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ABSTRACT Most conventional Fuzzy Logic Controller (FLC) rules are based on the knowledge and
experience of expert operators: given a specific input, FLCs produce the same output. However, FLCs do
not perform very well when dealing with complex problems that comprise several input variables. Hence,
an optimization tool is highly desirable to reduce the number of inputs and consequently maximize the
controller performance, leading to easiermaintenance and implementation. This article, presents an enhanced
fuzzy logic controller applied to a photovoltaic system. Specifically, both inputs and membership functions
are reduced, resulting in a Highly Reduced Fuzzy Logic Controller (HRFLC), to model a 100kW grid-
connected Photovoltaic Panel (PV) as part of a Maximum Power Point Tracking (MPPT) scheme. A DC

to DC boost converter is included to transfer the total energy to the grid over a three-level Voltage Source
Converter (VSC), which is controlled by varying its duty cycle. FLC generates control parameters to simulate
different weather conditions. In this study, only one input representing the current variation (△I) of the FLC
is used to provide an effective and accurate solution. This reduction in simulation inputs results in a novel
HRFLC which simplifies the solar electric system design with output Membership Functions (MFs). Both
are achieved by grouping two rules instead of using an existing state-of-the-art method with twenty-five
MFs. To the best of our knowledge, this is the first FLC able to provide such rules compression. Finally, a
comparison with different techniques such as Perturb and Observe (P&O) shows that HRFLC can improve
the dynamic and the steady state performance of the PV system. Notably, experimental results report a steady
state error of 0.119%, a transient time of 0.28s and anMPPT tracking accuracy of 0.009s.

INDEX TERMS Boost converter, current variation, grid connection, high reduced fuzzy based MPPT

controller (HRFLC), photovoltaic panel, three level VSC.

NOMENCLATURE

VARIABLES

△E(t) Error Variation
△I Current Variation
△P Power Variation
△V Voltage Variation
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C Capacitor Value
D Duty Cycle
dPPV /dIPV Power derivation by current
E(t) Error
G Irradiation
Iin Input Current
Iout Output Current
IPh Photo Current
IPV Light Generated Current
L Induction Value
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Le VSC Level
N IGBTs Number
Ro Output Resistance
Req Equivalent Resistance
Rin Input Resistance
T Temperature
Vo DC/DC Output Voltage
Vab Output Line to Line Voltage of the VSC
Vcarrier Carrier Voltage
Vin DC/DC Input Voltage
VPV Module Output Voltage
Xi Input Fuzzy Data
YCOG Output Fuzzy Controller Value

ACRONYMS

ADC Analogic to Digital Converter
AI Artificial Intelligence
ANFIS Adaptive Neuro Fuzzy Inference System
ANN Artificial Neural Network
COG Center Of Gravity
DC − DC Direct Current to Direct Current
FIS Fuzzy Inference System
FLC Fuzzy Logic Controller
HC Hill Climbing
Hi High
HRFLC Highly Reduced Fuzzy Logic Controller
IE Initial Error
InCon Incremental Conductance
Lo Low
MF Membership Function
Yi Membership Function Value
MPP Maximum Power Point
MPPT Maximum Power Point Tracking
NPC Neutral Point Clamped
P&O Perturb & Observe
PMPP Power value at the Maximum Power Point
PPV Panel Power
PB Positive Big
PID Proportional, Integral and Derivation
PS Positive Small
PV PhotoVoltaic
PVG Photo Voltaic Generator
PWM Power Wave Modulation
S&H Sample and Hold
SSE Steady State Error
ST Steady Time
TOANC Third Order Adaptative Neuro Fuzzy Con-

troller
TrC Triangular Carrier
TT Tracking Time
VSC Voltage Source Converter

CONSTANT

A PV cell ideal factor
f Frequency

ICSr Short Circuit Current
Imp Optimal Current
Io Saturation Current
k Boltzmann Constant
NP Parallel connected cells Number in a PV

