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Abstract—This article presents a highly regular and scalable AES hardware architecture, suited for full-custom as well as for semi-

custom design flows. Contrary to other publications, a complete architecture (even including CBC mode) that is scalable in terms of

throughput and in terms of the used key size is described. Similarities of encryption and decryption are utilized to provide a high level of

performance using only a relatively small area (10,799 gate equivalents for the standard configuration). This performance is reached

by balancing the combinational paths of the design. No other published AES hardware architecture provides similar balancing or a

comparable regularity. Implementations of the fastest configuration of the architecture provide a throughput of 241 Mbits/sec on a

0.6 �m CMOS process using standard cells.

Index Terms—Advanced Encryption Standard (AES), hardware architecture, IP module, VLSI, scalability, regularity.

æ

1 INTRODUCTION

THE symmetric block cipher Rijndael [1] was standar-
dized by NIST1 as Advanced Encryption Standard

(AES) [2] in November 2001. Being the successor of the
Data Encryption Standard (DES) [3], the AES is used in a
wide range of applications.

The AES is the preferred algorithm for implementations
of cryptographic protocols that are based on a symmetric
cipher. It is not only used to secure data transfers between
small, mobile consumer products, but it is also used in high-
end servers. Consequently, the requirements for implemen-
tations of the AES differ significantly.

Applications with strict requirements concerning perfor-
mance, power consumption, or side-channel leakage are, in
practice, usually implemented by dedicated hardware.
Hardware implementations of the AES are, for example,
used in Internet servers as performance accelerators or in
smart cards (besides other reasons) to increase the
resistance against side-channel attacks.

Due to the practical importance of hardware implemen-
tations, the different AES candidates were implemented
and compared on FPGAs (see [4], [5], and [6]) and on ASICs
[7] before Rijndael was finally selected to become the AES.
After this selection, more effort was dedicated toward the
development of efficient hardware implementations of this
particular algorithm (see [8], [9], [10], and [11]). The most
recent proposal for an ASIC architecture of the AES is [12].
However, this architecture has very unbalanced combina-
tional paths and requires a time and area-consuming
selector function, which is not part of the actual AES
algorithm.

This article presents a highly regular and scalable AES
hardware architecture that requires only 10,799 gate
equivalents to provide a throughput of 128 Mbits/sec (for
AES-128 encryption and decryption) on a 0.6 �m standard
cell library. These numbers include an AMBA APB bus
interface, a CBC register, and a key storage register.

The architecture uses similarities of encryption and
decryption to provide a high level of performance while
keeping the chip size small. The high performance is
especially reached by keeping combinational paths ba-
lanced so that every clock cycle is fully utilized. The fact
that the combinational paths are short compared to other
published AES architectures makes the presented architec-
ture a favorable choice for low-power applications. This is
due to the fact that glitches, which occur more frequently in
long combinational paths than in short ones, cause a
significant power consumption.

Besides the small area requirements and the high
performance, the presented architecture has another im-
portant property: It is highly regular. This helps to keep the
size of the AES architecture small during place-and-route of
a semi-custom design flow and facilitates the creation of
full-custom designs. Full-custom approaches are particu-
larly interesting for smart card implementations that are
required to provide protection against power analysis
attacks [13]. In a full-custom approach, the designer can
balance the capacitive loads of differential nodes well as it
is, for example, desired for logic styles like the one
described in [14].

Another very important property of the presented
architecture is its scalability. The performance of the
architecture can be increased gradually at the cost of an
increased chip size. Furthermore, the key size can easily be
changed from 128 to 192 or 256 bits. However, the overall
architecture does not change for versions with different
performance and key sizes.

Section 2 gives a brief overview of the AES algorithm. In
Section 3, the AES hardware architecture and the corre-
sponding implementation options are described. The
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performance of the architecture is summarized and com-

pared with other AES hardware implementations in

Section 4. Concluding remarks can be found in Section 5.

