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A Highly-parallel and Energy-efficient 3D

Multi-layer CMOS-RRAM Accelerator for

Tensorized Neural Network
Hantao Huang, Student Member, IEEE, Leibin Ni Student Member, IEEE, Kanwen Wang, Yuangang Wang and

Hao Yu, Senior Member, IEEE

Abstract—It is a grand challenge to develop highly-parallel
yet energy-efficient machine learning hardware accelerator. This
paper introduces a 3D multi-layer CMOS-RRAM accelerator for
tensorized neural network (TNN). Highly parallel matrix-vector
multiplication can be performed with low power in the proposed
3D multi-layer CMOS-RRAM accelerator. The adoption of ten-
sorization can significantly compress the weight matrix of neural
network using much fewer parameters. Simulation results using
the benchmark MNIST show that the proposed accelerator has
1.283× speed-up, 4.276× energy-saving and 9.339× area-saving
compared to 3D CMOS-ASIC implementation; and 6.37× speed-
up and 2612× energy-saving compared to 2D CPU implementa-
tion. In addition, 14.85× model compression can be achieved by
tensorization with acceptable accuracy loss.

Index Terms—RRAM Computing, 3D Accelerator, Tensorized
neural network.

I. INTRODUCTION

Machine learning based big-data analytics has introduced

great demand of highly-parallel yet energy-efficient hardware

accelerators [1], [2], [3]. It is noticed that the main computa-

tion in a deep neural network involves intensive matrix-vector

multiplications. The GPU-based acceleration can achieve the

highest parallelism but with huge power overhead [4]. The

low-power FPGA-based acceleration on the other hand cannot

achieve high throughput due to limited computation resource

(processing element and memory) [5]. The major recent atten-

tion is to develop 2D CMOS-ASIC accelerators [6]. However,

these traditional accelerators are both in a 2D out-of-memory

architecture with low bandwidth at I/O and high leakage power

consumption from the CMOS SRAM memory [4].

From supporting hardware perspective, the recent in-

memory resistive random access memory (RRAM) devices [4],

[7], [8], [9] have shown great potential for an energy-efficient

acceleration of multiplication on crossbar. It can be exploited
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as both storage and computational elements with minimized

leakage power due to its non-volatility. Recent researches in

[10], [11] show that the 3D heterogeneous integration can

further support more parallelism with high I/O bandwidth in

acceleration by stacking RRAM on CMOS using through-

silicon-vias (TSVs).

From computing algorithm perspective, network compres-

sion is required to enable a successful mapping of a simplified

neural network to the supporting hardware for machine learn-

ing. [12], [13] proposed to use low-precision numerical value

to represent weights. [14], [15] used low-rank approximation

directly to the weight matrix. Such over-simplified approxi-

mated computing can simply reduce complexity but cannot

maintain the accuracy.

In this paper, we propose a tensorized neural network

(TNN) obtained during training with significant compression.

By representing dense data in high dimensional space with

sparsity, significant network compression can be achieved.

More importantly, we introduce an accordingly 3D multi-

layer CMOS-RRAM accelerator to support such TNN-based

machine learning with high parallelism yet low power. By

buffering input data on the first RRAM layer, intensive matrix-

vector multiplication are efficiently performed on the second

RRAM layer. One more layer of CMOS is further utilized for

the data control and synchronization. Experiment results using

the benchmark of MNIST show that the proposed accelerator

has 1.283× speed-up, 4.276× energy-saving and 9.339×
area-saving compared to 3D CMOS-ASIC implementation;

and 6.37× speed-up and 2612× energy-saving compared to

2D CPU implementation. In addition, 14.85× times model

compression can be achieved with acceptable accuracy loss

by the TNN.

The rest of this paper is organized as follows. The tensorized

neural network and its training process are discussed in Section

II. The 3D multilayer CMOS-RRAM accelerator architecture

is discussed in Section III. Section IV shows the detailed

accelerator mapping on the 3D RRAM-crossbar and CMOS

respectively. Experiment results are presented in Section V

with conclusion drawn in Section VI.

II. TENSORIZED NEURAL NETWORK

Previous neural network compression is simply performed

by either precision-bit truncation or low-rank approximation

[12], [13], [14], [15], which cannot maintain good balance
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TABLE I
SYMBOL NOTATIONS AND DETAILED DESCRIPTIONS.

Notations Descriptions

V ∈ R
n1×n2×...×nd d-dimensional tensor of size n1 × n2...nd

Gi ∈ R
ri−1×ni×ri Tensor cores of tensor-train data format

W1,W2, ...,Wd Neural network weights of d layers

B1,B2, ...,Bd Neural network bias of d layers

H Activation matrix

T ,Y Labels and neural network output

U ,S,V SVD decomposition matrices

X , Xt Input features, testing input features

r0, r1, ..., rd Rank of tensor cores

L1, L2, ..., Ld Dimension of d-layer neural network weight

lk,0, lk,1, ..., lk,m Factorized Lk , Lk = lk,0 × lk,1, ...,×lk,m
i1, i2, ..., nd Index vectors referring to a tensor element

n1, n2, ..., nd Mode size of tensor V ∈ R
n1×n2×...×nd

nm Maximum mode size of n1, n2, ..nd

Nt Number of training samples

N , L0 Number of input features

M Number of classes

Vw , Vr , Vth RRAM write, read and threshold voltage

ci,j Configurable conductance of RRAM-crossbar

W11 W12 W13 W1L

W21 W22 W23 W2L

WN1 WN2 WN3 WNL

Reshape to a 4-

dimensional tensor

Fig. 1. Block matrices and their representation by a 4-dimensional tensor

between network compression and network accuracy. By rep-

resenting dense data in high dimensional space with natural

sparsity, tensorized data formatting can significantly compress

the neural network complexity without much accuracy loss

[16]. In this section, we discuss a tensor-train [17] formatted

neural network during the training. The tensor-train based

decomposition and compression will be first introduced. Then,

a tensorized neural network (TNN) will be discussed based

on the extension of general neural network. Finally, a layer-

wise training of TNN using modified alternating least-squares

method is further proposed.