Module
Ns Series connected cells Number in a PVmod-

ule
Pm Maximal Module Power
q The electron charge
Rs Serial Resistance in PV Cell
Rsh Parallel Resistance in PV Cell
V Voltage Value
Vdc Input VSC Voltage
Vmp Optimal Voltage Module
Voc PV Module Open Circuit Voltage
Vref Reference Voltage

I. INTRODUCTION

In the last few years, there is a great deal of interest worldwide
in searching new energy sources able to replace the dwindling
fossil fuels. In this context, solar energy turned out to be
the most attractive alternative due to its advantages of being
cleaner, renewable and inexhaustible [1], [2]. The main func-
tion of Photovoltaic (PV) is to transform the solar irradiance
into electric power. However, the generated power from PV

depends not only on irradiance but also on other factors such
as temperature and spectral properties of sunlight [3]–[5].
These conditions need to be controlled in order to allow a PV
panel to operate at the Maximum Power Point (MPP). It is
well known fromMPP theory that the power delivered to the
load is maximum only when the internal impedance is equal
to the load impedance. For this reason, a DC-DC converter is
used. In the literature, many techniques have achieved this
adaptation between the PV panel and the load impedance
at different atmospheric conditions such as the well-known
Perturb and Observe (P&O) [3]–[6], including the Incremen-
tal Conductance technique (InCon). P&O is cost effective
and relatively easy to implement for controlling directions.
However, this technique shows trade-offs between tracking
speed and steady state accuracy to control atmospheric pertur-
bations [3]–[7]. To overcome this problem, several solutions
have been proposed [8]–[10]. In particular, it is worth men-
tioning that the perturbation step increases when the working
point is far from theMPP, since the steps are proportional to
the ratio dPPV /dVPV (and vice-versa) [8]–[11].
In the recent years, with the emergence and development

of Artificial Intelligence (AI) [12], many applications such
as, text mining to biology, financial forecasting, rehabilitation
systems, trust management and medical diagnosis [13]–[15],
[15], [17]–[21] have been efficiently improved. Furthermore,
AI also provided effective and robust solutions to the field of
electro-control systems by developing PID, fuzzy logic [11],
[22]–[34], [36]–[38] and Artificial Neural Networks (ANNs)
[39]–[41] based-control approaches. A comprehensive fuzzy
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system has been used by [11] to intelligently and adaptively
tune the PID gain. Adaptive neuro-fuzzy controller system
has been proposed for controlling MPPT with constant tem-
perature and varying irradiance [22]–[25]. Recently, fuzzy
logic is used in several applications due to its simplicity
and its interpretability. Note that the main advantage of such
technique is the addition or withdrawal of membership func-
tions (MFs) without rehabilitation or re-learning. Fuzzy logic
allows to model natural language rules and also complex
dynamic systems. For this reason, fuzzy-based MPPT algo-
rithms have gained a great deal of attention [11], [22]–[31].
Notably, high tracking performance have been obtained by
using fuzzy-based MPPT [11], [22]–[31]. Hitherto, most of
the works used two inputs and one output with five MFs to
generate twenty-five rules [22]–[32]. Others used one output
and two inputs of seven MFs, resulting in forty-nine rules
[22]. In [23], two inputs were used with three MFs, yielding
nine rules. Vicente Salas et al. [42] employed the variation of
current as the unique input in MPPT controller. Specifically,
the authors used one input with twoMFs, one output with two
MFs and only two rules. To the best of our knowledge, this
was the first approach able to provide a significant reduction
in number of inputs and MFs. It is to be noted, as reported
in the literature, that different inputs can be selected. In par-
ticular, some used the temperature and irradiance variation
[23], whereas others used error variation and momentum
[24]–[28]. In [32], the proposed fuzzy controller employed
different input variables, such as: (1) slope of solar power vs.
solar voltage and slope changes; (2) slope and power variation
(△P); (3) △P and voltage variation (△V); (4) △P and current
variation (△I ); (5) sum of conductance and conductance
increment; (6) sum of conductance arctangent angles and
increment conductance arctangent. In [41] the inputs were
dPPV /dIPV and the error E(t) (defined as PMPP - PPV ); or,
E(t) and error variation (△E(t)). However, for computational
reasons, the best inputs turn out to be the △PPV and △VPV
(or △IPV ), power variation and voltage (or current) variation,
respectively [22]–[33], [39]–[41]. Hence, as reported in the
aforementioned works, all controllers based on MPPT used
at least two inputs. In contrast, this article propose a highly-
efficiency fuzzy-based MPPT controller with high reduction
inputs and MFs for a grid-connected photovoltaic system.
Notably, only two MFs were used. Furthermore, △IPV =

