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Fiber-optic magnetic �eld sensing is an important method of magnetic �eld monitoring, which is essential for the safety of civil
infrastructures, especially for power plant.We theoretically and experimentally demonstrated an optical �ber magnetic �eld sensor
based on a single-mode-multimode-single-mode (SMS) structure immersed into themagnetic 	uid (MF).�e length ofmultimode
section �ber is determined based on the self-image e
ect through the simulation. Due to variation characteristics of the refractive
index and absorption coe�cient of MF under di
erent magnetic �elds, an e
ective method to improve the sensitivity of SMS �ber
structure is realized based on the intensity modulation method. �is sensor shows a high sensitivity up to 0.097 dB/Oe and a high
modulation depth up to 78% in a relatively linear range, for the no-core �ber (NCF) with the diameter of 125 �m and length of
59.8mm as the multimode section. �is optical �ber sensor possesses advantages of low cost, ease of fabrication, high sensitivity,
simple structure, and compact size, with great potential applications in measuring the magnetic �eld.

1. Introduction

Reliable and highly sensitive magnetic �eld sensors are quite
important for monitoring the variation of the magnetic �eld
strength of civil infrastructure such as power plant. It is
also well known that �ber-optic magnetic �eld sensor has
the advantages of good insulation and strong antielectro-
magnetic interference. �e multimode interference (MMI)
in the single-mode-multimode-single-mode (SMS) structure
is sensitive to external parameters, such as the refractive
index, temperature, and axial strain. Various optical �ber
devices using the SMS �ber structure have been proposed
and demonstrated, such as temperature sensors [1], refrac-
tometers [2–4], bandpass �lters [5, 6], wavelength tunable
�ber laser [7], and chemical gas detector [8]. For the excellent
SMS structure, all the above optical �ber devices have
advantages such as the low cost, ease of fabrication, and
compatibility with standard optical �ber devices. However
this SMS structure is intrinsically immune to magnetic �elds
due to the low magnetooptical coe�cient of silica. �erefore,

it is di�cult to achieve the magnetic �eld sensing if only
using a SMS structure. Magnetic 	uid (MF), as a stable
colloidal suspension of ferromagnetic nanoparticles (∼10 nm)
in certain suitable liquid carriers, owns characteristics such
as the special magnetooptical property in the form of
Faraday e
ect, changeable refractive index, birefringence,
and anisotropy. And the magnetooptical performance can
be tuned by applying the external magnetic �eld [9–11].
�erefore, �ber magnetooptical sensors combined structures
through the MF and SMS have been successfully realized
[12–14]. �e previous wavelength-based demodulation �ber
sensing systems are complicated, expensive, bulky, and time-
consuming, which are not suitable for the outdoor real-time
monitoring. However, the intensity demodulation method
can directly detect the light intensity using a simple photo-
electric conversion device and hence own the features of low
cost, small size, and fast response time.

In this paper, a magnetic �eld sensor based on the
single-mode-multimode-single-mode (SMS) structure with
no-core �ber as the multimode section immersing in MF is
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Figure 1: Diagram of the SNS �ber structure.

investigated theoretically and experimentally. �e proposed
magnetic �eld sensor has the features of intensity encoding
and intensity multiplexing capabilities. More importantly,
the magnetic �eld sensor has a simple structure with the
potential for high sensitivity intensity-modulated magnetic
�eld measurements. Compared with �ber magnetic sensors
based on enhanced Bragg grating [15] and other optical �ber
sensors based on MF, such as MF in�ltrated photonic crystal
�bers [16, 17], Sagnac interferometers [18], cascaded blazing
gratings [19], and �ber tapers [20], the proposed scheme
features low cost, easy fabrication, and high sensitivity. �e
proposed structure has higher sensitivity of 0.097 dB/Oe
and modulation depth of 78% compared with the existing
magnetic �eld sensors based on SMS and MF, which are
mostly wavelength demodulation, such as the magnetic �eld
sensor with sensing sensitivity of 0.01939 dB/Oe by using a
square no-core �ber [12]. In addition, the proposed structure
reduces the complexity of sensing demodulation, which can
be realized easily without other auxiliary processes and the
splice loss is smaller. �erefore, the intensity demodulation
�ber-optic sensors are more practical and applicable than
wavelength demodulation sensors. �is structure sensor can
be used for magnetic �eld monitoring of civil infrastructure,
such as power plant.

