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ABSTRACT Exploring efficient and cost-effective electro-

catalysts for oxygen evolution reaction (OER) is critical to

water splitting. While nickel-iron layered double hydroxide

(NiFe LDH) has been long recognized as a promising non-

precious electrocatalyst for OER, its intrinsic activity needs

further improvement. Herein, we design a highly-efficient

oxygen evolution electrode based on defective NiFe LDH na-

noarray. By combing the merits of the modulated electronic

structure, more exposed active sites, and the conductive elec-

trode, the defective NiFe LDH electrocatalysts show a low

onset potential of 1.40 V (vs. RHE). An overpotential of only

200 mV is required for 10 mA cm−2, which is 48 mV lower than

that of pristine NiFe-LDH. Density functional theory plus U

(DFT+U) calculations are further employed for the origin of

this OER activity enhancement. We find the introduction of

oxygen vacancies leads to a lower valance state of Fe and the

narrowed bandgap, which means the electrons tend to be ea-

sily excited into the conduction band, resulting in the lowered

reaction overpotential and enhanced OER performance.

Keywords: oxygen evolution reaction, layered double hydroxide,

oxygen vacancy, electrocatalysis

INTRODUCTION
Hydrogen from water-splitting presents a clean and sus-
tainable energy to replace traditional fossil energy and
address the energy crisis as well as the environmental
issues [1–3]. However, the low efficiency and sluggish
kinetics of oxygen evolution reaction (OER) catalysts
have restricted the large-scale production of hydrogen
[4,5]. Precious metal catalysts (such as IrO2 and RuO2)
have to be involved in the electrode [6–9] to lower the

overpotential and facilitate the OER process, but the
limited performance (e.g., an onset potential of 1.5 V) has
still hindered their commercialization [10–13]. Instead,
3d-transition metals (Ni, Co, Fe, etc.) have received in-
creasing research interest owing to the earth abundance
and considerable activity [14–19]. Notably, NiFe-based
catalyst has shown the highest activity among the 3d-
transition metal systems in alkaline conditions. Electrode
design based on NiFe catalyst with further depressed
onset potential and high energy efficiency is still very
challenging [20–25].

In recent decades, layered double hydroxide (LDH),
highly tunable layered materials with brucite-like layers
and intercalated anions, have been widely considered as
promising OER electrode material [26–28]. Extensive ef-
forts have been made to improve the OER activity of NiFe
LDHs by tuning their chemical composition/nanos-
tructures or enhancing the electrical conductivity [29–
32]. For example, Hu and co-workers [33] found an OER
onset potential of 1.48 V for NiFe LDH by exfoliating
LDH to single-layer nanosheet and exposing more metal
sites. Dai’s group [34] has anchored NiFe LDHs on
conductive carbon nanotube to enhance the conductivity,
thus improving their OER activity with an early onset
potential of 1.45 V. Luo et al. [35] intercalated phos-
phorus oxoanions into NiFe LDHs to tune the surface
electronic structure, and 1.45 V was also obtained for the
onset potential. Moreover, by combining the above-
mentioned methods, the OER onset potential of NiFe
LDH can be much improved, but still larger than 1.40 V
so far [36]. On the other hand, exfoliation of NiFe LDH/
engineering the nanostructure commonly involved var-
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ious organic solvents or harsh conditions like high tem-
perature/pressure. Therefore, developing NiFe LDH
based electrode with higher intrinsic activity (especially
the onset potential under 1.40 V) in a mild and eco-
nomical way is pretty urgent.

In this work, we report a highly-efficient OER electrode
based on defective NiFe LDHs. After a simple immersion
in NaBH4 solution at room temperature, oxygen va-
cancies were introduced to NiFe LDH nanoarray. More
importantly, the as-designed defective NiFe LDH elec-
trode exhibited a significantly improved OER activity
with an early onset potential of 1.40 V and a small
overpotential of 200 mV for 10 mA cm−2. The defective
NiFe LDH was prepared under a mild reduction condi-
tion but surprisingly stable even after 10 h continued
OER catalysis. Based on X-ray photoelectron spectro-
scopy (XPS)/electrochemical analysis and DFT+U calcu-
lations, the excellent OER performance of defective NiFe
LDH electrode should be attributed to the tuned elec-
tronic structure and more exposed active sites. Our study
not only demonstrates defective NiFe LDH nanoarray as
highly-active and cost-effective OER electrode, but also
shed light on fabricating highly-efficient electrode for
large-scale industrial applications in an economic way.

