation of the higher rank version of the classical
Selberg sieve. This allows us to derive a simplified proof of the Zhang and Maynard-Tao
result on bounded gaps between primes. We also apply the sieve to other subsequences of
the primes and obtain bounded gaps in various settings.
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1. Introduction

A higher rank version of the Selberg sieve was first suggested by Selberg in [11]

(see page 351 of [11] and page 245 of [10]). Recently, a special case of this new

sieve method was applied by Maynard in [5] and the Polymath project in [9] to give

a simplified proof of the breakthrough result of Zhang in [14] regarding bounded gaps

between primes. In addition, they obtained better numerical results than Zhang.

A comparison of their methods reveals that the method of the Polymath project

is Fourier analytic whereas Maynard’s method is combinatorial. In this paper, we

develop a general higher rank Selberg sieve, in the derivation of which we have opted

to apply the Fourier analytic method since it seems to lead to the general result

quickly. We formulate an axiomatic treatment of a general higher rank Selberg sieve

in a manner which can then be applied to an assortment of problems. In this context,

our main result is Theorem 3.6.

We then discuss various applications of the sieve. Applying the sieve to prime

k-tuples with the characteristic function of the primes chosen as the weight, one

obtains a conceptually clear and simplified proof of the Zhang-Maynard-Tao result
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on bounded gaps. This is contained in Lemmas 4.2 and 4.3. Finally, we make some

comments about the application of the method to other subsequences of primes. In

particular, we consider the set of primes satisfying certain Chebotarev conditions, as

well as primes having a given primitive root. We highlight the ingredients that make

the general sieve work in these situations.

In a forthcoming paper [13], we build upon the higher rank sieve established in

this work to generalize it to the ring of integers of an imaginary quadratic field with

class number one. This yields better results than those previously obtained for gaps

between primes in the corresponding number rings.

2. Notation and setting

It will be convenient to introduce notation and terminology to study k-tuples. We

denote the k-tuple of integers (d1, . . . , dk) by d. A tuple is said to be square-free if

the product of its components is square-free. For a real number R, the inequality

d 6 R means that
∏

i

di 6 R. The notion of divisibility among tuples is defined

component-wise, that is,

d | n ⇔ di | ni ∀ 1 6 i 6 k.

It follows that the notion of congruence among tuples, modulo a tuple, is also defined

component-wise. On the other hand, we say a scalar q divides the tuple d if q divides

the product
∏

i

di. However, when we explicitly write the congruence relation d ≡ e

(mod q), we mean that it holds for each component. When we say that a tuple

d divides a scalar q, we mean that
∏

i

di divides q. For a square-free tuple, this is

equivalent to each component dividing q.

We do not invoke any special notation for vector functions, that is, functions

acting on k-tuples. It will be evident from its argument whether a function is a vec-

tor or scalar function. Most of the functions that we deal with are multiplicative.

A vector function is said to be multiplicative if all its component functions are mul-

tiplicative. In this context, we define the function f(d) to mean the product of its

component (multiplicative) functions acting on the corresponding components of the

tuple, that is,

f(d) =

k
∏

i=1

fi(di).

For example, if µ is the Möbius function, all its components are the same, hence

µ(d) =

k
∏

i=1

µ(di).
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The identity function acting on a tuple d is denoted by d itself. In this case, d would

represent the product
k
∏

i=1

di. It will be clear from the context whether we mean the

above product or the vector tuple itself. Similarly, when we write a tuple raised to

some power, we interpret it as the appropriate function acting on the tuple. For

example,

d2 =

k
∏

i=1

d2i .

Furthermore, we define for k-tuples d and α,

d(α) =
k
∏

i=1

dαi

i .

Some more vector functions that will be used by us are the Euler phi function, as

well as the lcm and gcd functions.

We use the convention n ∼ N to denote N 6 n < 2N . Alternatively, f(x) ∼ g(x)

may also denote that lim
x→∞

f(x)/g(x) = 1. The meaning will be clear from the

context. Moreover, if we have an expression of the form f(x) = (1 + o(1))cg(x),

where c is a constant independent of x, it is understood that the case c = 0 implies

that f(x) = o(g(x)).

We use the standard notation [a, b] and (a, b) to denote the lcm and gcd of a and b,

respectively. In the case of tuples, this means the product of the lcms (or gcds) of

the corresponding components. For example,

[d, e] :=

k
∏

i=1

[di, ei].

We also use the notation [d, e] | n to mean [di, ei] | ni for 1 6 i 6 k. When written

as the argument of a vector function, [d, e] will denote the tuple whose components

are [di, ei]. Once again, the meaning of the use will be evident from the context.

Furthermore, we let τ(n) denote the number of divisors of the integer n and ω(n)

the number of distinct prime factors of n. The greatest integer less than or equal to

x is denoted as ⌊x⌋. Throughout this paper, δ denotes a positive quantity which can
be made as small as needed.

We employ the following multi-index notation to denote mixed derivatives of

a function on k-tuples, F(t):

(2.1) F (α)(t) :=
∂αF(t1, . . . , tk)

(∂t1)α1 . . . (∂tk)αk
,

for any k-tuple α with α :=
k
∑

j=1

αj .
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3. The higher rank Selberg sieve

In the classical Selberg sieve, one considers sums of the form

∑

n

wn

(

∑

d|n

λd

)2

,

where the outer sum is over integers n belonging to a certain set S, wn are weights,

and the λd’s are parameters to be chosen so as to minimize the value of this expres-

sion. Here we proceed similarly replacing integers with tuples.

A Fourier analytic approach to optimize the parameters appearing in Selberg’s

sieve, as demonstrated by the Polymath project in [9], seems to be the most conducive

for this purpose. This method in fact gives us asymptotic formulas for the sums

involved.

3.1. Preliminary results. We begin by setting up some preliminary results. The

following proposition will be a useful tool in our estimation of error terms throughout

the paper.