(IPV (k) − IPV (k − 1)) is selected as unique input. Conse-
quently, the calculation time, the number of variables and
the circuitry (Analog to Digital Converter (ADC), Sample
and Hold (S&H), filter, etc..) are significantly reduced. More-
over, the proposed fuzzy-based controller approach is able
to decrease the tracking time and concurrently increase the
tracking accuracy as compared with other state-of-the-art
controllers.

The rest of the paper is organized as follows: in Section II
mathematical details of a PV panel are introduced; in
Section III the design of the DC-DC converter is presented;
Section IV and V describe the fuzzy based MPPT controller
and the Pulse Width Modulation (PWM) used for the three

FIGURE 1. Circuit model of a photovoltaic cell [35].

level voltage source converter, respectively. In Section VI the
model and simulation of the PV system with HRFLC based
MPPT controller is presented. In Section VII the experimen-
tal results are discussed and in Section VIII conclusions are
addressed.

II. MATHEMATICAL MODELING FOR A PHOTOVOLTAIC

PANEL

A solar cell is composed of two types of semiconductors,
called p-type and n-type. Photovoltaic transformation occurs
when solar cell is exposed to sunlight, by converting the
electromagnetic solar irradiance to electricity. Incident irradi-
ance produces proportional electron-hole pairs if their energy
is greater than the energy of the semiconductor’s band-gap.
Fig. 1 shows the circuit model of a standard photovoltaic
model. The photocurrent IPh is the current source of the PV
cell, generated when irradiation G occurs [42], [48]. Intrinsic
shunt and series PV cell resistances are Rsh and Rs, respec-
tively. It is to be noted that Rsh assumes typically high values
and vice-versa, Rs low values. PV cells associated to larger
units result in PV modules; these, interconnected together
in parallel-series configurations, lead to the production of
PV arrays. Equation (1) shows the current output when the
mathematical model of the PV panel is simulated [43].

IPV = NPIPh − NP ∗ I0[exp(
q ∗ (VPV + IPVRs)

(NsAkT )
) − 1]. (1)

In this work, the SunPower SPR-305-WHT PV panel
is used with the following characteristics: Maximal Mod-
ule Power (Pm) of 305W, optimal voltage (Vmp) of 54.7V,
optimal current (Imp) of 5.58A, saturation current (Io) of
1.1753e−08A, photo-current (IPh) of 5.9602A, short circuit
current (ICSr ) of 5.96A, open circuit voltage (Voc) of 64.2V,
serial resistance (Rs) of 0.037998�, parallel resistance (Rsh)
of 993.51� and number of cells equal to 96. As regards
the PV array, its characteristics are: serial modules number
of 5 and parallel modules number of 66. Hence, the PV has a
power of about 100kW, obtained as follows 66 × 5 × 305W
= 100650W = 100.65kW. Irradiance of 1kW/m2 and cell
temperature of 25◦C are the electrical specifications under
test conditions. I-V and P-V curves of the array are depicted
in Fig. 2. Here, thePV panel is directly connected to aDC-DC
converter. This converter is an impedance adapter and allows
to transfer the power captured from the PV panel to the grid
toward a three-level voltage source converter.
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FIGURE 2. Array characteristics curves I-V (a) and P-V (b).

FIGURE 3. The DC-DC boost converter.

