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Abstract. In this note we will generalize the Higman-Haemers inequalities for generalized polygons to thick
regular near polygons.
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1. Introduction

The reader is referred to the next section for the definitions.
Generalized n-gons of order (s, t) were introduced by Tits in [12]. Although formally

n is unbounded, a famous theorem of Feit-G. Higman asserts that, apart from the ordi-
nary polygons, finite examples can exist only for n = 3, 4, 6, 8 or 12. (See [5] and [3,
Theorem 6.5.1].)

If s > 1 and t > 1, then n = 12 is not possible. Moreover in the case of n = 4, 6, 8, D.G.
Higman [8, 9] and Haemers [7] showed that s and t are bounded from above by functions
in t and s, respectively. To show this they used the Krein condition. (See also [3, Theorem
6.5.1].)

Let � be a thick regular near 2d-gon of order (s, t) and let ti := ci − 1 for all 1 ≤ i ≤ d.

Brouwer and Wilbrink [4] showed

d−1∑
i=0

(−1

s2

)i i∏
j=1

(
t − t j

1 + t j

)
≥ 0.

This was proved from the Krein condition qd
dd ≥ 0. If d is even, then 1 + t ≤ (s2 + 1)

(1 + td−1).
A similar result was shown by Mathon for regular near hexagons.
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In this note we are going to show that for thick regular near 2d-gons of order (s, t), t is
bounded from above by a function of s and the diameter d.

In particular, we show the following results. We will only use the multiplicity of the
smallest eigenvalue to show those results.

Theorem 1 Let � be a distance-regular graph of order (s, t) with s > 1. Let d be the
diameter of �, r := max{i | (ci , ai , bi ) = (c1, a1, b1)} and ρ := d

r . Suppose −t − 1 is an
eigenvalue of �. Then t < s4ρ−1.

Corollary 2 Let � be a thick regular near 2d-gon of order (s, t). Let r := max{i |
(ci , ai , bi ) = (c1, a1, b1)} and ρ := d

r . Then the following hold.
(1) t < s4ρ−1.

(2) If r �∈ {1, 2, 3, 5}, then t < s7.

A generalized 2d-gon of order (s, t) is a regular near 2d-gon of order (s, t) with d = r +1.

It is known that if a generalized 2d-gon of order (s, t) exists, then there exists a generalized
2d-gon of order (t, s) which is known as dual. So as a consequence of this corollary we
will show that for generalized 2d-gons we can bound s and t by functions in t and s,
respectively.

Let � be a generalized 2d-gon of order (s, t). Then the following hold.

(1) If s > 1, then t < s
3d+1
d−1 .

(2) If t > 1, then s < t
3d+1
d−1 .

The bound given by Higman [8, 9] and Haemers [7] can be proved without using the
Krein condition although the bound proved here is a bit weaker.

Let us consider another consequence of Corollary 2. Suppose it is true that for given
s and t there are only finitely many regular near 2d-gons of order (s, t). Then for given
s ′ > 1 there are only finitely many regular near 2d-gons of order (s ′, t ′) with r = max{i |
(ci , ai , bi ) = (c1, a1, b1)} ≥ 6. Furthermore, for a regular near 2d-gons of order (s ′, t ′) the
diameter d is bounded by a function in s ′.

2. Definitions

Let � = (V �, E�) be a connected graph without loops or multiple edges. For vertices x
and y in � we denote by ∂�(x, y) the distance between x and y in �. For a vertex x in �

and a set L of vertices we define ∂�(x, L) := min{ ∂�(x, z) | z ∈ L }.
The diameter of �, denoted by d , is the maximal distance of two vertices in �. We denote

by �i (x) the set of vertices which are at distance i from x .
A connected graph � with diameter d is called distance-regular if there are numbers

ci (1 ≤ i ≤ d), ai (0 ≤ i ≤ d) and bi (0 ≤ i ≤ d − 1)
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such that for any two vertices x and y in � at distance i the sets

�i−1(x) ∩ �1(y), �i (x) ∩ �1(y) and �i+1(x) ∩ �1(y)

have cardinalities ci , ai and bi , respectively. Then � is regular with valency k := b0.
Let � be a distance-regular graph with diameter d. The array

ι(�) =




∗ c1 · · · ci . . . cd−1 cd

a0 a1 · · · ai . . . ad−1 ad

b0 b1 · · · bi . . . bd−1 ∗




is called the intersection array of �. Define r = r (�) := max{i | (ci , ai , bi ) = (c1, a1, b1)}.
The numerical girth of � is 2r + 2 if cr+1 �= 1 and 2r + 3 if cr+1 = 1.

By an eigenvalue of � we will mean an eigenvalue of its adjacency matrix A. Its multi-
plicity is its multiplicity as eigenvalue of A. Define the polynomials ui (x) by

u0(x) := 1, u1(x) := x/k, and

ci ui−1(x) + ai ui (x) + bi ui+1(x) = xui (x), i = 1, 2, . . . , d − 1.

Let ki := |�i (x)| for all 0 ≤ i ≤ d which does not depend on the choice of x .

Let θ be an eigenvalue of � with multiplicity m. It is well-known that

m = |V �|∑d
i=0 ki ui (θ )2

.

For more information on distance-regular graphs we would like to refer to the books
[1–3] and [6].

