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Abstract 
 
This paper presents the design and implementation 
of the most parameterisable FPGA-based skeleton 
for pairwise biological sequence alignment reported 
in the literature. The skeleton is parameterised in 
terms of the sequence symbol type i.e. DNA, RNA, 
or Protein sequences, the sequence lengths, the 
match score i.e. the score attributed to a symbol 
match, mismatch or gap, and the matching task i.e. 
the algorithm used to match sequences, which 
includes global alignment, local alignment and 
overlapped matching. Instances of the skeleton 
implement the Smith-Waterman and the 
Needleman-Wunsch algorithms. The skeleton has 
the advantage of being captured in the Handel-C 
language, which makes it FPGA platform-
independent. Hence, the same code could be ported 
across a variety of FPGA families. It implements 
the sequence alignment algorithm in hand using a 
pipeline of basic processing elements, which are 
tailored to the algorithm parameters. The paper 
presents a number of optimisations built into the 
skeleton and applied at compile-time depending on 
the user-supplied parameters. These result in high 
performance FPGA implementations tailored to the 
algorithm in hand. For instance, actual hardware 
implementations of the Smith-Waterman algorithm 
for Protein sequence alignment achieve speed-ups 
of two orders of magnitude compared to equivalent 
standard desktop software implementations.  
 
1. Introduction 
 
Biological sequence alignment is a widely used 
operation in the field Bioinformatics and 
Computational Biology (BCB). It aims to find out 
whether two or more biological sequences (e.g. 
DNA, RNA or Protein sequences) are related or not 
[1]. This has many important real world 
applications. For instance, if some information 
about one of the sequences is already known (e.g. 
the sequence represents a cancerous gene) then this 
information could be transferred to the other 
unknown sequences, which could be vital in early 
disease diagnosis and drug engineering. Other 
applications include the study of evolutionary 
development and the history of species and their 
groupings [1][2]. However, biological sequence 
alignment is also a computationally intensive 
operation and with biosequence databases growing 
exponentially every year, there is indeed a need for 

an equally faster computing technology to keep up 
with this growth. Desktop computer systems are not 
capable to achieve this task within realistic 
execution times. As a result, heuristics-based 
sequence alignment algorithms which are more 
suitable to software implementation have been 
designed to reduce their execution time on such 
systems [3][4][5]. In this paper, we concentrate on 
the exhaustive search algorithms which provide 
gold standards against which less accurate 
algorithms are benchmarked against. For 
exhaustive search algorithms, many Single 
Instruction Multiple Data (SIMD) and systolic 
architectures using special purpose hardware have 
been built to speed up their execution, often with 
one order of magnitude or more speed-up compared 
to a workstation based implementation [6][7][8]. 
More recently, reconfigurable hardware in the form 
of Field Programmable Gate Arrays (FPGAs) has 
been used as a high performance programmable 
platform for sequence alignment algorithms 
[9][10][11][12][13][14][15]. Nonetheless, the 
number of researchers working on FPGA-based 
accelerators for sequence alignment and BCB 
applications in general, remains low. This is due 
mainly to the relative newness of the two areas, but 
more importantly, perhaps, to the knowledge gap 
between bioinformaticians and molecular biologists 
on the one side and hardware design engineers on 
the other side [16][10].  
 In an attempt to make a contribution towards 
bridging the aforementioned gap, this paper 
presents the detailed design and implementation of 
a generic and highly parameterised FPGA skeleton 
for pairwise biological sequence alignment. 
Compared to previously published FPGA 
implementations, our solution provides the most 
parameterised one, hence allowing users to tune in 
FPGA hardware to suit their particular need. It has 
also the added advantage of being designed in an 
FPGA-platform-independent language, namely 
Handel-C, which makes it possible to target a 
variety of FPGA families and architectures e.g. 
Xilinx, Altera, and Actel, or even standard ASICs.  
 The remainder of this paper is organised as 
follows. First, important background information 
on biological sequence alignment algorithms is 
presented. Then, previous work in the area of high 
performance biological sequence alignment is 
presented. After that, the design and FPGA 
implementation of our highly parameterised 
skeleton is detailed. A comparative evaluation of 
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our implementation then follows, before 
conclusions and plans for future work are laid out. 
  
2. Background 
 
Biological sequences (e.g. DNA) evolve through a 
process of mutation, selection, and random genetic 
drift [17]. Mutation, in particular, manifests itself 
through three main processes, namely: substitution 
of residues (i.e. a residue A in the sequence is 
substituted by another residue B), insertion of new 
residues, and deletion of existing residues. Insertion 
and deletion are referred to as gaps. This should be 
taken into account when aligning biological 
sequences. In practice, the degree of alignment of 
sequences is measured by a score, which is 
obtained by a summation of terms of each aligned 
pair of residue in addition to possible gap terms. 
Score terms for each aligned residue terms are 
obtained from probabilistic models and stored in 
score or substitution matrices [1]. Figure 1 presents 
an example of such substitution matrices, namely 
the BLOSUM50 which is a 20x20 matrix for 
Protein residues (also known as amino-acids). 
 
 

