Delft University of Technology

A highly selective and stable $\mathrm{ZnO}-\mathrm{ZrO} 2$ solid solution catalyst for CO 2 hydrogenation to methanol

Wang, Jijie; Li, Guanna; Li, Zelong; Tang, Chizhou; Feng, Zhaochi; An, Hongyu; Liu, Hailong; Liu, Taifeng; Li, Can
DOI
10.1126/sciadv. 1701290

Publication date
2017
Document Version
Final published version
Published in
Science Advances

Citation (APA)

Wang, J., Li, G., Li, Z., Tang, C., Feng, Z., An, H., Liu, H., Liu, T., \& Li, C. (2017). A highly selective and stable $\mathrm{ZnO}-\mathrm{ZrO}$, solid solution catalyst for CO_{2} hydrogenation to methanol. Science Advances, 3(10), [e1701290]. https://doi.org/10.1126/sciadv. 1704290

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

[^0]Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

CHEMISTRY

A highly selective and stable $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ solid solution catalyst for CO_{2} hydrogenation to methanol

Jijie Wang, ${ }^{1 *}{ }^{\text {W }}$ Guanna Li, ${ }^{1,2 *}$ Zelong Li, ${ }^{1}$ Chizhou Tang, ${ }^{1}$ Zhaochi Feng, ${ }^{1}$ Hongyu An, ${ }^{1}$ Hailong Liu, ${ }^{1}$ Taifeng Liu, ${ }^{1}$ Can Li^{1+}

Abstract

Although methanol synthesis via CO hydrogenation has been industrialized, CO_{2} hydrogenation to methanol still confronts great obstacles of low methanol selectivity and poor stability, particularly for supported metal catalysts under industrial conditions. We report a binary metal oxide, $\mathrm{ZnO}^{2} \mathrm{ZrO}_{2}$ solid solution catalyst, which can achieve methanol selectivity of up to 86 to 91% with CO_{2} single-pass conversion of more than 10% under reaction conditions of $5.0 \mathrm{MPa}, 24,000 \mathrm{ml} /\left(\mathrm{g}\right.$ hour), $\mathrm{H}_{2} / \mathrm{CO}_{2}=3: 1$ to $4: 1,320^{\circ}$ to $315^{\circ} \mathrm{C}$. Experimental and theoretical results indicate that the synergetic effect between Zn and Zr sites results in the excellent performance. The $\mathrm{ZnO}^{2} \mathrm{ZrO}_{2}$ solid solution catalyst shows high stability for at least 500 hours on stream and is also resistant to sintering at higher temperatures. Moreover, no deactivation is observed in the presence of $50 \mathrm{ppm} \mathrm{SO} \mathrm{SO}_{2}$ or $\mathrm{H}_{2} \mathrm{~S}$ in the reaction stream.

Copyright © 2017
The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

INTRODUCTION

Global environmental changes caused by huge amounts of anthropogenic CO_{2} emissions have become a worldwide concern. However, CO_{2} is an abundant and sustainable carbon resource. It is highly desired to develop technologies to convert CO_{2} into valuable chemicals. Among the strategies considered, catalytic hydrogenation of CO_{2} to methanol using the hydrogen from renewable energy sources has received much attention, because methanol not only is an excellent fuel but also can be transformed to olefins and other high value-added chemicals commonly obtained from fossil fuels (1).

Much progress has been made in the development of supported metal catalysts for CO_{2} hydrogenation, such as $\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3}(2-10), \mathrm{Cu} / \mathrm{ZrO}_{2}$ (2-5, 11-13), and $\mathrm{Pd} / \mathrm{ZnO}(2-5,14,15)$. Among these, the $\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst was the most efficient and has been extensively studied. However, one of the problems for these catalysts is the low methanol selectivity caused by reverse water-gas shift (RWGS) reaction. The even more severe problem is the rapid deactivation caused by produced water, which accelerates the sintering of Cu active component during the CO_{2} hydrogenation (16). Although more efficient "georgeite" Cu -based catalyst (17), $\mathrm{Cu}(\mathrm{Au}) / \mathrm{CeO}_{x} / \mathrm{TiO}_{2}(18,19)$, and $\mathrm{Ni}(\mathrm{Pd})-\mathrm{Ga}(20-22)$ catalysts have been reported, the selectivity toward methanol is lower than 60% under their reported conditions. Recently, higher methanol selectivity is reported for $\mathrm{In}_{2} \mathrm{O}_{3}(23-25)$. However, this is compromised by low CO_{2} conversion (25). Up to now, we are still lacking an efficient catalyst that enables a CO_{2} hydrogenation conversion above 10% with high methanol selectivity and stability to fulfill the requirements of large-scale production under industrial operation conditions. Here, we report a $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ solid solution catalyst, which shows methanol selectivity of 86 to 91% at a CO_{2} conversion of more than 10% under the conditions of $5.0 \mathrm{MPa}, 24,000 \mathrm{ml} /\left(\mathrm{g}\right.$ hour), $\mathrm{H}_{2} / \mathrm{CO}_{2}=3: 1$ to $4: 1,320^{\circ}$ to $315^{\circ} \mathrm{C}$, demonstrated with a fixed-bed reactor. The catalyst shows excellent stability for more than 500 hours on stream, and it is promising for the conversion of CO_{2} to methanol in industry.

[^1]
RESULTS AND DISCUSSION

A series of $x \% \mathrm{ZnO}_{-2 \mathrm{ZrO}}^{2}$ catalysts ($x \%$ represents molar percentage of Zn , metal base) were prepared by the coprecipitation method, and their catalytic performances were investigated as shown in Fig . 1. ZrO_{2} shows very low activity in methanol synthesis. ZnO shows a little activity and low methanol selectivity (table S1). However, the performance of the $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ catalyst varies greatly with the $\mathrm{Zn} /(\mathrm{Zn}+\mathrm{Zr})$ molar ratio (Fig. 1A). The catalytic activity is significantly enhanced and reaches the maximum for CO_{2} conversion when the $\mathrm{Zn} /(\mathrm{Zn}+\mathrm{Zr})$ molar ratio is close to 13%. This is also where the methanol selectivity (mainly methanol and CO as the products) is approaching the maximum (fig. S1). Therefore, the highest space-time yield (STY) of methanol is achieved for the $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ catalyst at the $\mathrm{Zn} /(\mathrm{Zn}+\mathrm{Zr})$ molar ratio of 13%, and hereafter, it represents the optimized catalyst. It is worth noting that the CO_{2} conversion of $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ is about 1.3 and 14 times of those for ZnO and ZrO_{2}, respectively, and the methanol selectivity is increased from no more than 30% for ZnO or ZrO_{2} to more than 80% for $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$. More interestingly, the activity of 13% $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ is about six times of that for mechanically mixed ZnO and ZrO_{2} in the same composition as $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ (inset in Fig. 1A), indicating that there is a strong synergetic effect between these two components in the catalytic activity of CO_{2} hydrogenation.

Figure 1 B shows that when increasing the reaction temperature, the selectivity of methanol decreases, whereas the conversion of CO_{2} increases. When the conversion reaches 10% at $320^{\circ} \mathrm{C}$, the selectivity of methanol can still be kept at 86%. Higher pressure, gas hourly space velocity (GHSV), and $\mathrm{H}_{2} / \mathrm{CO}_{2}$ ratio are beneficial to the methanol selectivity (fig. S2). Methanol selectivity can be as high as 91% when H_{2} / CO_{2} is increased to $4: 1$ with a CO_{2} conversion of 10% at $315^{\circ} \mathrm{C}$.