Proposition 3.1. Let Ωk(r) denote the number of k-tuples d, e satisfying [di, ei],

[dj , ej ] relatively prime for i 6= j, such that [d, e] = r. Then

Ωk(r) = kω(r)τ(r2),

where ω(r) denotes the number of distinct prime factors of r.

In particular, Ωk(r) 6 τ3k(r), where τ3k(r) is the number of ways of writing r as

a product of 3k positive integers.

P r o o f. The number of k-tuples d, e such that [d, e] = r is a multiplicative

function of r. It can be checked that Ωk(r) is also a multiplicative function of r and

hence it is enough to compute Ωk(p
a) for a prime p. Consider the equation

[d1, e1] . . . [dk, ek] = pa.

As the terms on the left hand side are pairwise co-prime, there are k choices of

the component i such that [di, ei] = pa. Once i is fixed, one of di, ei must be

exactly pa while the other must equal pb for some 0 6 b 6 a. There are then 2a+ 1

choices, taking care that the choice di, ei = pa is counted only once. This gives

Ωk(p
a) = kτ(p2a), and hence Ωk(r) = kω(r)τ(r2).

The inequality Ωk(r) 6 τ3k(r) can be shown for prime powers by induction using

the identity τm(r) =
∑

d|r

τm−1(d) and thus holds for all r. �
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We derive an Euler product for a very special kind of series.

Lemma 3.2. Let d and e be k-tuples, and f , g, h be multiplicative functions

acting on k-tuples. We denote by S the sum

∑′

d,e

µ(d)µ(e)g(d)h(e)

f([d, e])
,

where the dash over the sum means that we are summing over square-free tuples d

and e with [di, ei], [dj , ej ] mutually co-prime for all i 6= j. Then

S =
∏

p

(

1−
k
∑

j=1

(gj(p)

fj(p)
+

hj(p)

fj(p)
− gj(p)hj(p)

fj(p)

)

)

,

assuming that both the series and the product are absolutely convergent.

P r o o f. We denote by S(p) the sum

(3.1)
∑′

d,e
p∤[d,e]

µ(d)µ(e)g(d)h(e)

f([d, e])
.

Then as [di, ei], [dj , ej] are co-prime for all i 6= j, p can divide only one of the [dj , ej]’s

if it divides the tuple [d, e]. Hence,

S = S(p) +
∑′

d,e
p|[d,e]

µ(d)µ(e)g(d)h(e)

f([d, e])

= S(p) +

k
∑

j=1

∑′

d,e
p|[dj ,ej ]

µ(d)µ(e)g(d)h(e)

f([d, e])
.

Now, for each j, the condition p | [dj , ej ] leads to three cases:
(a) p | dj , p ∤ ej,

(b) p ∤ dj , p | ej,
(c) p | dj , p | ej.
For each of these cases, note that the dash over the sum indicates that p cannot

divide [di, ei] for any i 6= j. Then case (a) gives, upon writing dj = pd′j and noting
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that dj is square-free,

k
∑

j=1

∑

d,e
p|dj,p∤ej

µ(d)µ(e)g(d)h(e)

f([d, e])
=

k
∑

j=1

µ(p)gj(p)

fj(p)

∑

d′,e
p∤d′

j ,p∤ej

µ(d′)µ(e)g(d′)h(e)

f([d′, e])

= −
k
∑

j=1

gj(p)

fj(p)
S(p),

with obvious notation (since in the innermost sum of the penultimate step, we have

p ∤ [d′, e]).

Similarly, we get S(p) times a factor of −
k
∑

j=1

hj(p)/fj(p) from (b) and a factor of
k
∑

j=1

gj(p)hj(p)/fj(p) from (c), respectively. Thus

(3.2) S =

(

1−
k
∑

j=1

(gj(p)

fj(p)
+

hj(p)

fj(p)
− gj(p)hj(p)

fj(p)

)

)

S(p).

Thus, S is S(p) multiplied by the ‘Euler factor’ coming from p. As S(p) is simply the

sum S with the prime p eliminated, we can now repeat this process for the sum S(p),

by taking some prime q 6= p. We keep getting Euler factors of the above form for

each prime, thereby proving the result. �

For future reference, the notion of a function g(x) being integrated r times with

respect to x is defined as

∫ (r)

g(x) dx :=

∫ ∞

xr=0

∫

xr−1>xr

. . .

∫

x1>x2

g(x1) dx1 . . . dxr.

Remark. In particular, note that for Re(α) > 0,

∫ (r)

exp(−αx) dx =
1

αr
.

We state the following lemma which will give a convenient way of reducing such

multiple integrals to single integrals.

Lemma 3.3. Let F be a function with compact support in [0,∞). Then

∫ (r)

F (x) dx =
1

(r − 1)!

∫ ∞

0

xr−1F (x) dx.
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P r o o f. Repeated use of Fubini’s theorem gives us

∫ (r)

F (x) dx =

∫ ∞

x1=0

∫

x26x1

. . .

∫

xr6xr−1

F (x1) dxr . . . dx1.

Now,
∫

xr6xr−1

F (x1) dxr . . . dx1 = xr−1F (x1),

∫

xr−16xr−2

xr−1F (x1) dxr−1 =
x2
r−2

2!
F (x1),

and so on. We continue this until we are left with only the integral with respect

to x1. �

3.2. The sieve. We now proceed to what we call the higher rank Selberg sieve.

Consider a set S of k-tuples (not necessarily finite),

S = {n = (n1, . . . , nk)}.

In our applications, we consider a sequence of finite sets SN whose size tends to

infinity with N . We wish to estimate sums of the form

(3.3)
∑

n∈S

wn

(

∑

d|n

λd

)2

,

where wn is a ‘weight’ attached to the tuples n, and λd’s are parameters to be

chosen. Henceforth throughout this section, the condition n ∈ S is understood to
be imposed without being explicitly stated. We impose the following hypotheses on

our sum. These assumptions are in line with those in Halberstam-Richert, see [2],

and Friedlander-Iwaniec, see [1].