2 AES ALGORITHM

The AES is a round-based, symmetric block cipher. It is

defined for a block size of 128 bits and key lengths of 128,

192, and 256 bits. According to the key length, these

variants of the AES are called AES-128, AES-192, and

AES-256. This article mainly focuses on implementing the

AES-128, which is the most commonly used AES variant.

However, the presented architecture can also be used for

the other standardized key sizes.
The following subsection describes the AES transforma-

tions, which are the building blocks of AES encryptions and

decryptions. In Section 2.2, the AES-128 key expansion is

discussed.

2.1 AES Transformations

The AES takes a 128-bit data block as input and performs

several different transformations on this block. In case of an

encryption, the input block of the AES is called plaintext

and the returned block is called ciphertext. All intermediate

results of this block, as well as the input and the output

block, are called states. For a discussion of the different

transformations, executed on the 128-bit states in an AES

encryption or decryption, it is best to picture a state as a

4-by-4 matrix of bytes (see Fig. 1). A 128-bit input/output

block of the AES is mapped to an AES state by putting the

first byte of the block in the upper left corner of the matrix

and by filling in the remaining bytes column by column.
AES encryptions and decryptions are based on four

different transformations that are performed repeatedly in a

certain sequence. Each of these transformations, which are

described in the following, maps a 128-bit input state to a

128-bit output state.

. SubBytes: The SubBytes transformation is a non-
linear substitution operation that works on bytes.
Each byte of the input state is replaced using the
same substitution function (called S-Box).

The S-Box is defined as the multiplicative inverse

in the Galois Field GF ð28Þ with the irreducible

polynomial mðxÞ ¼ x8 þ x4 þ x3 þ xþ 1 followed by

an affine transformation. The InvSubBytes transfor-

mation, which is needed for decryption, is the

inverse of the affine transformation followed by the

same inversion as in the SubBytes transformation.

. ShiftRows: The ShiftRows transformation rotates
each row of the input state to the left, whereby the
offset of the rotation corresponds to the row number.
For example, row one (the row consisting of the
elements D1;0, D1;1, D1;2, and D1;3) is rotated by one
position to the left. The inverse of this transforma-
tion is computed by performing the corresponding
rotations to the right.

. MixColumns: The MixColumns transformation
maps each column of the input state to a new
column in the output state. Each input column is
considered as a polynomial over GF ð28Þ and multi-
plied with the constant polynomial aðxÞ ¼ f03gx3 þ
f01gx2 þ f01gxþ f02g modulo x4 ÿ 1. The coeffi-
cients of aðxÞ are also elements of GF ð28Þ and are
represented by hexadecimal values in this equation.
The InvMixColumns transformation is the multi-
plication of each column with aÿ1ðxÞ ¼ f0Bgx3 þ
f0Dgx2 þ f09gxþ f0Eg modulo x4 ÿ 1.

. AddRoundKey: The AddRoundKey transformation
is self-inverting. It maps a 128-bit input state to a
128-bit output state by xoring the input state with a
128-bit round key.

These transformations are applied to a 128-bit input

block in a certain sequence to perform an AES encryption or

decryption. In both cases, the transformations are grouped

to so-called rounds. There are three different types of

rounds, namely, the initial round, the normal round, and

the final round. The transformations of the different rounds

and the sequence of the rounds are shown in Fig. 2. The

rounds are slightly different for encryption and decryption

and the number of rounds, Nr, depends on the key size.
The presented decryption algorithm is called Inverse

Cipher. Compared to the encryption algorithm, it is simply
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Fig. 1. Alignment of an AES state.

Fig. 2. Sequence of the execution of the four different transformations

used in an AES encryption/decryption.



the execution of the inverse transformations in reversed
order. Alternatively, the so-called Equivalent Inverse Cipher
can be used for decryption. However, for the presented AES
hardware architecture, the Inverse Cipher is more suitable.

2.2 AES-128 Key Expansion

For an AES-128 encryption, the 128-bit cipher key needs
to be expanded to eleven 128-bit round keys. The
principle idea of this key expansion is that the first
round key, Roundkey0, corresponds to the cipher key. All
subsequent round keys are derived from their respective
predecessor using a function f . So, Roundkeyi ¼
fðRoundkeyiÿ1Þ for all 0 < i < 11.

