
 1

A Highly Parameterised and Efficient FPGA-Based Skeleton for Pairwise
Biological Sequence Alignment

Khaled Benkrid, Senior IEEE Member, Ying Liu, IEEE Student Member, AbdSamad Benkrid, IEEE Member

The University of Edinburgh, School of Engineering and Electronics, the King's Buildings, Mayfield Road, Edinburgh, EH9
3JL, Scotland, UK
k.benkrid@ieee.org

Abstract

This paper presents the design and implementation
of the most parameterisable FPGA-based skeleton
for pairwise biological sequence alignment reported
in the literature. The skeleton is parameterised in
terms of the sequence symbol type i.e. DNA, RNA,
or Protein sequences, the sequence lengths, the
match score i.e. the score attributed to a symbol
match, mismatch or gap, and the matching task i.e.
the algorithm used to match sequences, which
includes global alignment, local alignment and
overlapped matching. Instances of the skeleton
implement the Smith-Waterman and the
Needleman-Wunsch algorithms. The skeleton has
the advantage of being captured in the Handel-C
language, which makes it FPGA platform-
independent. Hence, the same code could be ported
across a variety of FPGA families. It implements
the sequence alignment algorithm in hand using a
pipeline of basic processing elements, which are
tailored to the algorithm parameters. The paper
presents a number of optimisations built into the
skeleton and applied at compile-time depending on
the user-supplied parameters. These result in high
performance FPGA implementations tailored to the
algorithm in hand. For instance, actual hardware
implementations of the Smith-Waterman algorithm
for Protein sequence alignment achieve speed-ups
of two orders of magnitude compared to equivalent
standard desktop software implementations.

1. Introduction

Biological sequence alignment is a widely used
operation in the field Bioinformatics and
Computational Biology (BCB). It aims to find out
whether two or more biological sequences (e.g.
DNA, RNA or Protein sequences) are related or not
[1]. This has many important real world
applications. For instance, if some information
about one of the sequences is already known (e.g.
the sequence represents a cancerous gene) then this
information could be transferred to the other
unknown sequences, which could be vital in early
disease diagnosis and drug engineering. Other
applications include the study of evolutionary
development and the history of species and their
groupings [1][2]. However, biological sequence
alignment is also a computationally intensive
operation and with biosequence databases growing
exponentially every year, there is indeed a need for

an equally faster computing technology to keep up
with this growth. Desktop computer systems are not
capable to achieve this task within realistic
execution times. As a result, heuristics-based
sequence alignment algorithms which are more
suitable to software implementation have been
designed to reduce their execution time on such
systems [3][4][5]. In this paper, we concentrate on
the exhaustive search algorithms which provide
gold standards against which less accurate
algorithms are benchmarked against. For
exhaustive search algorithms, many Single
Instruction Multiple Data (SIMD) and systolic
architectures using special purpose hardware have
been built to speed up their execution, often with
one order of magnitude or more speed-up compared
to a workstation based implementation [6][7][8].
More recently, reconfigurable hardware in the form
of Field Programmable Gate Arrays (FPGAs) has
been used as a high performance programmable
platform for sequence alignment algorithms
[9][10][11][12][13][14][15]. Nonetheless, the
number of researchers working on FPGA-based
accelerators for sequence alignment and BCB
applications in general, remains low. This is due
mainly to the relative newness of the two areas, but
more importantly, perhaps, to the knowledge gap
between bioinformaticians and molecular biologists
on the one side and hardware design engineers on
the other side [16][10].
 In an attempt to make a contribution towards
bridging the aforementioned gap, this paper
presents the detailed design and implementation of
a generic and highly parameterised FPGA skeleton
for pairwise biological sequence alignment.
Compared to previously published FPGA
implementations, our solution provides the most
parameterised one, hence allowing users to tune in
FPGA hardware to suit their particular need. It has
also the added advantage of being designed in an
FPGA-platform-independent language, namely
Handel-C, which makes it possible to target a
variety of FPGA families and architectures e.g.
Xilinx, Altera, and Actel, or even standard ASICs.
 The remainder of this paper is organised as
follows. First, important background information
on biological sequence alignment algorithms is
presented. Then, previous work in the area of high
performance biological sequence alignment is
presented. After that, the design and FPGA
implementation of our highly parameterised
skeleton is detailed. A comparative evaluation of

 2

our implementation then follows, before
conclusions and plans for future work are laid out.

2. Background

Biological sequences (e.g. DNA) evolve through a
process of mutation, selection, and random genetic
drift [17]. Mutation, in particular, manifests itself
through three main processes, namely: substitution
of residues (i.e. a residue A in the sequence is
substituted by another residue B), insertion of new
residues, and deletion of existing residues. Insertion
and deletion are referred to as gaps. This should be
taken into account when aligning biological
sequences. In practice, the degree of alignment of
sequences is measured by a score, which is
obtained by a summation of terms of each aligned
pair of residue in addition to possible gap terms.
Score terms for each aligned residue terms are
obtained from probabilistic models and stored in
score or substitution matrices [1]. Figure 1 presents
an example of such substitution matrices, namely
the BLOSUM50 which is a 20x20 matrix for
Protein residues (also known as amino-acids).

 A R N D C Q E G H I L K M F P S T W Y V B
A 5 -2 -1 -2 -1 -1 -1 0 -2 -1 -2 -1 -1 -3 -1 1 0 -3 -2 0 -2
R -2 7 -1 -2 -4 1 0 -3 0 -4 -3 3 -2 -3 -3 -1 -1 -3 -1 -3 -1
N -1 -1 7 2 -2 0 0 0 1 -3 -4 0 -2 -4 -2 1 0 -4 -2 -3 4
D -2 -2 2 8 -4 0 2 -1 -1 -4 -4 -1 -4 -5 -1 0 -1 -5 -3 -4 5
C -1 -4 -2 -4 13 -3 -3 -3 -3 -2 -2 -3 -2 -2 -4 -1 -1 -5 -3 -1 -3
Q -1 1 0 0 -3 7 2 -2 1 -3 -2 2 0 -4 -1 0 -1 -1 -1 -3 0
E -1 0 0 2 -3 2 6 -3 0 -4 -3 1 -2 -3 -1 -1 -1 -3 -2 -3 1
G 0 -3 0 -1 -3 -2 -3 8 -2 -4 -4 -2 -3 -4 -2 0 -2 -3 -3 -4 -1
H -2 0 1 -1 -3 1 0 -2 10 -4 -3 0 -1 -1 -2 -1 -2 -3 2 -4 0
I -1 -4 -3 -4 -2 -3 -4 -4 -4 5 2 -3 2 0 -3 -3 -1 -3 -1 4 -4
L -2 -3 -4 -4 -2 -2 -3 -4 -3 2 5 -3 3 1 -4 -3 -1 -2 -1 1 -4
K -1 3 0 -1 -3 2 1 -2 0 -3 -3 6 -2 -4 -1 0 -1 -3 -2 -3 0
M -1 -2 -2 -4 -2 0 -2 -3 -1 2 3 -2 7 0 -3 -2 -1 -1 0 1 -3
F -3 -3 -4 -5 -2 -4 -3 -4 -1 0 1 -4 0 8 -4 -3 -2 1 4 -1 -4
P -1 -3 -2 -1 -4 -1 -1 -2 -2 -3 -4 -1 -3 -4 10 -1 -1 -4 -3 -3 -2
S 1 -1 1 0 -1 0 -1 0 -1 -3 -3 0 -2 -3 -1 5 2 -4 -2 -2 0
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 2 5 -3 -2 0 0
W -3 -3 -4 -5 -5 -1 -3 -3 -3 -3 -2 -3 -1 1 -4 -4 -3 15 2 -3 -5
Y -2 -1 -2 -3 -3 -1 -2 -3 2 -1 -1 -2 0 4 -3 -2 -2 2 8 -1 -3
V 0 -3 -3 -4 -1 -3 -3 -4 -4 4 1 -3 1 -1 -3 -2 0 -3 -1 5 -4