 A R N D C Q E G H I L K M F P S T W Y V B 
A 5 -2 -1 -2 -1 -1 -1 0 -2 -1 -2 -1 -1 -3 -1 1 0 -3 -2 0 -2 
R -2 7 -1 -2 -4 1 0 -3 0 -4 -3 3 -2 -3 -3 -1 -1 -3 -1 -3 -1 
N -1 -1 7 2 -2 0 0 0 1 -3 -4 0 -2 -4 -2 1 0 -4 -2 -3 4 
D -2 -2 2 8 -4 0 2 -1 -1 -4 -4 -1 -4 -5 -1 0 -1 -5 -3 -4 5 
C -1 -4 -2 -4 13 -3 -3 -3 -3 -2 -2 -3 -2 -2 -4 -1 -1 -5 -3 -1 -3 
Q -1 1 0 0 -3 7 2 -2 1 -3 -2 2 0 -4 -1 0 -1 -1 -1 -3 0 
E -1 0 0 2 -3 2 6 -3 0 -4 -3 1 -2 -3 -1 -1 -1 -3 -2 -3 1 
G 0 -3 0 -1 -3 -2 -3 8 -2 -4 -4 -2 -3 -4 -2 0 -2 -3 -3 -4 -1 
H -2 0 1 -1 -3 1 0 -2 10 -4 -3 0 -1 -1 -2 -1 -2 -3 2 -4 0 
I -1 -4 -3 -4 -2 -3 -4 -4 -4 5 2 -3 2 0 -3 -3 -1 -3 -1 4 -4 
L -2 -3 -4 -4 -2 -2 -3 -4 -3 2 5 -3 3 1 -4 -3 -1 -2 -1 1 -4 
K -1 3 0 -1 -3 2 1 -2 0 -3 -3 6 -2 -4 -1 0 -1 -3 -2 -3 0 
M -1 -2 -2 -4 -2 0 -2 -3 -1 2 3 -2 7 0 -3 -2 -1 -1 0 1 -3 
F -3 -3 -4 -5 -2 -4 -3 -4 -1 0 1 -4 0 8 -4 -3 -2 1 4 -1 -4 
P -1 -3 -2 -1 -4 -1 -1 -2 -2 -3 -4 -1 -3 -4 10 -1 -1 -4 -3 -3 -2 
S 1 -1 1 0 -1 0 -1 0 -1 -3 -3 0 -2 -3 -1 5 2 -4 -2 -2 0 
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 2 5 -3 -2 0 0 
W -3 -3 -4 -5 -5 -1 -3 -3 -3 -3 -2 -3 -1 1 -4 -4 -3 15 2 -3 -5 
Y -2 -1 -2 -3 -3 -1 -2 -3 2 -1 -1 -2 0 4 -3 -2 -2 2 8 -1 -3 
V 0 -3 -3 -4 -1 -3 -3 -4 -4 4 1 -3 1 -1 -3 -2 0 -3 -1 5 -4 

 

Figure 1. The Blosum50 substitution matrix 
 

Gap penalties depend on the length of the gap and 
are generally assumed to be independent of the gap 
residues. We distinguish between two main types of 
gap penalties: linear and affine. In the former, the 
cost of a gap of length g is given by a linear 
function: 

Penalty(g) = -g*d 

In the case of affine gap penalties, however, a 
constant penalty is given to opening a new gap, 
while a linear, and often smaller, penalty is given to 
subsequent gap extensions: 

Penalty(g) = -d-(g-1)*e 

This is a more realistic model as it is often the case 
that gaps of few residues are as frequent as gaps of 
a single residue. The following discusses two 
alignment algorithms, namely the Needleman-
Wunsch global alignment algorithm and the Smith-
Waterman local alignment algorithm. For the sake 
of simplicity, we will first assume a linear gap 

model. The case of affine gap models will be 
discussed subsequently in Section 2.4. 
 
2.1 Global alignment: the Needleman-Wunsch 
Algorithm 
The Needleman-Wunsch algorithm is a dynamic 
programming algorithm which finds the optimal 
global alignment between two sequences X = 
x1x2…xi…xM (of length M), and Y = y1y2…yi…yN (of 
length N) [18]. The algorithm builds a matrix F of 
scores, where each element F(i,j) is the best 
alignment between segment x1x2…xi of X and y1y2…yj 
of Y. Matrix F is built recursively using the 
following equation: 
 

 ( )1

.)1,(

,),1(

),()1,1-(

max),(

,









−−
−−

+−

=
djiF

djiF

yxsjiF

jiF

ji
 

 

This means that given the best alignment between: 
x1x2…xi-1 and y1y2…yj-1 (i.e. F(i-1, j-1)),  x1x2…xi-1 and 
y1y2…yj (i.e. F(i-1, j)), and x1x2…xi and y1y2…yj-1 (i.e. 
F(i, j-1)), the best alignment between x1x2…xi and 
y1y2…yj is the largest score of three alternatives:  
• An alignment between xi and yj, in which case 

the new score is F(i-1,j-1)+s(xi,yj) where s(xi,yj) 
is the substitution matrix score or entry for 
residues xi and yj. 

• An alignment between xi and a gap in Y, in 
which case the new score is F(i-1,j)-d, where d 
is the gap penalty.  

• An alignment between yj and a gap in X, in 
which case the new score is F(i,j-1)-d, where d 
is the gap penalty.  

 

This is illustrated graphically in the following 
figure. 
 

 
F(i-1,j-1) F(i,j-1) 

F(i-1,j) F(i,j) 

-d 

-d 

s(xi,yj) 

 
Figure 2. Dynamic Programming illustration 

 

It is important to consider the case of boundary 
conditions. Indeed, in order to compute the matrix 
F values from (1), we need to define values for 
F(0,0), F(i,0) for i=1,2,…M, and F(0,j) for 
j=1,2,…,N. F(0,0) does not represent any alignment 
per se, and is hence the initial value from which 
F(i,j) should be accumulated. It is thus always set to 
0. F(i,0) and F(0,j) however represent alignment of 
a prefix of X (Y respectively) to all gaps in Y (X 
respectively). As a result: F(i,0)=-i*d  and F(0,j)=-
j*d .  
 Following the above procedure, the best global 
alignment between X and Y is hence obtained by 
tracing back from the final cell in the matrix i.e. 
F(M,N). For this, we keep track of the matrix cell 
from which each cell’s F(i,j)  was derived. This is 
done by storing a pointer, in each cell, to the cell 
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from which F(i,j) was derived i.e. above, left, or 
above-left. This is illustrated in the complete 
example of a Protein sequence alignment using the 
above algorithm given in Figure 3 below. Here, the 
arrows point to the parent cell from which a 
particular cell has been computed and are used in 
the traceback step. The latter starts from cell 
F(M,N)=F(7,10) and moves backward to the cell 
from which the current cell has been derived. In 
general, if cell (i,j) was derived from cell (i-1,j-1), 
we add the pair of symbols xi, yj to the front of the 
current alignment.  If, however, it was derived from 
cell (i-1,j), we add xi to the front of alignment X and 
a gap to the front of alignment Y. Finally, if cell (i,j)  
was derived from cell (i,j-1), we add yi to the front 
of alignment Y and a gap to the front of alignment X. 
 

