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A HILBERT SPACE OF DIRICHLET SERIES AND
SYSTEMS OF DILATED FUNCTIONS IN L2(0, 1)

H/KAN HEDENMALM, PETER LINDQVIST, AqD KRISTIAN SEIP

1. Introduction. The purpose of this paper is twofold. First, we study systems
of functions of the form qg(x), o(2x), qg(3x),..., and second, we consider the
Hardy space H 2 of the infinite-dimensional polydisk. Building on ideas of Arne
Beurling and Harald Bohr, we find that the two topics are intimately connected,
the common feature being the use of Dirichlet series.

Let tp L2(0, 1) be given and consider tp as defined on the whole real axis by
extending it to an odd periodic function of period 2. The Riesz-Fischer theorem
of Fourier analysis states that for tp(x)=/ sin(nx) the sequence q(nx),
n 1,2, 3,..., is an orthonormal basis in the Hilbert space L2(0, 1). The ques-
tion raised in this paper is which functions can take the place of the sine in this
theorem. It is clear that the statement must be weakened, because the only
orthogonal bases are obtained from tp(x)= C sin(nx). If we instead ask for a
classification of those p for which the system {o(nx)}n is a Riesz basis (a basis
orthonormal with respect to an equivalent norm) or of those o for which the
same system is a complete sequence in L2(0, 1), we are led to profound problems.
The latter of the two problemsmthe completeness problem--was stated by

Beurling in his seminar on harmonic analysis in Uppsala in 1945. A brief note
from this seminar is found in [1]. Beurling’s note indicates that a natural way to
approach these problems is to associate to the given function

q(x) anv sin(mrx)
n=l

the Dirichlet series

SO(s)

_
a,,n- (1-1)

n=l

and to try to express the Riesz basis and completeness properties in terms of
analytic properties of Sq(s). This approach has proved fruitful. We have solved
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completely the Riesz basis problem (Theorems 3.1 and 5.2 below): the system
{tp(nx)}n is a Riesz basis in L2(0, 1) if and only if (1-1) defines an analytic function
bounded awayfrom zero and infinity in the half-plane Ns > O.
A major part of this paper consists of a study of Dirichlet series of the form

(1-1) withn lal 2 < +. Such Dirichlet series form, in a natural way, a Hilbert
space of analytic functions on the half-plane Ns > 1/2. From now on, we denote
this space by . In Sections 2 through 4, we seek to reveal the basic analytic
features of this space. A central problem is to characterize the so-called multi-
pliers of J’. Theorem 3.1 below states that the multipliers are precisely the
bounded analytic functions in the right half-plane s > 0 which can be represented
as Dirichlet series. This result is crucial for the characterization of the Riesz
bases {qg(nx)}n mentioned above. Apart from its relevance for the dilation Riesz
basis problem, the study of the space can also be motivated by the mere fact
that its kernel function K(z, w) is more or less the Riemann zeta function:

w) +
Following an idea of Bohr, we find it both convenient and illuminating to use

the infinite-dimensional polydisk for the study of Jet. This leads us to power
series in infinitely many variables, a concept studied already by Hilbert, and to
an identification of g as the Hardy space H 2 of the infinite-dimensional poly-
disk. The infinite-dimensional polycircle can be identified with the group E of
complex-valued characters Z on the positive integers, which satisfy Iz(n)[ 1
and jr(ran) g(m);t(n). The characters constitute the (compact) dual group of the
discrete multiplicative group of positive rationals (tl)+, .).
A function f g is said to be cyclic provided that the collection of functions

fg, where g is a finite Dirichlet series, is dense in Jg’. A basic observation is that
the system {qg(nx)}n is complete if and only if the Dirichlet series Sip is cyclic in
Jog’. We restate cyclicity in terms of our model of as the H 2 space of the infinite-
dimensional polydisk, and state some conditions for cyclicity. There is some
overlap between these conditions and results due to Henry Helson [16], who
studied cyclicity in a more general context.

Since the multipliers of Jet’ extend analytically and boundedly to Ns > 0, but
the functions of g need only be analytic on Ns > 1/2, one is led to suspect
that, nevertheless, in a sense to be made precise, a function in t’, picked at ran-
dom, almost surely extends holomorphically to Ns > 0. Given a Dirichlet series
in

f(s) E ann-S’
n=l

we consider, for characters

n=l
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which again is an element of. The functions fz are the normal limits of vertical
translates of f. Almost every one of them has a convergent Dirichlet series on
s > 0, and is hence holomorphic there. The "almost every" is with respect to the
Haar measure on the character group E, which is normalized to have total mass 1.
This result was obtained in a more abstract setting by Helson [16]. A curious
consequence is that a probabilistic "Riemann hypothesis" (Corollary 4.8) holds: for

--’n=l z(n)n converges to aalmost all characters ;t, the Dirichlet series z(s) -s

zero-free holomorphic function in the region Ns > 1/2. The convergence part has
the following interpretation: for almost all characters Z,

N

E z(n) O(N 1/2+e’)
n=l

as N +v

holds for fixed e > 0. For each n, it is fruitful to regard the function z(n) as a sto-
chastic variable, which for n > 1 is uniformly distributed on ql’. The stochastic
variables 7,(P), where p runs through the primes, are then mutually independent,
and the mutual dependence of the )(n), as n runs through the positive integers, is
governed by the multiplicative rule jr(ran) ;t(m);t(n). The above estimate of the
partial sum En:n<N (n) is what one would expect if all the z(n) were mutually
independent, so although they do satisfy complicated multiplicative dependence
relations, this is insignificant additively.
The above-mentioned assertions may be compared with Jean-Pierre Kahane’s

paper [18] on random Dirichlet series. Kahane works with functions fz(s),
where ;(n) is treated as a sequence of independent random variables, and hence
no multiplicativity property holds.

In [15], Helson suggests that the classical theory of Dirichlet series be com-
bined with modern techniques from harmonic and functional analysis. We hope
that the present paper can inspire work in that direction.

2. The Hilbert spaces and H2(D)
2.1. The space and preliminaries on Dirichlet series.

with Dirichlet series of the form
We are concerned

f(s) E ann-S’ (2-1)
n=l

where s tr + it is a complex variable. We recall briefly some classical facts about
such series. There are a number of critical lines or abscissae connected with (2-1).
We have the abscissa of absolute convergence ira and the abscissa of ordinary con-
vergence trc. These numbers are such that the series converges in the prescribed
sense to the right but not to the left of the abscissa in question. We also have the
abscissa ofuniform conver#ence tru, defined as the infimum of those tr0 for which the
series converges uniformly in the half-plane s > tr0. We have trivially - <
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trc < tru < tra <+ and tra- trc < 1 if anyone of the abscissae is finite. A theorem
of Bohr [4] says that tra tru < 1/2, and this inequality is sharp, as was shown by
Bohnenblust and Hille [2].
When we need to indicate which function we are taking the abscissae of, we do

this by putting the function in parenthesis; for instance, we would write try(f) for
the abscissa of convergence. In terms of the partial sums of the coefficients,
SN ,n:n<,N an, the abscissa of convergence of the Dirichlet series (2-1) can be
expressed as follows: unless trc(f) is negative, try(f) equals the infimum of all
positive real numbers for which Sv O(N) as N +.
Of relevance to us also is the abscissa of regularity and boundedness trb, which

is the infimum of those tr0 for which the function defined by (2-1) (possibly by
analytic continuation from a smaller half-plane) is analytic and bounded for
Ns > tr0. We shall need the following result of Bohr [3].