Figure 1. The Blosum50 substitution matrix

Gap penalties depend on the length of the gap and
are generally assumed to be independent of the gap
residues. We distinguish between two main types of
gap penalties: linear and affine. In the former, the
cost of a gap of length g is given by a linear
function:

Penalty(g) = -g*d

In the case of affine gap penalties, however, a
constant penalty is given to opening a new gap,
while a linear, and often smaller, penalty is given to
subsequent gap extensions:

Penalty(g) = -d-(g-1)*e

This is a more realistic model as it is often the case
that gaps of few residues are as frequent as gaps of
a single residue. The following discusses two
alignment algorithms, namely the Needleman-
Wunsch global alignment algorithm and the Smith-
Waterman local alignment algorithm. For the sake
of simplicity, we will first assume a linear gap

model. The case of affine gap models will be
discussed subsequently in Section 2.4.

2.1 Global alignment: the Needleman-Wunsch
Algorithm
The Needleman-Wunsch algorithm is a dynamic
programming algorithm which finds the optimal
global alignment between two sequences X =
x1x2…xi…xM (of length M), and Y = y1y2…yi…yN (of
length N) [18]. The algorithm builds a matrix F of
scores, where each element F(i,j) is the best
alignment between segment x1x2…xi of X and y1y2…yj
of Y. Matrix F is built recursively using the
following equation:

 ()1

.)1,(

,),1(

),()1,1-(

max),(

,

−−
−−

+−

=
djiF

djiF

yxsjiF

jiF

ji

This means that given the best alignment between:
x1x2…xi-1 and y1y2…yj-1 (i.e. F(i-1, j-1)), x1x2…xi-1 and
y1y2…yj (i.e. F(i-1, j)), and x1x2…xi and y1y2…yj-1 (i.e.
F(i, j-1)), the best alignment between x1x2…xi and
y1y2…yj is the largest score of three alternatives:
• An alignment between xi and yj, in which case

the new score is F(i-1,j-1)+s(xi,yj) where s(xi,yj)
is the substitution matrix score or entry for
residues xi and yj.

• An alignment between xi and a gap in Y, in
which case the new score is F(i-1,j)-d, where d
is the gap penalty.

• An alignment between yj and a gap in X, in
which case the new score is F(i,j-1)-d, where d
is the gap penalty.

This is illustrated graphically in the following
figure.

F(i-1,j-1) F(i,j-1)

F(i-1,j) F(i,j)

-d

-d

s(xi,yj)

Figure 2. Dynamic Programming illustration

It is important to consider the case of boundary
conditions. Indeed, in order to compute the matrix
F values from (1), we need to define values for
F(0,0), F(i,0) for i=1,2,…M, and F(0,j) for
j=1,2,…,N. F(0,0) does not represent any alignment
per se, and is hence the initial value from which
F(i,j) should be accumulated. It is thus always set to
0. F(i,0) and F(0,j) however represent alignment of
a prefix of X (Y respectively) to all gaps in Y (X
respectively). As a result: F(i,0)=-i*d and F(0,j)=-
j*d .
 Following the above procedure, the best global
alignment between X and Y is hence obtained by
tracing back from the final cell in the matrix i.e.
F(M,N). For this, we keep track of the matrix cell
from which each cell’s F(i,j) was derived. This is
done by storing a pointer, in each cell, to the cell

 3

from which F(i,j) was derived i.e. above, left, or
above-left. This is illustrated in the complete
example of a Protein sequence alignment using the
above algorithm given in Figure 3 below. Here, the
arrows point to the parent cell from which a
particular cell has been computed and are used in
the traceback step. The latter starts from cell
F(M,N)=F(7,10) and moves backward to the cell
from which the current cell has been derived. In
general, if cell (i,j) was derived from cell (i-1,j-1),
we add the pair of symbols xi, yj to the front of the
current alignment. If, however, it was derived from
cell (i-1,j), we add xi to the front of alignment X and
a gap to the front of alignment Y. Finally, if cell (i,j)
was derived from cell (i,j-1), we add yi to the front
of alignment Y and a gap to the front of alignment X.

 H E A G W A G H E E

 0 -8 -16 -24 -32 -40 -48 -56 -64 -72 -80

P -8 -2 -9 -17 -25 -33 -42 -49 -57 -65 -73

A -16 -10 -3 -4 -12 -20 -28 -36 -44 -52 -60

W -24 -18 -11 -6 -7 -15 -5 -13 -21 -29 -37

H -32 -14 -18 -13 -8 -9 -13 -7 -3 -11 -19

E -40 -22 -8 -16 -16 -9 -12 -15 -7 3 -5

A -48 -30 -16 -3 -11 -11 -12 -12 -15 -5 2

E -56 -38 -24 -11 -6 -12 -14 -15 -12 -9 1

H E A G A W G H E - E
- - P - A W - H E A E

i

j

Best Global Alignment:

Figure 3. Illustration of the Needleman-Wunsch
Algorithm

2.2 Local Alignment: The Smith-Waterman
Algorithm
Instead of looking for the best global alignment of
two biological sequences X and Y, a much more
useful algorithm would look for the best alignment
between subsequences of X and Y. This is
particularly useful when comparing longer
biological sequences, where global alignment can
lead to weak correlation and hence misleading
results, or when comparing two highly diverged
sequences where only part of the original sequence
has been under strong enough selection to preserve
noticeable similarity [1].