 

  H E A G W A G H E E 

 0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80 

P -8 -2 -9 -17 -25 -33 -42 -49 -57 -65 -73 

A -16 -10 -3 -4 -12 -20 -28 -36 -44 -52 -60 

W -24 -18 -11 -6 -7 -15 -5 -13 -21 -29 -37 

H -32 -14 -18 -13 -8 -9 -13 -7 -3 -11 -19 

E -40 -22 -8 -16 -16 -9 -12 -15 -7 3 -5 

A -48 -30 -16 -3 -11 -11 -12 -12 -15 -5 2 

E -56 -38 -24 -11 -6 -12 -14 -15 -12 -9 1 

H E A G A W G H E - E 
- - P - A W - H E A E 

 

i 

j 

Best Global Alignment: 

Figure 3. Illustration of the Needleman-Wunsch 
Algorithm 

 
2.2 Local Alignment: The Smith-Waterman 
Algorithm 
Instead of looking for the best global alignment of 
two biological sequences X and Y, a much more 
useful algorithm would look for the best alignment 
between subsequences of X and Y. This is 
particularly useful when comparing longer 
biological sequences, where global alignment can 
lead to weak correlation and hence misleading 
results, or when comparing two highly diverged 
sequences where only part of the original sequence 
has been under strong enough selection to preserve 
noticeable similarity [1].  

The Smith-Waterman algorithm is a dynamic 
programming algorithm, which finds the best 
scoring alignment of subsequences of X, Y i.e. the 
best local alignment of the two sequences [19]. It is 
closely related to the aforementioned Needleman-
Wunsch algorithm, and differs from it in two points: 
• The recursion equation: In the Smith-

Waterman algorithm, this is given by the 
following equation: 
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Compared to equation (1), the term 0 is added 
to the maximum expression since it is always 
better to start a new local alignment if the best 
alignment so far has a negative score. As a 
consequence of this, the top row and left 
column values of the alignment matrix i.e.  
F(i,0) and F(0,j) should be set to 0’s instead of 
–i*d and –j*d respectively. 

• Traceback: Since we are looking for the best 
local alignment, the maximum score could lie 
anywhere on the matrix. It is hence necessary 
to find the maximum score in the matrix and 
start the traceback procedure, as explained 
above in the Needleman-Wunsch algorithm, 
from that position. The traceback procedure 
ends when 0 is met. The latter could also be 
anywhere in the alignment matrix.  

 

The Smith-Waterman algorithm is illustrated Figure 
4 below where the best local alignment between the 
same two sequences given in Figure 3 above is 
found.  
 

   H E A G A W G H E E 

 0 0 0 0 0 0 0 0 0 0 0 

P 0 0 0 0 0 0 0 0 0 0 0 

A 0 0 0 5 0 5 0 0 0 0 0 

W 0 0 0 0 2 0 20 12 4 0 0 

H 0 10 2 0 0 0 12 18 22 14 6 

E 0 2 16 8 0 0 4 10 18 28 20 

A 0 0 8 21 13 5 0 4 10 20 27 

E 0 0 6 13 18 12 4 0 4 16 26 

 AW  G HE 
AW - HE Best Local Alignment: 

 
Figure 4. Illustration of the Smith-Waterman 

Algorithm 
 

2.3 The Case of Overlapped Matches 
In some instances, it is useful to allow for 
overlapping between sequences when aligning them 
(see Figure 5).  
 

 

X 

Y 

X 

Y 

Y 
Y 

X X 

(a) (b)  
Figure 5. Overlapped sequence matching 

 
This is a type of global alignment in which 
sequences are simply allowed to overlap without 
incurring any penalty. Hence, the initial value of 
F(i,0) and F(0,j) should be set to 0 instead of –i*d 
and –j*d respectively (see Figure 6). Moreover, 
here, the traceback can start anywhere on the right 
border or bottom border of the alignment matrix 
(instead of starting at the last element of the matrix 
F(M,N) as in the case of the Needleman-Wunsch 
algorithm).  



 4 

 

   H E A G A W G H E E 

 0 0 0 0 0 0 0 0 0 0 0 

P 0 -2 -1 -1 -2 -1 -4 -2 -2 -1 -1 

A 0 -2 -2 4 -1 3 -4 -4 -4 -3 -2 

W 0 -3 -5 -4 1 -4 18 10 2 6 -6 

H 0 10 2 6 -6 -1 10 16 20 12 4 

E 0 2 16 8 0 7 2 8 16 26 18 

A 0 -2 8 21 13 5 3 2 8 18 25 

E 0 0 4 13 18 12 4 4 2 14 24 

 HEAGAWG  HEE 
        PAW - HEA Best Overlapped Alignment: 

 
Figure 6. Illustration of the case of overlapped 

matches 
 
2.4 Alignment with Affine Gap Scores 
As mentioned earlier, affine gap penalties provide a 
more realistic model of the biological phenomenon 
of residue insertions and deletions. The affine gap 
penalty is defined using two constants d and e as 
follows (where g is the gap length): 

Penalty(g)=-d-(g-1)*e 

A similar algorithm to the one presented for linear 
gap penalties can be used here (both for local and 
global alignment). However, multiple values of 
each pair of residue (i,j) need to be computed 
instead of just one (i.e. F(i,j)). Figure 7 illustrates 
the case where three values need to be computed 
for each residue pair [1]. 
 

I G A xi 

L G V yj 

 

A I G A xi 

G V yj -  
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Figure 7. The case of affine gap penalties 
 

The top case corresponds to the best score F(i,j) up 
to (i,j) where xi is aligned to yj. The following case 
gives the best score Ix(i,j) where xi is aligned to a 
gap, whereas the last case gives the best score Iy(i,j)  
where yj is aligned to a gap.  