A. Tensor-train Decomposition and Compression

Tensors are natural multi-dimensional generation of matri-

ces. Here, we refer one-dimensional data as vectors, denoted

as v. Two-dimensional arrays are matrices, denoted as V and

higher dimensional arrays are tensors denoted as V . To refer

one specific element from a tensor, we use calligraphic upper

letters V(i) = V(i1, i2, ...id), where d is the dimensionality

of the tensor V . We can effectively reshape a 2-dimensional

matrix into a 4-dimensional tensor as shown in Fig. 1.

A d-dimensional n1×n2× ...×nd tensor V is decomposed

into the tensor-train data format if tensor core Gk is defined

as rk−1 × nk × rk and each element is defined [17] as

V(i1, i2, ...id) =

r0,r1,...rd
∑

α0,α1...αd

G1(α0, i1, α1)

G2(α1, i2, α2)...Gd(αd−1, id, αd)

(1)

where αk is the index of summation, which starts from 1 and

stops at rank rk. r0 = rd = 1 is for the boundary condition

and n1, n2, ...nd are known as mode size. Here, rk is the core

rank and G is the core for this tensor decomposition. By using

the notation of Gk(ik) ∈ R
rk−1×rk , we can rewrite the above

equation in a more compact way:

V(i1, i2, ...id) = G1(i1)G2(i2)...Gd(id) (2)

where Gk(ik) is an rk−1 × rk matrix, a slice from the 3-

dimensional matrix Gk. The symbol notations and detailed

description are shown in Table I.

Such a representation is memory-efficient to store high-

dimensional data and hence with significant energy saving

as well. For example, a d-dimensional tensor requires N =
n1 × n2 × ... × nd = nd number of parameters. However,

if it is represented using the tensor-train format, it takes only
∑d

k=1 nkrk−1rk parameters. Here, we define a tensorized neu-

ral network (TNN) if the weight of the neural network can be

represented in the tensor-train data format. For example, a two-

dimensional weight W ∈ R
L0×L1 can be reshaped to a k1+k2

dimensional tensor W ∈ R
l0,1×l0,2×...l0,k1

×l1,1×l1,2×...l1,k2 by

factorizing L0 =
∏k1

m=1 l0,m and L1 =
∏k2

m=1 l1,m and such

tensor can be decomposed into the tensor-train data format to

save storages 1.

B. Tensor-train based Neural Network (TNN)

To make TNN clear, we first start with a general feed

forward neural network and then extend it to the tensor-train

based neural network. We use a single hidden layer neural

network as an example and the same principle can be applied

to the multi-layer neural network [19], [20], [21]. Generally,

we can train a neural network based on data features X and

labels T with Nt number of training samples, N dimensional

input features and M classes. During the training, one needs

to minimize the error function with determined weights: W1

(at input layer) and W2 (at output layer) for a single hidden

layer neural network2:

E = ||T − f(W1,W2,X)||2 (3)

where f(·) is the trained model to perform the predictions

from input.

Here, we mainly discuss the inference (testing) process and

leave the training process to the next section. The output of

each layer is based on matrix multiplication and activation.

For example, the first layer output H is

preH = XtW1 +B1, H =
1

1 + e−preH
(4)

1Interested readers can also refer to [17], [18] for more details on the tensor-
train data format.

2We ignore bias for a clear explanation.
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Fig. 2. Neural network weight tensorization and represented by tensor-train data format for parameter compression (from nd to dnr2)

where Xt is the testing data. W1 ∈ R
N×L1 and B1 ∈ R

Nt×L1

are the input weights and bias respectively. Then the neural

network output for a single hidden layer neural network is

Y = f(W1,W2,Xt)

p(i/yi) ≈ yi, yi ∈ Y
(5)

where i represents class index i ∈ [1, M ]. We approximate the

prediction probability for each class by the output of neural

network.

For the tensor-train based neural network, Fig. 2 shows the

general idea. A two-dimensional weight is folded into a three-

dimensional tensor and then decomposes into tensor cores

G1,G2, ...Gd. These tensor cores are relative small matrices

due to the small value of rank r leading to a high neural

network compression rate. Then the whole neural network will

be trained in the tensor-train data format.

The TNN inference is a directly application of the tensor-

train-matrix-by-vector operations [16], [17]. We will use W ∈
R

N×L to discuss the forward pass of neural network. Firstly,

we rearrange W to a d-dimensional tensor W whose kth
dimension is a vector of length nklk. Here, we define nk and lk
as N =

∏d
k=1 nk and L =

∏d
k=1 lk. Without consideration of

the bias B and activation function, the neural network forward

pass H = XW in the tensor-train data format is

H(i) =

l1,l2,l3,...,ld
∑

j=[j1,j2,...jd]

X (j)G1[i1, j1]G2[i2, j2]...Gd[id, jd]

(6)

where i = i1, i2, ..., id, ik ∈ [1, nk], j = j1, j2, ..., jd, jk ∈
[1, lk] and Gk[id, jd] ∈ R

rk−1×rk is a slice of cores. We use

a pair [ik, jk] to refer an index of vector [1 nklk], where

Gk ∈ R
rk−1×nklk×rk . Since the fully-connected layer is a

special case of convolutional layer with kernel size 1×1, such

tensorized weights can also be applied to other convolutional

layers.

This tensor-train-matrix-by-vector multiplication complex-

ity is O(dr2nm max(N,L)) [16], where r is the maximum

rank of cores Gi and nm is the maximum mode size mknk of

tensor W . This can be very efficient if the rank r is very small

compared to general matrix-vector multiplication. It is also

favorable for distributed computation on RRAM devices since

each core is small and matrix multiplication is associative.

C. Training on TNN

Tensor-train based neural network is first proposed by [16]

but its training complexity significantly increases due to the

backwards propagation under the tensor-train data format. A

layer-wise training provides good performance with reduced

epoch number of backward propagation leading to a significant

training time reduction [20], [22], [21]. Moreover, to perform

a successful mapping of TNN, recursively training of TNN is

required for the trade-off of accuracy and compression rate.