The Smith-Waterman algorithm is a dynamic
programming algorithm, which finds the best
scoring alignment of subsequences of X, Y i.e. the
best local alignment of the two sequences [19]. It is
closely related to the aforementioned Needleman-
Wunsch algorithm, and differs from it in two points:
• The recursion equation: In the Smith-

Waterman algorithm, this is given by the
following equation:

()2

)1,(

,),1(

),()1,1(

0

max),(,

−−
−−

+−−
=

djiF

djiF

yxsjiF
jiF ji

Compared to equation (1), the term 0 is added
to the maximum expression since it is always
better to start a new local alignment if the best
alignment so far has a negative score. As a
consequence of this, the top row and left
column values of the alignment matrix i.e.
F(i,0) and F(0,j) should be set to 0’s instead of
–i*d and –j*d respectively.

• Traceback: Since we are looking for the best
local alignment, the maximum score could lie
anywhere on the matrix. It is hence necessary
to find the maximum score in the matrix and
start the traceback procedure, as explained
above in the Needleman-Wunsch algorithm,
from that position. The traceback procedure
ends when 0 is met. The latter could also be
anywhere in the alignment matrix.

The Smith-Waterman algorithm is illustrated Figure
4 below where the best local alignment between the
same two sequences given in Figure 3 above is
found.

 H E A G A W G H E E

 0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0

A 0 0 0 5 0 5 0 0 0 0 0

W 0 0 0 0 2 0 20 12 4 0 0

H 0 10 2 0 0 0 12 18 22 14 6

E 0 2 16 8 0 0 4 10 18 28 20

A 0 0 8 21 13 5 0 4 10 20 27

E 0 0 6 13 18 12 4 0 4 16 26

 AW G HE
AW - HE Best Local Alignment:

Figure 4. Illustration of the Smith-Waterman

Algorithm

2.3 The Case of Overlapped Matches
In some instances, it is useful to allow for
overlapping between sequences when aligning them
(see Figure 5).

X

Y

X

Y

Y
Y

X X

(a) (b)
Figure 5. Overlapped sequence matching

This is a type of global alignment in which
sequences are simply allowed to overlap without
incurring any penalty. Hence, the initial value of
F(i,0) and F(0,j) should be set to 0 instead of –i*d
and –j*d respectively (see Figure 6). Moreover,
here, the traceback can start anywhere on the right
border or bottom border of the alignment matrix
(instead of starting at the last element of the matrix
F(M,N) as in the case of the Needleman-Wunsch
algorithm).

 4

 H E A G A W G H E E

 0 0 0 0 0 0 0 0 0 0 0

P 0 -2 -1 -1 -2 -1 -4 -2 -2 -1 -1

A 0 -2 -2 4 -1 3 -4 -4 -4 -3 -2

W 0 -3 -5 -4 1 -4 18 10 2 6 -6

H 0 10 2 6 -6 -1 10 16 20 12 4

E 0 2 16 8 0 7 2 8 16 26 18

A 0 -2 8 21 13 5 3 2 8 18 25

E 0 0 4 13 18 12 4 4 2 14 24

 HEAGAWG HEE
 PAW - HEA Best Overlapped Alignment:

Figure 6. Illustration of the case of overlapped

matches

2.4 Alignment with Affine Gap Scores
As mentioned earlier, affine gap penalties provide a
more realistic model of the biological phenomenon
of residue insertions and deletions. The affine gap
penalty is defined using two constants d and e as
follows (where g is the gap length):

Penalty(g)=-d-(g-1)*e

A similar algorithm to the one presented for linear
gap penalties can be used here (both for local and
global alignment). However, multiple values of
each pair of residue (i,j) need to be computed
instead of just one (i.e. F(i,j)). Figure 7 illustrates
the case where three values need to be computed
for each residue pair [1].

I G A xi

L G V yj

A I G A xi

G V yj -

G A xi - -
S L G V yj

+

+

+

=

)()1-,1-(

),()1-,1-(

),()1-,1-(

max),(

,

,

,

jiy

jix

ji

yxsjiI

yxsjiI

yxsjiF

jiF

−−
−−

=
,),1(

,),1(
max),(

ejiI

djiF
jiI

X
X

−−
−

=
,)1,(

,-)1,(
max),(

ejiI

djiF
jiI

y
y

Figure 7. The case of affine gap penalties

The top case corresponds to the best score F(i,j) up
to (i,j) where xi is aligned to yj. The following case
gives the best score Ix(i,j) where xi is aligned to a
gap, whereas the last case gives the best score Iy(i,j)
where yj is aligned to a gap.

Another algorithm which can be used in the
case of affine gap penalties uses only two values for
each residue pair instead of three and is given by
the following recursive equations [1]:

()

=

+

+
=

ejiI

djiF

ejiI

djiF

jiI

yxsjiI

yxsjiF
jiF

ji

ji

-),1-(

,-),1-(

,-)1-,(

,-)1-,(

max),(

3

)()1-,1-(

),()1-,1-(
max),(

,

,

3. High Performance Biological
Sequence Analysis: Previous Work

The computational complexity of the above
dynamic programming algorithms for pairwise
sequence alignment is proportional to the product
of the lengths of the two sequences to be aligned i.e.
O(MxN). Given the sheer immensity of biological
sequence databases and their exponential growth
rate, a PC-based implementation of the above
algorithms quickly runs into problems. For instance,
assuming a Protein database of 100 million residues,
a sequence of length 1000 would need something of
the order of 1011 (=108x1000) basic operations to
find the optimal alignment. Assuming a PC can
perform 30 million of these basic operations per
second, one single sequence alignment (with all
database entries) would take around 1 hour to
complete. It is hence clear that the computation
time would quickly become an issue if we want to
scan the database with tens or hundreds of
sequences [1][9].