Another algorithm which can be used in the 
case of affine gap penalties uses only two values for 
each residue pair instead of three and is given by 
the following recursive equations [1]: 
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3. High Performance Biological 
Sequence Analysis: Previous Work 
 
The computational complexity of the above 
dynamic programming algorithms for pairwise 
sequence alignment is proportional to the product 
of the lengths of the two sequences to be aligned i.e. 
O(MxN). Given the sheer immensity of biological 
sequence databases and their exponential growth 
rate, a PC-based implementation of the above 
algorithms quickly runs into problems. For instance, 
assuming a Protein database of 100 million residues, 
a sequence of length 1000 would need something of 
the order of 1011 (=108x1000) basic operations to 
find the optimal alignment. Assuming a PC can 
perform 30 million of these basic operations per 
second, one single sequence alignment (with all 
database entries) would take around 1 hour to 
complete. It is hence clear that the computation 
time would quickly become an issue if we want to 
scan the database with tens or hundreds of 
sequences [1][9].  

In order to speed up sequence analysis 
applications, a number of parallel architectures 
have been developed. Single Instruction Multiple 
Data (SIMD) architectures based on a network of 
programmable processors are among these 
solutions and include the MGAP [6], Kestrel [7] 
and Fuzion [8]. Although such architectures are 
capable of considerable speed-ups compared to a 
standard PC solution, they are often costly both in 
terms of design and programming [11]. Other 
solutions have used special purpose hardware for 
the implementation of parallel processing elements 
with the aim of increasing processing density and 
achieve even higher speed-ups. Such architectures 
also allow for systolic arrays to be implemented, a 
computing paradigm that is extremely suitable for 
the dynamic programming algorithms presented 
above. Instances of this family of architectures 
include BISP [20], SAMBA [21] and BIOSCAN 
[22]. The advent of reconfigurable hardware in the 
form of FPGAs makes such architectures even 
more appealing. FPGAs, like ASICs, are capable of 
providing considerable speed-ups compared to 
general purpose processors with the added 
convenience of reprogrammability. An algorithm 
implementation could hence be tuned to different 
needs both at compile time and at run-time. 
Moreover, FPGAs are now riding the process 
technology curve [23] which makes them even 
more attractive a solution as a reliable high 
performance platform for biocomputing 
[24][25][26]. For instance, a number of FPGA 
implementations of the Smith-Waterman algorithm 
have been reported in the literature recently 
[9][10][11]. However, none of these 
implementations offers the same degree of 
parameterisability as our implementation, as will be 



 5 

apparent in subsequent sections. Moreover, our 
implementation was designed using a high level 
hardware language in the form of the ANSI-C 
based Handel-C language [27], and achieved 
performance figures comparable to the best 
reported results in the literature, if not better, as will 
be shown in Section 5.  This in itself is important as 
it means that higher level hardware languages can 
be used to achieve high performance 
implementations of computational biology 
applications, hence bridging the aforementioned 
gap between the bioinformatics applications and 
high performance hardware. 
 

4. Our Hardware Implementation 
 
Figure 8 presents a linear systolic array implementation 
of a general purpose pairwise sequence alignment 
problem based on the dynamic programming algorithms 
presented above. The linear systolic array consists of a 
pipeline of basic processing elements (PEi) each holding 
one query residue xi, whereas the subject sequence is 
shifted systolically through the array. This architecture 
could be easily deducted from a data dependency graph 
of the dynamic programming algorithms presented in 
Section 2 [20]. 

 

F(i,j),  
Parent  

 

Alignment & 
Traceback 

Matrix 
(Optional 
memory) 

Query sequence Y ={ y 1, y2, y3,…. yN} 

PEi PEN 

Subject sequence  
xM, xM-1, … , x2, x1  

PE1 PE2 

write  

Figure 8. Linear processor array architecture for pairwise 
sequence alignment 

Each PE performs one elementary calculation (see 
Equation 1). Indeed, each cycle, the PE generates 
one alignment matrix element F(i,j) and saves the 
direction of the cell from which the result has been 
derived (called Parent in Figure 8). The latter can 
be any of three nominal values: top, left, or 
diagonal, and could hence be represented in 2 bits. 
Each PE end up generating one column of the 
alignment matrix after M cycles (M being the 
length of the subject sequence). However, the 
calculation at PEi+1 depends on the result from PEi, 
which means that each PE is one cycle behind its 
predecessor. The full alignment of two sequences 
of lengths N and M is hence achieved in M+N-1 
cycles. Figure 9 illustrates the execution of the 
recursive equation of the Smith Waterman 
algorithm in such architecture.  
 

 

  H E A G A W G H E E 

 0 0 0 0 0 0 0 0 0 0 0 

P 0 0 0 0 0 0 0 0 0 0 0 

A 0 0 0 5 0 5 0 0 0 0 0 

W 0 0 0 0 2 0 20 12 4 0 0 

H 0 10 2 0 0 0 12 18 22 14 6 

E 0 2 16 8 0 0 4 10 18 28 20 

A 0 0 8 21 13 5 0 4 10 20 27 

E 0 0 6 13 18 12 4 0 4 16 26 

 

PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10 

t=0  

t=1  

t=2  

t=6  

t=7  t=8 t=15 

Figure 9. Illustration of the execution of the Smith-
Waterman example of Figure 3 on the linear array 