EXPERIMENTAL SECTION

Chemicals and characterizations

Ni(NO3)2·6H2O and Fe(NO3)3·9H2O were purchased from
Sinopharm Chemical Reagent Co, Ltd. (SCRC).
CO(NH2)2 were purchased from Beijing Chemical Re-
agents Company. NaBH4 was purchased from Tianjin
East China Reagent Factory. Nickel foam was purchased
from Shanxi Li Zhiyuan Battery Materials Ltd. Deionized
water with a resistivity>18 MΩ was used to prepare all
aqueous solutions. All the reagents were of analytical
grade and were used without further purification.

The morphologies of as-prepared samples were char-
acterized by scanning electron microscope (SEM; Zeiss
SUPRA 55) and high-resolution transmission electron
microscope (HRTEM; JEOL JEM-2100). X-ray diffraction
(XRD) patterns were collected on Rigaku X-ray dif-
fractometer (UItima III, 3kW), recorded with 2θ ranging
from 3° to 80°. XPS measurements were carried out with
a PHI Quantera II XPS Scanning Microprobe. Electron
Paramagnetic Resonance (EPR) was conducted on
ELEXSYS-II, Bruker.

Synthesis of defective NiFe LDH nanoarray

The NiFe LDH nanoarray was prepared by hydrothermal

method. In a typical synthesis, 0.33 mmol Fe(NO3)3·9H2O,
0.66 mmol Ni(NO3)2·6H2O and 10 mmol CO(NH2)2 were
dissolved in 35 mL distilled water and stirred to form a
clear solution. Nickel foam (about 3 cm × 2 cm) was
carefully cleaned with concentrated HCl solution (37 wt
%) in an ultrasound bath for 5 min with the purpose of
removing the surface nickel oxide layer, and then washed
by deionized water and ethanol respectively for 5 min to
remove the remnant acid. The solution and the nickel
foam were transferred to a 40 mL Teflon-lined stainless-
steel autoclave, which was sealed, maintained at 120°C for
12 h, and then allowed to cool to room temperature
naturally. A brown NiFe LDH nanoarray was formed and
subsequently rinsed with distilled water, ethanol for
5 min ultrasonically. The prepared NiFe LDH array was
dried in the air. To prepare defective NiFe LDH na-
noarray, 8 mmol NaBH4 was added into 40 mL distilled
water and slightly stirred to form a clear solution. The
NiFe LDH array was cut into a rectangle shape (about
1 cm × 2 cm) and immersed in the 0.2 mol L−1 NaBH4

solution for a certain time (5–60 min) at room tempera-
ture. Afterwards, the reduced sample was rinsed with
distilled water, ethanol for 5 min ultrasonically and then
dried for further use.

Electrochemical measurements

The electrochemical measurements were performed at
room temperature in a three-electrode system in
1 mol L−1 aqueous KOH solution using an electro-
chemical workstation (CHI 660E, Chenhua, Shanghai).
The defective NiFe LDH nanoarray on the Nickle foam
(1 cm × 1 cm) was used as a working electrode. A Hg/
HgO electrode and a platinum plate were used as the
reference and the counter electrode, respectively. The
electrolyte was saturated by oxygen bubbles (for OER)
before and during the experiments. The polarization data
were collected using linear sweep voltammetry at a scan
rate of 1 mV s−1 after twenty cyclic voltammetric scans.
The electrochemical impedance spectroscopy was ob-
tained by AC impedance spectroscopy in 1 mol L−1 KOH
solution at open circuit voltage from 105–0.1 Hz with an
AC voltage of 5 mV. The stability of the electrode was
measured by applying a constant potential of 1.43 V for
10 h.

Calculation methods

DFT+U calculations were employed to analyze the role of
oxygen vacancies in NiFe LDH structure during the OER
progress. The (100) surface was take into consideration as
the surface corresponds to the edge of LDH structure
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mostly. For pristine NiFe-LDH (100) facet, Fe atom was
used as the active site for OER. To simulate the oxygen
vacancy, an –OH group was removed from the top layer
of (100), the consequently exposed Fe-bridge site was
used as the active site for OER.

All calculations were performed using the projector-
augmented wave method and a plane-wave basis set as
implemented in the Vienna Ab Initio Simulation Package
(VASP). The bulk and surface properties of NiFe LDH
were optimized within GGA-PBE. A full optimization of
all atom positions in the bulk was performed via the
action of a conjugate gradient optimization procedure.
The bulk lattice constants were optimized using the
3×3×1 Monkhorst-Pack k-point sampling. The cutoff
energy for plane-wave basis functions was set to 400 eV
with the energy change convergence criterion of
1×10−4 eV. Atomic positions were allowed to relax until
the sum of the absolute forces is less than 0.05 eV Å−1.
Hubbard-U correction method was applied to improve
the description of localized Ni and Fe d-electrons in the
NiFe-LDH with U=5.3 and U=6.45 for Fe and Ni, re-
spectively. Spin polarization was also considered in all the
calculations.