In order to speed up sequence analysis
applications, a number of parallel architectures
have been developed. Single Instruction Multiple
Data (SIMD) architectures based on a network of
programmable processors are among these
solutions and include the MGAP [6], Kestrel [7]
and Fuzion [8]. Although such architectures are
capable of considerable speed-ups compared to a
standard PC solution, they are often costly both in
terms of design and programming [11]. Other
solutions have used special purpose hardware for
the implementation of parallel processing elements
with the aim of increasing processing density and
achieve even higher speed-ups. Such architectures
also allow for systolic arrays to be implemented, a
computing paradigm that is extremely suitable for
the dynamic programming algorithms presented
above. Instances of this family of architectures
include BISP [20], SAMBA [21] and BIOSCAN
[22]. The advent of reconfigurable hardware in the
form of FPGAs makes such architectures even
more appealing. FPGAs, like ASICs, are capable of
providing considerable speed-ups compared to
general purpose processors with the added
convenience of reprogrammability. An algorithm
implementation could hence be tuned to different
needs both at compile time and at run-time.
Moreover, FPGAs are now riding the process
technology curve [23] which makes them even
more attractive a solution as a reliable high
performance platform for biocomputing
[24][25][26]. For instance, a number of FPGA
implementations of the Smith-Waterman algorithm
have been reported in the literature recently
[9][10][11]. However, none of these
implementations offers the same degree of
parameterisability as our implementation, as will be

 5

apparent in subsequent sections. Moreover, our
implementation was designed using a high level
hardware language in the form of the ANSI-C
based Handel-C language [27], and achieved
performance figures comparable to the best
reported results in the literature, if not better, as will
be shown in Section 5. This in itself is important as
it means that higher level hardware languages can
be used to achieve high performance
implementations of computational biology
applications, hence bridging the aforementioned
gap between the bioinformatics applications and
high performance hardware.

4. Our Hardware Implementation

Figure 8 presents a linear systolic array implementation
of a general purpose pairwise sequence alignment
problem based on the dynamic programming algorithms
presented above. The linear systolic array consists of a
pipeline of basic processing elements (PEi) each holding
one query residue xi, whereas the subject sequence is
shifted systolically through the array. This architecture
could be easily deducted from a data dependency graph
of the dynamic programming algorithms presented in
Section 2 [20].

F(i,j),
Parent

Alignment &
Traceback

Matrix
(Optional
memory)

Query sequence Y ={ y 1, y2, y3,…. yN}

PEi PEN

Subject sequence
xM, xM-1, … , x2, x1

PE1 PE2

write

Figure 8. Linear processor array architecture for pairwise
sequence alignment

Each PE performs one elementary calculation (see
Equation 1). Indeed, each cycle, the PE generates
one alignment matrix element F(i,j) and saves the
direction of the cell from which the result has been
derived (called Parent in Figure 8). The latter can
be any of three nominal values: top, left, or
diagonal, and could hence be represented in 2 bits.
Each PE end up generating one column of the
alignment matrix after M cycles (M being the
length of the subject sequence). However, the
calculation at PEi+1 depends on the result from PEi,
which means that each PE is one cycle behind its
predecessor. The full alignment of two sequences
of lengths N and M is hence achieved in M+N-1
cycles. Figure 9 illustrates the execution of the
recursive equation of the Smith Waterman
algorithm in such architecture.

 H E A G A W G H E E

 0 0 0 0 0 0 0 0 0 0 0

P 0 0 0 0 0 0 0 0 0 0 0

A 0 0 0 5 0 5 0 0 0 0 0

W 0 0 0 0 2 0 20 12 4 0 0

H 0 10 2 0 0 0 12 18 22 14 6

E 0 2 16 8 0 0 4 10 18 28 20

A 0 0 8 21 13 5 0 4 10 20 27

E 0 0 6 13 18 12 4 0 4 16 26

PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10

t=0

t=1

t=2

t=6

t=7 t=8 t=15

Figure 9. Illustration of the execution of the Smith-
Waterman example of Figure 3 on the linear array

processor of Figure 8

The architecture of figure 8 can cater for different
sequence symbol types, sequence lengths, match
scores and matching task. Indeed, the sequence
symbol type e.g. DNA or Proteins, will only
influence the word length of the input sequence e.g.
2 bits for DNA and 5 bits for Proteins. Moreover,
the query sequence length dictates the number of
PEs. The match score attributed to a symbol match
depends on the substitution matrix used. Given a
particular substitution matrix e.g. BLOSUM50, all
possible match scores for a particular symbol
represent one column in the substitution matrix.
Hence, for each PE, we store the corresponding
symbol’s column in the substitution matrix, which
we use as a look-up-table. A different substitution
matrix will hence simply mean a different look-up-
table content. The penalty attributed to a gap can
also be stored in the PE. In the case of linear gap
penalties, only one value is needed (d), whereas
affine gap penalties need two values (d and e) as
explained in section 2.4 above. Note that in the case
affine gap penalties, multiple values of each pair of
residue need to be computed in the recursion
equation instead of just F(i,j). This could either be
two (F(i,j) and I(i,j)) or three (F(i,j), Ix(i,j) and Iy(i,j))
as explained in Section 2.4 above.
 Finally, the linear array of figure 8 can also cater
for different matching tasks with few changes. For
instance, the difference between global alignment,
local alignment and overlapped matching resides in
the initial values of the alignment matrix (border
values), the recursive equation implemented by the
PE as well as the starting cell of the traceback
procedure. The border values of the alignment
matrix simply represent initial values attributed to
each PE (0’s for local alignment and overlapped
matching and –j*d in the case of global alignment)
as well as the initial values attributed to PE0 (0’s for
local alignment and overlapped matching, and -i*d
for global alignment). Moreover, the recursive
expression in the case of local alignment is not
allowed to take on negative values as it saturates to
zero, unlike the case of global alignment and

 6

overlapped matching. This simply implies the use
of saturated arithmetic in the case of local
alignment. Finally, the traceback in the case of
local alignment needs to start from the maximum
element in the alignment matrix, which requires the
array structure to calculate the maximum of all
results F(i,j). This can be performed in a systolic
manner using Figure 8 architecture with each PE
calculating the maximum-so-far and broadcasting it
to the next PE in the chain. Figure 10 gives the
pseudo-code implemented by the PE in the case of
the Smith-Waterman algorithm with linear gap
penalty. The corresponding pseudo-code for global
alignment and overlapped matching would only be
altered by the initial conditions and a slight
modification to the recursion equation as explained
in section 2 above (see equation 1 in particular).

PE1 PE2 PE3 PEN PEi

Query sequence y i

Subject
sequence x j
and control

active_on(j)

Max(i-1,j)

F(i-1,j)

Max(i,j)

F(i,j)

active_on(j+1)
if(active_on(j))
{
F(i,j)=maximum{F(i-1,j-1)+sbt(PEi_Residue,
Residue(j)), F(i,j-1)-d, F(i-1,j)-d, 0};
Max(i,j)=maximum{Max(i-1,j), F(i,j-1),Max(i,j-1)};
}
else
{
F(i,j)=0;
Max(i,j)=0;
}

Residue(j) Residue(j+1)

Figure 10. Linear array architecture for the Smith-
Waterman Algorithm (using linear gap)

In the case of overlapped matching, the maximum
calculation needs to be performed only in the last
PE (PEN) and at the last calculation cycle of each
PE since the traceback starts from the cell with the
maximum value in the bottom row and right-most
column. Global alignment, however, need not
calculate the maximum element in the alignment
matrix as it always starts the trace-back from the
last element.