LEMMA 2.1 (Bohr’s theorem). We have tru trb.

For a more complete account of the basic facts on the convergence of Dirich-
let series, the reader is referred to [12] and Bohr’s thesis [5].
We will assume that the function f given by the Dirichlet series (2-1) belongs

to a’; that is,

’ la,,I 2 < +m. (2-2)
n=l

The Cauchy-Schwarz inequality yields

[ann-l < [a, n-2r

n=l n=l n=l

s=tr+it,

and so the abscissa of absolute convergence is at most 1/2 for the series (2-1).
The abscissa of convergence may equal 1/2, as is seen by the example an--
(n/ log(n + 1))-.
As mentioned in the introduction, the collection of Dirichlet series (2-1) sat-

isfying (2-2) is denoted by af It is a complex Hilbert space when endowed with
the inner product

(f 9) Y anon,
n=l

where f(s)= ,n ann-s, and 9(s)= ,nbnn-s. Thus, formally, g is just /2(IN),
where ]N { 1, 2, 3,...} is the collection of natural numbers. However, as a Hilbert
space of analytic functions in the half-plane Ns > 1/2, acg has a rich and interesting
structure. To be specific, let us mention the classical problem of multiplication of
two Dirichlet series. Formally, the product off(s) , ann-s and O(s) ,n bnn-s
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is again a Dirichlet series

f(s)g(s) Cnn-s, (2-3)

with

akbl
k,l:kl=n

For f e and g e, the product fg need not be in , although the abscissa of
absolute convergence of (2-3) can be shown to be at most 1/2 (as it is for func-
tions in ’). We are led to the multiplier problem: Find those functions m, ana-
lytic in Ns > 1/2, for which m(s)f(s) is in for every f e ’. The collection of
these multipliers m is denoted by ’. Theorem 3.1 below solves the multiplier
problem.

Let us finally mention a classical theorem, which we will refer to from time to
time. We say that a set of real numbers 1, 2,..., r is -linearly independent if

C11 -]- C22 -]-’’"-t- Crr 0

holds with integer coefficients cl, c2,..., Cr only when the coefficients are all zero.
By the fundamental theorem of arithmetic, the prime example of a -linearly
independent set of numbers is the image under the logarithm function of any finite
set of different primes. We have the following fundamental lemma.

LEMMA 2.2 (Kronecker’s theorem). Suppose the real numbers 1, 1, oq2,..., tk
are -linearly independent. Let 1, o2,..., k be arbitrary real numbers, and N and
e be #iven positive. Then there are integers

n > N, ql, q2,..., qk

such that

(m= 1,2,...,k).

For a proof, we refer to Chapter XXIII of [13].
To give an example of how Kronecker’s theorem applies to our context, we

mention that an immediate consequence is the following identity:

1 + app-s
p

here the sum is only over prime indices, and

Ilflloo sup If(s)l. (2-4)
s>0
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2.2. The Hardy space H 2 of the infinite-dimensional polydisk. Let f b the
Dirichlet seris (2-1), and suppose f W. A fundamental observation, first made
by Bohr [4], is that if we put

where Pm denotes the mth prime, then, in view of the fundamental theorem of
arithmetic, the Dirichlet series (2-1) can be considered as a power series of infinitely
many variables. The point is, as Bohr clarifies in his work, that the quantities
Zm--pm-S,m- 1, 2, 3,.. "obwohl sie ja in Wirklichkeit Funktionen nur des einen
Parameters s sind, sich in mancher Beziehung fast ganz benehmen, als wren sic
yon einander unabhingige Variable." We put z= (Zm)m (Zl,Z2, Z3,...), and
write

Vl 2 Vrr Vk Fk2 Pk,

so that (2-1) formally takes the form

vl v2. yr. (2-5)(z)
n=l

From now on, for a given element f , f denotes the corresponding power
series, and we drop the relationship between z and s.

Another, sometimes more convenient, way to think of the extensionf of f in
(2-5) is to write it as

f() E an(n), (2-5’)
n=l

where is a quasi-character, by which we mean a mapping b: ]N --* , which is
multiplicative, b(mn) b(m)(n), and has (1) 1 and b(n) e ID for n > 1. Here,
ID is the open unit disk. If we put, for the mth prime Pro, qk(pm) Zm, and identify b
with z (2m)m, then (2-5) and (2-5’) express the same function f. The Cauchy-
Schwarz inequality applied to (2-5) (or (2-5’)) and Euler’s product formula give

I zf( )l I zf(O)l: .< I .l: 10(")l:
n=l n=l

-Ilfll.H(1 -ICb(P)12)-1 ]]fll" H (1 -IZm]2) -1
p m=l

provided that IZml < 1 for every m. It follows that we have bounded point evalua-
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tion at z, id est,

[f(z)l < C(z)

if and only if [Zm[ < 1 for every m and

[zml 2 < +c.
m=l

We denote by D the set of z (Zm)m=l for which [Zm] < 1 for every m, and
call it the infinite-dimensional polydisk. The collection of power series (2-5) with
f e vf can be regarded as a space of analytic functions on D/2(N). We
denote this space by H2(ID) and supply it with the Hilbert space structure
induced by g. Note that H2(D) differs from only in that its elements are
considered as functions on Dc/2(N) rather than on the half-plane Ns > 1/2.
In other words, results from considering (2-5’) for the special quasi-characters
(n) -’.

Before discussing further the nature of H2(D), we mention an interesting
problem, treated already by Hilbert [17]: Is it possible to extend the meaning of
(2-5) beyond the set Dc/2(IN), at least under certain favorable cirumstances?
As indicated by Bohr, Hilbert’s solution to this problem has a remarkable signi-
ficance for Dirichlet series [4]. Let

’--- {Z (Zm)m ]D: IZml < tim for every m},

where {m}m is a sequence of positive numbers, 0 < tim < 1. For a given point
z (zl, z2,...) e D, we put

g (m) (Z1,Z2,...,Zm,0,0,...),

id est, the j th coordinate for j > rn is put equal to zero. For the time being, let f be
a Dirichlet series (2-1), about which we assume only that it converges on some half-
plane Ns > ac. (We do not require (2-2) to hold.) The formal power series f(z (m))
is the "rote Abschnitt" off at z, and it only depends on the finitely many coor-
dinates Zl,..., Zm. If the "mte Abschnitt" converges absolutely on f for each m,
and there exists a constant C C(f) such that