RESULTS AND DISSCUSSION
Fig. 1 illustrated the fabrication process of defective NiFe
LDH nanoarray. The pristine NiFe LDH (here denoted as
“P-NiFe LDH”) was mildly reduced by 0.2 mol L−1 NaBH4

solution at room temperature to produce reduced NiFe
LDH (here denoted as “R-NiFe LDH”). The color of P-
NiFe LDH nanoarray (brown) changed to yellow-grey
after a reduction for 30 min and even changed into grey
60 min later (Fig. S1). Such color change implied a tuned
chemical/electronic structure of P-NiFe LDH.

SEM characterization was carried out to look into the
morphology change of NiFe LDH during the reduction.
As shown in Fig. 2a, the P-NiFe LDHs were sheet-like and
showed an oriented 3D array structure. Such open 3D
structure means adequate exposure of edge sites and ef-
ficient use of the active materials for catalysis. After the
immersion in NaBH4 solution for 10 min, although na-
nosheet morphology and 3D array structure were roughly
preserved, the surface of R-NiFe LDH turned to be coarse
and nanoporous (Fig. 2b). This suggested a surface re-
action during the reduction, which led to a slightly de-
stroyed crystal structure, implying a defective nature. The
HRTEM images and electron diffractions (ED) of P- and
R-NiFe LDH also confirmed this point, in the inset in Fig.
2a, b and Fig. S2, discontinuous lattices and weakened ED
patterns could be clearly seen after the mild reduction.

Further extending the reduction time to 60 min, the R-
NiFe LDH nanosheets were collapsed into irregular na-
noparticles (Fig. S3), demonstrating a gradually spoiled
structure. XRD analysis (Fig. 2c and Fig. S4a) showed the
diffraction peaks of P-NiFe LDH matched well with the
pure hexagonal-phased NiFe LDH (black lines, PDF#40-
0215), meanwhile, the R-NiFe LDH exhibited a weaker
but the same diffraction pattern as P-NiFe LDH, sug-
gesting no phase destruction happened during the 10 min
mild reduction process. However, the R-NiFe LDH dif-
fraction peaks turned relatively broad, suggesting the
wider distribution of their lattice spacing and a dis-
ordered LDH structure with defects, consistent with our
HRTEM and ED results. Energy Dispersive Spectrometer
(EDS) analysis (Fig. S4b, c) showed the Ni/Fe ratio in R-
NiFe LDH is 2.98, quite similar to that of P-NiFe LDH
(2.96). Besides, no boron spices were detected in R-NiFe
LDH, suggesting no metal boride formation or doped-
boron in the R-NiFe LDH structure.

First derivative X-band EPR spectra (Fig. 2d) was car-
ried out to confirm the defect structure of R-NiFe LDH.
While the EPR signal of P-NiFe LDH was relatively weak
(due to the very limited defects), a broad and strong
signal of R-NiFe LDH was detected, demonstrating a
defect-rich structure [37]. Moreover, the signals of R-
NiFe LDH at g = 1.99 could be identified as the electrons
trapped on oxygen vacancies, indicating the defects in R-
NiFe LDH were oxygen vacancies [38]. Further evidence
came from the XPS characterizations. In the O 1s spec-
trum (Fig. 2e), the peak at 531.1 eV is attributed to the
unsaturated oxygen species [39], suggesting R-NiFe LDHs

Figure 1 Schematic illustration of introducing oxygen vacancy defects
to NiFe LDH nanoarray electrode.
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were rich in oxygen vacancies, which was in accordance
with our EPR findings [40]. The Fe and Ni 2p spectra
were also examined to get better understanding of the R-
NiFe LDH electrode, as shown in Fig. 2f and Fig. S5.
While peaks at ~855.7 eV and ~713.3 eV were attributed
to Ni2+ 2p3/2 and Fe3+ 2p3/2, respectively, there was a small
peak shift for both Ni (0.5 eV) and Fe (0.4 eV) toward
lower binding energies in R-NiFe LDH, suggesting a
decrease in the oxidation state of the transition metals,
indicating that the introduction of oxygen vacancies were
balanced by the lowered valence state of Ni and Fe sites.