Figure 1 C shows that there is no deactivation of the $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ catalyst in CO_{2} hydrogenation, and no deterioration in methanol selectivity for more than 500 hours on stream at least. Stability is a fatal issue for methanol synthesis from either CO or CO_{2} hydrogenation on most supported metal catalysts because most methanol synthesis catalysts are easily deactivated at higher temperatures due to the sintering effect. To further test the thermal stability of the catalyst, the reaction temperature was elevated from 320° to $400^{\circ} \mathrm{C}$, kept for 24 hours, and then cooled down to $320^{\circ} \mathrm{C}$. No deactivation is observed after this annealing treatment. To our surprise, this catalyst also shows the resistance to sulfurcontaining molecules in the stream with 50 parts per million (ppm) SO_{2}

Fig. 1. Catalytic performance of the $\mathbf{Z n O}-\mathbf{Z r O}_{\mathbf{2}}$ catalyst. (A) Dependence of catalytic performance at $320^{\circ} \mathrm{C}$ on the $\mathbf{Z n} /(\mathbf{Z n}+\mathrm{Zr})$ molar ratio. Inset: purple, normalized activities for $\mathrm{ZnO}, 13 \% \mathrm{ZnO}_{\mathrm{ZrO}}^{2}$, and ZrO_{2} by specific surface area; dark yellow, normalized activities for mechanically mixed ZnO and ZrO in the same composition. (B) Catalytic performance at the reaction temperatures from 200° to $380^{\circ} \mathrm{C}$ with $\mathrm{H}_{2} / \mathrm{CO}_{2}=3: 1$ and $4: 1$. (C) Catalyst stability test in 550 hours. (D) Catalyst stability toward the S-containing molecules ($50 \mathrm{ppm} \mathrm{H}_{2} \mathrm{~S}$ or SO_{2} in Ar) and annealing. In S experiments, there are two gas paths: one is $50 \mathrm{ppm} \mathrm{H}_{2} \mathrm{~S}\left(\mathrm{SO}_{2}\right) / \mathrm{Ar}$ and the other is $\mathrm{CO}_{2} / \mathrm{H}_{2} / \mathrm{Ar}$. Pulsing experiment was carried out by turning on the S gas for 30 min and 60 min and then turning off after the $\mathrm{CO}_{2}+\mathrm{H}_{2}$ reaction reached its steady state. After several pulses, the two gas paths were turned on simultaneously. Standard reaction conditions: $5.0 \mathrm{MPa}, \mathrm{H}_{2} / \mathrm{CO}_{2}=3: 1,320^{\circ} \mathrm{C}, \mathrm{GHSV}=24,000 \mathrm{ml} /(\mathrm{g}$ hour), using a tubular fixedbed reactor with the $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ catalyst.
or $\mathrm{H}_{2} \mathrm{~S}$ (Fig. 1D). The sulfur-containing molecules are always present in CO_{2} sources from flue gas produced from coal or biomass burning. Therefore, the high stability of the catalyst toward the sulfur-containing molecules makes the catalyst viable in industrial processes and superior to supported metal catalysts.

X-ray diffraction (XRD) patterns show that the ZrO_{2} prepared by the coprecipitation method is mainly in the monoclinic phase mixed with some in the tetragonal phase (Fig. 2A and fig. S3). Adding ZnO (5 to 33%) to ZrO_{2} leads to the phase change of ZrO_{2} from monoclinic to tetragonal or cubic (not distinguishable from tetragonal). The phase of ZnO was detected for samples with ZnO concentrations of up to 50%, indicating that the $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ solid solution might be formed with ZnO contents in the range below 50%. The interplanar spacing of $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$, which is ca. 0.29 nm (Fig. 2 B and fig. S 4), is attributed to the tetragonal ZrO_{2} (011). However, element distribution analysis shows that Zn is highly dispersed in ZrO_{2} (Fig. 2C). Considering that the ionic radius of $\mathrm{Zn}^{2+}(0.74 \AA)$ is smaller than that of Zr^{4+} ($0.82 \AA$) (26), the interplanar spacing would be decreased when Zn^{2+} is incorporated into the lattice of ZrO_{2}. This is confirmed with the XRD results that the (011) spacing of ZrO_{2} narrows, and the XRD from the (011) spacing of ZrO_{2} shifts to a higher angle when the Zn concentration is increased from 5 to 33%. These facts further affirm the conclusion that $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ is in a solid solution state, with Zn incorporated into the ZrO_{2} lattice matrix (27).

Raman spectroscopy was used to further characterize the phase structure of the $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ solid solution catalyst. Raman spectroscopy with different laser sources could detect phases in different depths due
to light absorption and light scattering $\left\{I \propto(1 / \lambda)^{4}\right\} . \mathrm{ZnO}-\mathrm{ZrO}_{2}$ exhibits a strong ultraviolet-visible (UV-vis) absorption band at 215 nm (fig. S5A), so the shorter wavelength laser detects the phase in a relatively shallow layer. Therefore, the Raman spectroscopy with laser sources at 244,266 , and 325 nm could gradually detect phases from the skin layer to the bulk of the catalyst (fig. S5B) $(28,29)$. The phase near the utmost skin layer (the depth of skin layer is approximately 2 nm) is sensitively detected by UV Raman spectroscopy with a 244 -nm excitation laser, as shown in Fig. 2D. The appearance of Raman peaks at 305, 342, and $378 \mathrm{~cm}^{-1}$ indicates that the skin layer of pure ZrO_{2} is in monoclinic. For 5 to $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ samples, when increasing the ZnO content from 5 to 13%, the spectrum evolved slightly from that of the monoclinic phase to one with an additional peak at $269 \mathrm{~cm}^{-1}$, although the peaks in the range of 300 to $500 \mathrm{~cm}^{-1}$ are similar to those of ZrO_{2}. The weak peak at $269 \mathrm{~cm}^{-1}$ is due to the characteristics of the tetragonal phase $(30,31)$. This suggests that the skin layer phase of $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ might be in the transition state between monoclinic and tetragonal phases. The Raman spectrum with a $266-\mathrm{nm}$ laser is dominated by peaks at 269 and $317 \mathrm{~cm}^{-1}$ (Fig. 2D and fig. S5, C and D), which are due to the tetragonal phase of ZrO_{2}, and the Raman spectrum with a $325-\mathrm{nm}$ laser gives a typical peak at $564 \mathrm{~cm}^{-1}$ due to the cubic phase. These results suggest that underneath the skin layer of $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ is in the tetragonal phase, whereas the bulk is in the cubic phase. Note that the Raman signal of the monoclinic phase is much stronger than that of tetragonal and cubic phases. Therefore, the distorted phase in the surface region could be obscured by the monoclinic phase in Raman spectra. X-ray photoelectron spectroscopy (XPS) results show that the

Fig. 2. Structural characterization of the $\mathbf{Z n O}-\mathbf{Z r O}_{\mathbf{2}}$ catalyst. (A) XRD patterns of $\mathbf{Z n O}-\mathrm{ZrO}_{2}$. (B) High-resolution transmission electron microscopy (HRTEM) and (C) aberrationcorrected scanning TEM-high-angle annular dark-field images and element distribution of $13 \% \mathrm{ZnO}^{-\mathrm{ZrO}}$ 2. (D) Raman spectra of $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ with $244-\mathrm{nm}$ laser (solid line), 266-nm laser (pink dot line), and 325-nm laser (dark yellow dot line). (E) Zn concentration in the surface region of $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ measured by XPS. (F) Schematic description of the $\mathrm{ZnO}-\mathrm{ZrO} 2$ solid solution catalyst model.

Zn concentration in the surface region is higher than the theoretical value (Fig. 2E), suggesting that Zn is relatively rich there. These facts indicate that the $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ catalyst is an imperfect solid solution in phase transition from skin layer to bulk, as schematically depicted in Fig. 2F.
CO_{2}-TPD (temperature-programmed desorption of CO_{2}) of catalysts shows that there are two desorption peaks: low $\left(<320^{\circ} \mathrm{C}\right)$ and high ($>320^{\circ} \mathrm{C}$) temperature (Fig. 3A). The total CO_{2} adsorption amounts for $\mathrm{ZrO}_{2}, 13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$, and ZrO_{2} are 100,82 , and $82 \mathrm{mmol} / \mathrm{m}^{2}$, respectively. CO_{2} absorption capability below the reaction temperature, $320^{\circ} \mathrm{C}$, follows the order ZrO_{2} (100) $>13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ (91) >> ZnO (32) (inset in Fig. 3A). ZrO_{2} adsorbs much more CO_{2} than does ZnO below the reaction temperature. Furthermore, the surface component of $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ is about $78 \% \mathrm{Zr}$ and $22 \% \mathrm{Zn}$ obtained from XPS (Fig. 2E), and the amount of adsorbed CO_{2} on $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ is about the same as that estimated from the sum of the amounts of CO_{2} adsorbed on the individual components based on that normalized by specific surface area (inset in Fig. 3A). Therefore, it could be deduced that, at low temperatures, most of the CO_{2} adsorbed by 13% $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ is on the Zr sites.

The rate of HD formation from the $\mathrm{H}_{2}-\mathrm{D}_{2}$ exchange reaction normalized by specific surface area is as follows: $\mathrm{ZnO}(100)>13 \% \mathrm{ZnO}-$ ZrO_{2} (89) $\gg \mathrm{ZrO}_{2}$ (7) (Fig. 3B), indicating that ZnO has much higher
activity in the $\mathrm{H}_{2}-\mathrm{D}_{2}$ exchange reaction than ZrO_{2}. Surprisingly, the activity of $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ is also much greater than that of ZrO_{2}, although ZrO_{2} comprises 78% of the catalyst's specific surface area. If the two components kept their own activity in the $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ catalyst, the sum of their activities would be about 27, far less than the experimental result, which is 89 . This suggests that there is a strong synergetic effect in the H_{2} activation between the two sites, Zn and Zr . XPS shows that the binding energy of Zn in $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ is evidently reduced compared to that of ZnO , whereas the binding energy of Zr in $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ remains intact (fig. S6). This indicates that the electronic property of the Zn site is modified by the neighboring Zr site. H_{2}-TPR (temperature-programmed reduction of H_{2}) also shows that $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ is more easily reduced than ZnO and ZrO_{2} (fig. S7). Therefore, on the basis of the $\mathrm{H}_{2}-\mathrm{D}_{2}$ exchange reaction and catalytic CO_{2} hydrogenation reaction results, we could conclude that it is the synergetic effect between the Zn and Zr sites in the $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ solid solution catalyst that significantly promotes the activation of H_{2} and CO_{2} and consequently results in the excellent catalytic performance in CO_{2} hydrogenation. This is also shown experimentally from the fact that the $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ solid solution catalyst exhibits much higher activity and methanol selectivity than does mechanically mixed $\mathrm{ZnO}+\mathrm{ZrO}_{2}$ (13:87) or the supported $13 \% \mathrm{ZnO} / \mathrm{ZrO}_{2}$ catalyst in CO_{2} hydrogenation (Fig. 1A, table S2, and fig. S8).