If(z(m))[ < C, z a,

independently of m,f is said to be finitely bounded in f. In particular, the col-
lection of seriesf that are finitely bounded in D is denoted by H (D), and
we write

sup [f(z(m))l
mz
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where z ranges over D. It is natural to define the value of f(z) as the limit of
f(z (m)) as m +o. The limit makes sense for z D c c0(N), where c0(N) is
the closed subspace of l(]N) of sequences that converge to zero. Moreover, the
function f(z) is a bounded analytic function on D cc0(N). Indeed, by the
Schwarz lemma, we have, for n < m,

For z D c0(N), the maximum on the right-hand side tends to zero as both n
and m tend to infinity, so that the above estimate says that the f(z (m)) form a
Cauchy sequence in the space of bounded analytic functions onD coON). We
note that the supremum of [f(z)l on D c c0(lN) agrees with the norm of f in

It follows from our proof of the multiplier theorem in the next section that
H (]D) corresponds to the set of Dirichlet series representing bounded analytic
functions ins > O; in fact,

(2-6)

This norm identity reflects in a concise way Bohr’s observation that the p-S behave
as "independent variables."
Thus far, we have thought about the space H2(ID) as the Hardy space H 2 on

the infinite-dimensional polydisk ID. A perhaps more natural setting is to
regard the spaces H2(ID) and H (ID) as function spaces on the distinguished
boundary 11". To this end, we need a group-theoretical identification of 11",
which we shall now describe. Suppose that ; :iN tE satisfies

(i) 7.(ran) 7(m)7.(n), m, n 1, 2, 3,...,
(ii) I; (n)l 1.

We say that Z is a character and write Z e E. We tacitly understand that z(n-1)
z(n) -1, so that the multiplicative formula holds for all positive rational numbers
+. The characters constitute the dual group of ((I)+, .}. (+ is given the discrete
topology, so that the space E of characters is compact.) Examples of characters are
the unit character z(n) =- 1, and, more generally, for

z(n) n it e it log n.

The space E can be identified with the infinite-dimensional polycircle 11" in the
following way. Given a point z (zt,z2,...) oo, we define the value of ; at the
primes through

Z(2) gl, Z(3) z2,..., Z,(Pm) gin,...

and extend the definition multiplicatively. This then yields a character, and clearly,
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all characters are obtained by this procedure. This provides a natural identification
of the character space E with I1. The product topology on I1 makes it a com-
pact space, and it is easily shown that it corresponds to the topology E gets as a
dual group, so that the identification E Ir is topological. There exists a unique
(apart from normalization) Haar measure on E, which we identify with the ordi-
nary product measure p on Ir. More precisely, let 2 be the arc length measure on
I1, normalized so that 2(’I) 1, and put, for Borel subsets El, E2,..., EN of,
and E E1 x E2 x EN x x Ir x c,

p(E) 2(E1)2(E2) x... x 2(EN);

this defines a Borel measure p on I, which coincides with the Haar measure on
E, once it is agreed that the Haar measure should have total mass 1. We shall
think of p as living on E as well as on Ir
We return to the setting of the function f given by (2-1). The series

_anz(n) (2-7)
n=l

converges in the norm of L2(E, p) (though we do not know if we have pointwise
convergence almost everywhere) to a function f(z), which is determined uniquely
by the two requirements that it be in L2(E, p) and that

,(q)3f(z) dp(7,) aq q+,

where we declare a 0 for q + \IN. This function f is an extension to the
characters of the earlier defined function f on the quasi-characters. Our short-
hand for the above relationship between the function f(z) and the coefficients
{an}n will be

n

It is clear that the Plancherel identity

Ifl2dp la.I 2 Ilfll 2
n=l

holds.
Let H2(E) (also written as H2(11’)) be the closed subspace of L2(E, p) con-

sisting of functions that can be expanded in a series (2-7), with {a,}, I2(]N).
Furthermore, let H(E) be the intersection L(E, p) c H2(E), which is a closed
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subspace of L (E, p). To get the connection between the Hardy spaces on the
distinguished boundary 11 and on the interior D, we need the operator
: H2(qF) H2(D), which associates with a function g(t)~ ],bz(n) in
H2(E) the function fg() -,n bn(n) for quasi-characters D c/2(IN). It is
clear that it is an isometric isomorphism. The operators , , and are related
via .
LEMMA 2.3. The operators : g --+ H2(E) and : H2(E) -- H2(ID) are iso-

metric isomorphisms. Furthermore, the restriction of ft, to H(E) is an isometric
isomorphism H (E) H (D).

Proof. The first part just restates what was already done above. For the rest,
we can refer to [8], where it is shown that the space H(p) is canonically iso-
metrically isomorphic to both H on ID c0(IN) and on lDc/2(IN). In [8],
H (p) is defined as the weak-star closure in L(qF, p) of the infinite-dimen-
sional polydisk algebra A(ID). We have the inclusion H(p) c H2(qr), and by
inspection, the above canonical mapping coincides with our . It follows that it
suffices to check that the spaces H(p) and H(qF) are the same as (closed)
subspaces of L (E, p). Since both H (p) and H (qF) are subspaces of H2(’I),
it is enough to check that their images under coincide. In [8], it was shown
that the operator was in fact furnished by integrating against the Poisson ker-
nel in each variable, so that applied to H (IF) consists of bounded analytic
functions on Dc/2(IN). By the above-mentioned result from [8], the assertion
of the lemma follows.

2.3. Vertical limit functions. The notion of characters allows us to clarify an
important property of t. A natural unitary operator on is that of vertical
translation,

Tz f(s) f(s + iz).

Fix an f z Jcd. To every sequence zn of translations, there exists a subsequence, say
Zn(k), such that T,lk f(s) converge_s uniformly on compact subsets of the domain
s > 1/2 to a limit function, say f(s). We will say thatf is a vertical limitfunction
off. We have the following result.

LEMMA 2.4. The vertical limit functions of the function f f given by (2-1)
coincide with the functions of theform

k (s) Z a"x(n)n-S’ (2-8)
n=l

being a character.

Proof. It is clear that every vertical limit function is of the form (2-8). The
fact that every function of this form is a vertical limit function is a consequence
of Kronecker’s theorem (Lemma 2.2).
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3. The theorem on multipliers. We put

+ {s tr+ it e : tr > 0},

and let, as usual, H(C+) denote the set of bounded analytic functions on C+. By
fl we denote the collection of functions f which can be represented by a con-
vergent Dirichlet series

s(si-Z ,,-s

n=l

in some half-plane ac < .s < +oe. A multiplier m on o is by definition a holo-
morphic function on the half-plane Ns > 1/2 with the property that mf 3/g

whenever f e og. By standard functional analysis, the operation of multiplying by
a multiplier is a bounded operator on sod, and the multipliers form a commutative
Banach algebra. The collection of all multipliers on og is denoted by t’. We find it
convenient to consider a multiplier both as a function and as a bounded linear
operator on og. The operator norm of m is denoted by Ilmll and the supremum
norm in+ by Ilmlloo.
Our theorem on multipliers can be stated as follows.

THEOREM 3.1.
for m l.

We have [= fl cH(IE+). Moreover, Ilmll- Ilmlloo holds

The proof of Theorem 3.1 splits into two parts.