processor of Figure 8 
 
The architecture of figure 8 can cater for different 
sequence symbol types, sequence lengths, match 
scores and matching task. Indeed, the sequence 
symbol type e.g. DNA or Proteins, will only 
influence the word length of the input sequence e.g. 
2 bits for DNA and 5 bits for Proteins. Moreover, 
the query sequence length dictates the number of 
PEs. The match score attributed to a symbol match 
depends on the substitution matrix used. Given a 
particular substitution matrix e.g. BLOSUM50, all 
possible match scores for a particular symbol 
represent one column in the substitution matrix. 
Hence, for each PE, we store the corresponding 
symbol’s column in the substitution matrix, which 
we use as a look-up-table. A different substitution 
matrix will hence simply mean a different look-up-
table content. The penalty attributed to a gap can 
also be stored in the PE. In the case of linear gap 
penalties, only one value is needed (d), whereas 
affine gap penalties need two values (d and e) as 
explained in section 2.4 above. Note that in the case 
affine gap penalties, multiple values of each pair of 
residue need to be computed in the recursion 
equation instead of just F(i,j). This could either be 
two (F(i,j) and I(i,j)) or three (F(i,j), Ix(i,j) and Iy(i,j)) 
as explained in Section 2.4 above.  
 Finally, the linear array of figure 8 can also cater 
for different matching tasks with few changes. For 
instance, the difference between global alignment, 
local alignment and overlapped matching resides in 
the initial values of the alignment matrix (border 
values), the recursive equation implemented by the 
PE as well as the starting cell of the traceback 
procedure. The border values of the alignment 
matrix simply represent initial values attributed to 
each PE (0’s for local alignment and overlapped 
matching and –j*d in the case of global alignment) 
as well as the initial values attributed to PE0 (0’s for 
local alignment and overlapped matching, and -i*d  
for global alignment). Moreover, the recursive 
expression in the case of local alignment is not 
allowed to take on negative values as it saturates to 
zero, unlike the case of global alignment and 
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overlapped matching. This simply implies the use 
of saturated arithmetic in the case of local 
alignment. Finally, the traceback in the case of 
local alignment needs to start from the maximum 
element in the alignment matrix, which requires the 
array structure to calculate the maximum of all 
results F(i,j). This can be performed in a systolic 
manner using Figure 8 architecture with each PE 
calculating the maximum-so-far and broadcasting it 
to the next PE in the chain. Figure 10 gives the 
pseudo-code implemented by the PE in the case of 
the Smith-Waterman algorithm with linear gap 
penalty. The corresponding pseudo-code for global 
alignment and overlapped matching would only be 
altered by the initial conditions and a slight 
modification to the recursion equation as explained 
in section 2 above (see equation 1 in particular).  
 
 

PE1 PE2 PE3 PEN PEi 

Query sequence y i 

Subject 
sequence x j 
and control  

active_on(j) 

Max(i-1,j) 
 

F(i-1,j) 

Max(i,j) 
 

F(i,j) 

active_on(j+1) 
if(active_on(j)) 
{ 
F(i,j)=maximum{F(i-1,j-1)+sbt(PEi_Residue, 
Residue(j)), F(i,j-1)-d, F(i-1,j)-d, 0}; 
Max(i,j)=maximum{Max(i-1,j), F(i,j-1),Max(i,j-1)}; 
} 
else 
{ 
F(i,j)=0; 
Max(i,j)=0; 
} 
 

Residue(j) Residue(j+1) 

Figure 10. Linear array architecture for the Smith-
Waterman Algorithm (using linear gap) 

 
In the case of overlapped matching, the maximum 
calculation needs to be performed only in the last 
PE (PEN) and at the last calculation cycle of each 
PE since the traceback starts from the cell with the 
maximum value in the bottom row and right-most 
column. Global alignment, however, need not 
calculate the maximum element in the alignment 
matrix as it always starts the trace-back from the 
last element. 

The above clearly shows that it is possible to 
capture all of the variations enunciated in Section 2 
in a single core description and achieve custom 
implementations from user parameters supplied at 
compile time. This will explained in Section 4.2 
below, but before that, the case of long sequences is 
considered.  
 
4.1 The case of long sequences 
In reality, biological sequences are often hundreds, 
if not thousands, long. This means that the memory 
requirement of the above dynamic programming 
algorithms is often measured in Megabytes. For 
instance, assuming 16 bits per cell, the alignment 
matrix of two sequences of length 2000 requires 
64Mbit of memory. Storing such amount of data on 
FPGAs is clearly not possible in today’s technology. 
Hence, only the linear systolic array of Figure 8 can 
be implemented on FPGA (i.e. without the 

alignment matrix storage). This is not problematic 
in reality since a query sequence is often compared 
to a database of thousands of sequences before few 
candidates with the highest match scores are 
actually aligned. Hence, the linear systolic array 
can be used to measure the maximum match score 
between the query sequence and each subject 
sequence in the database before few subject 
sequences (i.e. those with the highest maximum 
match score) are chosen. The complete alignment 
(i.e. with traceback) can thus be performed with 
these few sequences in software [11]. The time 
needed for this is relatively small compared to 
scanning a whole database of sequences searching 
for high scoring matches.  
 In our core, the alignment matrix of Figure 8 is 
optional. The user can thus decide not to implement 
it at compile time, in which case the hardware 
inferred is shown in Figure 11. Here, only the final 
matching score between two sequences (i.e. the 
maximum element in the alignment matrix in the 
case of local alignment, the maximum element in 
the bottom row and right-most column of the 
alignment matrix in the case of overlapped 
matching, and the last element in the alignment 
matrix in the case of global alignment) is stored.  
 
 

PE1 PE2 PEN PEi 

Query sequence y i 

Subject 
sequence x j 
and control  

Maximum 
(matching 

score) 

Figure 11. Linear Array Architecture with no 
Alignment Matrix Storage 

 
The on-chip memory limitation is not the only 
problem, however, in the case of long sequences. 
Indeed, logic limitation also means that the number 
of PEs that could be implemented on an FPGA is 
limited. For instance, the maximum number of PEs 
that could be implemented on a Xilinx XC2V6000 
Virtex-II FPGA in the case of the Smith-Waterman 
algorithm with affine gap penalties is ~250. Clearly, 
this is not sufficient for many real world sequences.      
The solution in such cases is to partition the 
algorithm in hand into small alignment steps and 
map the partitioned algorithm on a fix size linear 
systolic array (whose size is dictated by the FPGA 
chip in hand). This problem is well studied in the 
VLSI design arena [28][29]. The following 
illustrates the solution. 
 Let us assume the general case of a query 
sequence of length M and a linear systolic array of 
size υ where M > υ and k = M/υ. First, the 
necessary linear systolic array of length M is 
conceptually extended to an array of length k*υ 
with the last k*υ-M PEs filled zero-value 
substitution table columns. That way, these extra 
PEs do not influence the overall alignment result. 
After this conceptual step, the resulting linear 
systolic array of length k*υ is folded into the 
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physical array of length υ. In reality, υ represents 
the maximum number of PEs that we can fit on the 
FPGA chip in hand. As a result of this mapping, the 
alignment process is performed in k passes over the 
linear array. For this, we need a FIFO to store 
intermediate results from each pass before they are 
fed back to the array input for the next pass (see 
Figure 12). The depth of the FIFO is dictated by the 
length of the subject sequence. In general, the FIFO 
depth should be sufficient to hold the biggest 
sequence in the database of sequences against 
which the query sequence is compared. 