Fig. 3. $\mathrm{CO}_{\mathbf{2}}$ adsorption and $\mathbf{H}_{\mathbf{2}}$ activation. (A) $\mathrm{CO}_{2}-\mathrm{TPD}$ on $\mathrm{ZnO}, \mathrm{ZrO}_{2}$, and $13 \% \mathrm{ZnO}^{2} \mathrm{ZrO}_{2}$ normalized by specific surface area. Inset: purple, normalized CO_{2} adsorption below $320^{\circ} \mathrm{C}$; dark yellow, normalized activities for mechanically mixed ZnO and ZrO_{2} in the same composition as $13 \% \mathrm{ZnO}-\mathrm{ZrO} 2$. (B) H_{2} - D_{2} exchange reaction on ZnO , ZrO_{2}, and $13 \% \mathrm{ZnO}_{\mathrm{ZrO}}^{2}$ at $280^{\circ} \mathrm{C}$. Purple, normalized rate by specific surface area; dark yellow, normalized activities for mechanically mixed ZnO and $\mathrm{ZrO} \mathrm{O}_{2}$ in the same composition as $13 \% \mathrm{ZnO}_{\mathrm{ZrO}}^{2}$.

To understand the reaction mechanism on the solid solution catalyst, the surface species evolved in the reaction were monitored by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (Fig. 4A). HCOO^{*} and $\mathrm{H}_{3} \mathrm{CO}^{*}$ species were observed and identified (table S3) (32-37). The infrared (IR) peaks at 1595 and $1370 \mathrm{~cm}^{-1}$ are assigned to the asymmetric and symmetric OCO stretching vibrations, respectively, of adsorbed bidentate HCOO^{*} species. The peaks at 2878 and $1382 \mathrm{~cm}^{-1}$ are assigned to the stretching vibration $v(\mathrm{CH})$ and bending vibration $\delta(\mathrm{CH})$, respectively. The peaks at 2931, 2824, and $1046 \mathrm{~cm}^{-1}$ are attributed to the $\mathrm{H}_{3} \mathrm{CO}^{*}$ species. The peaks at 2878 and $2824 \mathrm{~cm}^{-1}$ were used to follow the concentration changes of HCOO^{*} and $\mathrm{H}_{3} \mathrm{CO}^{*}$ species. Figure 4 B shows the varying tendency of the two species with time, and the products were detected by mass spectrometry (MS) (38). It can be seen that the surface HCOO^{*} (based on IR peak intensity) reaches a steady state after a reaction for 30 min , whereas it takes 90 min for $\mathrm{H}_{3} \mathrm{CO}^{*}$ to reach its steady state. However, $\mathrm{CH}_{3} \mathrm{OH}$ detected by MS reaches a steady state after 60 min . When $\mathrm{CO}_{2}+$ H_{2} was substituted for $\mathrm{CO}_{2}+\mathrm{D}_{2}$, the amount of HCOO^{*} and $\mathrm{CH}_{3} \mathrm{OH}$ decreases (Fig. 4B and fig. S9), whereas the amount of DCOO^{*} and $\mathrm{CD}_{3} \mathrm{OD}$ increases. The DCOO^{*} species appears and reaches a steady state after ca. 90 min ; meanwhile, the total D-substituted products reach a steady state after ca. 90 min , as detected by MS. It is speculated that the HCOO^{*} and $\mathrm{CH}_{3} \mathrm{O}^{*}$ species are likely intermediates of the CO_{2} hydrogenation on the $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ solid solution catalyst. To verify the possible surface intermediate species, the IR spectra of surface species formed from $\mathrm{CO}_{2}+\mathrm{H}_{2}$ were recorded as those in Fig. 4A, then the reaction gas phase of $\mathrm{CO}_{2}+\mathrm{H}_{2}$ was switched to D_{2}, and the IR peaks at 2878 and $2824 \mathrm{~cm}^{-1}$ of the HCOO^{*} and $\mathrm{H}_{3} \mathrm{CO}^{*}$ species, respectively, are declined rapidly and disappeared in 60 min (Fig. 4C). Correspondingly, two new peaks at 2165 and $2052 \mathrm{~cm}^{-1}$ due to the DCOO^{*} and $\mathrm{HD}_{2} \mathrm{CO}^{*}$ species appeared first, grew somewhat, and then disappeared slowly. MS displays the $\mathrm{HD}_{2} \mathrm{COD}$ product responding to the disappearance of the surface HCOO^{*} and $\mathrm{H}_{3} \mathrm{CO}^{*}$ species at the same time (Fig. 4D). These evidences indicate that the surface HCOO^{*} and $\mathrm{H}_{3} \mathrm{CO}^{*}$ species on the $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ solid solution catalyst can be hydrogenated to methanol.

Density functional theory (DFT) calculations were performed to understand the reaction mechanisms (details in the Supplementary Materials). Figure 5 shows the reaction diagram of CO_{2} hydrogenation to methanol on the surface of $\mathrm{ZnO}-\mathrm{ZrO}_{2}$. Two major reaction pathways
were evaluated, that is, formate and CO pathways $(39,40) . \mathrm{H}_{2}$ is adsorbed and dissociated on the Zn site. CO_{2} is adsorbed on the coordination unsaturated Zr site (figs. S10 to S12). The formation of HCOO^{*} species via $\mathrm{CO}_{2}{ }^{*}$ hydrogenation is energetically very favorable, which is coherent with the in situ DRIFTS observations. The terminal oxygen of $\mathrm{H}_{2} \mathrm{COO}^{*}$ (formed by HCOO^{*} hydrogenation) can be protonated by an OH^{*} group and forms a $\mathrm{H}_{2} \mathrm{COOH}^{*}$ species, of which the $\mathrm{C}-\mathrm{O}$ bond is cleaved and thereby generates $\mathrm{H}_{2} \mathrm{CO}^{*}$ and OH^{*} binding on Zr and Zn sites, respectively. The process of $\mathrm{H}_{2} \mathrm{COO}^{*} \rightarrow \mathrm{H}_{2} \mathrm{CO}^{*}+\mathrm{H}_{2} \mathrm{O}^{*}$ is thermodynamically unfavorable ($\Delta_{\mathrm{r}} \mathrm{G}=1.26 \mathrm{eV}$). The desorption energy of water from the surface is $0.60 \mathrm{eV} . \mathrm{H}_{2} \mathrm{CO}^{*}+\mathrm{H}^{*} \rightarrow \mathrm{H}_{3} \mathrm{CO}^{*}$ is an energetically favorable process $\left(\Delta_{\mathrm{r}} G^{\ddagger}=-2.32 \mathrm{eV}\right) . \mathrm{H}_{3} \mathrm{CO}^{*}$ species identified by theoretical calculation corresponds to the second most stable reaction intermediate detected by in situ DRIFTS. Finally, methanol is formed by $\mathrm{H}_{3} \mathrm{CO}^{*}$ protonation.

In principle, it is also possible to first produce CO^{*} from $\mathrm{CO}_{2}{ }^{*}$ and then for CO^{*} to undergo consecutive hydrogenation to form methanol. As shown in Fig. $5, \mathrm{OCOH}^{*}$ is much less stable than HCOO^{*}. Furthermore, the reaction of $\mathrm{CO}_{2}{ }^{*}$ to OCOH^{*} needs to overcome a barrier $\left(\Delta G^{\ddagger}\right)$ of 0.69 eV , which is quite unfavorable compared to the barrier-less process of $\mathrm{CO}_{2}{ }^{*}+\mathrm{H}^{*} \rightarrow \mathrm{HCOO}^{*}$. Even if a fair amount of OCOH^{*} can be present during the reaction, the weakly bonded CO^{*} produced from OCOH^{*} prefers to desorb from the surface rather than undergo hydrogenation reactions. Therefore, it is concluded that CO_{2} hydrogenation to methanol on the surface of $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ is through the formate pathway.