3.1. Proof that ,[/l c cH(IE+) and Ilmlloo Ilmll. Let m e //be given.
The idea of the proof is to show that m lifts to a multiplier on H2(D), from
which we deduce that it belongs to H(ID). This then entails that m is a
Dirichlet series and that it is bounded throughout IE+. Since 1 s’, we have
m e o, and hence

oo 1
m(s) E bnn-S’ ,s > -rl=l

where the sequence {bn}n is in 12(N). So, if we apply the operator to m and f,
where f e Jrg, we get that both m and f are in Ha(E). Consequently, their
product mf is in LI(E,p). Since m is a multiplier, we have mf /’, so that
(mf) H2(E). We wish to prove that (mf) m 3f as functions in L(E, p).
To this end, note that for finite Dirichlet series f, this is verified by direct calcu-
lation. The general case when f s oeg is arbitrary then follows by approximating f
with finite Dirichlet series.

Since Ilmflle < Ilmllll.flle, we get, by successively plugging in f= 1,m,
mE,..., that IImlle < Ilmll holds for j 1, 2, By what we just did, (mJ)
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(3m)j, so that

Asj +c, the left-hand side tends to IIml[L(,p). We conclude thatm belongs
to L(E,p) as well as H2(E); that is, mH(E). It also follows that
IImll(_=) < Ilmll. By Lemma 2.3, the functionm (m is in H(D), and
its norm equals the norm ofm in H (E). Recall that by Hilbert’s approach to
power series of infinitely many variables, the functions in the space H (D) are
bounded and analytic in D c c0(N), and that the formula giving g)m on (part of)
the quasi-characters is

m(b) bnqk(n), b ]D /2(IN).
n=l

Plugging in the special quasi-character qs(n) n -s, we get our function m(s) back:
m(s) m(bs) for s > 1/2. Since bs depends analytically on the parameter s
and is in ID c c0(IN) for s > 0, the fact thatm is bounded and holomorphic
on ID c0(IN) entails that m(s) is bounded and analytic in rE+, and Ilmlloo <
[lmll(D) IImll(_) < Ilmll.

3.2. Proof that c n(tE+) c /g and Ilml[ < [[ml[oo. The key to the proof
of the converse relation is the following lemma, which is due to Fritz Carlson
[7].

LEMMA 3.2 (Carlson’s theorem). Let f(s)= nm__l ann-s be converoent (and
hence analytic) in IE+ and bounded in every half-plane (s) > 6 with 6 > O. Then,
for each a > O,

lim
1 IT ]f(a + it)l 2 dt.

T--++o" T

An immediate corollary is the following.

LEMMA 3.3. If f(s) o -s---n=l ann is convergent and bounded in rE+, then
f 9ff and

( 1j
T )1,2I[fll. lim +m’ -Ta---O+ T

[f(a + it)l 2 dt

Remark. Note that together with Lemma 2.1, Lemma 3.3 implies Bohr’s
inequality aa-tru < 1/2.
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We carry on with the proof, and suppose that

m(s) Z bnn-S
n=l

converges in some half-plane Ns > a0, and that it extends boundedly and hol-
omorphically to E+. Then, by Bohr’s theorem (Lemma 2.1), the Dirichlet series
defining re(s) actually converges uniformly to m(s) on every half-plane Ns > e,
with e > 0. Let f e g have Dirichlet series ,__ a,,n -s, and introduce, for
N 1, 2, 3,..., the cutoff series

N

fN(S) E ant-s
n=l

serE.

The function mfN is given by a convergent Diriehlet series in E+, and it is bounded
there. We can now apply Lemma 3.3 to the function mfu, to obtain

Since Ilmfll o < SUPN Ilmfllo, it follows that

Ilmfll < Ilmllllfllo,

which completes the proof of Theorem 3.1.

Remark. In the proof of Theorem 3.1, we acually prove that the multipliers
on g may be identified with the space H (IDa). It is remarkable that just being
able to extend the function m ovg’ holomorphically and boundedly to E+ should
entail that the function m H2(ID) is bounded on Dc 12(iN) (and hence
bounded and analytic on ID c c0(IN)). After all, the condition on m just corre-
sponds to the behavior ofm along the one-dimensional complex variety which
is the image of+ under s

4. Some function theoretic properties of. We first recall some results from
ergodic theory. We then turn to the almost-sure behavior of the vertical limit
functions fz, with Z E, of a given f f. As an application, we consider the
famous zeta function, which here plays the role of the kernel function. After that,
we look at the function-theoretic properties of individual functions in g; in par-
ticular, we study zero sets.

4.1. Preliminaries from eroodic theory: Kronecker flows. Given a collection
of real numbers , 2,3,..., we consider the continuous group of vertical
translations

Tt(zl,g2,z3, .) (e-itz, e-itz, e-it3g3, .),
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acting on the infinite-dimensional polycircle "It, where ranges over the reals. The
Kronecker flow {Tt}t is known to be ergodic if and only if for each fixed n,
n 1, 2, 3,..., the numbers 1, 2,..., an are -linearly independent. This is done
for finite-dimensional polycircles Irn in [9, pp. 64, 67, 69, 99]. After a few minor
modifications, the proof in [9], which is based on the approximation property in
Kronecker’s theorem (Lemma 2.2), covers the infinite-dimensional case as well. We
pick j log pj, where p denotes the j th prime, and note that by the fundamental
theorem of arithmetic, any finite subset of the collection {j} is -lineafly inde-
pendent, so that the flow {Tt} is ergodic. If we write out the flow explicitly, we
get

Zt(z1, z2, z3, .) (2-itzl 3-itz2, 5-itz3, .) te]R.

As in Section 2, points z (z1,z2, z3,...) in "It are identified with elements ;t of
the character group E by putting Z(P)=zj for the j th prime p. The flow then
takes the more elegant form

(Ttz)(n) n-itz(n), n e ]N, t e lR.

We note that the ergodicity of the flow { Tt}t may now be checked off directly from
condition (iv) in [9, p. 99]. By the Birkhoff-Khinchin ergodic theorem [9, pp. 11-
12, 39, 99], we have

lim
1 I T lT-+oo- -T

g(Ttx) dt g(.) dp(.) (4-1)

for every ;to e E if g is continuous on E, and for almost every ;to if we only assume
that g e LI(E, p). We now apply this result in the context of our space off. For
f e off, with series expansion f(s) Y]n ann-s, we write f,(s) =f(tr + s)
-,n ann-’-s, and note that for a > 0, this is again an element of off. Recall that
trb(f) [--, 1/2] is the abscissa of boundedness for f, and that by Bohr’s theo-
rem (Lemma 2.1), it coincides with the abscissa of uniform convergence. It follows
that for tr, ab(f) < a < +c, the Dirichlet series for f,(s) is uniformly convergent
on Ns > 0, so that by Kronecker’s theorem (Lemma 2.2), the partial sums of the
seriesf converge uniformly on E, makingf continuous on E. Now, by (4-1),

lim
1 IT I_=If(TtZo)l 2 dt-- If(z)12 dP(z) E lanl2rl-2aT+ oo" T n=

(4-2)

holds for almost all ;to e E if 0 < tr < trb(f) and for all ;to (in particular, for the
unit character 0 1) if tr > 1/2. Notice the close resemblance with Carlson’s
theorem (Lemma 3.2). Indeed, Carlson’s theorem can be read off from (4-2), with