For an AES-128 decryption, the same round keys are
used in reversed order. Using the inverse of the key
expansion function, fÿ1, the round keys can be derived
recursively from RoundKey10.

In Fig. 3, a pseudocode for the AES-128 key expansion is
shown. This pseudocode is based on 32-bit key words and,
so, the eleven 128-bit round keys are stored one after the
other in the word array W[0..43]. The RotWord function,
used in the pseudocode, rotates the input word by one byte
to the left. The SubWord function applies the S-Box function
to each byte of the input word. The RC values, finally, are
the powers xiÿ1 of x in the same Galois field GF ð28Þ as used
for the S-Box transformation.

Fig. 4 shows how the word array W[0..43] is mapped
to the corresponding round keys. The key expansions for
the AES-192 and for the AES-256 are very similar and
described in detail in [2].

3 AES HARDWARE ARCHITECTURE

The AES hardware architecture presented in this article is
very modular and provides a high level of scalability. While
the standard version of the architecture is suited for smart

cards, USB dongles, and similar devices, the high-perfor-
mance version provides enough throughput to be used as
an acceleration module in high-end servers. It is important
to outline that, in both versions, the overall structure of the
architecture remains the same—even for different key sizes.

This overall structure of the architecture, which is
capable of performing AES encryptions and decryptions,
is shown in Fig. 5. The AES hardware module consists of
the following four components:

. Interface: The interface handles all communication
of the AES module with its environment—it com-
municates based on 32-bit words with the other
components of the AES module and via an AMBA
APB bus with the environment of the module.

. Data Unit: The data unit is the main module of the
architecture. It can perform any kind of AES
encryption or decryption round using the round
key that is assigned to its key input. Although the
number of rounds is different for the three standar-
dized key sizes, the types of rounds that are
executed are always the same. Consequently, the
data unit is independent of the key size.

The data unit has a highly regular structure, as
indicated in Fig. 5. It consists of 16 instances of a so-
called data cell and a certain number of S-Boxes. The
more S-Boxes are used, the higher is the performance
of the AES module. The standard version of the data
unit has four S-Boxes and is described in detail in
Section 3.1. A high-performance version with 16
S-Boxes is presented in Section 3.2. In principle, it is
also possible to implement a data unit with eight S-
Boxes. This version can easily be derived from the
description of the other two versions and is not
presented separately.

. Key Unit: The key unit serves two main purposes:
the storage of cipher keys and the calculation of the
round keys. To save die size, the S-Boxes of the data
unit are reused to perform the key expansion. In the
presented architecture, this reuse is possible for any
key size without loss of performance.

Since 128 bit is currently the most commonly used
key size, a key unit capable of performing the 128-bit
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Fig. 3. Pseudocode for the AES-128 key expansion.

Fig. 4. Mapping of the key words to round keys.

Fig. 5. Overall structure of the AES module.



key expansion is described in detail in this article
(see Section 3.3). The overall structure of the AES
module, however, allows the usage of key modules
supporting multiple key sizes in parallel or any of
the standardized key sizes on its own.

. CBC Unit: An AES module just consisting of a key
unit, a data unit, and an interface can already
perform the AES algorithm in ECB (Electronic Code
Book) mode. However, because there exist certain
attacks (e.g., reordering of blocks) against this mode,
usually other modes of operation [15] are used. The
most popular one is the CBC (Cipher Block Chain-
ing) mode, where the result of an AES encryption is
xored with the next 128-bit input block. This
procedure needs to be reversed when performing a
decryption. The CBC unit of the AES module
implements the CBC mode without any negative
influence on the overall performance of the AES
module.

In the presented architecture, a 128-bit block of data is
encrypted as follows: First, a cipher key needs to be loaded
via the interface into the key unit. Once a key is loaded, it
can be used for an arbitrary number of encryptions and
decryptions. After loading the cipher key, the first 128-bit
block of data is transferred via the interface and the CBC
unit into the data unit. The data unit then iteratively
performs the number of AES rounds that are required for
the used key size.