DFT calculations also suggest that the methanol selectivity of ZnO ZrO_{2} is higher than that of $\mathrm{ZnO}(41,42)$. The formate pathway was evaluated on ZnO for CO_{2} hydrogenation to methanol (figs. S 13 to S16). The process of $\mathrm{H}_{2} \mathrm{COO}^{*} \rightarrow \mathrm{H}_{2} \mathrm{CO}^{*}+\mathrm{H}_{2} \mathrm{O}^{*}$ is the most unfavorable step in thermodynamics. The energy barrier of this step is 1.37 eV , higher than that for $\mathrm{ZnO}-\mathrm{ZrO}_{2}(1.27 \mathrm{eV})$. Therefore, $\mathrm{ZnO}-$ ZrO_{2} has a relatively higher methanol selectivity and a lower CO selectivity than ZnO . The results are consistent with the experimental results as well. The high methanol selectivity of $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ solid solution is attributed to the synergetic effect in H_{2} activation between the Zn and Zr sites, and the simultaneous activation of H_{2} and CO_{2} on the neighboring sites, Zn and Zr , respectively.

There has been an opinion that the CO_{2} hydrogenation is similar to the CO hydrogenation, and the pathway of CO_{2} to methanol is a CO

Fig. 4. Characterization of surface species. (A) In situ DRIFT spectra of surface species formed from the $\mathrm{CO}_{2}+\mathrm{H}_{2}$ reaction. (B) DRIFT-MS of $\mathrm{CO}_{2}+\mathrm{H}_{2}$ and $\mathrm{CO}_{2}+\mathrm{D}_{2}$ reactions on $13 \%{\mathrm{ZnO}-\mathrm{ZrO}_{2} \text {. (C) In situ DRIFT spectra of surface species from } \mathrm{CO}_{2}+\mathrm{H}_{2} \text { and subsequently switched to } \mathrm{D}_{2} \text {. (D) DRIFT-MS of } \mathrm{CO}+\mathrm{H}_{2} \text { and subsequently }}^{\text {(}}$ switched to D_{2}. Reaction conditions: $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ catalyst, $0.1 \mathrm{MPa}, 280^{\circ} \mathrm{C}, 10 \mathrm{ml} / \mathrm{min} \mathrm{CO}_{2}+30 \mathrm{ml} / \mathrm{min} \mathrm{H}_{2}\left(\mathrm{D}_{2}\right)$.
pathway, where it is assumed that CO_{2} hydrogenation to methanol is first to CO (by RWGS) and then the CO is hydrogenated to methanol $(13,18)$. To clarify this issue, the $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ catalyst was also evaluated for $\mathrm{CO}+\mathrm{H}_{2}$ (fig. S17). Besides methanol as the major product, some additional products including dimethyl ether (DME) and methane were detected. The STY of methanol on the $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ catalyst from CO_{2} hydrogenation is 2.5 times of that from CO hydrogenation at their optimized temperatures for methanol production. These facts indicate that the $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ solid solution catalyst is especially active for CO_{2} hydrogenation to methanol.

Whether formate species are involved in the methanol synthesis for Cu-based catalysts has been a controversial issue. For example, the latest
reports on $\mathrm{Cu} / \mathrm{ZrO}_{2}$ from Larmier et al. (12) and Kattel et al. (13) proposed very different mechanisms. According to the former, formate species was the reaction intermediate, whereas the latter stated that formate was a spectator. Very recently, Kattel et al. (10) proposed that the formate was an intermediate species for methanol on the $\mathrm{Cu} / \mathrm{ZnO}$ catalyst. Because our $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ catalyst is very different from the Cu -based one, the methanol formation mechanism might also be different. Our isotope labeling experiment and DFT calculation show that the formate species can be hydrogenated to methanol. However, at the moment, we still could not reach the conclusion that the formate species is the major active intermediate for methanol formation because it is difficult to determine how much of the observed formate species contributed to the methanol production.

Fig. 5. DFT calculations. Reaction diagram [energy (E) and Gibbs free energy (G) at a typical reaction temperature of $593 \mathrm{~K}^{\mathrm{K}}$ of CO_{2} hydrogenation to methanol on the (101) surface of the tetragonal $\mathrm{ZnO}_{-2 \mathrm{ZO}}^{2}$ model.

To compare the catalytic performance difference between the ZnO ZrO_{2} catalyst and Cu -based catalysts, a standard $\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst was evaluated for CO_{2} hydrogenation. The methanol selectivity varies from 82 to 5% at reaction temperatures from 200° to $320^{\circ} \mathrm{C}$ under identical conditions as those used for the $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ catalyst (fig. S18). The results are similar to those reported for the $\mathrm{Cu} / \mathrm{ZnO} /$ $\mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst in the literature $(43,44)$. It is seen that the selectivity of methanol on the Cu-based catalyst is lower than that on the $13 \% \mathrm{ZnO}-$ ZrO_{2} catalyst and markedly decreases when the reaction temperature was elevated. In addition, the stability of the $\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst
was tested for sintering and sulfur poisoning (fig. S19). The activity of the catalyst shows a decrease of 25% for the reaction in 500 hours, and the activity drops even more quickly in the presence of 50 ppm SO 2 ; however, the $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ catalyst does not show any deactivation in 500 hours and SO_{2} does not change the activity obviously either (Fig. 1, C and D). A controlled experiment demonstrated that the $\mathrm{Cu} / \mathrm{ZnO} /$ $\mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst was deactivated severely (at least 25% drop in activity) after a thermal treatment at $320^{\circ} \mathrm{C}$, whereas the $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ catalyst does not show evident deactivation after a thermal treatment even at $400^{\circ} \mathrm{C}$ (Fig. 1D).

This work demonstrates that the binary metal oxide $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ in the solid solution state is an active catalyst for converting CO_{2} to methanol with high selectivity and stability. This solid solution catalyst opens a new avenue for CO_{2} conversion by taking advantage of the synergetic effect between its multicomponents.

MATERIALS AND METHODS

Catalyst preparation

The $13 \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ catalyst was taken as a typical example to describe the synthesis procedures: 0.6 g of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and 5.8 g of $\mathrm{Zr}\left(\mathrm{NO}_{3}\right)_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ were dissolved in a flask by 100 ml of deionized water. The precipitant of the $100-\mathrm{ml}$ aqueous solution of 3.06 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ was added to the aforementioned solution (at a flow rate of $3 \mathrm{ml} / \mathrm{min}$) under vigorous stirring at $70^{\circ} \mathrm{C}$ to form a precipitate. The suspension was continuously stirred for 2 hours at $70^{\circ} \mathrm{C}$, followed by cooling down to room temperature, filtering, and washing three times with deionized water. The filtered sample was dried at $110^{\circ} \mathrm{C}$ for 4 hours and calcined at $500^{\circ} \mathrm{C}$ in static air for 3 hours. Other $x \% \mathrm{ZnO}-\mathrm{ZrO}_{2}$ catalysts were prepared following the same method. The supported $\mathrm{ZnO} / \mathrm{ZrO}_{2}$ catalyst was prepared by wet impregnation. ZrO_{2} support was synthesized according to the coprecipitation method described above. $\mathrm{ZrO}_{2}(1 \mathrm{~g})$ was immersed in 25 ml of aqueous solution of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ with stoichiometric amount. The mixture was stirred at $110^{\circ} \mathrm{C}$ until the water had completely volatilized and then calcined at $500^{\circ} \mathrm{C}$ in air for 3 hours. The $\mathrm{Cu} / \mathrm{ZnO} /$ $\mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst was prepared by coprecipitation analogous to the procedure described by Behrens and Schlögl (6). Aqueous solution (100 ml) of metal nitrates [4.35 g of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}, 2.68 \mathrm{~g}$ of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and 1.12 g of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$] and aqueous solution $(120 \mathrm{ml})$ of 3.82 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ as a precipitant were added dropwise (at a flow rate of $3 \mathrm{ml} / \mathrm{min}$) to a glass reactor with a starting volume of 200 ml of deionized water under vigorous stirring at $70^{\circ} \mathrm{C}$. Controlling the pH of precipitation mother liquor to 7 , and aging the precipitate for 2 hours after precipitation, followed by cooling down to room temperature, filtering, and washing seven times with deionized water. The filter cake was dried at $110^{\circ} \mathrm{C}$ for 4 hours and calcined at $350^{\circ} \mathrm{C}$ in static air for 3 hours. The commercial $\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst (C307) was purchased from Nanjing Chemical Industrial Corporation of Sinopec for comparison. All catalysts were pressed, crushed, and sieved to the size of 40 to 80 mesh for the activity evaluation.