III. DESIGN THE DC-DC CONVERTER

A simple DC-DC boost converter transfers the power com-
sumption from the PV Generator (PVG) to the load, when
the adaptation condition (between PVG and load) occurs. The
adaptation is characterized by an adequate duty cycle signal
(0 <D <1). Note that the PWM signal controls the valve gate,
IGBT, in the boost converter. The wiring Simulink diagram
of the DC-DC boost is shown in Fig. 3.

The relationship between inputs and outputs variables
of the boost converter is represented by the following
equations [44]:

Vo = Vin/(1 − D). (2)

Iout = (1 − D)Iin. (3)

whereas, Equation (4) shows the equivalent resistance (Req)
of the DC-DC boost converter:

Req = Rin(1 − D)2. (4)

The maximum power is transferred to the load when Req is
equal to the output resistance (Ro) of thePV system [45], [46].
Hence, according to themaximumpower transfer theorem the
duty cycle can be obtained as follows:

Rin = Vin/Iin = Ro(1 − D)2 H⇒ D = 1 −

√

Rin

Ro
. (5)

Inductor (L) and capacitor (C) functions of the DC-DC
boost converter are instead defined as:

L =
(Vo − Vin)Vin
f (△ I )Vo

. (6)

C =
(Vo − Vin)Iout
f (△ V )Vo

. (7)

where D is the duty cycle; f is the frequency (5 kHz in
this study); Vin and Vo are the inputs and outputs voltages,
respectively; △I and △V are the current and voltage ripple.
Here, L = 5e−3H and C = 12000e−06F. Fig. 4 depicts the
I-V curve of the panel studied with different working zone.
In particular, A-B area denotes the buck working zone, B-C
the boost working zone and finally A-C the buck-boost work-
ing zone [47]. In this work, the boost converter’s working
zone (B-C) is the most important and, △I is the variable of
greatest interest. Note that in Fig. 4, B is the MPP point
and C is the open circuit point. At the B point Ro = Rin.
Furthermore, in this area, Ro≫Rin with Rin = Ro(1− D)2.
In order to have a stable voltage at the grid, the VSC voltage
must be stable and constant. In this study, the voltage supplied
to the VSC is kept constant (V = 500V) as shown in Fig. 10.

IV. FUZZY BASED MPPT CONTROLLER

A. FUZZY INFERENCE SYSTEM

A standard Fuzzy Inference System (FIS) consists of three
modules, as shown in Fig. 6. In the first stage, called
fuzzification, input variables are expressed in linguistic
variables by assigning a MF. Secondly, IF-THEN rules
are applied. Finally, in the defuzzification step, linguistic
variables are transformed into specific output values and
parameters are adjusted based on the input-output data
relation [22]–[33].

B. FUZZY LOGIC CONTROLLER

A Fuzzy Logic Controller (FLC) is based on a FIS [32].
In fuzzification, the selected linguistic variables are the
Positive Small (PS) and the Positive Big (PB). These lin-
guistic values attribute a fuzzy score to the input. In this
article, both input and output MFs are triangular for its
simplicity and ease of implementation (Fig. 5). It is to be
noted that a high number of MFs lead to an increase of
rules and consequently, the control program is difficult to
implement.
In this work, two rules are necessary to efficiently develop

the control and provide accurate results. Moreover, only one
input is used for the FLC, that is the current variation △IPV ,
defined as follows:

△ IPV (n) = IPV (n) − IPV (n− 1). (8)

Table 1 reports the rules used in this article. As can be
seen only two MFs are involved. In contrast, in [22]–[32]
higher number of rules are employed (i.e., from 9 to 49).
Note that the rules define the relationship between △I and D,
represented by the IF-THEN instructions. For example, if the
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FIGURE 4. I-V curve of the working zone of the buck-boost converter.

FIGURE 5. Input (a) and output (b) Fuzzy Membership Functions (MFs).

TABLE 1. Fuzzy rules.

change in current is PS then D will be high.