(H1) If a prime p divides a tuple n such that p divides ni and nj , with i 6= j, then

p must lie in some fixed finite set of primes P0.

Note that this condition is empty when k = 1. This hypothesis allows us to

perform what is called the ‘W trick’. That is, we can fix some W =
∏

p<D0

p, with

D0 depending on S, such that p ∈ P0 implies that p | W . We then fix some tuple of
residue classes b (mod W ) with (bi,W ) = 1 for all i and restrict n to be congruent

to b in the sum we are concerned with.

(H2) With W, b as in (H1), the function wn satisfies

∑

d|n
n≡b (mod W )

wn =
X

f(d)
+ rd
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for some multiplicative function f and some quantityX depending on the set S.
In practice,

X =
1

ϕ(W )

∑

(n,W )=1

wn,

1/f(d) is heuristically a measure of the “probability” of d dividing n’s in our se-

quence and rd is the “error” of using this approximation. The condition f being

multiplicative can be understood as the probabilities being independent.

(H3) The components of f satisfy

fj(p) =
p

αj
+O(pt), with t < 1

for some fixed αj ∈ N, αj independent of X, k.

We denote the tuple (α1, . . . , αk) as α and the sum of the components
k
∑

j=1

αj as α.

(H4) There exist θ > 0 and Y ≪ X such that

∑

[d,e]<Y θ

|r[d,e]| ≪
Y

(log Y )A

for any A > 0, as Y → ∞.
Henceforth, we assume D0 (and hence W ) → ∞ as X → ∞. We now prove

a general result, which lies at the very heart of this sieve and animates all of our

subsequent discussion. All asymptotics involving R or W in this and future results

are with respect to X → ∞ unless explicitly stated otherwise.

Lemma 3.4. Set R to be some fixed power of X and let D0 = o(log logR). Let f

be a multiplicative function satisfying (H3) and

G,H : [0,∞)k → R

be smooth functions with compact support. We denote

G
( log d

logR

)

:= G
( log d1
logR

, . . . ,
log dk
logR

)

and similarly for H. Let the dash over the sum mean that we sum over k-tuples d
and e with [d, e] square-free and co-prime to W . Then

∑

d,e

µ(d)µ(e)

f([d, e])
G
( log d

logR

)

H
( log e

logR

)

= (1 + o(1))C(G,H)(α) c(W )

(logR)α
,
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where

C(G,H)(α) =

∫ ∞

0

. . .

∫ ∞

0

( k
∏

j=1

t
αj−1
j

(αj − 1)!

)

G(t)(α)H(t)(α) dt,

with G(t)(α) and H(t)(α) as in the notation of (2.1). Furthermore,

c(W ) :=
∏

p|W

pα

ϕ(p)α
.

P r o o f. We extend the functions G and H to smooth compactly supported
functions on Rk. Let ηG , ηH be shifted Fourier transforms of G and H, respectively.
More precisely, let

ηG(u) =

∫

Rk

(G(t) exp(t)) exp(iu · t) dt,

where exp(t) =
n
∏

j=1

etj and the dot denotes the dot product of tuples. We have

a similar expression for ηH(u). Then by Fourier inversion we have

(3.4) G(t) =
∫

Rk

ηG(u) exp(−(1+iu) · t) du, H(t) =

∫

Rk

ηH(v) exp(−(1+iv) · t) dv.

Since ηG and ηH are Fourier transforms of smooth functions with compact support,

they are rapidly decaying smooth functions, satisfying the bounds

(3.5) |ηG(t)| ≪ (1 + |t|)−A1 , |ηH(t)| ≪ (1 + |t|)−A2 ,

for any A1, A2 > 0.

The required sum can be written as

(3.6)

∫

Rk

∫

Rk

ηG(u)ηH(v)Z(u, v) du dv,

where

Z(u, v) =
∑

d,e

µ(d)µ(e)

f([d, e])

1

d(1+iu)/ logR

1

e(1+iv)/ logR
.

Using Lemma 3.2, we see that

Z(u, v) =
∏

p∤W

(

1−
k

∑

j=1

1

fj(p)

( 1

p(1+iuj)/ logR
+

1

p(1+ivj)/ logR

− 1

p(1+iuj)/ logR+(1+ivj)/ logR

)

)

.
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Here W is the product of primes below D0. The condition (H3) on f means that for

each fj,
1

fj(p)
=

αj

p
+O

( 1

p2−t

)

.

As t < 1, we have 2− t > 1. Substituting this into the expression for Z(u, v) gives

(3.7) Z(u, v) = (1 + o(1))
∏

p>D0

(

1−
k

∑

j=1

αj

p

( 1

p(1+iuj)/ logR
+

1

p(1+ivj)/ logR

− 1

p(1+iuj)/ logR+(1+ivj)/ logR

)

)

.

Notice that for complex numbers w1, w2, w3 with Re(wi) > 1 we have

(1 − 1/pw1)(1 − 1/pw2)

(1− 1/pw3)
=

(

1− 1

pw1
− 1

pw2
+

1

pw3
+O

( 1

p2

))

=
(

1− 1

pw1
− 1

pw2
+

1

pw3

)(

1 +O
( 1

p2

))

,

using the expansion (1 − p−w3)−1 =
∞
∑

j=0

p−jw3 , which is absolutely convergent since

Re(w3) > 1.

Since
∏

p>D0

(1 +O(p−2)) = (1 + o(1)) as D0 → ∞, a convenient approximation for

Z(u, v) is then easily seen to be

(3.8) Z(u, v) = (1 + o(1))
k
∏

j=1

∏

p>D0

(1− αjp
−1−(1+iuj)/ logR)

1− αjp−1−(1+iuj+1+ivj)/ logR

× (1− αjp
−1−(1+ivj)/ logR).