Catalyst evaluation

The activity tests of the catalysts for CO_{2} hydrogenation to methanol were carried out in a tubular fixed-bed continuous-flow reactor equipped with gas chromatography (GC). Before the reaction, the catalyst (0.1 g , diluted with 0.4 g of quartz sand) was pretreated in a H_{2} or N_{2} stream (0.1 MPa and $20 \mathrm{ml} / \mathrm{min}$) at given temperatures. The reaction was conducted under reaction conditions of 1.0 to $5.0 \mathrm{MPa}, 180^{\circ}$ to $400^{\circ} \mathrm{C}, V\left(\mathrm{H}_{2}\right) / V\left(\mathrm{CO}_{2}\right) /$ $V(\mathrm{Ar})=72: 24: 4,64: 32: 4$, or 77:19:5, and GHSV $=5000$ to $33,000 \mathrm{ml} /(\mathrm{ghour})$. The exit gas from the reactor was maintained at $150^{\circ} \mathrm{C}$ and immediately transported to the sample valve of the GC (Agilent 7890B), which was equipped with thermal conductivity (TCD) and flame ionization detectors (FIDs). Porapak N and 5A molecular sieve packed columns ($2 \mathrm{~m} \times$ 3.175 mm ; Agilent) were connected to TCD, whereas TG-BOND Q capillary columns were connected to FID. The packed column was used for the analysis of $\mathrm{CO}_{2}, \mathrm{Ar}$, and CO , and the capillary column ($30 \mathrm{~m} \times$ $0.32 \mathrm{~mm} \times 10 \mu \mathrm{~m}$; Thermo Fisher) was used for hydrocarbons, alcohols, and other C-containing products. CO_{2} conversion [denoted as $\mathrm{X}\left(\mathrm{CO}_{2}\right)$] and the carbon-based selectivity [denoted as S (product)] for the carbon-
containing products, including methane, methanol, and DME, were calculated using an internal normalization method. STY of methanol was denoted as STY $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$. All data were collected in 3 hours after the reaction started (unless otherwise specified).
$X\left(\mathrm{CO}_{2}\right), S\left(\mathrm{CH}_{3} \mathrm{OH}\right), S(\mathrm{CO})$, and STY $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ were calculated as follows:

$$
X\left(\mathrm{CO}_{2}\right)=
$$

$$
\begin{aligned}
& \left.\frac{f_{\mathrm{CO}} A_{\mathrm{CO}}+i\left(f_{\mathrm{CH}_{4}} A_{\mathrm{CH}_{4}}+f_{\mathrm{CH}_{3} \mathrm{OH}} A_{\mathrm{CH}_{3} \mathrm{OH}}+2 f_{\mathrm{CH}_{3} \mathrm{OCH}_{3}} A_{\mathrm{CH}_{3} \mathrm{OCH}}^{3}\right.}{}\right), \\
& i=\frac{f_{\mathrm{CH}_{4}-\mathrm{TCD}} A_{\mathrm{CH}_{4}-\mathrm{TCD}}}{f_{\mathrm{CH}_{4}-\mathrm{FID}} A_{\mathrm{CH}_{4}-\mathrm{FID}}} \\
& S\left(\mathrm{CH}_{3} \mathrm{OH}\right)= \\
& \frac{f_{\mathrm{CH}_{3} \mathrm{OH}} A_{\mathrm{CH}_{3} \mathrm{OH}}}{f_{\mathrm{CO}} A_{\mathrm{CO}}+i\left(f_{\mathrm{CH}_{4}} A_{\mathrm{CH}_{4}}+f_{\mathrm{CH}_{3} \mathrm{OH}} A_{\mathrm{CH}_{3} \mathrm{OH}}+2 f_{\mathrm{CH}_{3} \mathrm{OCH}_{3}} A_{\mathrm{CH}_{3} \mathrm{OCH}_{3}}\right)} \\
& S(\mathrm{CO})= \\
& \frac{f_{\mathrm{CO}} A_{\mathrm{CO}}}{f_{\mathrm{CO}} A_{\mathrm{CO}}+i\left(f_{\mathrm{CH}_{4}} A_{\mathrm{CH}_{4}}+f_{\mathrm{CH}_{3} \mathrm{OH}} A_{\mathrm{CH}_{3} \mathrm{OH}}+2 f_{\mathrm{CH}_{3} \mathrm{OCH}_{3}} A_{\mathrm{CH}_{3} \mathrm{OCH}_{3}}\right)} \\
& \operatorname{STY}\left(\mathrm{CH}_{3} \mathrm{OH}\right)=\frac{\mathrm{GHSV}}{S A \times 22.4} \times V \%\left(\mathrm{CO}_{2}\right) \times X\left(\mathrm{CO}_{2}\right) \times S\left(\mathrm{CO}_{2}\right) \\
& \times M_{\mathrm{CH}_{3} \mathrm{OH}}
\end{aligned}
$$

Catalyst characterization

The XRD results were collected on a Philips PW1050/81 diffractometer operating in Bragg-Brentano focusing geometry and using $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.5418 \AA$) from a generator operating at 40 kV and 30 mA . TEM images were obtained with a JEM- 2100 microscope at 200 kV . The samples were prepared by placing a drop of nanoparticle ethanol suspension onto a lacey support film and by allowing the solvent to evaporate. Element mappings were obtained with a JEM-ARM200F microscope. UV-vis spectrum was obtained with a PerkinElmer 25 UV-vis spectrometer in the wavelength range of 350 to 800 nm , with a resolution of 1 nm . The UV laser source (244 and 266 nm) was a Coherent Innova 300 C FreD continuous wave UV laser equipped with an intracavity frequency-doubling system using a BBO crystal to produce second harmonic generation outputs at different wavelengths. The UV laser source (325 nm) was a Coherent DPSS 325 Model $200325-\mathrm{nm}$ single-frequency laser. UV Raman spectra were recorded on a homeassembled UV Raman spectrograph using a Jobin-Yvon T64000 triple-stage spectragraph with a spectral resolution of $2 \mathrm{~cm}^{-1}$ coupled with a UV-sensitive charge-coupled device detector. XPS was performed using a Thermo Fisher ESCALAB 250Xi with Al K radiation (15 kV , $10.8 \mathrm{~mA}, h \nu=1486.6 \mathrm{eV})$ under ultrahigh vacuum $\left(5 \times 10^{-7} \mathrm{~Pa}\right)$, calibrated internally by the carbon deposit $\mathrm{C}(1 \mathrm{~s})\left(E_{\mathrm{b}}=284.6 \mathrm{eV}\right)$. The $\mathrm{CO}_{2} /$ H_{2}-TPD of the catalysts was conducted with an adsorption/desorption system. A $100-\mathrm{mg}$ sample was treated in situ in a H_{2} or He stream ($30 \mathrm{ml} / \mathrm{min}$) at $300^{\circ} \mathrm{C}$ for 1 hour, flushed by a He stream ($30 \mathrm{ml} / \mathrm{min}$) at $300^{\circ} \mathrm{C}$ for 30 min to clean its surface, and then cooled to $50^{\circ} \mathrm{C}$. It was then returned to the $\mathrm{CO}_{2} / \mathrm{H}_{2}$ stream for 60 min , and afterward, the sample was flushed by the He stream until a stable baseline was obtained. TPD measurements were then conducted from 50° to $600^{\circ} \mathrm{C}$.

The temperature increase rate was $10^{\circ} \mathrm{C} / \mathrm{min}$. The changes of $\mathrm{CO}_{2} / \mathrm{H}_{2}$ were monitored by AutoChem 2910 with a TCD detector. The system was coupled to an OmniStar 300 mass spectrometer to detect other products in the gas phase. The TPR of the catalysts was conducted with the same system used in TPD. The samples were treated with He at $130^{\circ} \mathrm{C}$ for 1 hour, and then $5 \% \mathrm{H}_{2} / \mathrm{Ar}$ was used as carrier gas of TCD to conduct the TPR with $10^{\circ} \mathrm{C} / \mathrm{min}$ from 50° to $800^{\circ} \mathrm{C} . \mathrm{H}_{2}-\mathrm{D}_{2}$ exchange experiments were performed in a flow reactor at $280^{\circ} \mathrm{C}$. The formation rate of HD was measured by mass signal intensity (ion current). The 0.1 g sample was reduced with $\mathrm{H}_{2}(10 \mathrm{ml} / \mathrm{min})$ at $280^{\circ} \mathrm{C}$ for 1 hour. Then, D_{2} ($10 \mathrm{ml} / \mathrm{min}$) was mixed with H_{2} and together passed the catalyst sample. Reaction products $\mathrm{HD}, \mathrm{H}_{2}$, and D_{2} were analyzed with a mass spectrometer (GAM200, InProcess Instruments). The mass/charge ratio (m / z) values used are 2 for $\mathrm{H}_{2}, 4$ for D_{2}, and 3 for HD. In situ DRIFTS investigations were performed using a Fourier transform infrared (FTIR) spectrometer (Thermo Fisher, Nicolet 6700) equipped with a mercury cadmium telluride detector. Before measurement, each catalyst was treated with H_{2} at $300^{\circ} \mathrm{C}$ for 2 hours and then purged with N_{2} at $450^{\circ} \mathrm{C}$ for 2 hours. The catalyst was subsequently cooled down to $280^{\circ} \mathrm{C}$. The background spectrum was obtained at $280^{\circ} \mathrm{C}$ in N_{2} flow. Then, the sample was exposed to a $\mathrm{CO}_{2} / \mathrm{H}_{2}$ mixture ($10 \mathrm{ml} / \mathrm{min} \mathrm{CO}_{2}$ and $30 \mathrm{ml} / \mathrm{min} \mathrm{H}_{2}$) for 90 min . The in situ DRIFT spectra were recorded by collecting 64 scans at a resolution of $4 \mathrm{~cm}^{-1}$. IR-MS experiments were performed by combining DRIFTS and MS. The products detected by MS were warmed to be the gas phase. The specific surface area was determined by N_{2} adsorption using a Micromeritics ASAP 2020 system.