YCOG =

∑n
i=1 Yi(Xi)Xi

∑n
i=1 Yi(Xi)

. (9)

where COG stands for Centre Of Gravity. The final level
of FLC is the defuzzification able to produce a signal that
controls the MPP. The PV panel current and the PV current
variation △I are illustrated in Fig. 7. As can be seen, △I is
always positive in all irradiance variations.

V. THREE LEVEL PWM VOLTAGE SOURCE CONVERTER

In the literature, several multilevel inverter topologies have
been introduced, such as the diode clamped multilevel

inverter, the flying capacitor multilevel inverters, and the
cascaded H-bridge multilevel inverter. The most used is
the well-known Neutral Point Clamped (NPC) [49], [50].
In this article, a three-level Voltage Source Converter (VSC) is
employed, since it is suitable for higher voltage inverters and
provides the following advantages than a common two-level
inverters: i) low output current ripples; ii) reduced harmonic
power as a result of a smaller output voltage that leads to
cleaner AC output waveform; iii) the IGBTs are subjected to
the half of the bus voltage; iv) the NPC inverter is character-
ized by a low common-mode and line-to-line voltage step.
However, the three-level VSC provides a double effective
switching frequency, an augmented number of IGBTs and
a complex control strategy while increasing in level. This
means that the cost andmagnitude of its components is higher
than the well-known two-level inverters, due to the reduced
output voltage steps. In order to achieve such voltages, N
IGBTs are added in each level:

N = 2(Le− 1). (10)

where Le the desired level. In this study Le = 3, so, four
IGBTs are needed for one leg, as shown in Fig. 8. In this
topology, half of the voltage (Vdc/2) is applied to the IGBT
achieved by the two equal capacitors in series. Furthermore,
two clamp diodes in each leg are responsible for driving
the half voltage to each specific IGBT [49]. For each of the
three phases, produced in each leg (Fig. 8), the output voltage

switches between −
Vdc

2
and

Vdc

2
.

These voltages are obtained by turning on at the same time:
1) A1 and A2; 2) A2 and A3; 3) A3 and A4 as reported in
Table 2, where A1, A2, A3 and A4 are the IGBTs in each

leg. Such switching control options generate
Vdc

2
, zero and

−
Vdc

2
. After filtering, a sine waveform is obtained at the AC

output. The connection to the 0 Volt (neutral point) is assured
by the clamp diodes D3 and D4. It can be seen from Table 2
that A2 and A3 conduct more than A1 and A4 causing a
conduction loss on A2 and A3 and a switching loss on A1

VOLUME 8, 2020 163229
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FIGURE 6. Proposed HRFLC based MPPT controller diagram.

FIGURE 7. PV panel current and its derivation.

FIGURE 8. Three phase voltage source converter.

and A4 [50]. The capacitors C1 and C2 are coupled in series
to generate the neutral point (0 Volt). Setting an equal voltage
in the capacitors and establishing a neutral tension in the
mid-point is important for the proper operation of NPC. Any
unbalance voltage in the capacitors will affect directly the
AC output. In this work, the sine triangular PWM waveform

TABLE 2. IGBTs switching options.

method is used [50], [51]. Specifically, in order to create
the sine-carrier PWM, a comparison of the three references
control signals, the pure sine waveform with 120◦, and the
two triangular carrier waves TrC1 and TrC2 is performed.
Fig. 9 shows the comparison of one reference with the two
triangular carriers. Specifically, the comparison of the sine
waveform with TrC1 and TrC2 produces the on/off switch of
A1 and A2, respectively. The switching on and off of A3 and
A4 are the inverse of A1 and A2, respectively.

The corresponding control signals for the IGBTs can be
expressed as follows:

V =

{

1 if Vcarrier > Vref

0 if Vcarrier < Vref
(11)

A zoom of the line-to-line voltage (Vab), obtained at the
VSC, is illustrated in Fig. 10. Here, the total harmonic distor-
tion calculated for Vab is 0.39%.