Another consequence of the above mapping is 
that each PE should now hold k substitution matrix 
columns (or look-up-tables) instead of just one. 
Indeed, PEi in the folded architecture should now 
be able to hold the look-up-tables of PEi, PEυ+i, 
PE2*υ+i,…., PEi+(k-1)*υ. A pass counter is used to 
switch between the k look-up-tables at different 
passes. In terms of performance, a folded 
architecture by a factor k results in a slow-down in 
performance by a factor of k compared to a non-
folded fully pipelined architecture as data has to be 
cycled around the same array k times instead of 
being processed in parallel across k cascaded arrays. 
The latency of the folded architecture is however 
the same as a non-folded architecture. The size of 
the FIFO is adjusted to guarantee such lossless 
latency. 

In order to load the initial values of the look-up 
tables used by the PEs, a serial configuration chain 
is used, as illustrated in Figure 13.  When the 
control bit Cfg is set to 1, the circuit is in 
configuration mode. Distributed memory in each 
PE then behaves as a register chain. Each PE 
configuration memory is loaded with the 
corresponding look-up tables sequentially. At the 
end of the configuration, Cfg is reset to 0 indicating 
the start of the operation mode. The distributed 
memory now acts as Read Only Memory. It is used 
by the dynamic programming recursion equation 
part of the PE’s circuitry as illustrated in Figure 13. 
The extra configuration circuitry needed is for this 
is implemented on FPGA fabric. While dynamic 
reconfiguration could have been harnessed to 
reduce this area overhead for Xilinx FPGAs, for 
instance, this would have made our core FPGA-
platform-dependent. As it stands, our core can be 
implemented on different FPGA families and 
architectures e.g. from Xilinx, Altera, and Actel, or 
even as a standard ASIC solution. 

 

 

PE1 PE2 PEM 

Max 

PE1 PEυυυυ 

PEi PEi+1 

PEυυυυ+1 PE2υυυυ PE(k-1)υυυυ+1 PEkυυυυ 
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Subject sequence 

and Control  
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FIFO 

0 
1 

First?  

Intermediate results, subject 

sequence and Control  
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each of size υ 
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of size  υ 

Linear array of size υυυυ  

Linear array of size M 

 Figure 12.  Partitioning/Mapping of a sequence 
alignment algorithm on a fixed size systolic array 
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 Figure 13.  Partitioning/Mapping of a sequence 
alignment algorithm on a fixed size systolic array 

 
4.2 Core implementation 
As mentioned earlier, we have captured all of the 
above variations of a generic pairwise sequence 
alignment algorithm into a single FPGA core, 
written in the Handel-C language [27]. The latter is 
a hardware language that allows hardware 
designers and application developers to program 
FPGAs in a C-like syntax, hence reducing the gap 
between algorithms and hardware. Extensive use 
has been made of Handel-C pre-compiler directives, 
macro procedures and macro expressions to 
parameterise the code. The final core that we have 
developed is prameterisable in terms of the 
following: 
• The sequence symbol type i.e. DNA, RNA, or 

Protein sequences 
• Query sequence: Here the query sequence length 

dictates the number of PEs used. If this could fit 
into the FPGA in hand, a pairwise sequence 
alignment can be achieved in one single pass. 
Otherwise, the above partitioning/mapping (see 
Figure 12) is performed. In the latter case, the 
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necessary FIFO instantiation as well as control 
circuitry for multi-pass processing is 
automatically generated by the core.  

• Maximum subject sequence length: this will 
dictate the minimum necessary processing 
wordlength and FIFO depth, if necessary. 

• The match score i.e. the score attributed to a 
symbol match. This is supplied in the form of a 
substitution matrix e.g. BLOSUM or PAM 
matrices. 

• The gap penalty: This could be either linear or 
affine. In the case of affine gap penalty, the core 
will automatically infer the necessary 
architecture based on the values of d and e as 
well as the substitution matrix in hand (see 
section 2.4 above).  

• The matching task i.e. the algorithm used to 
match sequences. This could be global 
alignment, local alignment or overlapped 
matching. 

• A match score threshold: This is a match score 
threshold below which any subject sequence is 
rejected i.e. only those subject sequences with a 
higher match score warrant further analysis.  

 
Given the above parameters, our core generates 
custom FPGA configurations (see Figure 14).  It is 
worth mentioning that the optimal processing 
wordlength is automatically inferred from the user-
supplied parameters based on a worst-case range 
analysis.  
 

 

Database of subject 
sequences  

(e.g. Swiss-Prot) 
 

FPGA 
Coprocessor 

Algorithm Parameters  

• Sequence symbol type 
• Query sequence 
• Maximum subject sequence length 
• Match score 
• Gap penalty 
• Matching task 
• Sequence lengths  
• Match score 
• Gap penalty  
• Matching task 
• Match score threshold  

Process sequence 

by sequence 

List of maximum 
scoring subject 
sequences  

Our Pairwise Sequence 
Alignment FPGA Core 

Custom FPGA 
Configuration 

To Host 

Database of FPGA 
Configurations 

 

Celoxica DK Suite and 
FPGA vendor specific 

Placement And Routing 
(PAR) tools 

Figure 14. FPGA co-processor architecture based 
on our core 

 
The user can easily modify the parameters by 
simply typing new values to the screen and pressing 
the compilation button. All the parameters needed 
are assembled in a header file which the user can 
edit using a simple text editor. 