DFT calculation

Spin-polarized DFT calculations were performed with the VASP 5.3.5 package (45). The generalized gradient approximation based on Perdew-Burke-Ernzerhof exchange-correlation functional and projected augmented wave method accounting for valence-core interactions were used throughout (46). The kinetic energy cutoff of the plane-wave basis set was set to 400 eV . A Gaussian smearing of the population of partial occupancies with a width of 0.1 eV was used during iterative diagonalization of the Kohn-Sham Hamiltonian. The threshold for energy convergence in each iteration was set to $10^{-5} \mathrm{eV}$. Convergence was assumed when forces on each atom were less than $0.05 \mathrm{eV} / \AA$ in the geometry optimization. The minimum-energy reaction pathways and the corresponding transition states were determined using the nudged elastic band method with improved tangent estimate (CI-NEB) implemented in VASP (47). The maximum energy geometry along the reaction path obtained with the NEB method was further optimized using a quasi-Newton algorithm. In this step, only the adsorbates and the active center of the metal site were relaxed. Frequency analysis of the stationary points was performed by means of the finite difference method as implemented in VASP 5.3.5. Small displacements ($0.02 \AA$) were used to estimate the numerical Hessian matrix. The transition states were confirmed by the presence of a single imaginary frequency corresponding to the specific reaction path.

Both the unit lattice vectors and atoms of hexagonal wurtzite structure ZnO were fully optimized in the first step. The optimized lattice parameters for bulk ZnO are $a=b=3.289 \AA$ and $c=5.312 \AA$, which are coherent with the experimental values of $a=b=3.249 \AA$ and $c=$ $5.206 \AA$ (48). The Zn -terminated (0001) polar surface slab model of ZnO was constructed by a periodic $4 \times 4 \times 1$ supercell with five Zn -O sublayers and separated by a vacuum layer of $15 \AA$ Along the surface normal direction to avoid spurious interactions between the periodic slab models. The top two $\mathrm{Zn}-\mathrm{O}$ sublayers were fully relaxed, whereas
the lowest three layers were fixed at the optimized atomic bulk positions during all the surface calculations. Monkhorst-Pack mesh of $8 \times 8 \times 6$ k-points was used to sample the Brillouin zone for the bulk ZnO , and it was restricted to $2 \times 2 \times 1 k$-points for the supercell surface slab model due to the computational time demands. To eliminate the artificial dipole moment within the slab model of polar ZnO surface, all the oxygen atoms at the bottom of the slab model were saturated by adding pseudo-hydrogen atoms, each containing a positive charge of $+0.5|e|$. This strategy effectively removes the internal polarization within the slab, as indicated by the flatter projection of the Hartree potential along the direction of the surface normal compared to other dipole correction methods.

The optimized lattice parameters for tetragonal ZrO_{2} bulk are $a=$ $b=3.684 \AA$ and $c=5.222 \AA$, which are in line with the experimental values of $a=b=3.612 \AA$ and $c=5.212 \AA$ (49). The most stable (101) surface of the ZrO_{2} tetragonal phase was simulated by a $2 \times 3 \times 1$ supercell slab model, including three ZrO_{2} sublayers (each includes two oxygen atomic layers and one Zr atomic layer), separated by a vacuum layer with a thickness of $15 \AA$ along the surface normal direction to avoid spurious interactions between the periodic slab models. To take into account the effect of Zn^{2+} doping, one of the $\mathrm{Zr}^{4+}-\mathrm{O}^{2-}$ moiety on the surface was replaced by a Zn^{2+} cation and an oxygen vacancy $\left(\mathrm{Zn}^{2+}-\mathrm{O}_{\mathrm{v}}\right)$. The atoms of the top ZrO_{2} layer were fully optimized, whereas the other two ZrO_{2} layers at the bottom were fixed at their optimized bulk positions throughout the surface calculations. The on-site Coulomb correction for the Zr 4 d states of the ZrO_{2} bulk and $\mathrm{Zn}-\mathrm{ZrO}_{2}$ surface was included by DFT $+U$ approach with a $U_{\text {eff }}$ value of 4.0 eV . K-point grids of $8 \times 8 \times 6$ and $2 \times 2 \times 1$ generated by Monkhorst-Pack scheme were used to sample the Brillouin zones of the ZrO_{2} bulk and $\mathrm{Zn}-\mathrm{ZrO}_{2}$ supercell surface slab model, respectively.

The adsorption energy of the reaction intermediate was calculated as $\Delta E_{\text {ads }}=E_{\text {adsorbate+surface }}-E_{\text {adsorbate }}-E_{\text {clean-surface. }}$. The activation energy $\left(\Delta E_{\mathrm{a}}\right)$ of a chemical reaction was defined as the energy difference between the initial and transition states, whereas the reaction energy (ΔE) was defined as the energy difference between the initial and final states. The enthalpy, entropy, and Gibbs free energy of each species were calculated by vibrational frequency analysis based on harmonic normal mode approximation using the finite difference method in VASP. The threshold for energy convergence for each iteration was set to $10^{-8} \mathrm{eV}$, and the forces on each atom were $0.01 \mathrm{eV} / \AA \AA$. The Gibbs free energy for a given species is $G(T, P)=E_{\mathrm{e}}+E_{\text {trans }}+E_{\text {rot }}+E_{\text {vib }}+P V-T\left(S_{\text {trans }}+S_{\text {rot }}+S_{\text {vib }}\right):$
where

$$
\begin{aligned}
E_{\text {trans }} & =\frac{3}{2} R T \\
E_{\text {rot }} & =R T \text { (for linear molecule) } \\
E_{\text {rot }} & =\frac{3}{2} R T \text { (for non-linear molecule) } \\
E_{\text {vib }} & =R \sum_{n} \frac{h v_{n}}{k_{\mathrm{B}}}\left(\frac{1}{2}+\frac{1}{e^{h v_{n} / k_{\mathrm{B}} T}-1}\right) \\
S_{\text {trans }} & =R\left(\ln q_{\text {trans }}+\frac{5}{2}\right), \text { where } q_{\text {trans }}=\left(\frac{2 \pi m k_{\mathrm{B}} T}{h^{2}}\right)^{3 / 2} \frac{k_{\mathrm{B}} T}{P} \\
S_{\text {rot }} & =R\left(\ln q_{\text {rot }}+1\right)(\text { for linear molecule }) \\
& \text { where } q_{\text {rot }}=\frac{1}{\sigma}\left(\frac{8 \pi^{2} k_{\mathrm{B}} T}{h^{2}}\right) \times I
\end{aligned}
$$

$$
\begin{aligned}
& S_{\mathrm{rot}}=R\left(\ln q_{\mathrm{rot}}+\frac{3}{2}\right)(\text { for nonlinear molecule }), \\
& \text { where } q_{\mathrm{rot}}=\frac{\sqrt{\pi}}{\sigma}\left(\frac{8 \pi^{2} k_{\mathrm{B}} T}{h^{2}}\right)^{3 / 2} \times \sqrt{I_{x} \times I_{y} \times I_{z}} \\
& S_{\mathrm{vib}}=R \sum_{n}\left(\frac{h v_{n} / k_{\mathrm{B}} T}{e^{h v_{n} / k_{\mathrm{B}} T}-1}-\ln \left(1-e^{-h v_{n} / k_{\mathrm{B}} T}\right)\right)
\end{aligned}
$$