Thereby, a fast layer-wise training method is developed in this

paper for TNN.

The training process of TNN is the same as general neural

network layer-wise training but with the tensor-train data

format. We first discuss the general training process following

the training framework form [23] and then extend it to TNN.

Given a single hidden layer with random generated input

weight, the training process is to minimize:

min. ||HW2 − T ||2 + λ||W2||2 (7)

where H is the hidden-layer output matrix generated from

the Sigmoid function for activation; and λ is a user defined

parameter that biases the training error and output weights
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Algorithm 1 Layer-wise Training of Neural Network with

Modified Least Squares Solver

Input: Input Set (X,T ), X is the input data and T is the desired
output depending on the layer architecture, activation function
G(ai, bi, xj) , number of hidden neuron node L0, L1, ..., Ld

Output: Neural Network Weight W1,W2, ...Wd for d-layer neural
network

1: for i = 1 : d do ⊲ d layer neural network
2: if i == 1 then ⊲ Random generated weights
3: Factorize L0 and L1 (e.g. L0 = l0,1 × l0,2 and L1 =

l1,1 × l1,2)

4: Randomly generate tensor cores G1 ∈ R
r1×n1×r2 , G2 ∈

R
r2×l1×r3 and other tensor cores to represent a tensor

W1 ∈ R
n1×n2×l1×l2

5: else ⊲ Layer-wise training
6: Random generated Wi following Step 3, 4
7: Perform tensor-train-matrix-by-vector multiplication

based on (6), which equivalents to preHi = Hi−1Wi−1

8: Perform acitvation function which equivalents to Hi =

1/(1 + e−preH

i ).
9: Compute Wi using the modified alternating least-squares

||HiWi − P ||2
10: Note: For auto-encoder layers, P is the activation matrix

Hi−1 (H0 = X). For the decision layer, P is the label
matrix T .

11: end if
12: end for

[23]. The output weight W2 is computed based on least-

squares problem:

W2 = (H̃T H̃)
−1

H̃T T̃ , H̃ ∈ R
Nt×L

where H̃ =

(

H√
λI

)

T̃ =

(

T

0

)

(8)

where T̃ ∈ R
(Nt+L1)×M and M is the number of classes.

I ∈ R
L1×L1 and H̃ ∈ R

(Nt+L1)×L1 .

To build a multi-layer neural network, backwards propaga-

tions [19] or layer-wise training using the auto-encoder method

[20], [21] can be applied. An auto-encoder layer is to set the

single layer output T the same as input X and find an optimal

weight to represent itself. By stacking auto-encoder layers on

the finial decision layer, we can build the multi-layer neural

network. Algorithm 1 summarizes the layer-wise training with

modified alternating least-squares method.

As discussed in the general neural network, the training

of TNN requires to solve a least-squares problem in the

tensor-train data format. For the output weight W2 in (7),

we propose a tensor-train based least-squares training method

using modified alternating least squares algorithm (also known

as density matrix renormalization group in quantum dynamics)

[24], [25]. The modified alternating least squares (MALS) for

minimization of ||HW2 − T ||2 is working as below.

1) Initialization: Randomly initialized cores G and set

W2 = G1 ×G2 × ...×Gd. The process is the same as

Step 3, 4 in Algorithm 1.

2) Sweep of Cores: core Gk is optimized with other cores

fixed. Left-to-right sweep from k = 1 to k = d
3) Supercore generated: Create supercore X(k, k+ 1) =

Gk ×Gk+1 and find it by minimizing of least-squares

problem ||H×Qk−1×Xk,k+1×Rk+2−T ||2, reshape

Qk−1 =
∏k−1

i=1 Gi and Rk+2 =
∏d

i=k+2 Gi to fit

matrix-matrix multiplication

4) Split supercore: SVD X(k, k+1) = USV T , let Gk =
U and Gk+1 = SV T × Gk+1. Gk is determined and

Gk+1 is updated. Truncated SVD can also be performed

by removing smaller singular values to reduce ranks.

5) Sweep Termination: Terminate if maximum sweep

times reached or error is smaller than required.

The low rank initialization is very important to have smaller

rank r for each core. Each supercore generation is the process

of solving least-squares problems. The complexity of least-

squares for X are O(nmRr3 + n2
mR2r2) [25] and the SVD

compression requires O(nmr3), where R, r and nm are the

rank of activation matrix H1, the maximum rank of core

G and maximum mode size of W2 respectively. By using

truncated SVD, we can adaptively reduce the rank of each

core to reduce the computation complexity and save memory

storage.

Such tensorization can benefit of implementing large neural

networks. Firstly, by performing tensorization, the size of

neural network can be compressed. Moreover, the computation

load can also be reduced by adopting small tensor ranks.

Secondly, a tensorzaiton of weight matrix can decompose the

big matrix into many small tensor-core matrices, which can

effectively reduce the configuration time of RRAM. Lastly,

the multiplication of small matrix can be performed in a

highly parallel fashion on RRAM to speed-up the large neural

network processing time.

III. 3D MULTI-LAYER CMOS-RRAM ACCELERATOR

In this section, we introduce RRAM-crossbar devices, which

can be used for both storage and computation. Furthermore,

the 3D hardware platform is proposed based on the non-

volatile RRAM-crossbar devices with the design flow for TNN

mapping on the proposed architecture.

A. RRAM-Crossbar Device

Emerging resistive random access memory (RRAM) [26],

[27] is a two-terminal device with 2 non-volatile states: high

resistance state (HRS) and low resistance state (LRS). The

state of RRAM is determined when a write voltage Vw is

applied to its two terminals. It is most stable in bistate, where

high resistance state (RHS) Roff and low resistance state

(LHS) Ron are determined by the polarity of write voltage.

As RRAM states are sensible to the input voltages, special

care needs to be taken while reading, as such read voltage Vr

is less than half of write voltage Vw, given as (9). Vw and Vr

are related as follows

Vw > Vth > Vw/2 > Vr, (9)

where Vth is the threshold voltage of RRAM.