The above clearly shows that it is possible to
capture all of the variations enunciated in Section 2
in a single core description and achieve custom
implementations from user parameters supplied at
compile time. This will explained in Section 4.2
below, but before that, the case of long sequences is
considered.

4.1 The case of long sequences
In reality, biological sequences are often hundreds,
if not thousands, long. This means that the memory
requirement of the above dynamic programming
algorithms is often measured in Megabytes. For
instance, assuming 16 bits per cell, the alignment
matrix of two sequences of length 2000 requires
64Mbit of memory. Storing such amount of data on
FPGAs is clearly not possible in today’s technology.
Hence, only the linear systolic array of Figure 8 can
be implemented on FPGA (i.e. without the

alignment matrix storage). This is not problematic
in reality since a query sequence is often compared
to a database of thousands of sequences before few
candidates with the highest match scores are
actually aligned. Hence, the linear systolic array
can be used to measure the maximum match score
between the query sequence and each subject
sequence in the database before few subject
sequences (i.e. those with the highest maximum
match score) are chosen. The complete alignment
(i.e. with traceback) can thus be performed with
these few sequences in software [11]. The time
needed for this is relatively small compared to
scanning a whole database of sequences searching
for high scoring matches.
 In our core, the alignment matrix of Figure 8 is
optional. The user can thus decide not to implement
it at compile time, in which case the hardware
inferred is shown in Figure 11. Here, only the final
matching score between two sequences (i.e. the
maximum element in the alignment matrix in the
case of local alignment, the maximum element in
the bottom row and right-most column of the
alignment matrix in the case of overlapped
matching, and the last element in the alignment
matrix in the case of global alignment) is stored.

PE1 PE2 PEN PEi

Query sequence y i

Subject
sequence x j
and control

Maximum
(matching

score)

Figure 11. Linear Array Architecture with no
Alignment Matrix Storage

The on-chip memory limitation is not the only
problem, however, in the case of long sequences.
Indeed, logic limitation also means that the number
of PEs that could be implemented on an FPGA is
limited. For instance, the maximum number of PEs
that could be implemented on a Xilinx XC2V6000
Virtex-II FPGA in the case of the Smith-Waterman
algorithm with affine gap penalties is ~250. Clearly,
this is not sufficient for many real world sequences.
The solution in such cases is to partition the
algorithm in hand into small alignment steps and
map the partitioned algorithm on a fix size linear
systolic array (whose size is dictated by the FPGA
chip in hand). This problem is well studied in the
VLSI design arena [28][29]. The following
illustrates the solution.
 Let us assume the general case of a query
sequence of length M and a linear systolic array of
size υ where M > υ and k = M/υ. First, the
necessary linear systolic array of length M is
conceptually extended to an array of length k*υ
with the last k*υ-M PEs filled zero-value
substitution table columns. That way, these extra
PEs do not influence the overall alignment result.
After this conceptual step, the resulting linear
systolic array of length k*υ is folded into the

 7

physical array of length υ. In reality, υ represents
the maximum number of PEs that we can fit on the
FPGA chip in hand. As a result of this mapping, the
alignment process is performed in k passes over the
linear array. For this, we need a FIFO to store
intermediate results from each pass before they are
fed back to the array input for the next pass (see
Figure 12). The depth of the FIFO is dictated by the
length of the subject sequence. In general, the FIFO
depth should be sufficient to hold the biggest
sequence in the database of sequences against
which the query sequence is compared.

Another consequence of the above mapping is
that each PE should now hold k substitution matrix
columns (or look-up-tables) instead of just one.
Indeed, PEi in the folded architecture should now
be able to hold the look-up-tables of PEi, PEυ+i,
PE2*υ+i,…., PEi+(k-1)*υ. A pass counter is used to
switch between the k look-up-tables at different
passes. In terms of performance, a folded
architecture by a factor k results in a slow-down in
performance by a factor of k compared to a non-
folded fully pipelined architecture as data has to be
cycled around the same array k times instead of
being processed in parallel across k cascaded arrays.
The latency of the folded architecture is however
the same as a non-folded architecture. The size of
the FIFO is adjusted to guarantee such lossless
latency.

In order to load the initial values of the look-up
tables used by the PEs, a serial configuration chain
is used, as illustrated in Figure 13. When the
control bit Cfg is set to 1, the circuit is in
configuration mode. Distributed memory in each
PE then behaves as a register chain. Each PE
configuration memory is loaded with the
corresponding look-up tables sequentially. At the
end of the configuration, Cfg is reset to 0 indicating
the start of the operation mode. The distributed
memory now acts as Read Only Memory. It is used
by the dynamic programming recursion equation
part of the PE’s circuitry as illustrated in Figure 13.
The extra configuration circuitry needed is for this
is implemented on FPGA fabric. While dynamic
reconfiguration could have been harnessed to
reduce this area overhead for Xilinx FPGAs, for
instance, this would have made our core FPGA-
platform-dependent. As it stands, our core can be
implemented on different FPGA families and
architectures e.g. from Xilinx, Altera, and Actel, or
even as a standard ASIC solution.

PE1 PE2 PEM

Max

PE1 PEυυυυ

PEi PEi+1

PEυυυυ+1 PE2υυυυ PE(k-1)υυυυ+1 PEkυυυυ

PE1 PE2 PEυ

Subject sequence

and Control

Max

FIFO

0
1

First?

Intermediate results, subject

sequence and Control

Partitioning into k (= M/υ) arrays,
each of size υ

Mapping onto one linear array
of size υ

Linear array of size υυυυ

Linear array of size M

 Figure 12. Partitioning/Mapping of a sequence
alignment algorithm on a fixed size systolic array

PE1 PE2 PEυ

Subject sequence

and Control

Max

FIFO

0
1

Intermediate results, subject

sequence and Control

Configuration

memory

WE

Din Dout

Addr

Cfg

0
1

Cfg_Addr

Cfg_Data_in Cfg_Data_out

Dynamic Programming

Recursion Equation

Circuit

 Figure 13. Partitioning/Mapping of a sequence
alignment algorithm on a fixed size systolic array

4.2 Core implementation
As mentioned earlier, we have captured all of the
above variations of a generic pairwise sequence
alignment algorithm into a single FPGA core,
written in the Handel-C language [27]. The latter is
a hardware language that allows hardware
designers and application developers to program
FPGAs in a C-like syntax, hence reducing the gap
between algorithms and hardware. Extensive use
has been made of Handel-C pre-compiler directives,
macro procedures and macro expressions to
parameterise the code. The final core that we have
developed is prameterisable in terms of the
following:
• The sequence symbol type i.e. DNA, RNA, or

Protein sequences
• Query sequence: Here the query sequence length

dictates the number of PEs used. If this could fit
into the FPGA in hand, a pairwise sequence
alignment can be achieved in one single pass.
Otherwise, the above partitioning/mapping (see
Figure 12) is performed. In the latter case, the

 8

necessary FIFO instantiation as well as control
circuitry for multi-pass processing is
automatically generated by the core.