Now we are ready to obtain the required sum. Note that the expression (3.7)

allows us to bound Z(u, v) as follows:

(3.9) |Z(u, v)| ≪
∏

p

(

1 +

k
∑

j=1

3αj

p1+1/ logR

)

≪ (logR)O(1),

applying the well-known estimate for the Riemann-zeta function: ζ(σ) ≪ (σ − 1)−1

for σ near 1.

Consider the case |u| > (logR)ε for some small ε > 0. Then by the bounds (3.5)

we have

|ηG(u)| ≪
1

(1 + |u|)2A ≪ (logR)−A′ 1

(1 + |u|)A

178



for any A,A′ > 0. This along with the rapid decay bound (3.5) for ηH(v) and the

bound (3.9) for Z(u, v) ensures that the integral (3.6) in the region |u| > (logR)ε is

then of the order of

(logR)−A1

∫∫

1

(1 + |u|)A
1

(1 + |v|)A dudv

for any A1, A > 0. As the integral above is absolutely convergent because of the rapid

decay of the integrand, the contribution to (3.6) from this region is O((logR)−A)

for any A > 0. Similarly, the contribution from the region |v| > (logR)ε is also

O((logR)−A).

We are going to estimate (3.6) in the region |u|, |v| < (logR)ε. To this end, we

first rewrite the general Euler product

∏

p>D0

(

1− αj

p1+(1+isj)/ logR

)

as

∏

p>D0

(

1− 1

p1+(1+isj)/ logR

)αj
(

1− 1

p1+(1+isj)/ logR

)−αj
(

1− αj

p1+(1+isj)/ logR

)

,

which equals

ζ
(

1 +
1 + isj
logR

)−αj ∏

p|W

(

1− 1

p1+(1+isj)/ logR

)−αj

Dj

(

1 +
1 + isj
logR

)

,

where

Dj(s) =
∏

p>D0

(

1− 1

ps

)−αj
(

1− αj

ps

)

is an Euler product supported on primes p > D0 and absolutely convergent for

Re(s) > 1/2. For Re(s) = 1, the above expression gives

Dj(s) = 1 +O

(

∑

p>D0

1

p2

)

= 1 +O
( 1

D0

)

as R (and hence D0) goes to infinity. We will use this with s = 1 + (1 + isj)/ logR.

As ζ(s)−t has a zero of order t at s = 1, we have the asymptotic formula in the

region |sj | < (logR)ε

ζ
(

1 +
1 + isj
logR

)−αj

=
(1 + isj

logR

)αj
(

1 +O
(∣

∣

∣

1 + isj
logR

∣

∣

∣

))

=
(1 + isj

logR

)αj

(1 +O((logR)ε−1))
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as R → ∞. Moreover, it can be seen that
∏

p|W

(

1− 1

p1+(1+sj)/ logR

)

=
(

1 +O
( D0

(logR)1−ε

))

∏

p|W

(

1− 1

p

)

,

by observing that

p(1+sj)/ logR = 1 +O
( log p

(logR)1−ε

)

,

and using elementary estimates. Hence, in the region |sj | < (logR)ε, as R goes to∞,
our Euler product becomes

(1 + o(1))
(1 + isj

logR

)αj ∏

p|W

(

1− 1

p

)−αj

.

We have thus obtained in this region

∏

p∤W

(

1− αj

p1+(1+isj)/ logR

)

= (1 + o(1))
Wαj

ϕ(W )αj

(1 + isj
logR

)αj

.

Applying this to (3.8) we conclude

(3.10) Z(u, v) = (1 + o(1))c(W )
1

(logR)α

k
∏

j=1

(1 + iuj)
αj (1 + ivj)

αj

(1 + iuj + 1 + ivj)αj
,

where c(W ) is as given in the statement of the lemma. This expression for Z(u, v)

holds in the region |u|, |v| < (logR)ε. As discussed, the main contribution to the

integral (3.6) should be from this region. From (3.6), it is clear that in this region,

the required sum is now given by

(3.11)
c(W )

(logR)α

∫ ′

Rk

∫ ′

Rk

ηG(u)ηH(v)

k
∏

j=1

(1 + iuj)
αj (1 + ivj)

αj

(1 + iuj + 1 + ivj)αj
dudv

+
c(W )

(logR)α
o

(∫ ′

Rk

∫ ′

Rk

|ηG(u)||ηH(v)|
k
∏

j=1

∣

∣

∣

(1 + iuj)
αj (1 + ivj)

αj

(1 + iuj + 1 + ivj)αj

∣

∣

∣
dudv

)

,

where the prime over the integrals means that they are restricted to the region

|u|, |v| < (logR)ε. We first deal with the error term. All the asymptotics discussed

are with respect to R (and hence D0) going to ∞. As ηG and ηH are rapidly de-

creasing, the integral in the error term is convergent. This gives for (3.11)

c(W )

(logR)α

(∫ ′

Rk

∫ ′

Rk

ηG(u)ηH(v)

k
∏

j=1

(1 + iuj)
αj (1 + ivj)

αj

(1 + iuj + 1 + ivj)αj
du dv + o(1)

)

.
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In the complementary region |u| or |v| > (logR)ε, as before, the contribution to the

integral can be seen to be O((logR)−A) for any A > 0. The integral above can thus

be extended to the whole of Rk × Rk, absorbing the error into the o(1) term.

This takes care of the contribution to (3.6) from the region |u|, |v| 6 (logR)ε. The

contributions from the complementary regions are absorbed into the o(1) term to

finally give for the sum (3.6),

(1 + o(1))
c(W )

(logR)α

∫

Rk

∫

Rk

ηG(u)ηH(v)

k
∏

j=1

(1 + iuj)
αj (1 + ivj)

αj

(1 + iuj + 1 + ivj)αj
du dv.