In one RRAM-crossbar, given the input probing volt-

age, the current on each bit-line (BL) is the multiplication-

accumulation of current through each RRAM device on the

BL. Therefore, the RRAM-crossbar array can intrinsically

perform the analog matrix-vector multiplication [28]. Given an
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input voltage vector VWL ∈ R
N×1, the output voltage vector

VBL ∈ R
N×1 can be expressed as







VBL,1

...

VBL,M






=







c1,1 · · · c1,M
...

. . .
...

cN,1 · · · cN,M













VWL,1

...

VWL,N






(10)

where ci,j is configurable conductance of the RRAM resis-

tance Ri,j , which can represent a real number of weight.

Compared to traditional CMOS implementation, RRAM-

crossbar achieves better parallelism and consumes less power.

However, note that analog implementation of matrix-vector

multiplication is strongly affected by non-uniform resistance

values [4]. As such, one needs to develop a digital fashioned

multiplication based on the RRAM-crossbar instead. There-

fore, a digital-fashioned multiplication on RRAM-crossbar is

preferred to minimize the device non-uniform impact from

process variation [29].

B. 3D Multi-layer CMOS-RRAM Architecture

3D-integration: Recent works [30], [31] show that the 3D

integration supports heterogeneous stacking because different

types of components can be fabricated separately with different

technologies and then layers can be stacked into 3D structure.

Therefore, stacking non-volatile memories on top of micro-

processors enables cost-effective heterogeneous integration.

Furthermore, works in [32], [33], [34] also show the feasibility

to stack RRAM on CMOS to achieve smaller area and lower

energy consumption.

3D-stacked Modeling: In this proposed accelerator, we

adopt the face-to-back bonding with TSV connections. TSVs

can be placed vertically on the whole layer as shown in Fig. 3.

The granularity at which TSV can be placed is modeled based

on CACTI-3DD using the fine-grained strategy [35], which

will automatically partition the memory array to utilize TSV

bandwidth. Although this strategy requires a large number of

TSV, it provides higher bandwidth and better access latency,

which are greatly needed to perform highly-parallel tensor

based computation. We use this model to evaluate our pro-

posed architecture and will show the bandwidth improvement

in Section V-B.

Architecture: In this paper, we propose a 3D multi-layer

CMOS-RRAM accelerator with three layers as shown in Fig.

3. This accelerator is composed of a two-layer RRAM-crossbar

and a one-layer CMOS circuit. More specifically, they are

designed as follows.

• Layer 1 of RRAM-crossbar is implemented as a buffer to

store neural network model weights as Fig. 3(a) shows.

The tensor cores are 3-dimensional matrices and each

slice is a 2-dimensional matrix stored distributively in a

H-tree like fashion on the Layer 1 as described in Fig.

3(b). They can be accessed through TSV as the input

of the RRAM-crossbar or used to configure the RRAM-

crossbar resistance in Layer 2.

• Layer 2 of RRAM-crossbar performs logic operations

such as matrix-vector multiplication and also vector addi-

tion. As shown in Fig. 3(b), Layer 2 collects tensor cores

from Layer 1 through TSV communication to perform

parallel matrix-vector multiplication. The RRAM data is

directly sent through TSV. The wordline takes the input

(in this case, tensor core 3) and the multiplicand (in

this case, tensor core 4) is stored as the conductance of

RRAM. The output will be collected from the bitlines as

shown in Fig. 3(d).
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Fig. 5. Data control and synchronization on layer of CMOS with highly-
parallel RRAM based processing elements

• Layer 3 is designed to perform the overall synchroniza-

tion of the tensorized neural network. It will generate the

correct tensor core index as described in (6) to initiate

tensor-train matrix multiplication. In addition, the CMOS

layer will also perform the non-linear mapping.

Note that buffers are designed to separate resistive networks

between Layer 1 and Layer 2. The last layer of CMOS

contains read-out circuits for RRAM-crossbar and performs

logic control for neural network synchronization.

Mapping Flow: Fig. 4 shows the working flow for the

tensor-train based neural network mapping on the proposed

architecture. Firstly, the algorithm optimization targeting to

the specific application is performed. The neural network

compression is performed through layer-wise training process.

Then, the design space between compression rate, bit-width

and accuracy is explored to determine the optimal neural

network configuration (such as number of layers and activation

function). Secondly, the architecture level optimization is

performed. The RRAM buffer on Layer 1 and the computing

elements on Layer 2 are designed to minimize the read access

latency and power consumption. Furthermore, the CMOS logic

is designed based on finite state machine for neural network

synchronization. Finally, the whole system is evaluated based

on the RRAM SPICE model, CMOS RTL Verilog model and

3D-integration model to determine the system performance.

IV. TNN ACCELERATOR DESIGN ON 3D CMOS-RRAM

ARCHITECTURE

In this section, we further discuss how to utilize the pro-

posed 3D multi-layer CMOS-RRAM architecture to design

the TNN accelerator. We first discuss the CMOS layer design,

which performs the high level control of TNN computation.

Then a highly-parallel RRAM based accelerator is introduced

with the TNN accelerator and dot-product engine.

A. CMOS Layer Accelerator

To fully map TNN on the proposed 3D multi-layer CMOS-

RRAM accelerator, the CMOS logic is designed mainly for

logic control and synchronization using top-level state ma-

chine. It prepares the input data for computing cores, monitors

the states of RRAM logic computation and determines the

computation layer of neural network. Fig. 5 shows the detailed

mapping of the tensorized neural network (TNN) on the

proposed 3D multi-layer CMOS-RRAM accelerator. This is

a folded architecture by utilizing the sequential operation

of each layer on the neural network. The testing data will

be collected from RRAM memory through TSV and then

sent into vector core to perform matrix-vector multiplication

through highly parallel processing elements in the RRAM

layer. The RRAM layer has many distributed RRAM-crossbar

structures to perform multiplication in parallel. Then the com-

puted output from RRAM will be transfered to scalar score to

perform accumulations. The scaler core can perform addition,

subtraction and comparisons. Then the output from the scalar

core will be sent to the sigmoid function model for activation

in a pipelined fashion, which performs the computation of

(4). The activation matrix H will be used for the next layer

computation. As a result, the whole TNN inference process

can be mapped to the proposed 3D multi-layer CMOS-RRAM

accelerator.