VI. MODELING AND SIMULATION OF PV SYSTEM WITH

HRFLC BASED MPPT CONTROLLER

The simulation model of the incremental conductance tech-
nique was performed by using constant temperature and by
varying irradiance. Fig. 11 depicts irradiance and tempera-
ture selected as input to the PV panel. Fig. 12 represents
the proposed HRFLC of a PV panel connected to the grid.
In particular, Fig. 12 (a) depicts the synoptic scheme of the
panel connected to the grid toward the VSC with the High
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FIGURE 9. Comparison of the reference to two triangular carriers.

FIGURE 10. A zoom in VSC voltage Vab.

FIGURE 11. Irradiation (a) and temperature (b) as a function of time.

Reduced Fuzzy basedMPPT controller; whereas, Fig. 12 (b)
illustrates the global scheme of the PV panel connected to the
grid toward the boost DC-DC converter and the VSC.

The power transfer between the PV panel and the boost
DC-DC converter at 25◦C is shown in Fig. 13 (a); while, com-
parison results with 40◦C, 20◦C are reported in Fig. 13 (b).
The steady state error (SSE) and tracking time (TT) are shown
in Fig. 14 and 15, respectively. Fig. 16 (a) depicts the Steady
Time (ST), SSE and TT at 40◦; whereas, Fig. 16 (b) highlights
ST, SSE and TT at 20◦C.

However, it is to be noted that a significant improvement
was observedwhen the proposedHRFLC is employed. In par-
ticular, as regards the simulation carried out at 25◦C, TT,
ST and SSE were of 0.008s, 0.08s, 0.12 kW, respectively.
This resulted in an error percentage of 0.12kW/100.65kW =

0.119%. In relation to the simulation at 20◦C, instead, TT, ST
and SSE were of 0.01s, 0.04s, 0.005kW, respectively. In this
case the error percentage was of 0.005kW/100.65kW =

0.0049%. Finally, as regards the experiment at 40◦C, TT, ST
and SSEwere of 0.01s, 0.22s, 0.01kW, respectively, achieving
an error of 0.01kW/100.65kW = 0.0099% and an initial loss
of about 9.5kW. The relationship between the boost power
and grid power is depicted in Fig. 17. Specifically, Fig. 17(a)
reports the simulation results at 25◦C. In this scenario, TT
is less than 0.004s (Fig. 19), ST is about 0.3s and SSE is of
100.54kW-98.83kW = 1.71kW (Fig. 18), providing an error
percentage of 1.71kW/ 100.65kW = 1.69%. Results show
high tracking efficiency and a good performance due to the
use of the three level converter. Note that this performance
can be improved when using five level converter or more. As
regards simulation performed at 20◦C as shown in Fig. 20(b),
the ST is 0.02s, TT is 0.005s, SSE is 2kW, resulting in an error
of 2kW/100.65kW = 1.98%. As regards the 40◦C simulation
(see Fig. 20(a)), the following errors 0.03s TT, 0.17s ST and
1.4kW SSE were achieved, resulting an error percentage of
1.4kW/100.65kW = 1.39%. It is to be noted that in 20◦C
simulation there is a gain in power due to the materials
characteristics of the PV. In this work, a stable voltage (i.e.,
500V) was used to supply the VSC. By this assumption, the
power variation depends on the current. Hence, the power
estimated at the grid is 98.83kW and the power of the boost
is 100.54kW, as shown in Fig. 18. The global power transfer
between thePV panel and the grid at 25◦C is shown in Fig. 21.
In this case, TT (Fig. 23), ST and SSE (Fig. 22) were of
0.005s, 0.09s and 1.82kW, respectively. For 20◦C simulation,
as shown in Fig. 24 (b) the ST was 0.02s, TT 0.02s, SSE
1.8kW, leading to an error percentage of 1.8kW/100.65kW=

1.78%. Finally, as regards the 40◦C simulation (Fig. 24 (a))
reports 0.04s of TT, 0.17s ST and 1.4kW of SSE, resulting in
an error of 1.4kW/100.65kW = 1.39%.