The lemma will be proved if one can show that

(3.12)

∫

Rk

∫

Rk

ηG(u)ηH(v)

k
∏

j=1

(1 + iuj)
αj (1 + ivj)

αj

(1 + iuj + 1 + ivj)αj
du dv = C(G,H)α.

Consider the expressions (3.4) for G and H. Now, differentiate G and H, αj times

with respect to each uj and vj , respectively. With notation as in the statement of

the lemma, this gives

G(t)(α) = (−1)α
∫

Rk

ηG(u)
∏

j

exp (−(1 + iuj)tj)(1 + iuj)
αj du,

H(t)(α) = (−1)α
∫

Rk

ηH(v)
∏

j

exp (−(1 + ivj)tj)(1 + ivj)
αj dv.

We multiply these two expressions and recall the remark preceding Lemma 3.3 to

see that the left hand side of (3.12) is nothing but the product G(t)(α) · H(t)(α)

integrated αj times with respect to tj for all j. Now, applying Lemma 3.3 for each tj
in turn gives (3.12). This completes the proof. �

We record for future use a general result, a special case of which was used in the

proof of the previous lemma.

Lemma 3.5. Let a denote the tuple (a1, . . . , ak) and let a =
∑

j

aj . We follow the

same notation for b and c and the notation of (2.1) for the relevant mixed derivatives.

Then the integral

∫

Rk

∫

Rk

ηG(u)ηH(v)

k
∏

j=1

(1 + iuj)
aj (1 + ivj)

bj

(1 + iuj + 1 + ivj)cj
dudv

is given by

C(G,H)(a,b,c) := (−1)a+b

∫ ∞

0

. . .

∫ ∞

0

( k
∏

j=1

t
cj−1
j

(cj − 1)!

)

G(t)(a)H(t)(b) dt.
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P r o o f. The proof follows the same argument that we used to show (3.12). The

basic observation is that we need to differentiate G, aj times with respect to each uj;

H, bj times with respect to each vj , and multiply the two expressions. This gives the
required numerators in the integrals but with a factor of (−1)(a+b). Then integrating

the resulting expression cj times with respect to each tj in the sense of Lemma 3.3

gives the desired result. �

Note that when the tuples a, b, c are all equal, say equal to α, we will denote

C(G,H)(a,b,c) by C(G,H)(α) as was done in Lemma 3.4.

We now choose our parameters λd and turn to specific sums involved in this sieve.

The choice of λd will be made as in [9]. Let F : [0,∞)k → R be a fixed symmetric

smooth function supported on the simplex

∆k(1) := {(t1, . . . , tk) ∈ [0,∞)k : t1 + . . .+ tk 6 1}.

We choose

(3.13) λd = µ(d)F
( log d1
logR

)

:= µ(d1) . . . µ(dk)F
( log d1
logR

, . . . ,
log dk
logR

)

.

Observe that as F is a smooth function with compact support, it is bounded and so
is |λd|. We have the following result which we call the higher rank Selberg sieve.

Theorem 3.6. Let λd’s be as chosen above. Suppose hypotheses (H1) to (H3)

hold and (H4) holds with Y = X . Set R = Xθ/2−δ for small δ > 0 and let D0 =

o(log logR). Then

∑

n≡b (mod W )

wn

(

∑

d|n

λd

)2

= (1 + o(1))C(F ,F)(α)c(W )
X

(logR)α
,

with

c(W ) :=
Wα

ϕ(W )α

and

C(F ,F)(α) =

∫ ∞

0

. . .

∫ ∞

0

( k
∏

j=1

t
αj−1
j

(αj − 1)!

)

(F (α)(t))2 dt.

P r o o f. Expanding out the square, interchanging the order of summation gives

us

∑

n≡b (mod W )

wn

(

∑

d|n

λd

)2

=
∑

d,e

λdλe







∑

[d,e]|n
n≡b (mod W )

wn
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For the above expression, one can use (H1) along with the W -trick to conclude that

for i 6= j, [di, ei] and [dj , ej ] must be co-prime. Indeed, if a prime p divides both

[di, ei] and [dj , ej], then p divides ni and nj , which means that p ∈ P0 and hence

p | W . But each ni is co-prime to W , so this cannot happen. From the support of

λd’s as defined in (3.13), it is clear that d, e must be square-free tuples. Moreover,

[d, e] | n and each component of n co-prime to W , implies that [di, ei] is co-prime to
W for each i. These restrictions on the tuples d, e along with the hypothesis (H2)

give that the required sum is

(3.14) X
∑′

d,e<R

λdλe

f([d, e])
+O

(

∑′

d,e<R

|λd||λe||r[d,e]|
)

,

where the dash over the sum has the same meaning as in Lemma 3.4. The first term

is viewed as the main term of our estimate, while the O-sum is the error term. With

our choice of λd’s, the main term becomes

X
∑

d,e

µ(d)µ(e)

f([d, e])
F
( log d

logR

)

F
( log e

logR

)

.

Using Lemma 3.4, this is equal to

(1 + o(1))C(F ,F)(α)c(W )
X

(logR)α
,

as required.

The choice of R along with condition (H4) means that

∑

d,e<R

|λd||λe||r[d,e]| ≪
∑

[d,e]<Xθ

|r[d,e]| ≪
X

(logX)A
.