In addition, to support TNN on RRAM computation, a dedi-

cated index look-up table is formed. Since the weight matrix is

actually folded into a high dimensional tensor as shown in Fig.

1, a correct index selection function called bijective function

is designed. The bijective function for weight matrix index is

also performed by the CMOS layer. Based on the top state

diagram, it will choose the correct slice of tensor core Gi[i, j]
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by determining the i, j index. Then the RRAM-crossbar will

be configured to perform matrix-vector multiplication.

B. RRAM Layer Accelerator

In the RRAM layer, we design the RRAM layer acceler-

ator for highly-parallel computation using single instruction

multiple data (SIMD) method to support data parallelism.

1) Highly-parallel TNN Accelerator on the RRAM Layer:

The TNN accelerator is designed to support highly par-

allel tensor-train-matrix-by-vector multiplication by utilizing

the associative principle of matrix product. According to

(6), X (i) needs to be multiplied by d matrices unlike the

general neural network. As a result, if traditional matrix-

vector multiplication in serial is applied, data needs to be

stored in the RRAM array for d times, which is time-

consuming. Since the size of tensor cores in the TNN is

much smaller than the weights in the general neural network,

multiple matrix-vector multiplication engines can be placed

in the RRAM logic layer. When then input data is loaded,

the index of Gi can be known. For example, we need

compute X(j)G1[i1, j1]G2[i2, j1]G3[i3, j1]Gi[i4, j1] given

d = 4 for the summation in (6). G1[i1, j1]G2[i2, j1] and

G3[i3, j1]Gi[i4, j1] in (6) can be pre-computed in a parallel

fashion before the input data X (i) is loaded.

Fig. 6 gives an example of parallel tensor core multipli-

cations. The tensor cores (TC1-6) are firstly stored in the

RRAM layer. When the input data X (j) comes, the index

of each tensor core is loaded by the logic layer controllers

first. The controller will configure the RRAM conductance

to write the according data from the tensor cores to RRAM

cells. As shown in the Fig. 6, tensor cores (TC2 TC4 and

TC6) are used to configure the RRAM to write the data and

tensor cores (TC1 TC3 and TC5) are selected for the RRAM

input for the multiplication. Please note that the matrix-

vector multiplication of Gi can be performed in parallel to

calculate the intermediate matrices while X (i) is in the loading

process. After all the intermediate results are ready, they can

be multiplied by X (i) so that the operation will be efficient

and not affected by the input data X (i) loading process.

2) Highly-parallel Dot-product Engine on the RRAM

Layer: We further develop the digitalized RRAM based dot-

product engine on the RRAM layer. The tensor-train-matrix-

by-vector operation can be efficiently accelerated by the fast

matrix-vector multiplication engine on the RRAM layer. Each

matrix-vector multiplication can be further divided into a

vector-vector dot-product operation for parallel computation.

Here, we design the digitalized dot-product engine based on

[29]. We use the output matrix Y , input matrices X and

Φ for better explanation. The overall equation is Y = XΦ
with Y ∈ R

M×m, X ∈ R
M×N and Φ ∈ R

N×m. For every

element in Y, it follows

yij =

N
∑

k=1

xikϕkj , (11)

where x and ϕ are the elements in X and Φ respectively.

The basic idea of implementation is to split the matrix-

vector multiplication to multiple dot-product operations of

two vectors xi and ϕj . Furthermore, such multiplication can

be computed in the binary data format on RRAM with the

adoption of fixed point representation of xik and ϕkj . The

multiplication process can be reformulated as

yij =

N
∑

k=1

(

E−1
∑

e=0

Bxik
e 2e)(

G−1
∑

g=0

B
ϕkj
g 2g),

=

E−1
∑

e=0

G−1
∑

g=0

(

N
∑

k=1

Bxik
e B

ϕkj
g 2e+g) =

E−1
∑

e=0

G−1
∑

g=0

seg2
e+g

(12)

where seg is the accelerated result from RRAM-crossbar. Bxik

is the binary bit of xik with E bit-width and Bϕkj is the binary

bit of ϕkj with G bit-width. As mentioned above, bit-width

E and G are decided during the algorithm level optimization.
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The dot-product operation for (12) can be summarized in four

steps on the second RRAM layer.

Step 1: Index Bijection: Select the correct slice of ten-

sor cores Gd[id, jd] ∈ R
rd×rd+1 , where a pair of [id, jd]

determines a slice from Gd ∈ R
rd×nd×rd+1 . In our current

example, we use X ∈ R
M×N and Φ ∈ R

N×m to represent

two selected slices from cores G1 and G2.

Step 2: Parallel Digitizing: The matrix multiplication

X×Φ requires Mm times N -length vector dot-product mul-

tiplication. Therefore, an N ×N RRAM-crossbar is required.

For clarity, we explain this step as two sub-steps but they are

implemented on the same RRAM-crossbar.

(a) Binary Dot-Product Process: The inner-product is com-

puted on RRAM-crossbar as shown in Fig. 7(a). Bxik
e

is set at the RRAM-crossbar input and B
ϕkj
g is written

in RRAM cells. The multiplication process on RRAM

following (10), which produces the analog output.

(b) Digitalizing: In the N × N RRAM-crossbar, resistance

of RRAMs in each column is the same, but Vth among

columns are different. As a result, the output of each col-

umn is calculated based on ladder-like threshold voltages

Vth,c for parallel digitalizing, where c represents RRAM-

crossbar column index.

If the inner-product result is s, the output of Step 2 is like

(1...1, 0...0), where O1,s = 1 and O1,s+1 = 0.