Zo-=l.
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4.2. The almost sure behavior of vertical limit functions. As before, let f e
be given by (2-1), and write fz for the vertical limit function of f, given by (2-8).
The function fz shares with f the property that it is holomorphic on Ns > 1/2.
Helson [16] has shown that the function fx extends analytically to Ns > 0 and
that its Dirichlet series converges there, for almost every 7. e E. We wish to illu-
minate his elegant argument, and obtain additional properties of the vertical
limit functions. To make the statement as precise as possible, we need the space
Hi2(tE+) of functions f holomorphic in rE+ which have f o q9 HE(ID); here

H2(D) is the usual Hardy space of the unit disk D, and tp is the Cayley transform
tp(z) (1 z)/(1 + z). The subscript ’T’ stands for (conformal) invariance. Let 2i
be the probability measure d2i(t) n-l(1 + t2) -1, which is got as the image under
the Cayley transform of the normalized arc length measure on the unit circle:

I I+oo 1
If o q(e)l 2 dO

-oo
If(it)12 d2i(t)

-n
f Hi2(+).

The space H2(]D) is frequently regarded as a subspace of L2(’I), and likewise the
space Hi2(IE+) may be considered as a subspace of L2(ilR, 2), the space of func-
tions # on ilR that have #(it) in L2(IR, ,,q,i).

Apart from the ergodic statement, the following theorem is due to Helson
14]. For the benefit of the reader, we adapt Helson’s idea of proof to the present

setting.

THEOREM 4.1. Let f , be given, with series expansion (2-1), and let lI be a
countable collection of absolutely continuous Borel probability measures on the
real line. For almost every character 7. E, the function

>
n=l

extends analytically to an element of H(tE+), has

.+oo

Ifz(it)l 2 dw(t) < +, for all w 17,

and enjoys

Ifx(it)] 2 dt la l 2

2T -T n=l

as T---, +c.

Proof. We first decide on how to define fz(it). It should correspond to the
possibly divergent sum ,nanT.(n)n -it. This sum, however, makes sense as
(3f(TtT.), for almost every 7., where {Tt}t is the ergodic Kronecker flow of the
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previous subsection. We thus put fx(it)= f(Ttz), and observe that by (4-2),
with a 0, this function is locally in L2 along the imaginary axis, and has the
asserted property

Ifx(it)l 2 dt lal as T +o, (4-4)2T -7" n=l

almost surely in ;. Moreover, by Fubini’s theorem, for a Borel probability measure

Ifx(it)l d(t) dp(z) Ifx(it)[ dp(jt) dw(t)

+oo

Ilfll dva(t) Ilfll < +o.

In particular, the function fz(it), considered as a function of t, almost surely is
square integrable on the real line with respect to w. Elementary measure theory
shows that the same holds true simultaneously for all measures w in 17, since the
latter set is countable. By the same token, fz(it) is almost surely in L2(IR, 2i).
A function g in L2(’I[) is in H2(D) if and only if

a()(z) 0, n 1,2,3,...,

where 2 is as before the normalized arc length measure on the unit circle. After an
application of the Cayley transform, we have that a function g e L2(ilR, 2) is in

Hi2(+) if and only if

l+(R)(1-it
n

-o 1 + it/#(it) d2i(t) O, n 1, 2, 3,

Therefore, to see that fz is almost surely in Hi2(E+), it suffices to check that

+it] fz(it) d2i(t) O, n 1, 2, 3,...,

for almost all Z. However, to check that an L2(E,p) function vanishes almost
everywhere, it is enough to show that all of its Fourier coefficients are 0. We set
aq 0 for q e +\]N, and integrate the left-hand side of the above expression
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against )(q) to get the Fourier coefficients:

-oo 1 -t- it]
fx(it) d2i(t)

it]
.(q) fx(it) dp()(.) d2i(t)

i+oo (1 -it-oo 1 + itJ
aqq -it d2i(t) O,

where we have used Fubini’s theorem, and that aq 0 for q < 1. This completes
the proof. Fq

The ergodic reasoning behind (4-4) leads to an estimate of fx, which does not
seem to follow from Helson’s work.

THEOREM 4.2. Let f and fx be as in Theorem 4.1, and write s 0- + it. Then
almost surely in ;t E,

c +
0"1/2 J Sift+,

for some constant C C(f 7,), 0 < C < +co. Moreover, almost surely in

ix(s) a, + o 0-,12 )
as Itl----’ +c

holds uniformly in 0- > O.

Proof. As in (4-4), we have, by ergodic theory, that almost surely in Z,

lit (fx(i.r.) al)2 d.c -, O
T o

the space average of the function (in X) being 0. This entails that the function

x

Fx(ix (fx(i) al)2 dz
0

meets

Fx(ix) o(Ixl) as Ixl +, (4-5)

almost surely in ;t- By Theorem 4.1, the function fx is almost surely in H(+), so
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)2that the squared function (fz- al almost surely belongs to the analogously
defined space Hil(+). As such it is given by the Poisson formula

(fz(tr + it) al)2
tr j+o (fz(ix) al)2

dx
a + (t- x)2

Integrating by parts and using (4-5), we obtain the representation formula

(fz(tr + it) al)2 2tr I+ t- x

-oo + (t-

for a > 0 and IR. After an application of the size control (4-5) to this integral,
the desired estimates follow by taking square roots. ["]

For a certain class of functions in f, the estimate of Theorem 4.2 can be
improved considerably. Note that the conclusion is that the growth in the imag-
inary direction is precisely what the Schnee-Landau theorem requires to imply
convergence of Dirichlet series [5], [20].

COROLLARY 4.3. Let f , be such that all powers f:v, where N is a positive
integer, also are in. Then, for each e > O, we have, almost surely in Z E,

Ifz(s)-al[ <C( 1 + IrIs) s=tr+it+,

for some constant C C(Z, f, e), 0 < C < +.

Proof. The estimate is more or less immediate from Theorem 4.2.

The general question about almost sure convergence of the Dirichlet series of
vertical limit functions was treated by Helson in [16], in a somewhat more gen-
eral context. He obtained the following basic result.

THEOREM 4.4 (Helson). Let f be given, with series expansion (2-1). For
almost every character Z, the Dirichlet series

fz(s) anZ(n)n
n

-s

converges in the half-plane Ns > O.

According to a classical formula for the abscissa of convergence [12, pp. 6-8]
(see also Section 2 of the present paper), Theorem 4.4 is equivalent to the state-
ment that, almost surely in , the partial sum function

SN(Z) an.(n) (4-6)
n:n<N
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has SN(;t) O(N) as N +oo, almost surely in ;t, for all e > 0. So, in light of
Helson’s theorem, we find the following special case interesting.