We can thus neglect the error term by taking A sufficiently large. �

4. Applications

4.1. Bounded gaps between primes. In this section, we apply the higher rank

sieve discussed above to the well-known prime k-tuples problem. A setH of distinct

nonnegative integers is said to be admissible if for every prime p there is a residue

class bp (mod p) such that bp /∈ H (mod p). We will work with a fixed admissible

k-tuple

H = {h1, . . . , hk}.
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We apply the sieve to the set SN = {n = (n + h1, . . . , n + hk) : n ∼ N}. We use
the ‘W trick’ to remove the effect of small primes, that is we restrict n to be in

a fixed residue class b modulo W , where W =
∏

p<D0

p and b is chosen so that b + hi

is co-prime to W for each hi. This choice of b is possible because of admissibility of

the set H . One can choose D0 = log log logN , so that W ∼ (log logN)(1+o(1)) by

an application of the prime number theorem.

Let χP denote the characteristic function of the primes. Consider two expressions

Q1 =
∑

n∼N
n≡b (mod W )

an

and

Q2 =
∑

n∼N
n≡b (mod W )

( k
∑

m=1

χP(n+ hm)

)

an,

where an are nonnegative parameters given by

an =

(

∑

d|n

λd

)2

,

with λd’s chosen as in (3.13). For ̺ positive, we denote by Q(N, ̺) the quantity

(4.1) Q2 − ̺Q1 =
∑

n∼N
n≡b (mod W )

( k
∑

j=1

χP(n+ hj)− ̺

)

an.

The key idea then used is the following proposition.

Proposition 4.1. Given a positive number ̺, if

Q(N, ̺) > 0

for all large N , then there are infinitely many integers n such that at least ⌊̺⌋ + 1

of n+ h1, . . . , n+ hk are primes.

P r o o f. The definition of Q(N, ̺) gives that

∑

n∼N
n≡b (mod W )

( k
∑

j=1

χP(n+ hj)− ̺

)

an > 0.
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As an are nonnegative parameters, we must have

k
∑

j=1

χP(n+ hj)− ̺ > 0

for some n ∼ N . As this happens for all large N ,

k
∑

j=1

χP(n+ hj) > ̺

holds for infinitely many integers n. As each χP(n+ hj) is an integer, this completes

the proof. �

As an application of the higher rank sieve, we derive asymptotic formulas for Q1

and Q2 that agree with those obtained by Maynard in [5] and the Polymath project

in [9].

Let π(x) denote the number of primes upto x. For (a, q) = 1, put

(4.2) EP(x, q, a) =
∑

n6x
n≡a (mod q)

χP(n)−
π(x)

ϕ(q)
.

Then for any A > 0 and any θ < 1/2, the Bombieri-Vinogradov theorem establishes

that

(4.3)
∑

q6xθ

max
(a,q)=1

|EP(x, q, a)| ≪
x

(log x)A
.

The higher rank sieve gives us the following asymptotic formula for Q1.

Lemma 4.2. Choose θ < 1, λd’s as in (3.13) in terms of the function F , and
R = Nθ/2−δ. Then, as N → ∞,

Q1 :=
∑

n∼N
n≡b (mod W )

(

∑

dj |(n+hj) ∀ j

λd

)2

= (1 + o(1))
W k−1

ϕ(W )k
N

(logR)k
I(F),

where

I(F) =

∫

∆k(1)

(F (1)(t))2 dt1 . . . dtk,

with

(4.4) F (1)(t) =
∂kF(t1, . . . , tk)

∂t1 . . . ∂tk
.
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P r o o f. We will prove this as a special case of Theorem 3.6 to facilitate better

understanding of the general sieve at work here.

We begin by establishing the setting of the sieve. The tuple n in this case is

(n+h1, . . . , n+hk), where hi are elements of the fixed setH . The set S is given by

S = {n = (n+ h1, . . . , n+ hk) : n ∼ N}.

The choice of W was stated at the beginning of this section. The tuple b is then

(b+ h1, . . . , b+ hk), each component of which is co-prime to W . The weights wn are

all equal to 1. For this choice of weights, any θ < 1 suffices, as we will see.

We verify hypotheses (H1) to (H4). It is clear that (H1) holds as H is a fixed set.

To obtain (H2) with the weights wn = 1, we consider the sum

∑

n∼N,
dj |(n+hj) ∀ j
n≡b (mod W )

1.

We first note that in the above expression, n + hj ≡ b + hj (mod W ) means that

n+ hj is co-prime to W for all j. Hence we must have (dj ,W ) = 1 for all j. Indeed,

if a prime p divides both, then p divides both n+ hj and W , which cannot happen.

Moreover, if p divides n+hi and n+hj , for i 6= j, then p | (hj−hi) and hence p | W .
This again gives p | (n+ hj) and p | W , which is a contradiction.
Thus, all the (n + hj)’s and in particular all the dj ’s are mutually co-prime and

each dj is co-prime toW . Then we can write the resulting sum as a sum over a single

residue class modulo W
∏

j

dj and use the Chinese remainder theorem to get

N

Wd1 . . . dk
+O(1).

Thus X = N/W and rd = O(1). Furthermore, fj(p) = p for all j, thereby showing

that (H3) holds with αj = 1 for each j. In order to verify (H4), observe that invoking

Proposition 3.1, we have

∑

[d,e]6Nθ

1 =
∑

r6Nθ

Ωk(r) 6
∑

r6Nθ

τ3k(r).

As the average order of τ3k(r) is (log r)
3k−1 and 0 < θ < 1, we see that

∑

[d,e]6Nθ

|r[d,e]| ≪ Nθ(logNθ)3k−1 ≪ N

(logN)A

for any A > 0. Hence, (H4) is satisfied.
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The proof is then a straightforward application of Theorem 3.6 as follows. As α

is the tuple (1, . . . , 1) and α =
∑

j

αj = k, one sees that the factor C(F ,F)(α) is

nothing but the integral η given above. We also have

c(W ) =
∏

p|W

pk

ϕ(p)k
=

W k

ϕ(W )k

in this case. Letting X = N/W completes the proof. �

We now derive the asymptotic formula for Q2.