In each round, the key unit provides the corresponding
round key to the data unit. To calculate these round keys,
the key unit uses the S-Boxes of the data unit during a clock
cycle in which they are not used by the data unit. After the
calculation of the AES rounds, the encryption result is
passed in 32-bit words to the interface via the CBC unit.
Decryptions are computed in a very similar way. In this
case, the data unit performs the inverse AES transforma-
tions in reversed order and also the key unit provides the
round keys in reversed order.

The remainder of this section presents the details of the
standard data unit and those of the high-performance data
unit. Additionally, an AES-128 key unit that can be used
with both data units is described.

3.1 Standard Data Unit

The data unit is the biggest and the most important
component of the AES architecture. It stores the current
128-bit state (see Fig. 1) of an encryption or decryption and
is capable of performing any number and type of encryp-
tion/decryption rounds on this state. Consequently, all four
AES transformations (SubBytes, ShiftRows, MixColumns,
and AddRoundKey) and the corresponding inverse trans-
formations are implemented within the data unit. For the
AddRoundKey transformation, a round key needs to be
provided by the key unit.

Fig. 6 shows the standard version of the data unit. Its
structure is highly regular and closely related to the
definition of the AES state. The standard data unit consists
of 16 so-called data cells and four S-Boxes. An S-Box of the
architecture is a circuit capable of performing the S-Box and
the inverse S-Box transformation for an 8-bit input. The data

cells store eight bits per cell and perform all other AES
transformations and the corresponding inverses, when
connected appropriately. In full-custom designs, inputs
and outputs of the data cells can be defined in a way that
connection by abutment is possible when they are placed
next to another.

However, the regular design not only facilitates full-
custom designs. Also, for FPGA and standard-cell synth-
esis, a regular circuit is very desirable. If one improves the
synthesis results of a single data cell by special attributes for
the synthesizer, the overall area reduction is 16 times higher
and therefore worth the effort.

Another distinguishing feature of the presented archi-
tecture is the fact that the combinational paths are relatively
short and, what is even more important, very balanced. The
commonly used approach to implement the AES in
hardware is to store the 128-bit state in a register and to
perform the AES transformations (except for the ShiftRows
transformation) column by column. So, in order to perform
a normal AES encryption round, first the ShiftRows
transformation is done in one clock cycle. Then, the
remaining transformations of an AES round are done
column by column, whereby all transformations for one
column are usually done within one clock cycle.

The problem of this approach is that the combinational
path to perform a SubBytes, a MixColumn, and an
AddRoundKey transformation in one clock cycle is very
long. Additionally, the implementation of the ShiftRows
transformation causes a significant wiring overhead. The
data unit, presented in this section, solves both problems. It
performs AES encryptions and decryptions in the following
way:
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In order to load a data block, the input data is shifted
column by column from the right side (see Fig. 6) into the
data cells. The inputs labeled “In” are connected via the
CBC unit to the interface. The initial AddRoundKey
transformation is done in the fourth clock cycle at the same
time as the last column is loaded.

To compute a normal AES round, the registers are
rotated vertically to perform the Inv-/SubBytes and the
Inv-/ShiftRows transformation row by row. In the first
clock cycle, the Inv-/SubBytes transformation starts for row
three. Due to the fact that the implementation of the S-Boxes
is pipelined (this will be motivated in Section 3.1.1), the
result of this Inv-/SubBytes transformation is stored in row
zero (see Fig. 6) two clock cycles later. Using the pipelined
S-Boxes and the Barrel shifter between row zero and row
one of the registers, the Inv-/SubBytes and the
Inv-/ShiftRows transformations can be applied to all
16 bytes of the state within five clock cycles.

In the sixth clock cycle of a normal AES round, the
Inv-/MixColumns and the AddRoundKey transformations
are performed by all data cells in parallel. Since the S-Boxes
are not used by the data unit during the sixth clock cycle,
they can be utilized by the key unit to perform the key
expansion for the next round key. In order to compute the
final round of an encryption or decryption, the
Inv-/Mixcolumns transformation is omitted by the data
cells in this clock cycle.