VII. EXPERIMENTAL RESULTS

In this article, a HRFLC-based MPPT controller connected
to grid with only one input is developed. More specifically,
here, the variation of irradiance and temperature in time has
been taken into account. Note that three temperatures has
been studied 40◦C, 25◦C, and 20◦C. An excellent tracking
between the power grid and the PV panel power was achieved
as reported in Fig. 21, 22, 23 for the 25◦C; in Fig. 24 (a) and
Fig. 24 (b) for 40◦C and 20◦C, respectively. In addition,
a complete adaptation was observed in the results related to
the PV panel power and the boost power as illustrated in
Figs 13, 14 and 15 for the 25◦C; Fig. 16 (a) and 16 (b) for
40◦C and 20◦C, respectively. It is worth mentioning that a
fast reaction and adaptation to different working conditions
was observed. In Fig. 24 (a), with the proposed HRFLC,

VOLUME 8, 2020 163231



L. Farah et al.: Highly-Efficient Fuzzy-Based Controller With High Reduction Inputs and MFs

FIGURE 12. (a) Synoptic scheme of the PV panel connected to grid. (b) PV panel connected to grid with the HRFLC.

FIGURE 13. Simulation results of panel power and boost power at 25◦C

(a) and 40◦C , 20◦C , 25◦C (b).

the efficiency was 98.83kW power transmission from the
PV panel to grid out of 100.65 kW, meaning 98.19% of
transmitted power for 25◦C, 89.8kW for 40◦C and 100.2kW
for 20◦C as illustrated in Fig. 24 (b). The variation of the duty
cycle was between only two values: 0.463 and 0.478 to get the
highest and lowest irradiance, respectively.
For the power transferred from the panel to the grid in

the case of 25◦C the tracking time error was about 0.005s

FIGURE 14. Simulation results of the steady state error between the
panel power and boost power at 25◦C .

FIGURE 15. Simulation results of the tracking time between panel power
and boost power at 25◦C .

as shown in Fig. 23. Fig. 22 depicts a steady state error of
1.82 kW and a steady time of about 0.09s. Since the panel
power was 100.65kW, the steady state error was 1.8% (or
98.19% tracking efficiency). Hence, for 20◦C and 40◦C the
tracking times were 0.02s and 0.04s respectively; whereas,
the steady state error were 1.8kW and 1.4kW, respectively.
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FIGURE 16. Errors between panel power and boost power at 40◦C (a) and
20◦C (b).

FIGURE 17. Simulation results of boost power and grid power at 25◦C

(a) and 40◦C , 20◦C , 25◦C (b).

FIGURE 18. Simulation results of the steady state error between the grid
power and boost power at 25◦C .

It is to be noted that even the steady state error for 40◦C was
less than 20◦C the power transmitted from the panel to the
grid was higher than those achieved in 40◦C (i.e., 100.2kW

FIGURE 19. Simulation results of the tracking time between the grid
power and boost power at 25◦C .

FIGURE 20. Errors between boost power and grid power at 40◦C (a) and
20◦C (b).

FIGURE 21. Simulation results of panel power and grid power at 25◦C

(a) and 40◦C , 20◦C , 25◦C (b).

and 89.8kW respectively). As regards PV-Boost simulations
high accuracy and efficiency were reported (Fig. 13 - 15).
The tracking time was 0.009s, the steady state error was
0.12 kW and the transit time was 0.08s for 25◦C. For 20◦C
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FIGURE 22. Simulation results of the steady time and steady state error
of the grid power and PV Panel power at 25◦C .

FIGURE 23. Simulation results of the tracking time between the grid
power and PV panel power at 25◦C .