where I is the moment of inertia, σ is the rotational symmetry number, and m is the mass of the molecule. The translational, rotational, and vibrational enthalpic and entropic contributions of gas-phase molecules were calculated by considering them as ideal gases. For adsorbed molecules and transition states on the surface, the rotational and translational contributions were converted into vibration modes. We also approximated that the $P V$ term of the surface species is negligible because it is very small with regard to the energetic terms, and thus, we considered $G(T, P)=E_{\mathrm{e}}+E_{\text {vib }}-T \times S_{\text {vib }}$ in this case.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/ content/full/3/10/e1701290/DC1
table S1. The BET results of catalysts and intrinsic property.
table S 2 . The catalytic performance of mechanically mixed and supported catalysts.
table S3. DRIFT peak assignments of the surface species for the $\mathrm{CO}_{2}+\mathrm{H}_{2}\left(\mathrm{D}_{2}\right)$ reaction on 13% $\mathrm{ZnO}-\mathrm{ZrO}_{2}$.
fig. S1. The dependence of methanol selectivity on the $\mathrm{Zn} /(\mathrm{Zn}+\mathrm{Zr})$ molar ratio at a $10 \% \mathrm{CO}_{2}$ conversion.
fig. S2. The effect of pressure, $\mathrm{H}_{2} / \mathrm{CO}_{2}$ ratio, and GHSV on CO_{2} hydrogenation.
fig. S3. XRD patterns of $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ catalysts.
fig. S4. HRTEM of the $13 \%{\mathrm{ZnO}-\mathrm{ZrO}_{2} \text { catalyst. }}^{\text {ch }}$
fig. S5. The UV-vis absorbance and Raman spectra of $\mathrm{ZnO}-\mathrm{ZrO}_{2}$.
fig. S6. XPS of $\mathrm{ZnO}, \mathrm{ZrO}_{2}$, and $13 \% \mathrm{ZnO}^{2} \mathrm{ZrO}_{2}$.
fig. S7. $\mathrm{H}_{2}-\mathrm{TPR}$ of $\mathrm{ZnO}, \mathrm{ZrO}_{2}$, and $13 \% \mathrm{ZnO}^{2} \mathrm{ZrO}_{2}$.
fig. S8. XRD of mechanically mixed and supported catalysts.
fig. S9. DRIFT results of $\mathrm{CO}_{2}+\mathrm{H}_{2}$ substituted by $\mathrm{CO}_{2}+\mathrm{D}_{2}$.
fig. S10. Structure of ZrO_{2} and $\mathrm{ZnO}-\mathrm{ZrO}_{2}$.
fig. S11. Local geometries of the reaction intermediates of CO_{2} hydrogenation to methanol via formate on the $\mathrm{ZnO}^{2} \mathrm{ZrO}_{2}$ (101) surface.
fig. S12. Local geometries of the reaction intermediates of CO_{2} hydrogenation to methanol via CO on the $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ (101) surface.
fig. S13. Structure of ZnO .
fig. S14. Hartree potential of the Zn -terminated ZnO (0001) surface calculated by different dipole correction methods.
fig. S15. Local geometries of the reaction intermediates on the $\mathrm{ZnO}(0001)$ surface.
fig. S16. Reaction diagram of CO_{2} hydrogenation to $\mathrm{CH}_{3} \mathrm{OH}$ via formate on the Zn -terminated ZnO (0001) surface.
fig. S17. The catalytic performance contrast of the $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ catalyst for $\mathrm{CO}_{2}+\mathrm{H}_{2}$ and $\mathrm{CO}+\mathrm{H}_{2}$.
fig. S18. The catalytic performance contrast of $\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ catalysts for CO_{2} hydrogenation.
fig. S19. The stability test of the $\mathrm{Cu} / \mathrm{ZnO} / \mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst.