Lemma 4.3. With θ chosen so that (4.3) holds, λd’s chosen as in (3.13) in terms

of F , and R = Nθ/2−δ, we have as N → ∞,

Q
(m)
2 :=

∑

n∼N
n≡b (mod W )

χP(n+ hm)

(

∑

dj|(n+hj) ∀ j

λd

)2

= (1 + o(1))
W k−1

ϕ(W )k
(π(2N)− π(N))

(logR)k−1
Jm(F),

with Jm(F) given by the integral

∫

∆k−1(1)

(F (1)
m (t1, . . . , tm−1, tm+1, . . . , tk))

2 dt1 . . . dtm−1 dtm+1 . . . dtk.

We use the usual notation of (2.1), but here Fm is the function F restricted to tuples
with mth component zero, more precisely,

(4.5) Fm(t1, . . . , tm−1, tm+1, . . . , tk) = F(t1, . . . , tm−1, 0, tm+1, . . . , tk).

P r o o f. The proof is an application of Theorem 3.6 after verification of the

required hypotheses. (H1) holds by construction. To obtain (H2), we consider the

sum
∑

n∼N,
dj |(n+hj) ∀ j
n≡b (mod W )

χP(n+ hm).

This sum is nonzero if and only if dm = 1 and hence this additional condition must

be imposed. Denoting n+ hm as n
′, and χ(n) as the function taking the value 1 if

n = 1 and 0 otherwise, we can rewrite the above sum as

χ(dm)
∑

n∼N,
n′≡(hm−hj) (mod dj) ∀j 6=m

n′≡b+hm (mod W )

χP(n
′).
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As done in the proof of Lemma 4.2, one can show that the residue classes above

are co-prime to the corresponding moduli and the moduli are themselves mutually

co-prime, thereby facilitating the use of the Chinese remainder theorem to rewrite

the inner sum as the sum over some co-prime residue class a modulo q = W
∏

j 6=m

dj .

Using (4.2), this gives for the inner sum above

π(2N)− π(N)

ϕ(W )
∏

j 6=m

ϕ(dj)
+ EP(N, q, a).

We must exercise caution because of the constraint dm = 1. This condition means

that the sieve has now collapsed to a (k − 1) rank sieve. Hence fixing dm = 1 in the

sum that appears in (H2), this hypothesis holds with X = (π(2N) − π(N))/ϕ(W )

and fj(dj) = ϕ(dj) for all j 6= m. The error rd is given by EP(N, q, a). Furthermore,

this shows that (H3) holds with αj = 1 for each j 6= m.

Keeping the additional constraint on the mth component in mind, to check (H4)

we must check that
∑

[d,e]<Nθ

dm=em=1

|EP(N, q, a)| ≪ N

(logN)A

for any A > 0. Here q = W
∏

j 6=m

[dj , ej]. There exists ε > 0 such that (4.3) holds for

θ′ = θ + ε. As W ∼ log logN , the above sum is bounded by

∑

q<Nθ′

dm=em=1

|EP(N, q, a)|,

which is ≪ N/(logN)A by (4.3). The proof is then an application of Theorem 3.6

with some modification. In the sum

∑

n≡b (mod W )

wn

(

∑

d|n

λd

)2

appearing in Theorem 3.6, we must restrict dm to be 1. By (3.13), this means

that the function F is only evaluated on k-tuples whose mth component is 0. The

above mentioned theorem can then be applied, with αj = 1 for all j 6= m and

α =
∑

j 6=m

αj = k − 1. Viewing the function F(t) as effectively a function on (k − 1)-

tuples, we obtain

C(F ,F)(α) = Jm(F)

in this case, as required. �
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As done in [5], we can restrict F to be a symmetric function without any loss of

generality due to the symmetry of the integrals I(F) and
k
∑

m=1
Jm(F). This allows

us to set m = k in the result above enabling us to state it in the form given by the

Polymath project [9]. In particular, then

(4.6) J(F) :=

k
∑

m=1

Jm(F) = kJk(F).

Choosing some θ < 1 for which (4.3) holds, so that θ is admissible in the derivation

of the asymptotic formula for Q1 as well as Q2, one obtains the following after using

the prime number theorem.

Lemma 4.4. Let J(F) be as in (4.6). Then, with θ < 1/2, λd’s chosen as in (3.13)

in terms of F , and R = Nθ/2−δ, we have as N → ∞

Q(N, ̺) := Q2 − ̺Q1

=
W k−1

ϕ(W )k
N

(logR)k

((θ

2
− δ

)

J(F)− ̺I(F)
)

+ o
( W k−1

ϕ(W )k
N

(logR)k

)

.

Dropping the notation J(F), I(F) in favor of the less unwieldy J, I, we see from

the above lemma that we need

(4.7) ̺ <
(θ

2
− δ

)J

I
,

and hence we wish to maximize the ratioMk := J/I = kJk/I.We will aim at finding

a lower bound for this ratio and then maximize this lower bound in order to find the

optimal ̺. We write F (1)(t) as G(t), where G is a smooth function supported on the

simplex ∆k(1). Writing G as

G(t) =
∂

∂tm

( ∂k−1F(t)

∂t1 . . . ∂tm−1∂tm . . . ∂tk

)

,

we see from the fundamental theorem of calculus that the function F (1)
m that appears

in the definition of J in Lemma 4.3 is simply the anti-derivative of G with respect

to the mth component, evaluated at tm = 0. It is also clear that the anti-derivative

of G with respect to the mth component has the same support as F . Hence, we can
write

∫ ∞

0

G(t) dtm = −
( ∂k−1F(t)

∂t1 . . . ∂tm−1∂tm . . . ∂tk

)∣

∣

∣

tm=0
= −F (1)

m (t).
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This allows us to recast Mk in terms of G(t) as

(4.8) Mk = k

∫

∆k−1(1)

(∫∞

0 G(t) dtk
)2
dt1 . . . dtk−1

∫

∆k(1)
(G(t))2 dt

.