5. Results and Discussion 
 
As mentioned above, our core has been captured in 
the Handel-C language. The code did not use any 
FPGA-specific directives e.g. specific resource 
inference or placement constraints. This makes it 
directly retargetable across a variety of platforms 
including Xilinx and Altera FPGAs. Celoxica’s 
DK4 suite was used to compile our core into EDIF, 
whereas Xilinx ISE8.1 tool was used to generate 
the FPGA bitstreams. 

A single PE in the case of the Protein sequence 
processing using the Smith-Waterman algorithm, 
with linear gap penalty and 16 bit processing 
wordlength, consumes ~30 slices on average on 
Xilinx Virtex-II FPGAs, whereas an equivalent 
affine gap penalty using the equations given in 
Figure 7, consumes ~85 slices. An equivalent single 
PE with affine gap penalty using Equations (3), 
however, consumes ~70 slices. Consequently, a 
Xilinx XC2V6000-4 FPGA, which contains 33792 
slices, can easily fit 250 PEs on chip. 

Table 1 presents sample performance figures for 
instances of the core in the case of Protein sequence 
alignment with a single pass i.e. the query sequence 
is fully fitted on chip. Affine2 and Affine3 refer to 
the affine gap models given in Equations (3) and 
Figure 7 respectively. The former uses only two 
values for each residue pair in the recursive 
equations, whereas the latter uses three values (see 
section 2.4 above). The CUPS (or Cell Updates Per 
Second) performance used in Table 1 is a common 
performance measure used in computational 
biology. Its inverse represents the equivalent time 
needed for a complete computation of one entry of 
the alignment matrix, including all the comparisons, 
additions and maximum computations. The peak 
CUPS of our implementation is measured by 
multiplying the number of PEs and the maximum 
clock frequency.  

The clock frequency for all instances shown, and 
others not shown here, is between 40 and 60MHz. 
The variations in clock frequency, for instances 
with the same wordlength, are largely attributed to 
the high level synthesis tool and, to a lesser extent, 
the placement and routing tool. The choice of not 
performing any target FPGA-dependent 
optimisations is deliberate in order to show the 
merits of a high level synthesis approach, for it is 
our aim to reduce the gap between bioinformatics 
applications and low level FPGA hardware. 
Nonetheless, these speed figures could be increased 
further, if need be, at the expense of a higher design 
effort. 
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Table 1. Core performance for different instances 
of our core on a Xilinx XC2V6000-4 FPGA 

Number 
of PEs 

Gap 
Penalty 

Processing 
Word 
length 

Max 
Speed 
(MHz) 

Peak 
Performance 

(CUPS 
x109) 

Needleman-Wunsch 
252 Linear 16 50.6 12.75 

Overlapped Matches 
252 Linear 16 50.0 12.60 

Smith-Waterman 
100 Linear 16 43.5 4.35 
252 Linear 10 47.7 12.02 

100 
Affine

2 16 
66.7 6.67 

168 
Affine

2 16 
47.6 8.00 

100 
Affine

3 10 
58.8 5.88 

168 
Affine

3 16 
40.0 6.72 

 
Table 2 below presents sample results for instances 
of our core in the case of local alignment with a 
multi-pass implementation where k (the number of 
passes, or folding factor) is equal to 3 and 12 
respectively. 
 
Table 2. Core performance for different instances 
of a multi-pass implementation (with local 
alignment) 

Number 
of PEs 

Gap 
Penalty 

Processing 
Word 
length 

Clock 
frequency 

(MHz) 

Peak 
Performance 

(CUPS 
x109) 

k=3 
252 Linear 10 40.0 10.09 

168 
Affine

2 10 
62.5 10.50 

168 
Affine

3 10 
45.6 7.66 

k=12 
168 Linear 10 40.3 6.77 

119 
Affine

3 10 
50.4 5.99 

 
Software implementations of sequence alignment 
algorithms, equivalent to our hardware 
implementation, were written in C and run at a 
speed equivalent to 50 MegaCUPS on a 1.6 GHz 
Pentium-4 PC. This means that our hardware core 
outperforms equivalent software implementations 
by two orders of magnitudes. Given the relative 
cost of FPGAs compared to general purpose 
processors (often in the order of 10:1) this 
performance largely offsets their cost, which shows 
that FPGAs could well be an viable economical 
implementation platform for biological sequence 
analysis applications. Nonetheless, the CUPS 

metric reflects the peak performance and does not 
account for communication overheads e.g. pipeline 
filling/flushing and host to FPGA communication 
overheads.  

In attempt to account for these overheads, a real 
hardware implementation of our core has been 
achieved on an Alpha Data XP FPGA Mezzanine 
PCI-board, which has a Virtex-II Pro FPGA on it, 
and used the Swiss-Prot Protein database [30]. 
Figure 15 illustrates our implementation. In it, the 
database of subject queries is stored on the FPGA 
board’s off-chip memory. The FPGA reads each 
sequence in turn from memory and compares it to a 
query sequence initially supplied by the high level 
application running on the host. At the end of 
processing, the FPGA supplies a list of high scoring 
subject sequences back to the host application. The 
database used in our implementation was a subset 
of the Swiss-Prot database consisting of 288 subject 
sequences with an average sequence length equal to 
that of the whole database, and a query sequence of 
362 residues. The number of PEs implemented on 
the FPGA was 135. Running at a clock frequency 
of 40 MHz, the overall alignment took 88 
milliseconds to perform on the board with an initial 
configuration time of 244us. An equivalent 
software implementation written in C took 5516 
milliseconds to run on a 1.6 GHz Pentium-4 PC.  
This represents a 62x speed-up.  

 
 

List of maximum 
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Query Sequence 

Database of FPGA 
Configurations 

 

FPGA  
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FPGA PCI Card 
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Figure 15. Organisation of the real hardware 
implementation  

 
Performing fair and meaningful comparisons with 
other implementations is difficult given the 
difference in technologies and performance 
measures used, as well as the relatively narrow 
scope of some of the implementations. Nonetheless, 
the following attempts to make a useful comparison 
of our implementation with others reported in the 
literature.  