In this way, the required number of encryption or
decryption rounds can be executed by the data unit and the
key unit until the 128-bit result is finally stored in the
registers of the data unit. This result is then shifted column
by column to the left (to the interface of the AES module).
At the same time, a new input state can be loaded.

Using the standard data unit, the minimal number of
clock cycles that are required to perform an AES-128
encryption or decryption is 64. Four clock cycles are
required for the I/O of the data unit, 54 clock cycles are
required to perform the nine normal AES rounds, and six
are required for the final round.

The following two subsections present the architecture of
the S-Boxes and the data cells.

3.1.1 S-Boxes

In hardware implementations, the SubBytes transformation
and its inverse are the most expensive AES transformations.
This is why the standard data unit does not contain as many
S-Boxes as data cells.

In principle, there are two ways for implementing an
S-Box in hardware that can be used for the SubBytes
transformation and its inverse. It can either be implemented
as ROM lookup or it can be calculated with combinational
logic. The straightforward way to implement an S-Box is to
store all possible output values for the S-Box function and
its inverse in a ROM. However, this requires a small ROM
with 512 bytes, where the overhead for address decoding
and output signal conditioning outweighs the area require-
ments of the ROM matrix.

Alternatively, just the result of the inversion in GF ð28Þ
could be stored in a 256 byte ROM and the affine
transformation and its inverse could be calculated with

combinational logic. This approach would only need half
the ROM size of the first approach, but it would have an
even worse overhead to matrix ratio.

The best way to implement an S-Box is to use combina-
tional logic for the affine transformation, for its inverse and
also for the computation of the inverse in GF ð28Þ. This
approach was first proposed by Rijmen in [16] and used by
Rudra et al. in [11]. Implementations of S-Boxes that are
particularly interesting for the presented architecture have
been proposed by Satoh et al. in [12] and by Wolkerstorfer
et al. in [17].

For the presented AES module, a pipelined (one stage)
implementation of the S-Box as described in [17] is used.
The main idea of this implementation is to build an
efficient combinational circuit for the S-Box, which is
based on the fact that GF ð28Þ can be seen as a quadratic
extension of the field GF ð24Þ. A pipelined version of the
S-Box is used to accomplish that the combinational paths
in the architecture are balanced (i.e., the paths of the S-
Boxes and those of a MixColumns-and-AddRoundKey
step are roughly the same).

3.1.2 Data Cells

The design of the data cells is crucial for the overall
architecture of the data unit. The data cells serve as storage
elements of theAES state and perform the Inv-/MixColumns
and the AddRoundKey transformation. Each data cell
consists of the following components:

. Eight flip-flops: Each data cell stores one byte of the
current AES state (see Figs. 1 and 6).

. One Multiplier: The MixColumns transformation
maps one column of the input state to a new column
in the output state. The multiplier that is a part of
each data cell computes one output byte of the
MixColumns transformation based on a four byte
input. This multiplier considers its four byte input as
polynomial over GF ð28Þ and is capable of perform-
ing a multiplication of the input with the constant
polynomial aðxÞ ¼ f03gx3 þ f01gx2 þ f01gxþ f02g
and with its inverse, aðxÞÿ1, modulo x4 ÿ 1.

The inputs of each multiplier are connected to the
outputs of the four data cells that are in the same
column as the multiplier itself (see Fig. 6). However,
due to the definition of the MixColumns and the
InvMixColumns transformation, the input connec-
tions are different in each row. The multipliers of the
architecture are designed in a way that there is a
maximum reuse of components between the multi-
plication with aðxÞ and the one with aðxÞÿ1. A
detailed description of this multiplier architecture
can be found in [18].

. Eight XOR-Gates: The AddRoundKey transforma-
tion is performed in parallel in the presented
architecture. Consequently, eight xor gates are
required in each data cell.

. Input Selection: The data cells support unidirec-
tional vertical and horizontal shifting. Consequently,
each data cell consists of a multiplexor to select
which input is loaded into the data cell.
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In addition to these basic components, multiplexors are
required in the data cells to switch the connections between
the four major components. This is necessary because, for
different types of AES rounds, the data cells need to
perform different transformations.