• Maximum subject sequence length: this will
dictate the minimum necessary processing
wordlength and FIFO depth, if necessary.

• The match score i.e. the score attributed to a
symbol match. This is supplied in the form of a
substitution matrix e.g. BLOSUM or PAM
matrices.

• The gap penalty: This could be either linear or
affine. In the case of affine gap penalty, the core
will automatically infer the necessary
architecture based on the values of d and e as
well as the substitution matrix in hand (see
section 2.4 above).

• The matching task i.e. the algorithm used to
match sequences. This could be global
alignment, local alignment or overlapped
matching.

• A match score threshold: This is a match score
threshold below which any subject sequence is
rejected i.e. only those subject sequences with a
higher match score warrant further analysis.

Given the above parameters, our core generates
custom FPGA configurations (see Figure 14). It is
worth mentioning that the optimal processing
wordlength is automatically inferred from the user-
supplied parameters based on a worst-case range
analysis.

Database of subject
sequences

(e.g. Swiss-Prot)

FPGA
Coprocessor

Algorithm Parameters

• Sequence symbol type
• Query sequence
• Maximum subject sequence length
• Match score
• Gap penalty
• Matching task
• Sequence lengths
• Match score
• Gap penalty
• Matching task
• Match score threshold

Process sequence

by sequence

List of maximum
scoring subject
sequences

Our Pairwise Sequence
Alignment FPGA Core

Custom FPGA
Configuration

To Host

Database of FPGA
Configurations

Celoxica DK Suite and
FPGA vendor specific

Placement And Routing
(PAR) tools

Figure 14. FPGA co-processor architecture based
on our core

The user can easily modify the parameters by
simply typing new values to the screen and pressing
the compilation button. All the parameters needed
are assembled in a header file which the user can
edit using a simple text editor.

5. Results and Discussion

As mentioned above, our core has been captured in
the Handel-C language. The code did not use any
FPGA-specific directives e.g. specific resource
inference or placement constraints. This makes it
directly retargetable across a variety of platforms
including Xilinx and Altera FPGAs. Celoxica’s
DK4 suite was used to compile our core into EDIF,
whereas Xilinx ISE8.1 tool was used to generate
the FPGA bitstreams.

A single PE in the case of the Protein sequence
processing using the Smith-Waterman algorithm,
with linear gap penalty and 16 bit processing
wordlength, consumes ~30 slices on average on
Xilinx Virtex-II FPGAs, whereas an equivalent
affine gap penalty using the equations given in
Figure 7, consumes ~85 slices. An equivalent single
PE with affine gap penalty using Equations (3),
however, consumes ~70 slices. Consequently, a
Xilinx XC2V6000-4 FPGA, which contains 33792
slices, can easily fit 250 PEs on chip.

Table 1 presents sample performance figures for
instances of the core in the case of Protein sequence
alignment with a single pass i.e. the query sequence
is fully fitted on chip. Affine2 and Affine3 refer to
the affine gap models given in Equations (3) and
Figure 7 respectively. The former uses only two
values for each residue pair in the recursive
equations, whereas the latter uses three values (see
section 2.4 above). The CUPS (or Cell Updates Per
Second) performance used in Table 1 is a common
performance measure used in computational
biology. Its inverse represents the equivalent time
needed for a complete computation of one entry of
the alignment matrix, including all the comparisons,
additions and maximum computations. The peak
CUPS of our implementation is measured by
multiplying the number of PEs and the maximum
clock frequency.

The clock frequency for all instances shown, and
others not shown here, is between 40 and 60MHz.
The variations in clock frequency, for instances
with the same wordlength, are largely attributed to
the high level synthesis tool and, to a lesser extent,
the placement and routing tool. The choice of not
performing any target FPGA-dependent
optimisations is deliberate in order to show the
merits of a high level synthesis approach, for it is
our aim to reduce the gap between bioinformatics
applications and low level FPGA hardware.
Nonetheless, these speed figures could be increased
further, if need be, at the expense of a higher design
effort.

 9

Table 1. Core performance for different instances
of our core on a Xilinx XC2V6000-4 FPGA

Number
of PEs

Gap
Penalty

Processing
Word
length

Max
Speed
(MHz)

Peak
Performance

(CUPS
x109)

Needleman-Wunsch
252 Linear 16 50.6 12.75

Overlapped Matches
252 Linear 16 50.0 12.60

Smith-Waterman
100 Linear 16 43.5 4.35
252 Linear 10 47.7 12.02

100
Affine

2 16
66.7 6.67

168
Affine

2 16
47.6 8.00

100
Affine

3 10
58.8 5.88

168
Affine

3 16
40.0 6.72

Table 2 below presents sample results for instances
of our core in the case of local alignment with a
multi-pass implementation where k (the number of
passes, or folding factor) is equal to 3 and 12
respectively.

Table 2. Core performance for different instances
of a multi-pass implementation (with local
alignment)

Number
of PEs

Gap
Penalty

Processing
Word
length

Clock
frequency

(MHz)

Peak
Performance

(CUPS
x109)

k=3
252 Linear 10 40.0 10.09

168
Affine

2 10
62.5 10.50

168
Affine

3 10
45.6 7.66

k=12
168 Linear 10 40.3 6.77

119
Affine

3 10
50.4 5.99

Software implementations of sequence alignment
algorithms, equivalent to our hardware
implementation, were written in C and run at a
speed equivalent to 50 MegaCUPS on a 1.6 GHz
Pentium-4 PC. This means that our hardware core
outperforms equivalent software implementations
by two orders of magnitudes. Given the relative
cost of FPGAs compared to general purpose
processors (often in the order of 10:1) this
performance largely offsets their cost, which shows
that FPGAs could well be an viable economical
implementation platform for biological sequence
analysis applications. Nonetheless, the CUPS

metric reflects the peak performance and does not
account for communication overheads e.g. pipeline
filling/flushing and host to FPGA communication
overheads.