The electrocatalytic OER activity of the as-prepared R-
NiFe LDH electrode was investigated in alkaline solutions
(1 mol L−1 KOH) using a standard three-electrode system.

IR-corrected OER polarization curves were recorded at a
slow scan rate of 1 mV s−1 to minimize the capacitive
current in order to compare the intrinsic activity of the R-
NiFe LDHs. As shown in Fig. 3a, b, R-NiFe LDHs out-
performed the P-NiFe LDH counterpart in terms of onset
potential and Tafel slope. It should be noted that with a
reduction time of 10 min (i.e., R10), the R10-NiFe LDH
sample exhibited the best OER performance with an early
onset potential of 1.40 V and a small overpotential of 200
mV for 10 mA cm−2, which is the best NiFe LDH elec-
trocatalyst to date (Table S1). The OER Faraday efficiency
was determined to be 99.4%, further demonstrating the
high intrinsic activity of R-NiFe LDH 10 min. However,
when the R-NiFe LDHs were over-reduced (more than

Figure 2 SEM images of as-prepared (a) P-NiFe LDH and (b) R-NiFe LDH. The insets are TEM and HRTEM images of P- and R-NiFe LDH,
implying the structure with defects after reduction. (c) XRD patterns and (d) EPR characterization of P-NiFe LDH and R-NiFe LDH. The peak
marked “*” presented Ni foam. (e) O 1s and (f) Fe 2p XPS spectra of of P- and R-NiFe LDH, the peak at 531.1 eV was assigned to defective oxygen
species.
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10 min), the OER performance turned worse than that of
R10-NiFe LDH (Figs S6 and S7). This should be attrib-
uted to the partly destroyed structure of LDH, as de-
monstrated by SEM and XRD results. The
electrochemical double layer capacitance (Cdl) was mon-
itored to trace the source for such OER activity en-
hancement, as this parameter fully reflects the
electrochemical surface active area (ECSA). Figs S7, S8,
Table S2 and the inset of Fig. 3c showed that R10 -NiFe
LDH possessed the highest Cdl among the reduced cata-
lysts, suggesting the enhanced OER performance of R-
NiFe LDH was partly due to the enlarged ECSA induced
by oxygen defects. After normalizing the OER current
density by ECSA (Fig. 3c), the R-NiFe LDHs showed very
similar activity (Fig. 3a), suggesting the higher intrinsic
activity of the R-NiFe LDHs. Furthermore, electro-
chemical impedance spectroscopy (EIS) was also per-
formed to study the electrode kinetics of such R-NiFe
LDH electrode in OER. The R10-NiFe LDH electrode
showed a smaller charge transfer resistance (~0.36 Ω)
than that of P-NiFe LDH (~0.52 Ω), demonstrating an

accelerated charge transfer process for R10-NiFe LDH
electrode, which should be beneficial for the improved
OER performance. Besides, the solution resistance of
R10-NiFe LDH electrode (~0.69 Ω) was smaller than that
of P-NiFe LDH (~1.05 Ω), suggesting higher electrical
conductivity of R-NiFe LDH, leading to the reduction of
the overpotential. This electrochemical analysis con-
firmed the outstanding OER performance of as-prepared
R-NiFe LDH electrode and suggested such high intrinsic
activity enhancement is attributed to the introduced
oxygen vacancies, which led to a higher intrinsic activity,
larger ECSA, as well as better electro-conductivity.

DFT+U calculations are utilized to understand the
thermodynamic/electronic details of the OER process on
the (100) surface of the R-NiFe LDH and to get further
insight into the oxygen vacancy effect on the OER per-
formance of R-NiFe LDHs since (100) has been widely
accepted as the most active facets in LDH structure [41].
We applied a standard four electrons OER mechanism
proposed by J. K. Nørskov and A. T. Bell [42], in which
H2O is chosen as the OER reactant. –OH groups on the