2. Principle and Simulation

2.1. Principle of SMS. �e proposed magnetic �eld sensor is
based on the SMS structure and MF.�e SMS �ber structure
is fabricated by fusion splicing a speci�c length section of
step-index multimode �ber (MMF) between two sections
of standard single-mode �ber (SMF). In this paper, the
multimode �ber of the SMS structure is chosen as a section
of NCF. �e schematic con�guration of the proposed SMF-
NCF-SMF (SNS) �ber structure is shown in Figure 1.

When light transfers from SMF toNCF, a series of linearly
polarized modes {LP��} of NCF are excited. Due to the
circular symmetry of the SMF fundamental mode and the
ideal �ber, only the symmetric mode {LP0�} can be excited.
Hence, the input fundamental mode �eld distribution of the
NCF �(�, 0) can be written in terms of {LP0�} modes as
follows:

� (�, 0) =
�
∑
�=1

���� (�) , (1)

where ��(�) is the �eld distribution of {LP0�}, � is the radial
coordinate in the cross section of �ber, 	 is the number
of {LP0�}, and �� is the excitation coe�cient of the {LP0�}

mode. �� can be calculated by overlap integral between�(�, 0)
and ��(�), which can be expressed as

�� =
∫∞0 � (�, 0) �� (�) � ��
∫∞0 �� (�) �� (�) � ��

. (2)

In the NCF section, the �eld distribution is the result of
interferences of all the excited modes {LP0�} with di
erent
propagation constants, which depends on the length of NCF.
Given the length of NCF as �, the �eld distribution �(�, �)
can be written as follows:

� (�, ) =
�
∑
�=1

���� (�) exp (����) , (3)

where �� is the propagation constant of the {LP0�} mode.
When the NCF length meets the relation of ��� = �� (� =
1, 2, 3, . . .), this is de�ned as the reimaging point.

When the output �led distribution �(�, �) from NCF
transfers to the second SMF, the power coupling e�ciency
can be obtained through the overlap integral between �(�, �)
and �(�, 0). �e normalized output power spectrum can be
calculated by

� = 10 log10 [
[

�����∫
∞
0 � (�, �) � (�, 0) � �������

2

∫∞0 |� (�, �)|2 � �� ∫∞0 |� (�, 0)|2 � ��
]
]
. (4)

By simpli�cation, the normalized output power spectrum
also can be expressed as

� = 10 log10 [
[

�����∑��=1 ��2 ⋅ exp (−����)
�����
2

∑��=1 ��2
]
]
. (5)

2.2. Simulation of the Magnetic Field Sensing. In the simu-
lation, the SNS structure immersed into MF is designed as
the magnetic �eld sensor, and the MF can be recognized as
the cladding of NCF. �e SMF has a core diameter of 9�m
and the refractive indices of core and cladding are 1.4504
and 1.4447, respectively. �e NCF diameter is 125 �m and the
refractive index is 1.4447. �e refractive index of MF (EMG
705) is estimated to be about 1.42 [21].

Figure 2 shows the excitation coe�cients for {LP0�}
modes in NCF when the wavelength � is 1550 nm.�e mode
excitation coe�cient �rst increases and then decreases as
mode order increases. When the mode order increases to a
certain value of 18, the mode excitation coe�cient is approx-
imately 0. Moreover, the excitation coe�cient distribution
characteristic is di
erent for the certain mode order under
di
erent wavelength. It means that the interference pattern
of all the excited modes also is di
erent.

For the SNS structure, the optimal length of NCF can
be determined through the light propagation along NCF, as
shown in Figure 3. �e reimaging point � within the NCF is
at a  position 60mm.�e insets display the enlarged details
for the reimaging point � and the coupling point � between
SMF and NCF, which indicates that the interference pattern
for the two points almost is the same.
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Figure 2: Excitation coe�cient for modes with di
erent order in
NCF under a surrounding RI of 1.42.

−75
−50
−25

0
25
50
75

0
4
6
8
10
12
14

×1010

r
(

m
) RO

0.01 0.02 0.03 0.04 0.05 0.060

z (m)−20

Figure 3: Light propagation along the NCF.

�e MF is based on a commercial product of EMG 705.
Under magnetic �eld of 0–200Oe, the RI change of MF is
approximately 0.003 [22], and the attenuation coe�cient ��
changes in the order of 104 [23]. Due to the great absorption
characteristics of MF, (5) can be amended as follows:

�

= 10 log10 [
[

�����∑��=1 ��2 exp (− ��) ⋅ exp (−����)
�����
2

∑��=1 ��2
]
]
, (6)

where  � is the evanescent absorption coe�cient of the
{LP0�}mode with relation to the refractive index !� and the
attenuation coe�cient �� [24, 25].