THEOREM 4.5. Let f e /g be given, with series expansion (2-1). Suppose
an 0 for all composite numbers. For almost every character 7., we then have
SN(7.) O(1) as N oo, where SN(7.) is as in (4-6).

Proof. Without loss of generality, we may suppose that al--0. As the
parameter p runs through the primes, the ;t(P), treated as functions of ;t, run
through the distinct coordinate variables in the polycircle "IF, which is our
standard realization of the character space E. This has a clear interpretation: the
random variables

7. apz.(p), p 2, 3, 5, 7, 11,...

are mutually independent, have mean squares 0, and variances trp2 lapl 2.
For a given positive integer N and a positive real number M, let E(N, M) be

the set of all characters ;t for which Is()l < M. By Kolmogorov’s inequality
[9, p. 260], we have

2 1 M-2 lapl 2p((’]IE(N,M)) > 1 M-2
trp

p p

By letting M tend to +oo, we see that S/v(Z) O(1) as N +o holds for almost
all ;t eE. F-]

4.3. The kernel function. Riemann’s zeta function for random characters.
Given a separable Hilbert space ’ of analytic functions on a domain f (in the
complex plane, or in higher dimensions), one forms the kernel function K(z, w)
by taking some orthonormal basis {en(z)}n in, and putting

K(z, w) e,(z) ,(w), (z,w) e f x f.

This then proves to be independent of the particular choice of orthonormal basis
and has the reproducing property that

f(w) (f Kd(., w) W 6).

In fact, as an element of ’, K(., w) is uniquely determined by its reproducing
property. In 3t, an orthonormal basis is supplied by en(z)= n-z, for n
1, 2, 3,..., so that its kernel function is

oo 1 1
K(z, w) n-z- (z + ), z > , .w > -,

n=l
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where ((s) is the Riemann zeta function:

rl=l

s> 1.

In Section 2, we modeled the space f as both the Hardy space on the infinite-
dimensional polydisk ]D and the polycircle 11". The polycircle 11‘00 was identified
with the character group E of the multiplicative positive rationals. In particular,
for quasi characters ID c/2(N), the "point evaluation" f glf(#) is a con-
tinuous linear functional on o’, so that it too must be given by a kernel function
Kn(o) (b, q),

f() (f, Kn2(oo)(.,) ]D /2(IN).

In terms of a series expansion, it is written

Kn:() (,) Z $(n) $(n), @, 1I) 12 (IN).

The inner product in , and hence in H2(]D), is better visualized on the dis-
tinguished boundary "It _, where we have

(f, g).g (f, g):(oo) (f,

This suggests introducing the kernel

Kn() (if, q) Z ;(n) q(n),
n=l

Z , q ]D 12 (IN),

where the sum, for fixed , is understood to converge in the sense of the space
L2(E, p). This kernel then has the reproducing property

i2f(q) (3f KH(.) q))H()

IZ 3f(z) KH:()(Z, q) dp(;), q ID /2(IN).

On the other hand, it is well known that the reproducing kernel on H2(Irv) for
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finite-dimensional polydisks is given as the product of the Cauchy kernel in each
variable,

N

Kn2orN (z, w) H(1 nZn) -1 g ]rN, w ]DN

n=l

and in the limit as the dimension N tends to infinity, we get [8]

K/2(ro) (1:, b) H (1 nZn) -1

n=l

H (1 (p)1:(p))-I,
p

1:eII", qelD c /2(N),

where the second product runs over the primes, and Zn 1:(Pn), Wn b(pn), for the
nth prime p,. For e ID c/I(N), the above product converges pointwise to a
continuous function of 1:, but in general we must interpret the above product as
being convergent in L2(E, p) [8]. (Cole and Gamelin used martingale theory to
obtain the convergence.) Since the kernel function of a given Hilbert space of
analytic functions is unique, we arrive at the equality KH2(E KH2(.oo); that is, the
Euler identity

Z 1:(n)(n) H(1 1:(p)q(p))-x,
n=l p

which holds pointwise in 1: for b s ID c (N), and almost everywhere for general
q. This is a surprising interpretation of the Euler identity as arising from two ways
of looking at one and the same kernel function! If we specialize to the particular
quasi characters k(n) n s, we get the more familiar

Z 1:(n)n-S H( 1 1:(p)p-s)-l, 1: E, Ns > ,1 (4-7)
n=l p

with pointwise convergence in 1: for Ns > 1. We shall write (z(s) for the analytic
function on Ns > 1 given by either side of (4-7). By Lemma 2.4, suitably modified,
these are the vertical limitfunctions of the zeta function (s).
THEOREM 4.6. Suppose the coefficients {an}n are totally multiplicative and

square summable, with al 1. Then, for almost every character 1:, the Dirichlet
series

oo 1
f (s) >

n=l

converges to a zero-free analytic function on the half-plane Ns > O.
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Proof. The convergence statement follows from Theorem 4.4. We check that
the function fz(s) almost surely lacks zeros in s > 0. Let #(n) be the Mfbius
function, which has /(1)= 1, #(n)= (-1)k if n is the product of k different
primes, and #(n)= 0 if n is divisible by a square (other than 1). The M6bius
function enables us to express the reciprocal of fz(s),

1/fz(s #(n)ang(n)n-s ,s > 1

because the coefficients {an}n are totally multiplicative. By Theorem 4.1, 1/fx(s)
extends analytically to rE+ almost surely in ;t, whence the assertion follows.

Theorem 4.6 has a curious interpretation for the vertical limit functions fix(s)
of the Riemann zeta function: the Riemann hypothesis holds for almost every 2:.
The latter fact was mentioned by Helson in 16].

COROLLARY 4.7 (Helson). For almost every character Z, the Dirichlet series

z(s) -nT.(n)n-s converges on the half-plane s > 1/2 to an analytic function
which has no zeros there.

Proof. Apply Theorems 4.1 and 4.6 to the coefficients an--r/-1/2-e, with
> 0. The assertion follows, but only in the slightly smaller half-plane s >
/2 + e. A simple measure-theoretical argument now yields the desired result.

By the formula for the abscissa of convergence of a Dirichlet series (see Sec-
tion 2), Corollary 4.7 has the following consequence.

COROLLARY 4.8. Let e > O. For almost every character Jr, we have vEn=l j((r/)
O(N 1/2+) as N +.

Question. Can the above be sharpened to the statement that, almost surely,
-=, g(n) O(x/ log N) as N

Using Corollary 4.3, we can control the growth of the logarithm of (z(s). The
branch of the logarithm intended is the one with

log (z(s) Z log(1 ;t(p)p-S), !ls > 1,
p

where the logarithms on the right-hand side are given by the principal branch.

THEOREM 4.9. Suppose the coefficients {an}n are totally multiplicative and
square summable, with al 1. Then, for almost every character 7, the function
fz(s) ,n ang.(n)n-s has a logarithm

1
log fz(s) Z log(1 apz(p)p-S), !lOs > -p
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(the right-hand side involves the principal branch), which extends holomorphically to
.s > O, and enjoys (s tr + it)

as Itl

uniformly in tr, a > O.