The following paragraphs summarize how the compo-
nents of the data cells need to be switched forAES encryption
as well as for decryption rounds and to perform loading and
reading operations in the presented architecture.

. Encryption:

- ShiftRows and SubBytes: In a normal and in a
final AES encryption round, first the ShiftRows
and the SubBytes transformations need to be
performed. As mentioned before, these trans-
formations are done by a vertical rotation of the
content of the data cells. The only capability a
data cell needs to perform these transformations
is vertical shifting.

- MixColumns followed by AddRoundKey: In the
last clock cycle of a normal encryption round,
the MixColumns followed by the AddRound-
Key transformation are applied. This requires
that the output of the multiplier is fed into the
xor gates.

- AddRoundKey: In the final AES encryption
round, no MixColumns transformation needs
to be performed. Consequently, only the xor
gates are used in the last clock cycle of a final
encryption round.

. Decryption:

- InvShiftRows and InvSubBytes: The S-Boxes and
the Barrel shifter can be switched from encryp-
tion to decryption mode. Since the InvShiftRows
and the InvSubBytes transformation can be
performed in arbitrary order, these transforma-
tions can be performed by doing the same
vertical rotation as for the encryption.

- AddRoundKey followed by InvMixColumns: In a
normal AES decryption round, the AddRound-
Key transformation needs to be done before the
InvMixColumns transformation. The output of
the xor gates needs to be connected to the input
of the multiplier. Compared to the encryption,
the sequence of the multiplier and the xor gates
simply needs to be switched. By implementing
this sequence switching in the data cell, the
hardware effort in the key unit is reduced (see
Section 5.3.5 of [2]).

- AddRoundKey: In the final decryption round, the
InvMixColumns transformation is omitted. The
same configuration of the data cell is used for
the last clock cycle of a final decryption round as
for the last clock cycle of a final encryption
round.

. Loading and Reading:

- Loading and reading: The content of the data cells
is shifted horizontally to load and read data.
During the first three clock cycles of loading and

reading, the data cells only perform a horizontal
shifting operation.

- AddRoundKey and load: When the fourth 32-bit
input word is loaded, additionally the initial
AddRoundKey transformation is performed by
using the xor gates of the data cells. This saves
one clock cycle and therefore improves the
overall performance.

The reading of an output state and the loading of an
input state can be done concurrently. While the new
state is shifted in word-wise, the previous output
state is shifted out.

3.2 High-Performance Data Unit

In this section, the high-performance version of the data
unit is presented. Like in the standard version, the high-
performance data unit stores the current 128-bit state and
can execute AES encryption and decryption rounds. It also
has balanced paths and is highly regular, like the standard
version.

As shown in Fig. 7, the high-performance version
consists of 16 data cells and 16 S-Boxes. For the sake of
clearness, the key wires are collapsed and the connections
for the MixColumns transformation are not shown in this
figure. However, the intercolumn connections for the
MixColumns transformation and the key wires are the
same as in the standard data unit.

In the high-performance version, there is an S-Box for each
data cell. Consequently, no vertical rotation through all rows
is necessary to perform the SubBytes transformation. The
Barrel shifter performing the ShiftRows transformation
cannot be reused and needs to be implemented separately
for each row. Since each row only needs to be rotatable by
a certain offset, simple multiplexors can be used instead of
the Barrel shifters.
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In fact, rows one and three only need to be rotatable by
one position to the right and by one position to the left.
Row two only needs to be rotatable by two positions to the
right and row zero requires no circuit for rotation at all.

The important difference between the high-performance
and the standard version is that normal and final AES
rounds can be performed in three clock cycles (the standard
data unit requires six clock cycles). The transformations that
are done in these clock cycles are listed below:

1. In the first clock cycle, the first stage of the S-Box
pipelines is loaded with the content of the data cells
to perform the Inv-/SubBytes transformation.

2. In the second clock cycle, the second stage of the
S-Box pipelines returns the results of the S-Box
operations. These results are rotated according to the
Inv-/ShiftRows transformation and stored in the
data cells.