FIGURE 24. Errors between panel power and grid power at 40◦C (a) and
20◦C (b).

and 40◦C the efficiencies are 99.99% and 90.7% respec-
tively. This was due to: i) the use of few MFs which reduce
the calculation time of the output; ii) the adequate, simple
and fast choice of the duty cycle D by only two MFs. In
relation to the results obtained between the boost and the
grid at 25◦C, a transit time of about 0.01s and a tracking
time of 0.004s, were achieved (Fig.19). In Fig.18 the steady
state error was of 1.71 kW which means an error of 1.69%
for 20◦C and 40◦C. Fig. 20 (a) and (b) report, instead, the
efficiency values that are 99.51% and 89.7% respectively.
Most state-of-the-art works performed simulations at 25◦C.
For example, in [31], the best fuzzy system reported a transit
time of 0.91s, a tracking accuracy of 99.93% with an error

TABLE 3. Summary of the comparative study.

TABLE 4. Comparison of power efficiencies.

TABLE 5. Summary of the comparative studies.

of 5.86Wh and a steady state error of 0.37%. The P&O

(0.5%) in [31] reported a transit time of 0.25s and a steady
state error of 7.16%. The ANNs used in the literature, the
steady state error was approximately 3W for 30W (10% of
error) [52]. The ANN-based system proposed in [53] provised
a transit time of 0.05s with a steady stat error of 0.6%.
In [54] the proposed fuzzy system reported a transit time
of 0.25s, and a mean steady state error of 2.36%. In [22]
using adaptive neuro-fuzzy controller the steady stat error
was about 0.5%. In [24] the tracking time error estimated was
1.58s. For further evaluation, Table 3 illustrates the results
presented in [45], [46] such as Third Order B-spline Adap-
tive Neuro-fuzzy Controller (TOANC), fuzzy logic controller,
PID–incremental conductance (PID–InCon) and PID–Hill
climbing (PID–HC). As can be observed, TOANC achieved
the highest efficiency and the lowest error as it employed the
MPPT error and its derivative.
Kamal et al. [45], [46] compared the proposed method

TOANC with sliding mode controller, integral backstepping
controller, predictive, MPPT with irradiance sensor, ANFIS
and three point weighted. Comparative results are reported in
Table 4. Hence, the proposed HRFLC-based MPPT, which
achieved an efficiency of 99.12%, with only one input, one
output, and two rules. This FLC can be easily implemented
and widely used. Results are summarized Table 5.
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TABLE 6. Results achieved for simulations carried out at 20◦C and 40◦C.

The results achieved for 20◦C and 40◦C are reported in
Table 6.

The proposed HRFLC provided high performances with a
reduced number of MFs and rules, making its architecture
very simple. In fact, the main idea was to keep the voltage
stable while the current control the irradiance variation. The
choice of the single input △I simplifies considerably the
implementation. The reasons of using △I can be summarized
as follows: first, the voltage of the VSCmust be kept constant
and stable in order to supply the grid with fixed AC voltage.
Second, the current is more sensible in the B-C zone than the
other zones as this work deals with Boost controller. Third,
components, time and memory are reduced significantly.

VIII. CONCLUSION

In this work, an HRFLC-based MPPT method is proposed
as an accurate, simple and representative approach. The
design and simulation of the method are discussed in detail.
In this article, only the current variation is used under dif-
ferent weather conditions (i.e., irradiation at 20◦C, 25◦C and
40◦C), achieving high accuracy and efficiency, by employing
a number of inputs less than usually used in the literature,
mainly twenty-five rules or over. This reduction means that
the calculation is simplified significantly. Comparing to the
conventional P&O method, the proposed MPPT method can
satisfactorily address the trade-off between the tracking speed
and steady state oscillations. Moreover, a connection to a grid
is achieved. This connection provided high performances.
Moreover, the use of Fuzzy in MPPT control (HRFLC)
achieves better results than the classical approach, especially
for static error and tracking time. Furthermore, in comparison
with other controllers like fuzzy, ANNs and so on, theHRFLC
reported higher accuracy and efficiency in tracking time,
transit time, and steady state with a high reduction in variables
and functions. This reduction allows not only to simplify the
implementation process but also to achieve a significant gain
in terms of time and cost (by using a smaller number of
components). This will make an easy process for installation
and maintenance. As an alternative perspective, in the future,
exploitation of deep and/or reinforcement learning methods
[13]–[18], [55] will be also explored.
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