Proof. Let 0 be a complex parameter. We define the power

1
f(s) H(1 app-S)- Ns > -P

where the right-hand side employs the principal branch of the logarithm. The
identification of with H2(E) in Section 2 allows us to express the square of the
norm off in ’ as

1 I’ -=121-I I(1 apei) dO.
p

Using a Maclaurin expansion on (1- apei)-, one sees that for confined to a
compact subset of

2-- I(1 ape)-12dO 1 + O(lapl=).

It follows that f g. In particular, fr for all N 1,2,3,..., and, 1,-1, i,-i. By Corollary 4.3, we have, for each e > 0, and almost all ,

uniformly in tr, tr > 0, whence the assertion follows.

COROLLARY 4.10. Fix e > O. Almost surely in ;t,

log (x(tr + it) o(log Itl) as

holds uniformly in tr, tr > 1/2 + e.

Proof. Apply Theorem 4.9 to the coefficients an--n-1/2-a

(1/2)e. [--1
with 6=

4.5. Function-theoretic properties of individualfunctions in /t. The purpose of
this paragraph is to obtain some basic information about the function theoretic
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properties of individual functions in g. In particular, we are interested in the
structure of their zero sequences. The situation starkly contrasts the "almost-
sure" behavior that we have concentrated on so far, because here, the functions
are only known to be analytic in the half-plane Ns > 1/2 (which we denote by
1/2), and zeros may actually accumulate at a boundary point such as s 1/2.

Let H(l/2) denote the uniformly local H 2 space on I1/2: a function 9
holomorphic on 1[;1/2 is said to be in it if

0+1
sup sup [g(tr + it)l 2 dt < +.
0IR a>l/2 J0

It is a Banach space, and the functions in it are bounded in every half-plane
s > a0, with a0 > 1/2.
TrIEOREM 4.11. We have the inclusion c H2(1/2), and the injection map-

pin9 is continuous.

Proof. Let f g have the series expansion (2-1). We wish to prove that for
all a > 1/2,

0+1 oo

If(a + it)l 2 dt < C la.[ 2 (4-8)
J0 n=l

holds, where C is an absolute constant. We note that it suffices to obtain (4-8) for
finite Dirichlet series f, since on compact subsets of /2, elements of acg are uni-
formly approximable by them. Moreover, by making a vertical translation, we see
that we can set 0 0, and by the Poisson integral formula, we see that it suffices to
consider the limit case tr 1/2. By duality, we have

dt sup
9

sup
o

12lo ann-VZe-t lgng(t) dt
n

2

Z ann-1/20(lg n)
n

< lanl 2 supy n-ll0(log n)l 2 (4-9)
n=l O n=l

where the supremum is taken over all 9 e L2(0, 1) of norm < 1, and 0 is the

Note added in proof. The inequality (4-8) follows from equation (27) on page 140 of H. Mont-
gomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CBMS
Regional Conf. Ser. in Math. 84, Conf. Board Math. Sci., Washington, D.C., 1994. It is a variant of
Hilbert’s inequality.
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Fourier transform of #,

0

which extends to an entire function of exponential type < 1. For such functions

n-10(log n) C 10() d

holds for some absolute constant C. This follows from a suitable adaptation of a
classical inequality of Plancherel and Pdlya [21, pp. 96-98]. Heustically speak-
ing, the reason is that the left-hand side looks like a Riemann sum of part of the
integral to the fight, and that the functions 0 are suciently smooth. Modulo the
Plancherel identity, the assertion now follows from (4-9).
Coogg 4.12. Let f e f(s) O. If {s}, s e + its, denotes the

sequence oferos off in /, then

sup
0eRk:

where Qo is the half-strip Ns > O, 0 < s < 0 + 1.

Proof. By Theorem 4.11, f(s)/s is contained in H2(1/2), and so (Sk}k sat-
isfies the Blaschke condition

ak 1/2
1 Iskl 2 "k

All convergent nontrivial Dirichlet series have a zero-free half-plane, so that
SUPkffk < W. Hence,

for each real 0. If the function A(O) were unbounded, we could find a sequence
of reals such that A(O) +. But then the functions f(s) =f(s + iOn) would
tend to zero unifoly on compact subsets of/, because they would have an
ever-increasing mass of zeros, and their nos in H(/) are unifoly
bounded. By Lemma 2.4, any vertical limit function has the

a(n)n-,
where 2 is a character. Such a function cannot be identically zero. This is a con-
tradiction, and so A(O) is bounded.
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PROPOSITION 4.13. There exists a function f ;,, other than the 0 function,
whose zero set contains a subsequence tending to s 1/2 along the real line.

Proof. Let {bn}n be the sequence bl 0, bn n-1/E(log n) -1 for n > 1, and
notice that it has )-’n bn2 <+ and ,n n-I/2bn +" We now select integers nk
and points ak according to the following fashion. Let no 1. Given nk, we pick
ak > 1/2 SO close to 1/2 and nk+ so much larger than nk that

nk+ nk--

E l’t-trkbn-E l’t-kbn- E rt-trkbn O.
/’//lk 1-" l--/lk+l

The sequence (trk}k is strictly decreasing, with limit 1/2. Ifwe put an (--1)kbn for
nk < n < nk+, and let f be as in (2-1), then f is real-valued on the real half-axis
]1/2, +[, and the sign of f(ak) alternates as (-1) k. By the intermediate value
theorem of calculus, f has infinitely many zeros along the real line, which accu-
mulate at s 1/2. [-1

5. Systems of dilated functions in L2(0,1). In this section, we return to the
basis and completeness problems described in the introduction.

Let p LZ(0, 1) be given and again consider it as an odd periodic function of
period 2. The basic questions are: For which p is the system

q(x), q(2x), q(3x),...

a Riesz basis in L2(0, 1), and for which q9 is the same system complete in L2(0, 1)?
We recall that completeness means that the system spans a dense linear subspace.
The observation that the only orthogonal bases of this kind are generated by the
functions qg(x) C sin(nx) motivates introducing the representation

qg(x) anX sin(nrx)

for an arbitrary tp e L2(0, 1), and seeking solutions in terms of the coefficients an.
For both problems, a necessary condition is al # 0, because otherwise the function
sin(nx) cannot be approximated. It is no restriction to normalize: al 1 from now
on.

Let {en}n be the standard orthonormal basis en(X)= sin(nnx). Following
Beurling [1], we associate to each fL2(0,1) with sine series expansion
f(x) ’n Cnen(x) the auxiliary Dirichlet series

sf( )
n=l
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Let 11. [[L2 and (., .)L2 be the norm and inner product in L2(0, 1), respectively. The
operator S is an isometric isomorphism between L2(0, 1) and g: IlSfllr Ilfll,.
Also, inner products are preserved: (Sf, So)ae (f, 9). Given a function f in
L2(0, 1) of the form f(x) ,, c,e,(x), where only finitely many c, are nonzero,
we associate to it the function Tf(x) y’], cnqg,(x), where q,(x) q(nx). It is
clear that Tof L2(0,1), given the restriction on f. When the operator S is
applied to T0 f, we arrive at the identity

S( Tef )(s) SO(s)Sf(s),
1

Ns > . (5-1)

This has the interpretation that replacing the basis sequence {en}n with {qgn}n
corresponds to multiplication by Sip on the S-transformed side.