Figure 3 (a) Linear sweep voltammetry polarization curves of as-prepared P- and R-NiFe LDHs, the insets shows the overpotential at 10 mA cm−2 for
NiFe LDH with different reduction times, the error bar was obtained by repeating the test for at least five times. (b) Tafel plots of as-prepared P- and
R-NiFe LDHs. (c) Linear sweep voltammetry polarization curves of as-prepared P- and R-NiFe LDHs normalized by their ECSA. The insets shows the
Cdl calculations of the P- and R-NiFe LDHs. (d) Nyquist plots of the P- and R-NiFe LDHs.
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(100) surface of pristine NiFe LDH structure were re-
moved to simulate the oxygen vacancies. Consequently,
the bridge site between Ni and Fe was proposed to be the
active site for OER (Fig. S11) [43]. The OER on NiFe
catalysts’ surface involved a four-electron process, as re-
vealed in Fig. 4a, and the potential determining step
(PDS) of pristine NiFe LDH was found to be the depro-
tonation step with a high overpotential of 0.86 V. How-
ever, with oxygen vacancy introduced, the PDS of R-NiFe
LDH turned to be the OOH formation step with an
overpotential of 0.65 V, which is much lower than that of
pristine NiFe LDH, demonstrating the higher intrinsic
activity. Moreover, partial density of states (PDOS) and
Bader charge analysis are carried out to study the elec-
tronic state of NiFe LDH structure with oxygen vacancies
[44,45]. We further applied the Bader charge analysis to
investigate the electronic structure of R-NiFe LDH, as
shown in Fig. 4b. After the introduction of oxygen va-
cancies, the electronic density of Fe increased, demon-
strating a lowered valence state, which was in accordance
with our XPS results. Meanwhile, in the valance band of
P-NiFe LDH (Fig 4c), the peak at −6 eV indicated that Fe
3d was in a low spin high valance state. Compared with

that of R-NiFe LDH (Fig. 4d), the peak of Fe 3d shifted to
−5 eV, indicating a high spin low valance state after the
introduction of oxygen vacancy. Such low valance states
of Fe in R-NiFe LDH are consistent with our experi-
mental findings (XRS in Fig. 2d). Besides, the band gap
energy of R-NiFe LDH structure turned out to be 2.05 eV,
which was smaller than that of P-NiFe LDH (2.81 eV),
suggesting a better electro-conductivity of R-NiFe LDH
[46,47]. Thus, our theory and experiment came to a good
agreement, suggesting that by introducing oxygen va-
cancy defects in NiFe LDH electrode, the electronic
structures on the catalysts’ surface were finely tuned and
the electrical conductivity was improved, finally leading
to the significantly enhanced OER activity.

CONCLUSIONS
In summary, we introduced oxygen vacancies to NiFe
LDH nanoarray by NaBH4 at room temperature in aqu-
eous solution, thus developing a highly-efficient electrode
for OER. XPS/electrochemical analysis, together with
DFT+U calculations, suggested the modulated electronic
structure, more exposed active sites, and the improved
electrical conductivity for R-NiFe LDH are responsible

Figure 4 Calculated results of OER process on P-NiFe LDH and R-NiFe LDH structure. (a) Free energy plots and (b) charge density analysis on P-
NiFe LDH and R-NiFe LDH for OER. Partial density of state results of (c) P-NiFe LDH, and (d) R-NiFe LDH.

ARTICLES . . . . . . . . . . . . . . . . . . . . . . . . . SCIENCE CHINA Materials

944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . July 2018 | Vol. 61 No. 7© Science China Press and Springer-Verlag GmbH Germany 2018



for the significantly enhanced, almost the best, NiFe
LDH-based OER activity. This study demonstrates that
the defective NiFe LDH nanoarray as highly-active and
cost-effective OER electrode plays an important role in
boosting electrocatalytic activities, thus shedding light on
advanced electrode design towards large-scale hydrogen
production via electrochemical water splitting.
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基于富缺陷镍铁水滑石材料的高效析氧电极
熊旭亚1, 蔡钊1,2*, 周道金1, 张国新3, 张倩1, 贾茵1,4, 段欣旋1, 谢启贤1, 赖仕斌1, 谢添慧1, 李亚平1*, 孙晓明1,4*, 段雪1

摘要 探索低成本高效率的析氧电极对于工业电解水技术的发展至关重要. 尽管镍铁水滑石已被公认为是一种高效析氧的非贵金属催化
剂, 但其本征活性还有待进一步提高. 本研究通过将氧空位缺陷引入镍铁水滑石, 设计出一种低成本高效率的析氧电极. 通过精确电子结
构调控,暴露更多活性位点,提高电极导电性,富缺陷镍铁水滑石电极展现出1.40 V (vs. RHE)的低起峰电位.同时,它仅需200 mV过电势就
能达到10 mA cm−2的电流密度, 这相比未经处理的镍铁水滑石降低了48 mV. 我们进一步通过密度泛函理论计算发现, 氧空位缺陷的引入
使Fe的价态降低, 带隙减小, 使得催化过程中电子更容易被激发到导带中, 从而降低反应过电势并使析氧活性增强.
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