Figure 4 shows the calculated transmission spectrum
of the SNS structure under di
erent magnetic �elds when
the NCF length is 59.8mm. As shown in Figure 4, there
are dips (A), (B), and (D) and peak (C) (reimaging point),
due to the principle of MMI. �e wavelength shi�s of dips
(A), (B), and (D) are very small, because the RI change
of MF under magnetic �eld varies lightly. However, in the
magnetic �eld sensor based on SMS structure immersing in
MF, the wavelength shi� is large under di
erent magnetic
�elds, because the smaller the NCF diameter, the larger the
sensitivity of SNS structure [3]. Furthermore, themodulation
depths of dips (A), (B), and (D) change greatly, which is
derived from the larger change of absorption coe�cients
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Figure 4: �e calculated transmission spectra of the SNS structure
under di
erent magnetic �elds.
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Figure 5: Schematic diagram of the experimental setup.

 � of MF under di
erent magnetic �elds. Moreover, the
reimaging point (peak (C)) also shows similar changing
characteristics. As the attenuation coe�cient �� increases
with increasing the magnetic �eld, the demodulation depths
of dips (A) and (D) and peak (C) are strengthened; however,
the demodulation depth of dip (B) is weakened.

�erefore, the SNS structure can be designed as a
magnetic �eld sensor based on the intensity modulation.
Compared to the previous scheme adopting a combination
with the wavelength shi� and intensity modulation [12, 13], it
can greatly reduce the complexity of sensing demodulation.

3. Experiments and Results

�e experimental setup of the proposed magnetic �eld
sensor is shown in Figure 5. It consists of a supercontinuum
broadband source (SBS) (NKT, SuperK COMPACT), an
optical spectrum analyzer (OSA) (Yokogawa AQ6375), a
sensor head based on aMMI and theMF, two electromagnets,
and a tunable voltage source (TVS). A SBS and an OSA
are used to record the transmission spectrum. �e sensor
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Figure 6: �e transmission spectra of the proposed sensors with
and without the immersion in MF.

head is formed by a MMI immersed in the MF. �e MMI is
constructed by splicing a section ofNCF (PrimeOptical Fiber
Co. Ltd., NCF125) between two SMFs (SMF-28e, Corning,
Inc.). �e NCF is made of pure silica, where the radius is
� = 62.5 �m, the length is � = 59.8mm, and its refractive
index is 1.4446.�e capillary is in�ltratedwithMF (EMG705,
Ferrotec, Inc.). �e density and saturation magnetization of

the MF are 1.19 g/cm3 (25∘C) and 220Oe, respectively. �e
two ends of the capillary are sealedwithUVglue.�e external
magnetic �eld perpendicular to the �ber axis is generated
by two electromagnets dynamically tuned by the TVS. �e
strength of the magnetic �eld is controlled by tuning the
magnitude of the supply current.�emagnetic �eld direction
is perpendicular to the optical �ber axis. A Tesla meter
(HT 108) with a resolution of 0.1 Oe is used to measure the
magnetic �eld intensity along the perpendicular axis. During
the experiment, the ambient temperature is kept at 25∘C.

�e transmission spectrum of the MMI before and a�er
immersing into the MF is shown in Figure 6, and a red-shi�
to long wavelength side occurs when the MMI is immersed
into the MF. By immersing the MMI section into the MF and
exploiting RI tunability of the MF under varying magnetic
�eld, a magnetic �eld sensor can be achieved.

Figure 7 shows the transmission characteristics of the
proposed sensor by tuning the TVS to change the magnetic
�eld strength (") ranging from 0 to 240Oe with a step of
15Oe. Each curve is recorded a�er 5min a�er speci�c " is
applied to ensure the stabilization of the spectrum. �ree
distinct interference dips and a peak are observed in the
wavelength range of 1450 to 1625 nm; that is, the interference
dip around 1461 nm is referred to as dip (A), while around
1495 nm it is referred to as dip (B) and around 1617 nm it
is referred to as dip (D), and the interference peak around
1552 nm is referred to as peak (C). peak (C) is the reimaging
point. With the magnetic �eld increases, the depths of the
interference dips (A) and (D) monotonously increase, and
it is reversed for dip (B). Moreover, the interference peak
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Figure 7: Transmission spectra of the proposed sensing structure at
magnetic �eld strength ranging from 0 to 206.44Oe.

(C) becomes shallower and shallower monotonously. �e
changing characteristics of experimental spectral response
con�rm well the simulation results.