First, the SIMD architectures in the form of 
MGAP, Fuzion and Kestrel are all based on an 
array of PEs with nearest neighbour connections. 
The MGAP architecture reported in [6] performs 
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global alignment for DNA sequences. Running at a 
clock frequency of 25MHz, it can achieve 
0.1MCUPS, which is much slower than our 
implementation. This is however not surprising 
given the gap in the technologies used. The Kestrel 
architecture is a single board programmable parallel 
processor with 512 processing elements (PEs). 
Running at 20MHz, the Kestrel searches a 10 
Mbase database with a query size less than 512 in 
12 second, giving a performance of 0.4 GCUPS 
which is still an order of magnitude lower than our 
implementation. Finally, the Fuzion 150 system [7] 
is a linear SIMD array of 1536 PEs with a reported 
peak performance of ~2.5 GCUPS, which is 2 to 3 
times slower than our implementation. Besides, one 
could question the economic viability of such 
purpose-built SIMD architectures compared to 
FPGA-based off-the-shelf solutions. Indeed, FPGA 
technology has clear economies of scale and scope 
advantages compared to purpose-built SIMD 
platforms. 

Performing fair and meaningful comparisons 
with equivalent FPGA implementations is also a 
difficult task given the difference in characteristics 
(architecture, part and speed grade) of the FPGAs 
used.  Moreover, some publications do not present 
all of the experimentation parameters. Nonetheless, 
the following attempts to make meaningful 
comparisons with some FPGA implementations 
reported in the literature. 

The FPGA implementations presented in 
[13][14][15] are restricted to DNA sequences, 
which are a special case of our implementation. The 
implementation reported in [14] achieves 1260 
GCUPS peak performance on a Xilinx XC2V6000-
4 FPGA part. The implementations reported in [13] 
and [15] achieve over 3200 GCUPS on the same 
part. In comparison, our multi-purpose core 
achieves ~800 GCUPS on the same part. The 
difference in performance is justified by the fact 
that the above implementations have been 
optimised for DNA processing. The gain in 
performance is achieved at the expense of less 
flexibility as these solutions cannot be used for 
Protein sequence processing. The closest 
implementations to ours in terms of flexibility have 
been reported in [9], [10] and [11]. Compared to the 
implementation reported in [10] on a Xilinx 
XC2VP30 FPGA, our core achieves twice the 
speed. It also outperforms the implementation 
reported in [9] by 3:1. The Verilog-based 
implementation reported in [11], however, is the 
closest to our core implementation of all three, as it 
is targeted to the same FPGA part and employs a 
similar architecture. Compared to it, our core 
performs almost as well despite the fact that we 
have not introduced any placement constraints 
(unlike in [11]). This is, in part, a testament to the 
Handel-C language as well as the corresponding 
synthesis tool. Moreover, none of these three 

implementations offer the same degree of 
parameterisation as our core. Indeed, the 
implementation reported in [9] only supports the 
Smith-Waterman algorithm with linear gap penalty, 
albeit for both DNA and Protein sequences, 
whereas the implementation reported in [10] does 
not address the problem of partitioning/mapping. 
The implementation reported in [11] supports both 
partitioning/mapping and affine gap penalties, but 
has been designed specifically for Xilinx Virtex 
FPGAs. Our core on the other hand is FPGA-
platform-independent and can be used to target any 
other FPGA architecture (e.g. from Xilinx, Altera, 
Actel). Moreover the affine gap model used in [11] 
is based on the equations given in Figure 7 only, 
and hence does not take advantage of the hardware 
optimisations introduced by Equations (3) (see 
Section 2.4 above).   

 
6. Conclusion 
 
In this paper, we have presented the detailed design 
and implementation of the most parameterisable 
FPGA core, reported in the literature, for pairwise 
biological sequence alignment. The skeleton is 
parameterised in terms of the sequence symbol type, 
the sequence lengths, the match score, the gap 
penalty and the matching task. It implements the 
algorithm in hand using a pipeline of basic 
processing elements, which are tailored to the 
algorithm parameters, with a number of built-in 
hardware optimisations. These include automatic 
hardware folding, automatic minimum wordlength 
inference and compile-time constant propagation. 
The skeleton results in high performance FPGA 
implementations which outperform equivalent 
desktop-based software implementations by two 
order-of magnitudes. While this in itself has been 
achieved previously through optimised hardware 
implementation for specific FPGA architectures, 
this paper shows that it is possible to achieve such 
performance using an FPGA-platform-independent 
hardware language. Indeed, our skeleton has been 
captured in the Handel-C language which means 
that the same code can be ported to different FPGA 
families and architectures. In our experience, 
Handel-C proved very convenient in describing 
scaleable and parameterised hardware architectures, 
with a relatively lower learning curve compared to 
other hardware description languages. However, the 
resulting optimised Handel-C description of our 
skeleton is in essence a hardware architecture 
description, rather than a software algorithm 
description, albeit using high level software 
constructs such as macro procedures, if/else control 
structures, as well as software-like data structures.  
 The work presented in this paper is part of a 
bigger effort by the authors which aims to harness 
the computational performance and 
reprogrammability features of FPGAs in the field of 
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Bioinformatics and Computational Biology. Future 
work includes the development of FPGA cores for 
sub-optimal sequence alignment algorithms 
including the BLAST algorithm, as well as the use 
of Hidden Markov Models for biological sequence 
analysis. On the hardware implementation front, we 
plan to make use of state-of-the-art FPGA-based 
computing platforms, namely the low latency, high 
bandwidth, Hypertransport-based FPGA boards, 
which will allow direct FPGA access to gigabytes 
of memory, with a data rates of several gigabytes 
per second.  
 Finally, it is worth mentioning that the core 
presented in this paper can be used for any string 
analysis application e.g. text processor or web 
server, with very little modification. We intend to 
explore the data mining application side of our 
work further in the future. 
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