3. In the last clock cycle of a final round, only the
AddRoundKey transformation is executed. In a
normal encryption or decryption round, addition-
ally, the Inv-/MixColumns transformation is per-
formed. During encryption, the MixColumns
transformation is done prior to the AddRoundKey
transformation and, during decryption, the InvMix-
Columns transformation is executed afterward.

In the third clock cycle, the S-Boxes are idle and
can consequently be used by the key unit to calculate
the key expansion for the next round key.

An AES-128 encryption or decryption of a 128-bit block
of data can be done in 30 clock cycles. Including I/O, this
sums up to 34 clock cycles compared to 64 clock cycles of
the standard version. Section 4 analyzes the performance of
both versions.

3.3 Key Unit

The key unit is used to store keys and to calculate the key
expansion function. Due to the fact that the AES is
standardized for 128, 192, and 256-bit keys, the interface
between the key unit and the data unit is designed in a way
that the key expansion for several different key sizes can be
implemented on the same chip.

Independent of the key size, S-Box operations are required
for the key expansion. Since the data unit does not perform
any S-Box lookups while the MixColumns and AddRound-
Key transformations are executed, theS-Boxes of thedataunit
are reused by the key unit during this clock cycle. Sharing the
S-Boxes saves a significant amount of area.

AES-128 is currently the most widely used variant of the
AES algorithm. Therefore, the description of the key unit is
limited to this key size. Key units for other key sizes can be
built in a similar way. For an AES-128 encryption, the key
unit needs to generate RoundKey0 to RoundKey10. When
doing a decryption, this needs to be done in reverse order.

Principally, there are two ways of implementing an
AES-128 key expansion. Software implementations usually
have sufficient RAM to precalculate and store all round
keys. In hardware implementations, the key expansion is
more efficient, when it is done on-the-fly. The key unit
stores RoundKeyi and is able to calculate RoundKeyiþ1 or
RoundKeyiÿ1, respectively.

The on-the-fly key expansion is done by the so-called key
generator, which is the major part of the key unit. Besides
the key generator, the key unit optionally consists of
additional registers (the key storage) to provide a high
level of key agility—this concept will be explained at the
end of this section.

The key generator is able to compute the previous or the
next round key within one or two clock cycles (depending
on the number of pipeline stages in the S-Boxes). As shown
in Fig. 8, this can be done quite efficiently—the critical paths
are relatively short and the required area is small.

In case of an AES-128 encryption, the cipher key is
loaded first and then, during the encryption process,
RoundKey1 to RoundKey10 are calculated iteratively. For
decryption, first a so-called key setup needs to be done. The
reason for this is that a decryption uses RoundKey10 in the
initial round and the cipher key is required in the final
round. During a key setup, the cipher key is expanded to
RoundKey10 and, so, RoundKey9 to RoundKey0 can be
derived iteratively for decryption.

If two or more blocks of data need to be encrypted with
the same key, there exist two possibilities to do this. In both
cases, first a 128-bit cipher key needs to be loaded into the
key generator. Then, for the encryption of the first block, the
key expansion is performed until RoundKey10 is stored in
the register of the key generator. In order to encrypt the
second block, this register needs to contain the correspond-
ing cipher key again.

If the AES module is connected via a relatively slow bus,
there is enough time to iteratively recalculate the original
cipher key based on RoundKey10, while the next data block
is loaded. Using the pipelined S-Boxes of the data unit, this
takes 20 clock cycles.

The alternative to this relatively slow, but area saving,
procedure is the concept of key agility. For this purpose, the
key unit not only consists of the key generator, but also of a
number of 128-bit registers—the so-called key storage.
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Fig. 8. AES-128 key generator.



These registers are used to cache cipher keys. The content of
each of them can be loaded directly into the register of the
key generator. This has several advantages: First of all,
several consecutive data blocks can be encrypted without
any delay for key loading or a key recalculation in between.
Second, in a scenario where multiple keys are used, the
switching between the keys can be done without any delay.
Finally, in a scenario where fast switching between
encryption and decryption is required, the cipher key
(needed as first key in an encryption) and Roundkey10
(needed as first key in a decryption) can be cached so that
there is no key setup latency.