Step 3: XOR: It is to identify the index of 1 in the binary

data s with the operation O1,s ⊕ O1,s+1. Note that O1,s ⊕
O1,s+1 = 1 only when O1,j = 1 and O1,j+1 = 0 from Step

1. The mapping of RRAM-crossbar input and resistance are

also shown in Fig. 7(a), and threshold voltage configuration

for each column is Vth,c =
VrRs

2Ron
. Therefore, the index of 1 in

the binary data is identified by XOR operation.

Step 4: Encoding: this step is to encode the output from the

third step into binary representation binary(s). As shown in

Fig. 7(b), the third step output produces (0...1, 0...0) like result

where only the sth digit is 1. The implementation of this step

is illustrated in Fig. 7(a). Suppose the maximum dot-product

result is N , each binary format (binary(0) to binary(N)) is

stored in the according row. We directly use the third step

output as the encoding crossbar input, so that only the sth

row is read out in each column. For example, if s = 5, the

encoding input is (00001000) and the output is (101). Such

binary format can be directly stored in memory or used by

other computing systems. In the encoding step, it needs an

N × n RRAM-crossbar, where n = ⌈log2 N⌉ is the number

of bits in order to represent 1 to N in binary format.

Fig. 7(b) gives an example of digitalized dot-product oper-

ation on RRAM following these four steps. For the simplicity

and clarity of the explanation, we show the dot-product opera-

tion of two binary vectors. The Step 2a is bit-wise multiplica-

tion operation on the RRAM-crossbar and then by designing

ladder-like thresholds on each column, the multiplication result

is converted to digital signal in parallel as shown in Step 2b.

Then the XOR operation will convert the multiplication result

to a (0...1, 0...0) like result. Such result is further encoded

to the binary representation in Step 4 encoding process. By

applying these four steps, we can map different tensor cores on

RRAM-crossbars to perform the matrix-vector multiplication

in parallel as shown in Fig. 7(c). Compared to the state-of-

arts realizations, this approach can perform the matrix-vector

multiplication faster and more energy-efficient, which will be

shown in Section V.

V. EXPERIMENTAL RESULT

A. Experiment Settings

In the experiment, we have implemented different baselines

for performance comparisons. The detail of each baseline is

listed below:

Baseline 1: General CPU processor. The general process

implementation is based on Matlab with optimized C-program.

The computer server is with 6 cores of 3.46GHz and 64.0GB
RAM.

Baseline 2: General GPU processor. The general-purpose

GPU implementation is based on the optimized C-program

and Matlab parallel computing toolbox with CUDA-enabled

Quadro 5000 GPU [36].

Baseline 3: 3D CMOS-ASIC. The 3D CMOS-ASIC im-

plementation with proposed architecture is done by Verilog

with 1GHz working frequency based on CMOS 65nm low

power PDK. Power, area and frequency are evaluated through

Synopsys DC compiler (D-2010.03-SP2). Through-silicon via

(TSV) area, power and delay are evaluated based on Simulator

DESTINY [34] and fine-grained TSV model CACTI-3DD

[35]. The buffer size of the top layer is set 128MB to

store tensor cores with 256 bits data width. The TSV area

is estimated to be 25.0 µm2 with capacitance of 21fF .

Proposed 3D CMOS-RRAM: The settings of CMOS

evaluation and TSV model are the same as baseline 2. For the

RRAM-crossbar design evaluation, the resistance of RRAM

is set as 500K and 5M as on-state and off-state resistance

and 2V SET/RESET voltage according to [37] with working

frequency of 200MHz. The CMOS and RRAM integration is

evaluated based on [38].

To evaluate the proposed architecture, we apply UCI [39]

and MNIST [40] dataset to analyze the accelerator scalability,

model configuration analysis and performance analysis. The

model configuration is performed on Matlab first using Tensor-

train toolbox [25] before mapping on the 3D CMOS-RRAM

architecture. To evaluate the model compression, we compare

our method with SVD based node pruned method [41] and

general neural network [23]. The energy consumption and

speed-up are also evaluated. Note that the code for perfor-

mance comparisons is based on optimized C-Program and

deployed as the mex-file in the Matlab environment.

B. 3D Multi-layer CMOS-RRAM Accelerator Scalability

Analysis

Since neural network process requires frequent network

weights reading, memory read latency optimization config-

uration is set to generate RRAM memory architecture. By

adopting 3D implementation, Simulation results on Table II

show that memory read and write bandwidth can be signifi-

cantly improved by 51.53% and 6.51% respectively comparing

to 2D implementation. For smaller number of hidden nodes,
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TABLE II
BANDWIDTH IMPROVEMENT UNDER DIFFERENT NUMBER OF HIDDEN

NODES FOR MNIST DATASET

Hidden node†(L) 256 512 1024 2048 4096

Memory required (MB) 1.025 2.55 7.10 22.20 76.41

Memory set (MB) 2M 4M 8M 32M 128M

Write Bandwidth Imp. 1.14% 0.35% 0.60% 3.12% 6.51%

Read Bandwidth Imp. 5.02% 6.07% 9.34% 20.65% 51.53%

†4-layer neural network with 3 full-connected layer 784×L, L×L and L× 10.
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Fig. 8. Scalability study of hardware performance with different hidden node
numbers for: (a) area; (b) delay; (c) energy and (d) energy-delay-product

read/write bandwidth is still improved but the bottleneck shifts

to the latency of memory logic control.

To evaluate the proposed 3D multi-layer CMOS-RRAM

architecture, we perform the scalability analysis of energy,

delay and area on MNIST dataset [40]. This dataset is applied

to multi-layer neural network and the number of hidden nodes

may change depending on the accuracy requirement. As a

result, the improvement of proposed accelerator with different

L from 32 to 2048 is evaluated as shown in Fig. 8. With

the increasing L, more computing units are designed in 3D

CMOS-ASIC and RRAM-crossbar to evaluate the perfor-

mance. The neural network is defined as a 4-layer network

with weights 784 × L, L × L and L × 10. For computation

delay, GPU, 3D CMOS-ASIC and 3D CMOS-RRAM are close

when L = 2048 according to Fig. 8(b). When L reaches

256, 3D CMOS-RRAM can achieve 7.56× area-saving and

3.21× energy-saving compared to 3D CMOS-ASIC. Although

the computational complexity is not linearly related to the

number of hidden node numbers, both energy consumption

and energy-delay-product (EDP) of RRAM-crossbar increase

with the rising number of hidden node. According to Fig. 8(d),

the advantage of the hybrid accelerator becomes smaller when

the hidden node increases, but it can still have a 5.49× better

EDP compared to the 3D CMOS-ASIC when the hidden node

number is 2048.
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C. 3D Multi-layer CMOS-RRAM Accelerator Model Configu-

ration Analysis

As discussed in Section II, tensor-train based neural network

shows a fast testing process with model compressed when the

tensor rank is small. To evaluate this, we apply the proposed

learning method comparing to general neural network [23] for

speed-up and compression on UCI dataset and MNIST dataset.