In attempt to account for these overheads, a real
hardware implementation of our core has been
achieved on an Alpha Data XP FPGA Mezzanine
PCI-board, which has a Virtex-II Pro FPGA on it,
and used the Swiss-Prot Protein database [30].
Figure 15 illustrates our implementation. In it, the
database of subject queries is stored on the FPGA
board’s off-chip memory. The FPGA reads each
sequence in turn from memory and compares it to a
query sequence initially supplied by the high level
application running on the host. At the end of
processing, the FPGA supplies a list of high scoring
subject sequences back to the host application. The
database used in our implementation was a subset
of the Swiss-Prot database consisting of 288 subject
sequences with an average sequence length equal to
that of the whole database, and a query sequence of
362 residues. The number of PEs implemented on
the FPGA was 135. Running at a clock frequency
of 40 MHz, the overall alignment took 88
milliseconds to perform on the board with an initial
configuration time of 244us. An equivalent
software implementation written in C took 5516
milliseconds to run on a 1.6 GHz Pentium-4 PC.
This represents a 62x speed-up.

List of maximum
scoring subject

sequences

High Level Application

Custom FPGA
Configuration

+
Query Sequence

Database of FPGA
Configurations

FPGA
Memory

(Holding database of subject
sequences e.g. Swiss-Prot)

FPGA PCI Card

Host

Figure 15. Organisation of the real hardware
implementation

Performing fair and meaningful comparisons with
other implementations is difficult given the
difference in technologies and performance
measures used, as well as the relatively narrow
scope of some of the implementations. Nonetheless,
the following attempts to make a useful comparison
of our implementation with others reported in the
literature.

First, the SIMD architectures in the form of
MGAP, Fuzion and Kestrel are all based on an
array of PEs with nearest neighbour connections.
The MGAP architecture reported in [6] performs

 10

global alignment for DNA sequences. Running at a
clock frequency of 25MHz, it can achieve
0.1MCUPS, which is much slower than our
implementation. This is however not surprising
given the gap in the technologies used. The Kestrel
architecture is a single board programmable parallel
processor with 512 processing elements (PEs).
Running at 20MHz, the Kestrel searches a 10
Mbase database with a query size less than 512 in
12 second, giving a performance of 0.4 GCUPS
which is still an order of magnitude lower than our
implementation. Finally, the Fuzion 150 system [7]
is a linear SIMD array of 1536 PEs with a reported
peak performance of ~2.5 GCUPS, which is 2 to 3
times slower than our implementation. Besides, one
could question the economic viability of such
purpose-built SIMD architectures compared to
FPGA-based off-the-shelf solutions. Indeed, FPGA
technology has clear economies of scale and scope
advantages compared to purpose-built SIMD
platforms.

Performing fair and meaningful comparisons
with equivalent FPGA implementations is also a
difficult task given the difference in characteristics
(architecture, part and speed grade) of the FPGAs
used. Moreover, some publications do not present
all of the experimentation parameters. Nonetheless,
the following attempts to make meaningful
comparisons with some FPGA implementations
reported in the literature.

The FPGA implementations presented in
[13][14][15] are restricted to DNA sequences,
which are a special case of our implementation. The
implementation reported in [14] achieves 1260
GCUPS peak performance on a Xilinx XC2V6000-
4 FPGA part. The implementations reported in [13]
and [15] achieve over 3200 GCUPS on the same
part. In comparison, our multi-purpose core
achieves ~800 GCUPS on the same part. The
difference in performance is justified by the fact
that the above implementations have been
optimised for DNA processing. The gain in
performance is achieved at the expense of less
flexibility as these solutions cannot be used for
Protein sequence processing. The closest
implementations to ours in terms of flexibility have
been reported in [9], [10] and [11]. Compared to the
implementation reported in [10] on a Xilinx
XC2VP30 FPGA, our core achieves twice the
speed. It also outperforms the implementation
reported in [9] by 3:1. The Verilog-based
implementation reported in [11], however, is the
closest to our core implementation of all three, as it
is targeted to the same FPGA part and employs a
similar architecture. Compared to it, our core
performs almost as well despite the fact that we
have not introduced any placement constraints
(unlike in [11]). This is, in part, a testament to the
Handel-C language as well as the corresponding
synthesis tool. Moreover, none of these three

implementations offer the same degree of
parameterisation as our core. Indeed, the
implementation reported in [9] only supports the
Smith-Waterman algorithm with linear gap penalty,
albeit for both DNA and Protein sequences,
whereas the implementation reported in [10] does
not address the problem of partitioning/mapping.
The implementation reported in [11] supports both
partitioning/mapping and affine gap penalties, but
has been designed specifically for Xilinx Virtex
FPGAs. Our core on the other hand is FPGA-
platform-independent and can be used to target any
other FPGA architecture (e.g. from Xilinx, Altera,
Actel). Moreover the affine gap model used in [11]
is based on the equations given in Figure 7 only,
and hence does not take advantage of the hardware
optimisations introduced by Equations (3) (see
Section 2.4 above).

6. Conclusion

In this paper, we have presented the detailed design
and implementation of the most parameterisable
FPGA core, reported in the literature, for pairwise
biological sequence alignment. The skeleton is
parameterised in terms of the sequence symbol type,
the sequence lengths, the match score, the gap
penalty and the matching task. It implements the
algorithm in hand using a pipeline of basic
processing elements, which are tailored to the
algorithm parameters, with a number of built-in
hardware optimisations. These include automatic
hardware folding, automatic minimum wordlength
inference and compile-time constant propagation.
The skeleton results in high performance FPGA
implementations which outperform equivalent
desktop-based software implementations by two
order-of magnitudes. While this in itself has been
achieved previously through optimised hardware
implementation for specific FPGA architectures,
this paper shows that it is possible to achieve such
performance using an FPGA-platform-independent
hardware language. Indeed, our skeleton has been
captured in the Handel-C language which means
that the same code can be ported to different FPGA
families and architectures. In our experience,
Handel-C proved very convenient in describing
scaleable and parameterised hardware architectures,
with a relatively lower learning curve compared to
other hardware description languages. However, the
resulting optimised Handel-C description of our
skeleton is in essence a hardware architecture
description, rather than a software algorithm
description, albeit using high level software
constructs such as macro procedures, if/else control
structures, as well as software-like data structures.
 The work presented in this paper is part of a
bigger effort by the authors which aims to harness
the computational performance and
reprogrammability features of FPGAs in the field of

 11

Bioinformatics and Computational Biology. Future
work includes the development of FPGA cores for
sub-optimal sequence alignment algorithms
including the BLAST algorithm, as well as the use
of Hidden Markov Models for biological sequence
analysis. On the hardware implementation front, we
plan to make use of state-of-the-art FPGA-based
computing platforms, namely the low latency, high
bandwidth, Hypertransport-based FPGA boards,
which will allow direct FPGA access to gigabytes
of memory, with a data rates of several gigabytes
per second.
 Finally, it is worth mentioning that the core
presented in this paper can be used for any string
analysis application e.g. text processor or web
server, with very little modification. We intend to
explore the data mining application side of our
work further in the future.