The key unit that is used for both presented data units
consists of a single key storage. This allows the encryption
of multiple data blocks without any delay.

4 PERFORMANCE

In this section, an AES-128 module built with a standard
data unit and an AES-128 module based on a high-
performance data unit are compared in terms of perfor-
mance and area. Additionally, a comparison to related work
is given.

4.1 Performance of the Presented Designs

Both versions of the AES-128 module have been imple-
mented with VHDL and have been synthesized for a 0.6 �m
CMOS process. The AES-128 module with the standard
data unit has a complexity of 10,799 gate equivalents (GEs)
and the module based on the high-performance data unit
has 15,493 GEs. The complexity of each component of the
standard version of the module is listed in Table 1. An
analysis of the components of the high-performance
module is listed in Table 2.

The multiplier, which is a part of the data cell, is listed
separately because the multiplier accounts for most of the
gates of the data cell. The high-performance AES-128
module essentially consists of 12 S-Boxes more than the
standard module. These S-Boxes account for an increase of
the total complexity by 43 percent. The critical path of both
designs is more or less the same and it is determined by the
delay of one pipeline stage of the S-Box—the maximum
frequency for the AES-128 modules on the 0.6 �m

technology is about 64 MHz. In Table 3, a summary of the
performance is shown.

The standard version needs 64 clock cycles and the high-
performance version 34 cycles to perform an AES-128
encryption or decryption. This improvement of the
throughput by 88 percent is paid for by an increase of the
complexity by 43 percent.

4.2 Related Work

This section compares the presented architecture with the
one proposed in [12]. This was, so far, the most efficient
published AES hardware implementation.

The design of Satoh et al. consists of 5,400 GEs and its
maximum clock frequency is about 130 MHz on a 0.11 �m
technology. The design requires 54 cycles to perform an
encryption, which leads to a theoretical throughput (for the
four-S-Box version) of 311 Mbit=sec. Unfortunately, the
authors have not included the gates for loading and reading
of data in the numbers presented in [12], and, so, their gate
count seems very low at first glance.

The gate count is based on a core data path without
mechanisms for I/O, CBC registers, or a key storage. So, for
a comparison of complexity, the gate counts for these
components need to be subtracted from the presented
design—this leads to a gate count of about 8,200 GEs for the
standard AES-128 module. However, an objective compar-
ison is still not possible since the 0.11 �m technology used
in [12] is more extensive than the technology we use. The
big difference in the used technology also does not allow a
reasonable comparison of the maximum frequencies or the
throughput.

However, an important fact is that the critical path in [12]
is very long: The SubBytes, the MixColumns, and the
AddRoundKey transformation are done for one column
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TABLE 1
Components and Their Complexity of the

AES-128 Standard Module

TABLE 2
Components and Their Complexity of the

AES-128 High-Performance Module

TABLE 3
Summary of the Performance of the AES-128 Module



within one clock cycle. Additionally, in the same clock
cycle, the data passes the so-called selector function, which
seems to be another major cause of delay. This long critical
path leads to the low clock frequency of 130 MHz on the
0.11 �m technology.

In the presented architecture, the critical path is only one
pipeline stage of an S-Box, which is no more than a third of
the critical path of the architecture presented in [12].
Therefore, if the same technology is used for both designs,
we expect the maximum frequency of our module to be at
least three times higher than the maximum frequency stated
in [12]. This leads to a better overall performance.

5 CONCLUSION

In this paper, a highly regular and scalable AES hardware
architecture is presented. Due to its modularity, the
performance and the used key size can be changed easily.
Although the design is very modular, a high level of
resource sharing is done between encryption and decryp-
tion, as well as between the key expansion and the
computation of the AES rounds.

The presented architecture differs significantly from other
proposals because of its regularity and its relatively short and
balanced combinational paths. These properties do not only
lead to a highperformance, but they particularly also support
full-custom and low-power designs.
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