REFERENCES AND NOTES

1. G. A. Olah, A. Goeppert, G. K. Surya Prakash, Beyond Oil and Gas: The Methanol Economy (Wiley-VCH, 2011).
2. A. Goeppert, M. Czaun, J.-P. Jones, G. K. Surya Prakash, G. A. Olah, Recycling of carbon dioxide to methanol and derived products-Closing the loop. Chem. Soc. Rev. 43, 7995-8048 (2014).
3. M. D. Porosoff, B. Yan, J. G. Chen, Catalytic reduction of CO_{2} by H_{2} for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities. Energy Environ. Sci. 9, 62-73 (2016).
4. G. Centi, S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 148, 191-205 (2009).
5. E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazábal, J. Pérez-Ramírez, Status and perspectives of CO_{2} conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 6, 3112-3135 (2013).
6. M. Behrens, R. Schlögl, How to prepare a good $\mathrm{Cu} / \mathrm{ZnO}$ catalyst or the role of solid state chemistry for the synthesis of nanostructured catalysts. Z. Anorg. Allg. Chem. 639, 2683-2695 (2013).
7. M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M. Tovar, R. W. Fischer, J. K. Nørskov, R. Schlögl, The active site of methanol synthesis over $\mathrm{Cu} / \mathrm{ZnO}_{\mathrm{Al}}^{2} \mathrm{O}_{3}$ industrial catalysts. Science 336, 893-897 (2012).
8. H. Zhan, F. Li, C. Xin, N. Zhao, F. Xiao, W. Wei, Y. Sun, Performance of the La-Mn-Zn-Cu-O based perovskite precursors for methanol synthesis from CO_{2} hydrogenation. Catal. Lett. 145, 1177-1185 (2015).
9. S. Kuld, M. Thorhauge, H. Falsig, C. F. Elkjær, S. Helveg, I. Chorkendorff, J. Sehested, Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science 352, 969-974 (2016).
10. S. Kattel, P. J. Ramirez, J. G. Chen, J. A. Rodriguez, P. Liu, Active sites for CO_{2} hydrogenation to methanol on $\mathrm{Cu} / \mathrm{ZnO}$ catalysts. Science 355, 1296-1299 (2017).
11. Y. Amenomiya, Methanol synthesis from $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{II}$. Copper-based binary and ternary catalysts. Appl. Catal. 30, 57-68 (1987).
12. K. Larmier, W.-C. Liao, S. Tada, E. Lam, R. Verel, A. Bansode, A. Urakawa, A. Comas-Vives, C. Copéret, CO_{2}-to-methanol hydrogenation on zirconia-supported copper nanoparticles: Reaction intermediates and the role of the metal-support interface. Angew. Chem. Int. Ed. 129, 2358-2363 (2017).
13. S. Kattel, B. Yan, Y. Yang, J. G. Chen, P. Liu, Optimizing binding energies of key intermediates for CO_{2} hydrogenation to methanol over oxide-supported copper. J. Am. Chem. Soc. 138, 12440-12450 (2016).
14. X.-L. Liang, X. Dong, G.-D. Lin, H.-B. Zhang, Carbon nanotube-supported Pd-ZnO catalyst for hydrogenation of CO_{2} to methanol. Appl. Catal. B 88, 315-322 (2009).
15. H. Bahruji, M. Bowker, G. Hutchings, N. Dimitratos, P. Wells, E. Gibson, W. Jones, C. Brookes, D. Morgan, G . Lalev, $\mathrm{Pd} / \mathrm{ZnO}$ catalysts for direct CO_{2} hydrogenation to methanol. J. Catal. 343, 133-146 (2016).
16. J. Wu, M. Saito, M. Takeuchi, T. Watanabe, The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO_{2}-rich feed and from a CO-rich feed. Appl. Catal. A. Gen. 218, 235-240 (2001).
17. S. A. Kondrat, P. J. Smith, P. P. Wells, P. A. Chater, J. H. Carter, D. J. Morgan, E. M. Fiordaliso, J. B. Wagner, T. E. Davies, L. Lu, J. K. Bartley, S. H. Taylor, M. S. Spencer, C. J. Kiely, G. J. Kelly, C. W. Park, M. J. Rosseinsky, G. J. Hutchings, Stable amorphous georgeite as a precursor to a high-activity catalyst. Nature 531, 83-87 (2016).
18. J. Graciani, K. Mudiyanselage, F. Xu, A. E. Baber, J. Evans, S. D. Senanayake, D. J. Stacchiola, P. Liu, J. Hrbek, J. F. Sanz, J. A. Rodriguez, Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO_{2}. Science 345, 546-550 (2014).
19. X. Yang, X. Yang, S. Kattel, S. D. Senanayake, J. A. Boscoboinik, X. Nie, J. Graciani, J. A. Rodriguez, P. Liu, D. J. Stacchiola, J. G. Chen, Low pressure CO_{2} hydrogenation to methanol over gold nanoparticles activated on a $\mathrm{CeO}_{x} / \mathrm{TiO}_{2}$ interface. J. Am. Chem. Soc. 137, 10104-10107 (2015).
20. F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C. F. Elkjær, J. S. Hummelshøj, S. Dahl, I. Chorkendorff, J. K. Nørskov, Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6, 320-324 (2014).
21. I. Sharafutdinov, C. F. Elkjær, H. W. P. de Carvalho, D. Gardini, G. L. Chiarello, C. D. Damsgaard, J. B. Wagner, J.-D. Grunwaldt, S. Dahl, I. Chorkendorff, Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol. J. Catal. 320, 77-88 (2014).
22. E. M. Fiordaliso, I. Sharafutdinov, H. W. P. Carvalho, J.-D. Grunwaldt, T. W. Hansen, I. Chorkendorff, J. B. Wagner, C. D. Damsgaard, Intermetallic GaPd_{2} nanoparticles on SiO_{2} for low-pressure CO_{2} hydrogenation to methanol: Catalytic performance and in situ characterization. ACS Catal. 5, 5827-5836 (2015).
23. J. Ye, C. Liu, D. Mei, Q. Ge, Active oxygen vacancy site for methanol synthesis from CO_{2} hydrogenation on $\mathrm{In}_{2} \mathrm{O}_{3}(110)$: A DFT study. ACS Catal. 3, 1296-1306 (2013).
24. K. Sun, Z. Fan, J. Ye, J. Yan, Q. Ge, Y. Li, W. He, W. He, W. Yang, C.-j. Liu, Hydrogenation of CO_{2} to methanol over $\mathrm{In}_{2} \mathrm{O}_{3}$ catalyst. J. CO_{2} Util. 12, 1-6 (2015).
25. O. Martin, A. J. Martín, C. Mondelli, S. Mitchell, T. F. Segawa, R. Hauert, C. Drouilly, D. Curulla-Ferré, J. Pérez-Ramírez, Indium oxide as a superior catalyst for methanol synthesis by CO_{2} hydrogenation. Angew. Chem. Int. Ed. 55, 6261-6265 (2016).
26. R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751-767 (1976).
27. A. Cimino, F. S. Stone, Oxide solid solutions as catalysts. Adv. Catal. 47, 141-306 (2002).
28. H. Kim, K. M. Kosuda, R. P. Van Duyne, P. C. Stair, Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chem. Soc. Rev. 39, 4820-4844 (2010).
29. F. Fan, Q. Xu, H. Xia, K. Sun, Z. Feng, C. Li, UV Raman spectroscopic characterization of catalytic materials. Chin. J. Catal. 30, 717-739 (2009).
30. M. Li, Z. Feng, P. Ying, Q. Xin, C. Li, Phase transformation in the surface region of zirconia and doped zirconia detected by UV Raman spectroscopy. Phys. Chem. Chem. Phys. 5, 5326-5332 (2003).
31. L. Shi, K.-C. Tin, N.-B. Wong, Thermal stability of zirconia membranes. J. Mater. Sci. 34, 3367-3374 (1999).
32. T. Shido, Y. Iwasawa, The effect of coadsorbates in reverse water-gas shift reaction on ZnO , in relation to reactant-promoted reaction mechanism. J. Catal. 140, 575-584 (1993).
33. J. Tabatabaei, B. H. Sakakini, K. C. Waugh, On the mechanism of methanol synthesis and the water-gas shift reaction on ZnO . Catal. Lett. 110, 77-84 (2006).
34. I. A. Fisher, A. T. Bell, In-situ infrared study of methanol synthesis from $\mathrm{H}_{2} / \mathrm{CO}_{2}$ over $\mathrm{Cu} / \mathrm{SiO}_{2}$ and $\mathrm{Cu} / \mathrm{ZrO}_{2} / \mathrm{SiO}_{2}$. J. Catal. 172, 222-237 (1997).
35. K. Pokrovski, K. T. Jung, A. T. Bell, Investigation of CO and CO_{2} adsorption on tetragonal and monoclinic zirconia. Langmuir 17, 4297-4303 (2001).
36. C. Schild, A. Wokaun, A. Baiker, On the mechanism of CO and CO_{2} hydrogenation reactions on zirconia-supported catalysts: A diffuse reflectance FTIR study: Part II. Surface species on copper/zirconia catalysts: Implications for methanol synthesis selectivity. J. Mol. Catal. 63, 243-254 (1990).
37. A. Goguet, F. C. Meunier, D. Tibiletti, J. P. Breen, R. Burch, Spectrokinetic investigation of reverse water-gas-shift reaction intermediates over a $\mathrm{Pt} / \mathrm{CeO}_{2}$ catalyst. J. Phys. Chem. B 108, 20240-20246 (2004).
38. X. Wang, H. Shi, J. H. Kwak, J. Szanyi, Mechanism of CO_{2} hydrogenation on $\mathrm{Pd} / \mathrm{Al}_{2} \mathrm{O}_{3}$ catalysts: Kinetics and transient DRIFTS-MS studies. ACS Catal. 5, 6337-6349 (2015).
39. L. C. Grabow, M. Mavrikakis, Mechanism of methanol synthesis on Cu through CO_{2} and CO hydrogenation. ACS Catal. 1, 365-384 (2011).
40. L. Martínez-Suárez, N. Siemer, J. Frenzel, D. Marx, Reaction network of methanol synthesis over Cu/ZnO nanocatalysts. ACS Catal. 5, 4201-4218 (2015).
41. S. A. French, A. A. Sokol, S. T. Bromley, R. A. Catlow, S. C. Rogers, F. King, P. Sherwood, From CO_{2} to methanol by hybrid QM/MM embedding. Angew. Chem. Int. Ed. 113, 4569-4572 (2001).
42. Y.-F. Zhao, R. Rousseau, J. Li, D. Mei, Theoretical study of syngas hydrogenation to methanol on the polar Zn -terminated $\mathrm{ZnO}(0001)$ surface. J. Phys. Chem. C 116, 15952-15961 (2012).
43. R. Gaikwad, A. Bansode, A. Urakawa, High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol. J. Catal. 343, 127-132 (2017).
44. X. An, J. Li, Y. Zuo, Q. Zhang, D. Wang, J. Wang, A Cu/Zn/Al/Zr fibrous catalyst that is an improved CO_{2} hydrogenation to methanol catalyst. Catal. Lett. 118, 264-269 (2007).
45. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169-11186 (1996).
46. J. P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B Condens. Matter 54, 16533-16539 (1996).
47. G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978-9985 (2000).
48. M. Schreyer, L. Guo, S. Thirunahari, F. Gao, M. Garland, Simultaneous determination of several crystal structures from powder mixtures: The combination of powder X-ray diffraction, band-target entropy minimization and Rietveld methods. J. Appl. Cryst. 47, 659-667 (2014).
49. N. Igawa, Y. Ishii, Crystal structure of metastable tetragonal zirconia up to 1473 K . J. Am. Ceram. Soc. 84, 1169-1171 (2001).

Acknowledgments: We thank J. Liu and Q. Xin for discussion on FTIR results. Funding: This work was supported by grants from the Dalian Institute of Chemical Physics (DICP) Fundamental Research Program for Clean Energy and Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB17020200), National Natural Science Foundation of China (grant no. 21621063), and DICP Fundamental Research Program for Clean Energy (DICP M201302). G.L. acknowledges financial support from The Netherlands Organization for Scientific Research (NWO) for her personal VENI grant (no. 016.Veni.172.034) and NWO SURFsara for providing access to supercomputer resources. Author contributions: C.L. proposed the project, supervised the research, and wrote and revised the manuscript. J.W. did the experiments and wrote the manuscript. G.L. performed the DFT calculations and drafted part of the manuscript. Z.L. reproduced part of the experiments. C.T. reproduced some catalyst preparation and reaction test. Z.F. and H.A. performed UV Raman spectroscopic characterizations. H.L. and T.L. performed analysis of some experimental and calculation results. All the authors participated in the discussion and agreed with the conclusions of the study. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to support the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Submitted 21 April 2017
Accepted 15 September 2017
Published 6 October 2017
10.1126/sciadv. 1701290

Citation: J. Wang, G. Li, Z. Li, C. Tang, Z. Feng, H. An, H. Liu, T. Liu, C. Li, A highly selective and stable $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ solid solution catalyst for CO_{2} hydrogenation to methanol. Sci. Adv. 3, e1701290 (2017).

ScienceAdvances

A highly selective and stable $\mathrm{ZnO}-\mathrm{ZrO}_{2}$ solid solution catalyst for CO_{2} hydrogenation to methanol

Jijie Wang, Guanna Li, Zelong Li, Chizhou Tang, Zhaochi Feng, Hongyu An, Hailong Liu, Taifeng Liu and Can Li

Sci Adv 3 (10), e1701290.
DOI: 10.1126/sciadv. 1701290

ARTICLE TOOLS	http://advances.sciencemag.org/content/3/10/e1701290
SUPPLEMENTARY MATERIALS	http://advances.sciencemag.org/content/suppl/2017/10/02/3.10.e1701290.DC1
REFERENCES	This article cites 48 articles, 4 of which you can access for free http://advances.sciencemag.org/content/3/10/e1701290\#BIBL
PERMISSIONS	http://www.sciencemag.org/help/reprints-and-permissions

[^0]: Copyright
 Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

[^1]: ${ }^{1}$ State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China. ${ }^{2}$ Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, Van Oder Massage 9, 2629 HZ Delft, Netherlands.
 *These authors contributed equally to this work.
 †Corresponding author. Email: canli@dicp.ac.cn