�e experimental results can be explained by the tunable
refractive index !� and evanescent �eld absorption  � of the
MF.When an external magnetic �eld is applied to theMF, the
magnetic particles form the agglomeration and then chain-
like clusters. �e chain-like cluster of particles changes the
extinction coe�cient of MF, which determines the attenua-
tion coe�cient�� [23, 24].�e intensity attenuation ismainly
caused by the evanescent �eld absorption coe�cient  � of the
MF. According to the evanescent �eld absorption theory in a
multimode �ber [24], the change of  � is approximately in

the order of 101, and its in	uence on the intensity attenuation
is not negligible, whereas because the change of !� is only of
the order of 10−3, the wavelength shi� on the transmission
spectrum caused by the MMI is almost constant.

Figure 8 is an enlarged view of dip (A) and peak (C). �e
intensity of the interference dip (A) changes from −19.77 dB
to −34.70 dB as shown in Figure 8(a) and the intensity of the
interference peak (C) changes from −4.79 dB to −7.75 dB as
shown in Figure 8(b) with the increase of the magnetic �eld
strength. As in the principle simulation section, on one hand
the center wavelength of dip (A) and peak (C) hardly shi�s
with the change of the magnetic �eld; on the other hand the
intensities of peak (C) decrease and the intensities of dip (A)
increase with an increase of the magnetic �eld because of
the tunable RI and absorption coe�cient of MF. Similarly,
the intensity of dips (B) and (D) changes from −32.57 dB to
−21.70 dB and −28.56 dB to −47.67 dB, respectively.

�e intensity of dip (A) and peak (C) as a function of
external magnetic �eld is shown in Figure 9(a), indicating
that the intensity is linearly proportionally to magnetic �eld
strength in the range of 63.52–142.92Oe and 79.4–206.44Oe,
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Figure 8: Transmission spectra of (a) dip (A) and (b) peak (C) subjected to di
erent strengths of magnetic �eld.
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Figure 9: Intensities of (a) dip (A), peak (C) and (b) dip (B), dip (D) as functions of magnetic �eld.

respectively. Such linear relationship bene�ts practical sens-
ing application [26]. By linear �tting, the maximum sen-
sitivities of magnetic �eld are found to be 0.097 dB/Oe
and 0.0248 dB/Oe for dip (A) and peak (C), respectively.
Similarly, the linearly changing range for dips (B) and (D)
is 15.88–111.16Oe and 111.16–190.56Oe, respectively, with the
maximum sensitivities as 0.0626 dB/Oe and 0.071 dB/Oe,
respectively, which is shown in Figure 9(b). It is made clear
that the intensity of dips (A), (B), and (D) is larger than that
of peak (C), with the sensitivity of dip (A) being the largest
one.

Sensitivity is an important parameter of sensor perfor-
mance. High sensitivity is usually preferable in practical
application. Besides, considering the comprehensive sensing

properties of the proposed magnetic �eld sensor, the modu-
lation depth (	) is de�ned as [26]

	 = 1 − �min

�max

= �max − �min

�max

, (7)

where �max and �min are the maximum and minimum of
the intensity in transmission spectrum with the magnetic
�eld, respectively, and 	 is the contrast ratio between �max

and �min. �e modulation depth as a function is shown in
Figure 10.�emodulation depth of dip (A), peak (C), dip (B),
and dip (D) is 78%, 65%, 23%, and 61%, respectively, which
can be used for the sensing demodulation.

From (6), the transmission of dips (A), (B), and (D)
and peak (C) is related to the excitation coe�cient ��, the
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Figure 10: Modulation depth of (a) dip (A), peak (C) and (b) dip (B), dip (D) versus the strength of magnetic �eld.

evanescent absorption coe�cient  �, and the mode phase
���. For peak (C), it is a self-image point and the ideal
transmission is 100% if the evanescent absorption coe�cient
is zero. However, the intensity of peak (C) will vary a
little if the evanescent absorption coe�cient exists. Similarly,
the intensities of dips (A), (B), and (D) will also vary if
the evanescent absorption coe�cient exists. However, the
variations of intensities of dips (A), (B), and (D) will have
larger variations because the previous values are on a much
lower level, while the intensity of peak (C) is on a larger level.

Considering the sensitivity and modulation depth, dip
(A) with a larger sensitivity is more suitable for practical
sensing application. �e sensitivity of the proposed structure
is higher (0.097 dB/Oe) than that of [12] (0.01939 dB/Oe).

4. Conclusions

In conclusion, an intensity-modulated magnetic �eld sensor
based on the combination with SNS structure and MF is
investigated theoretically and experimentally. �is sensor
has a high sensitivity of 0.097 dB/Oe and high modulation
depth of 78% in a relatively linear range. It has features
including low cost, ease of fabrication, compactness, and high
sensitivity, which suggests that the proposed sensor is simple
and e
ective in the measurement of magnetic �eld.
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