7. References

[1] Durbin, R., Eddy, S., Krogh, A., and Mitchison,

G., ‘Biological Sequence Analysis:
Probabilistic Models for Proteins and Nucleic
Acids’, Cambridge University Press,
Cambridge UK, 1998

[2] Hein, J. ‘A New Methodology that
simultaneously aligns and reconstructs
ancestral sequences for any number of
homologous sequences, when a phylogeny is
given’. Journal of Molecular Biology, 6,
pp.649-668, 1989

[3] Altschul, S. F., Gish, W., Miller, W., Myers,
E.W. and Lipman, D.J. ‘Basic Local Alignment
Search Tool’, Journal of Molecular Biology,
215, pp. 403-410, 1990.

[4] Pearson, W.R. and Lipman, D.J. ‘FASTA:
Improved tools for biological sequence
comparison’, Proceedings of the National
Academy of Sciences, USA 85, pp. 2444-2448,
1988.

[5] Altschul, S. F., Madden, T. L., Schaffer, A. A.,
Zhang, J., Zhang, Z., Miller, W., and Lipman,
D. J. ‘Gapped BLAST and PSI-BLAST: a new
generation of protein database search
programs’, Nucleic Acid Research, Oxford
Journals, 25(17), pp. 3389-3402, 1997.

[6] Borah, M., Bajwa, R.S., Hannenhalli, S., and
Irwin, M.J. ‘A SIMD solution to the sequence
comparison problem on the MGAP’, ASAP’94
Proceedings, IEEE Computer Science, pp. 144-
160, 1994

[7] Dahle, D., Grate L., Rice, E., and Hughey, R.
‘The UCSC Kestrel general purpose parallel
processor’, Proceedings of the International
Conference on Parallel and Distributed
Processing Techniques and Applications, pp.
1243-1249, 1999

[8] Schmidt, B., Schröder, H., and Schimmler, M
‘Massively Parallel Solutions for Molecular

Sequence Analysis’, Proceedings of the 1st
IEEE International Workshop on High
Performance Computational Biology, pp. 186-
193, 2002.

[9] Yamaguchi, Y., Maruyama, T., and Konagaya,
A. 'High Speed Homology Search with FPGAs',
Proceedings of the Pacific Symposium on
Biocomputing, pp.271-282, 2002.

[10] VanCourt, T. and Herbordt, M. C. 'Families of
FPGA-Based Algorithms for Approximate
String Matching', Proceedings of Application-
Specific Systems, Architectures, and
Processors, ASAP’04, pp. 354-364, 2004

[11] Oliver, T., Schmidt, B. and Maskell, D. 'Hyper
customized processors for bio-sequence
database scanning on FPGAs', Proceedings of
the 2005 ACM/SIGDA 13th international
symposium on Field-programmable gate arrays

[12] Oliver, T., Schmidt, B., Maskell, D., Nathan,
D., and Clemens, R., ‘High-speed multiple
sequence alignment on a reconfigurable
platform’, International Journal of
Bioinformatics Research and Applications,
2(4), 2006, 394-406.

[13]Bojanic, S., Caffarena, G., Pedreira., C., and
Nieto-Taladriz, O., 'High Speed Circuits for
Genetics Applications', Proceedings of the 24th
International Conference on Microelectronics
(MIEL 2004), Vol. 12, pp. 517-524, 2004

[14] Puttegowda, K., Worek, W., Pappas, N.,
Dandapani, A., and Athanas, P., 'A Run-Time
Reconfigurable System for Gene-Sequence
Searching', Proceedings of the 16th
International Conference on VLSI Design
VLSI’03, pp. 561 – 566, 2006.

[15] Caffarena et al, ‘FPGA acceleration for DNA
sequence alignment’, Journal of Circuits,
Systems and Computers 0218-1266, 16 (2),
pp.245-266, 2007

[16] Fagin, B. S., Watt, J. G., Gross, R. 'A Special-
Purpose Processor for Gene Sequence
Analysis’, Computer Applications in the
Biosciences', 9(2), pp. 221-226, April 1993

[17] Harrison G. A., Tanner, J. M., Pilbeam D. R.,
and Baker, P. T. 'Human Biology: An
introduction to human evolution, variation,
growth, and adaptability', Oxford Science
Publications, 1988

[18] Needleman, S. and Wunsch, C. ‘A general
method applicable to the search for similarities
in the amino acid sequence of two sequences’
Journal of Molecular Biology, 48(3), pp.443-
453, 1970

[19] Smith, T.F. and Waterman, M.S. Identification
of common molecular subsequences. J. Mol.
Biol., 147, pp.195-197, 1981

[20] Chow, E., Hunkapiller, T., Peterson, J.,
Waterman, M.S. ‘Biological Information
Signal Processor’, Proceedings of Application-
Specific Systems, Architectures, and

 12

Processors, ASAP ASAP’91, pp. 144-160,
1991.

[21] Guerdoux-Jamet, P., Lavenier, D. ‘SAMBA:
hardware accelerator for biological sequence
comparison’, Computer Applications in
Biosciences, CABIOS, 12 (6), pp. 609-615,
1997.

[22] Singh, R.K. et al. ‘BIOSCAN: a network
sharable computational resource for searching
biosequence databases’, Computer
Applications in Biosciences, CABIOS, 12(3),
pp. 191-196, 1996.

[23] Butts, M. All chips will be reconfigurable,
Tutorial, 13th International Conference on
Field Programmable Logic and Applications,
September 2003

[24] Hoang, D.T. ‘Searching genetic databases on
Splash 2’, in Proceedings of the IEEE
Workshop on FPGAs for Custom Computing
Machines, pp. 185-191, 1993.

[25] Gokhale, M. et al. 'Processing in memory: The
Terasys massively parallel PIM array',
Computer, 28 (4), pp. 23-31, April 1995.

[26] TimeLogic Corporation, ‘Decypher Scalable,
High Performance Biocomputing Solutions’,
http://www.timelogic.com/

[27] The Handel-C Language Reference Manual,
Celoxica Plc, http://www.celoxica.com

[28] Kung, S. Y. ‘VLSI Array Processors’, Prentice-
Hall, 1988

[29] Moldovan, D. I. and Fortes, J. A. B.
‘Partitioning and mapping of algorithms into
fixed size systolic arrays’, IEEE Transactions
on Computers, 35(1), pp. 1-12, January, 1986

[30] Boeckmann, B., et al., ‘The SWISS-PROT
protein knowledgebase and its supplement
TrEMBL’ in 2003 Nucleic Acids Research, Vol.
31, pp. 365-370, 2003.