Observe that the choice of G(t) corresponding to the GPY test function, namely

G(t) =

(

1−
k

∑

i=1

ti

)l

,

yields

Mk =
k

(l + 1)2
I2l+2,k−1

I2l,k
,

where the integral Il,k is defined as

Il,k =

∫

∆k(1)

(

1−
k
∑

i=1

ti

)l

dt.

After some routine calculations based on induction, one can show Il,k = l!/(l+ k)!,

so that

Mk =
2k(2l+ 1)

(l + 1)(k + 2l+ 1)
.

The limiting value of Mk for large k (assuming l also becomes large, for example

l = ⌊
√
k⌋) is 4. The inequality (4.7) then becomes ̺ < 2θ − 2δ, which is satisfied

for some ̺ with ⌊̺⌋ = 1, provided we assume θ > 1/2. Applying Proposition 4.1,

we see that the GPY choice of a test function yields bounded gaps between primes

conditionally, under the assumption that the primes have a level of distribution

θ > 1/2. This observation, made by GPY, played a key role in Zhang’s result on

bounded gaps between primes.

This was treated unconditionally by Maynard in [5], who chose G on its support

∆k(1) to be the product of one dimensional functions

G(t) =

k
∏

i=1

g(kti),

with g(u) given by g(u) := (1 + Au)−1 for some fixed A > 0, g supported on

u ∈ [0, T ]. He arrived at this choice of functions via an optimization argument and

then evaluated the integrals involved by suitably choosing A and T in terms of k.

After some work, this gives

Mk > log k − 2 log log k − 2,
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when k is sufficiently large. As Mk can be made as large as needed by taking k large

enough, applying Proposition 4.1 proves that there are infinitely many bounded gaps

between primes. One can also show that Mk > log k as indicated in [9].

4.2. Bounded gaps between primes in Chebotarev sets. It is worth noting

that the higher rank sieve can be applied to prove bounded gaps for any sequence of

primes satisfying the axioms (H1) to (H4). In particular, these axioms hold for primes

in arithmetic progressions and more generally, primes satisfying certain Chebotarev

conditions.

The corresponding result on bounded gaps between primes satisfying certain Cheb-

otarev conditions has been obtained by Thorner in [12]. It is evident that our formu-

lation gives a clean and simplified proof of this result. For instance, in this situation,

(H1) can be seen to hold with an appropriate choice of W , and the Chebotarev den-

sity theorem allows one to fulfill (H2), (H3). The crucial hypothesis (H4) is satisfied

by invoking the variant of the Bombieri-Vinogradov theorem established by M.Ram

Murty and V.Kumar Murty in [7].

4.3. Bounded gaps between primes with a given primitive root. Given

an integer g 6= ±1 which is not a perfect square, Artin conjectured in 1927 that there

are infinitely many primes for which g is a primitive root. This conjecture was proved

under the Generalized Riemann hypothesis (GRH) by Hooley in [3], who obtained

an asymptotic formula for the number of such primes up to x.

Fixing g as above, let P denote the set of primes p for which g is a primitive

root (mod p). Assuming GRH, Pollack in [8] showed that there are infinitely many

bounded gaps between primes contained in P. In order to do this, the sums consid-

ered are S1 and S2, where S1 is the same as Q1 considered in Section 4.1 and S2 is

given by

S2 =
∑

n∼N
n≡b (mod W )

( k
∑

m=1

χP(n+ hm)

)(

∑

d|n

λd

)2

,

with λd’s chosen as before. It is possible to show that S2 ∼ Q2 by observing that

0 6 |P− P| 6
∑

q

#{p : p ≡ 1 (mod q), g (mod p) has order (p− 1)/q},

where the sum runs over all primes q. One then splits the sum over q into different

ranges in order to show that the corresponding difference between S2 and Q2 is small.

By a theorem of Dedekind, we have for p ∤ g

p ≡ 1 (mod q), g(p−1)/q ≡ 1 (mod p) ⇔ p splits completely in Lq = Q(ζq, q
√
g),
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where ζq is a primitive qth root of unity. Let nq denote the degree of the finite

extension Lq/Q. Then this problem is essentially an application of our higher rank

sieve with the hypothesis (H4) satisfied by the following special case of an effective

Chebotarev density theorem by Lagarias and Odlyzko in [4], conditional upon GRH

(for each of the Dedekind zeta functions ζ(s, Lq)):

πq(x) =
li(x)

nq
+O

(x1/2

nq
log(dqx

nq )
)

,

where li(x) denotes the logarithmic integral
∫ x

2 dt/ log t, πq denotes the number of

primes p 6 x which split completely in Lq and dq is the discriminant, disc(Lq/Q). In

particular, as indicated by M.Ram Murty in [6], an average result of the following

form would suffice for this purpose: Given any B > 0, there exists A > 0 (depending

on B) such that
∑

q6 x1/2

(log x)B

∣

∣

∣πq(x) −
li(x)

nq

∣

∣

∣ ≪ x

(log x)A
.

This also allows one to fulfill (H2), (H3). The hypothesis (H1) entails a careful choice

of W and the residue class b (mod W ), as discussed in [8].

5. Concluding remarks

As mentioned in the introduction, we have taken a Fourier analytic approach to

the higher rank Selberg sieve rather than the combinatorial approach of Selberg and

Maynard. In the latter approach, the problem reduces to a comparison of two Selberg

sieves in that we would consider

∑

n∈S

(an − bn)

(

∑

d|n

λd

)2

,

with two different sets of weights an and bn, and attempt to derive a lower bound.

This would allow us to deduce that we have an > bn for infinitely many n. As in the

classical Selberg sieve, combinatorial considerations admit a choice of λd’s so as to

minimize a quadratic form and thus optimize one of the terms, and then one needs to

study how this choice affects the other term. One could develop this along classical

lines and derive analogous results.
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