Please note that the memory required for the tensor-train based

weight is
∑d

k=1 nkrk−1rk comparing to N = n1×n2×...×nd

and the computation process can be speed-up from O(NL) to

O(dr2n max(N,L)), where n is the maximum mode size of

the tensor train. Table III shows detailed comparison of speed-

up, compressed-model and accuracy between TNN, general

neural network and SVD pruned neural network. It clearly

shows that proposed method can accelerate the testing process

comparing to general neural network. In addition, our pro-

posed method only suffers around 2% accuracy loss but SVD

based method has varied loss (up to 18.1 %). Furthermore,

by tuning the tensor rank we can achieve 3.13x compression

for diabetes UCI dataset. Since we apply 10% node prune by

removing the smallest singular values, the model compression

remains almost the same for different benchmarks.

Fig. 9 shows the testing accuracy and running time compar-

isons for MNIST dataset. It shows a clear trend of accuracy

improvement with increasing number of hidden nodes. The

running time between TNN and general NN is almost the

same. This is due to the relative large rank r = 50 and

computation cost of O(dr2n max(N,L)). Such tensor-train

based neural network achieve 4× and 8.18× model compres-

sion within 2% accuracy loss under 1024 and 2048 number

of hidden nodes respectively. Details on model compression

are shown in Table V. From Table V, we can observe that

the compression rate is directly connected with the rank r,

where the memory storage can be simplified as dnr2 from
∑d

k=1 nkrk−1rk but not directly link to the number of hidden

nodes. We also observe that by setting tensor core rank to 35,

14.85× model compression can be achieved with acceptable

accuracy loss. Therefore, initialization of a low rank core

and the SVD split of supercore in MALS algorithm (Section

II-C) are important steps to reduce the core rank and increase

compression rate.
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TABLE III
PERFORMANCE COMPARISON BETWEEN TENSORIZED NEURAL NETWORK (TNN), GENERAL NEURAL NETWORK (NN) AND SVD PRUNED NEURAL

NETOWRK (SVD) ON UCI DATASET

Dataset§ Model† Test-time Test-acc Test-time Test-Acc Test-time Test-Acc Mode Cmp Acc. loss Speed up

TNN‡ (s) TNN‡ NN (s) NN SVD (s) SVD TNN SVD TNN SVD TNN SVD

iris 128x4x3 7.57E-04 0.968 1.14E-03 0.991 8.73E-04 0.935 1.1200 1.113 0.023 0.056 1.506 1.306

adult 128x14x2 8.70E-03 0.788 1.04E-02 0.784 9.36E-03 0.783 1.8686 1.113 -0.004 0.001 1.195 1.111

credict 128x14x2 9.26E-04 0.778 2.20E-03 0.798 2.02E-03 0.743 1.7655 1.113 0.02 0.055 2.376 1.087

diabetes 128x8x2 8.07E-04 0.71 1.80E-03 0.684 1.70E-03 0.496 3.1373 1.113 -0.026 0.188 2.230 1.061

Glass 64x10x7 6.44E-04 0.886 1.50E-03 0.909 1.12E-03 0.801 1.3196 1.103 0.023 0.108 2.329 1.343

leukemia 256x38x2 4.97E-04 0.889 1.50E-03 0.889 1.49E-03 0.778 1.8156 1.113 0.000 0.111 3.018 1.008

liver 128x16x2 6.15E-04 0.714 2.00E-03 0.685 1.63E-03 0.7000 1.5802 1.113 -0.029 -0.015 3.252 1.228

segment 128x19x12 5.72E-03 0.873 1.84E-02 0.886 1.52E-02 0.847 2.6821 1.113 0.013 0.039 3.207 1.211

shuttle 1024x9x7 5.29E-02 0.995 5.41E-02 0.989 3.81E-02 0.986 1.5981 1.111 -0.006 0.003 1.023 1.419

† L × n × m, where L is number of hidden nodes, n is the number of features and m is the number of classes. All the datasets are applied to single hidden layer neural

network with L sweep from 64 to 1024.

§ Detailed information on dataset can be found from [39]. We randomly choose 80% of total data for training and 20% for testing.

‡ Rank is initialized to be 2 for all tensor cores.

TABLE IV
PERFORMANCE COMPARISON UNDER DIFFERENT HARDWARE IMPLEMENTATIONS ON MNIST DATASET WITH 10,000 TESTING IMAGES

Implementation General CPU processor [42] General GPU processor [36] 3D CMOS-ASIC Architecture 3D CMOS-RRAM Architecture

Freq. Power (W) 3.46GHz, 130W 513MHz, 152W 1GHz, 1.037W 100MHz, 0.317W

Area (mm2) 240 (Intel Xeon X5690) 529 (Nvidia Quadro 5000) 9.582 (65nm Global Foundary) 1.026 (65nm CMOS and RRAM)

Throughput 74.64 GOPS 328.41 GOPS 367.43 GOPS 475.45 GOPS

Efficiency 0.574 GOPS/W 2.160 GOPS/W 347.29 GOPS/W 1499.83 GOPS/W

Layer † L1 L2 L3 Overall L1 L2 L3 Overall L1 L2 L3 Overall L1 L2 L3 Overall

Time (s) 0.44 0.97 0.045 1.45 0.040 0.289 0.0024 0.33 0.032 0.26 2.4E-3 0.295 0.025 0.20 1.7E-3 0.23

Energy (J) 57.23 125.74 5.82 188.8 6.05 43.78 0.3648 50.19 0.0333 0.276 2.6E-3 0.312 7.9E-3 64E-2 5E-4 7.2E-2

Speed-up – – – – 11.06 3.36 18.67 4.40 13.9 3.71 18.4 4.92 17.77 4.80 25.86 6.37

Energy-saving – – – – 9.46 2.87 15.96 3.76 1711.8 455.4 2262 604.9 7286 1969 1.1E4 2612

†4-layer neural network with weights 784 × 2048, 2048 × 2048 and 2048 × 10.