A graph � is said to be of order (s, t) if �1(x) is a disjoint union of t + 1 cliques of size s
for every vertex x in �. In this case, � is a regular graph of valency k = s(t + 1) and every
edge lies on a clique of size s + 1. A clique of size s + 1 is called a singular line of �.

A graph � is called (the collinearity graph of ) a regular near 2d-gon of order (s, t)
if it is a distance-regular graph of order (s, t) with diameter d and ai = ci (s − 1) for all
1 ≤ i ≤ d.

A regular near 2d-gon is called thick if s > 1.

A generalized 2d-gon of order (s, t) is a regular near 2d-gon of order (s, t) with d = r +1.

More information on regular near 2d-gons and generalized 2d-gons will be found in [3,
Sections 6.4–6.6].

3. Proof of the theorem

In this section we prove our theorem. First we recall the following result.
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Proposition 3 [11, Proposition 3.3] Let � be a distance-regular graph with valency k,

numerical girth g such that each edge lies in an (a1 + 2)-clique. Let h be a positive integer.
Suppose θ = − k

a1+1 be an eigenvalue of � with multiplicity m. Then the following hold.
(1) If g ≥ 4h, then

m ≥ 1 + ka1

a1 + 1

bh
1 − 1

b1 − 1
.

(2) If g ≥ 4h + 2, then

m ≥ 1

a1 + 1
+ a1(a1 + 2)

a1 + 1

bh+1
1 − 1

b1 − 1
.

Lemma 4 Let � be a distance-regular graph of order (s, t) with diameter d. Suppose
−t − 1 is an eigenvalue of � with multiplicity m. Then for any integer i with 0 ≤ i ≤ d,

the following hold.
(1) Let C be a clique of size s + 1 and x ∈ V � with ∂�(x, C) = i. Then

αi := |{z ∈ C | ∂�(x, z) = i}|

does not depend on the choice of C and x . Furthermore, ∂�(x, C) ≤ d − 1 for any
vertex x in �.

(2) There exists an integer γi such that ci = γiαi−1 and bi = (t + 1 − γi )(s + 1 − αi ).
(3) Let u j := u j (−t − 1) for all 0 ≤ j ≤ d. Then for all 1 ≤ j ≤ d we have

u j =
( −α j−1

s + 1 − α j−1

)
u j−1.

In particular,

u2
i ≥

(
1

s

)2i

.

(4) m ≤ s2d with equality if and only if s = 1.

Proof: (1) See [4, Lemma 13.7.2].
(2) Let x and y be vertices in � at distance i. Let γi be the number of singular lines

through y at distance i − 1 from x . Each such clique has αi−1 vertices which are at distance
i − 1 from x . Hence we have ci = γiαi−1. There are t + 1 − γi singular lines through y at
distance i from x . Each such clique has s + 1 −αi vertices which are at distance i + 1 from
x . Then we have bi = (t + 1 − γi )(s + 1 − αi ).

(3) We prove the first assertion by induction on j. The case j = 1 is true since u0 =
1, u1 = − 1

s and α0 = 1.
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Assume 1 ≤ j ≤ d − 1 and α j−1u j−1 = −(s + 1 − α j−1)u j . Then we have

b j u j+1 = (−t − 1 − a j )u j − c j u j−1

= {−t − 1 − (t + 1)s + c j + b j }u j + γ j (s + 1 − α j−1)u j

= {−(t + 1)(s + 1) + γ jα j−1 + (t + 1 − γ j )(s + 1 − α j )

+ γ j (s + 1 − α j−1)}u j

= −(t + 1 − γ j )α j u j

from (2). The first assertion is proved. Since

( −α j−1

s + 1 − α j−1

)2

≥
(

1

s

)2

,

the second assertion follows from the first assertion.
(4) We have

M :=
d∑

i=0

ki u
2
i ≥

d∑
i=0

ki

(
1

s

)2i

≥
(

1

s

)2d d∑
i=0

ki = |V �|
s2d

.

Hence

m = |V �|
M

≤ s2d .

Proof of Theorem 1: We remark that a1 = s − 1 and b1 = st. Let g be the numerical
girth of �.

First we assume r is odd with r = 2h − 1. Then g ≥ 2r + 2 = 4h and

m >
ka1

a1 + 1
bh−1

1 = (t + 1)(s − 1)(st)h−1 > sh−1th

from Proposition 3 (1). It follows, by Lemma 4 (4), that

s(4h−2)ρ = s2d ≥ m > sh−1th .

The desired result is proved.
Second we assume r is even with r = 2h. Then g ≥ 2r + 2 = 4h + 2 and m > bh

1 from
Proposition 3 (2). Hence we have

s4hρ = s2d ≥ m > (st)h .

The desired result is proved.
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In [10], we have shown the following result.

Proposition 5 Let � be a thick regular near 2d-gon with r = r (�). If 2r + 1 ≤ d then
for any integer q with r + 1 ≤ q ≤ d − r there exists a regular near 2q-gon as a strongly
closed subgraph in �. In particular, r ∈ {1, 2, 3, 5}.

Proof of Corollary 2: It is known that a regular near 2d-gon of order (s, t) has an
eigenvalue −t − 1. Moreover if r �∈ {1, 2, 3, 5}, then d ≤ 2r from Proposition 5. Therefore
the corollary is a direct consequence of Theorem 1.
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