TABLE V
MODEL COMPRESSION UNDER DIFFERENT NUMBER OF HIDDEN NODES

AND TENSOR RANKS ON MNIST DATASET

No Hid† 32 64 128 256 512 1024 2048

Compression 5.50 4.76 3.74 3.23 3.01 4.00 8.18

Rank‡ 15 20 25 30 35 40 45

Compression 25.19 22.51 20.34 17.59 14.85 12.86 8.63

Accuracy ( %) 90.42 90.56 91.41 91.67 93.47 93.32 93.86

‡ Number of hidden nodes are all fixed to 2048 with 4 fully connected layers.

† All tensor Rank is initialized to 50.

TABLE VI
TESTING ACCURACY OF ML TECHNIQUES UNDER DIFFERENT DATASET

AND BIT-WIDTH CONFIGURATION

Datasets
32-bit Acc. (%)

& Compr.
4 bit Acc. (%)

& Compr.
5 bit Acc. (%)

& Compr.
6 bit Acc. (%)

& Compr.

Glass 88.6 1.32 89.22 10.56 83.18 8.45 88.44 7.04

Iris 96.8 1.12 95.29 8.96 96.8 7.17 96.8 5.97

diabets 71 3.14 69.55 25.12 69.4 20.10 71.00 16.75

adult 78.8 1.87 75.46 14.96 78.15 11.97 78.20 9.97

leuke. 88.9 1.82 85.57 14.56 87.38 11.65 88.50 9.71

MNIST 94.38 4.18 91.28 33.44 92.79 26.75 94.08 22.29

D. 3D Multi-layer CMOS-RRAM Accelerator Bit-width Con-

figuration Analysis

To implement the whole neural network on the proposed

3D multi-layer CMOS-RRAM accelerator, the precision of

real values requires a careful evaluation. Compared to the

software double precision floating point format (64-bit), values

are truncated into finite precision. By using the greedy search

method, an optimal point for hardware resource (small bit-

width) and testing accuracy can be achieved.

Our tensor-train based neural network compression tech-

niques can work with low-precision value techniques to further

reduce the data storage. Table VI shows the testing accuracy

by adopting different bit-width on UCI datasets [39] and

MNIST [40]. It shows that accuracy of classification is not

very sensitive to the RRAM configuration bits for UCI dataset.

For example, the accuracy of Iris dataset is working well with

negligible accuracy at 5 RRAM bit-width. When the RRAM

bit-width increased to 6, it performs the same as 32 bit-

width configurations. Please note that the best configuration

of quantized model weights varies for different datasets and

requires careful evaluation.

E. 3D Multi-layer CMOS-RRAM Accelerator Performance

Analysis

In Table IV, performance comparisons among C-Program

Optimized CPU performance, GPU performance , 3D CMOS-

ASIC and 3D multi-layer CMOS-RRAM accelerator are pre-

sented for 10, 000 testing images. The acceleration of each

layer is also presented for 3 layers (784× 2048, 2048× 2048
and 2048 × 10). Please note that the dimension of weight

matrices are decomposed into [4 4 7 7] and [4 4 8 8] with 6 bit-

width and maximum rank 6. The compression rate is 22.29×
and 4.18× with and without bit-truncation. Among the four

implementation, 3D multi-layer CMOS-RRAM accelerator

performs the best in area, energy and speed. Compared to

CPU, it achieves 6.37× speed-up, 2612× energy-saving and

233.92× area-saving. For GPU based implementation, our pro-

posed 3D CMOS-RRAM architecture achieves 1.43× speed-

up and 694.68× energy-saving. We also design a 3D CMOS-
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ASIC implementation with similar structure as 3D multi-layer

CMOS-RRAM accelerator with better performance compared

to CPU and GPU based implementations. The proposed 3D

multi-layer CMOS-RRAM 3D accelerator is 1.283× speed-

up, 4.276× energy-saving and 9.339× area-saving compared

to 3D CMOS-ASIC.

The throughput and energy efficiency for these four cases

are also summarized in Table III. For energy efficiency, our

proposed accelerator can achieve 1499.83 GOPS/W, which

has 4.30× better energy efficiency comparing to 3D CMOS-

ASIC result (347.29 GOPS/W). In comparison to our GPU

baseline, it has 694.37× better energy efficiency comparing

to NVIDIA Quadro 5000. For a newer GPU device (NVIDIA

Tesla K40), which can achieve 1092 GFLOPS and consume

235W [36], our proposed accelerator has 347.49× energy

efficiency improvement.

VI. CONCLUSION

In this paper, we propose a 3D multi-layer CMOS-RRAM

accelerator for highly-parallel yet energy-efficient machine

learning. A tensor-train based tensorization is developed to

represent dense weight matrix with significant compression.

The neural network processing is mapped to a 3D architecture

with high-bandwidth TSVs, where the first RRAM layer is

to buffer input data; the second RRAM layer is to perform

intensive matrix-vector multiplication using digitized RRAM;

and the third CMOS layer is to coordinate the reaming control

and computation. Simulation results using the benchmark

MNIST show that the proposed accelerator has 1.283× speed-

up, 4.276× energy-saving and 9.339× area-saving compared

to 3D CMOS-ASIC implementation; and 6.37× speed-up and

2612× energy-saving compared to 2D CPU implementation.

In addition, 14.85× model compression can be achieved by

tensorization with acceptable accuracy loss.
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