5.1. The function 1/Sq: The biorthooonal system. Let Sq(s)= ,nann-s, as
before. We formally write1 ,, bnn -s. The coefficients bn are given by
bl 1,

bn y (-1)kaa, a12...aak, n > 1,
dld2...dk=n

where the sum runs over all the finitely many possible product decompositions of
n, where the various factors dj are integers > 1. The series ,n b,n-s converges
absolutely in some half-plane Ns > tro, as is readily seen by considering the
extremal situation where an < 0 for all n > 1. In fact, any tr0 with Y],>I laln- <
al 1 will do. Multiplying Sq9 with 1/Sqg, we read off from the coefficients that
blal 1 and

Y bdan/d 0, n > 1. (5-2)
d:dln

Formally, we have 1/Sq9 S, where (x) En__l bnen(x). It follows from (5-2)
that the functions ,(x) Y]a:al, bn/aed(x) (they are not the dilates of ) form a
system which is biorthooonal to the original system {qg,},, with qn(x)= q(nx);
that is, (qj, k) 6,k, where 6,k is the Kronecker delta symbol, which is 1 when
j k, and 0 otherwise. It follows that the system {qn}n is minimal; that is, each q,
lies outside the closure of the linear span of the other vectors. Moreover, en(x)
,a:al a,/aka(X), and since these sums contain only a finite number of terms, it is
clear that the biorthooonal system {kn}n is complete in L2(0, 1). The biorthogonal
system consists of dilations of a single function only in the trivial case q(x)=
el(x) x/ sin(rx).

5.2. Riesz bases. Recall that a basis {fn}n in a separable Hilbert space H is a
Riesz basis if for some bounded invertible operator L on H, the sequence {Lfn}n
is an orthonormal basis. An equivalent characterization is the following (see [21,
pp. 30-37]).
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LEMMA 5.1. Let H be a separable Hilbert space. A system {fn}n of vectors

from H is a Riesz basis in H ifand only if
(a) every f H can be expanded as f -]n cnfn;
(b) there are constants A and B, 0 < A < B < +c, such that

)1/2A ’ levi CnA < B ICnl 2 (5-3)
L

for every finite sequence of scalars Cn.

We now state the main result of this section.

THEOREM 5.2. The system qg(x), qg(2x), tp(3x),.., is a Riesz basis in L2(0, 1) if
and only if both Sq9 and 1/Sq9 belon# to ///.

Proof. As before, we write en(X)= sin(nnx), and let T be the linear
mapping which sends en to tpn for n 1, 2, 3, Let - denote the dense sub-
space of L2(0, 1) consisting of functions f -,n Cnen, where all but finitely many
of the coefficients Cn equal zero. By Lemma 5.1, we have a Riesz basis if and only
if the image ofr under T is dense in L2(0, 1), and

f -, (5-4)

holds for some constants A and B, 0 < A < B < +. After an application of the
transformation S, the Riesz basis condition becomes, if we use (5-1), that the image
of S- under multiplication by S0 should be dense in ff, and that

f -. (5-5)

We first do the sufficiency part. If Sip and 1 are both in l, then clearly, SipS-
is dense, and (5-5) holds with A II1/s011 and B IISll,
We turn to the necessity part. By an argument involving Cauchy sequences,

(5-4) extends to all f L2(0, 1), so that Sq9 is a multiplier on ’. The denseness of
StpS in ff together with (5-5) forces 1/Sq9 to be a multiplier on as well. The
proof is complete.

Example. In conjunction with Theorem 3.1, the theorem above provides a
precise statement about the subtle dependence on the "closeness" of q9 to el(x)
x/ sin(rx). To illuminate the condition, consider

o sin(nrx)
q x y] e" x /Y n

n=l n=l
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for z > 1/2. Then

n=l

and

1/Sq(s) #(n)n-n-n=l

where #(n) is the M6bius function, which has #(1) 1, #(n) (-1)k when n is the
product of k different primes, and #(n) 0 if n is divisible by a square (other than
1). The function Sip(s) is bounded in the half-plane Ns > 0 if and only if z > 1.
Using Theorem 5.2 and the fact that multipliers are bounded analytic functions, we
conclude that the system qg(x), p(2x),... is a Riesz basis in L2(0, 1) if and only if

The above example is covered by the following corollary to Theorem 5.2.

COgOLLAgY 5.3. If the coefficients an of Sq9 e are totally multiplicative, the
functions qg(x), tp(2x), qg(3x),.., form a Riesz basis in L2(0,1) /f and only if
p lapl < +o, where the sum runs over the primes.

Proof. Since the totally multiplicative coefficients come from a function in
f, they must satisfy supnlan < 1, and by the Euler product formula,

Sq)(s) ann-s H(1 app-S) -1 (5-6)
n=l p

By the remark following the proof of the multiplier theorem, ’ is isometrically
isomorphic to H (D). As we calculate the norm of Sq9 there, using the analog
of (5-6), we obtain

IIS oll H(1 -lavl) -1
p

so that in view of Theorem 5.2,p lap[ < +o is certainly a necessary condition to
have a Riesz basis. Incidentally, this is also sufficient, since

1/Sqg(s) #(n)ann-s H (1 app-S).
n=l p

Note next the following consequence of Theorems 3.1 and 5.2; for the second
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statement, one should keep in mind the identification of’ with H (ID) sup-
plied by Section 3.

COROLLARY 5.4. If qg(x)=n anen(X), and -n>l lan[ < al 1, then the col-
lection (qg(nx)}n (n= 1,2,3,...)forms a Riesz basis in L2(0,1). On the other
hand, if an 0 unless n is a prime or 1, the condition oo-n=2 lal < 1 is necessary to
have a Riesz basis.

5.3. The completeness problem. The completeness problem is considerably
more delicate than the Riesz basis problem. It does not seem likely that it has a
solution as simple as the one given by Theorem 5.2. In fact, as we shall see, it is
equivalent to the problem of describing the cyclic vectors in the space H2(D),
which is definitely quite hard. The relationship to the invariant subspaces in an
infinite-dimensional setting was pointed out by the editors of Beurling’s collected
works [1]. The level of difficulty of Beurling’s completeness problem is empha-
sized by the fact that a complete characterization of the cyclic vectors in H2(DN)
is known only when the (complex) dimension of the polydisk is N 1.

In some special cases, conditions that are both necessary and sufficient for
completeness can be formulated in terms of the coefficients in the expansion

n=l

where al 1, as before. For instance, the case when an 0 for all composite
numbers n is interesting (Theorem 5.9).

Let qgn, S, To, and - be as before. Then 05 S- is the dense subspace of
of finite Dirichlet series.
A subspace I of is said to be invariant if it is closed, and f# e I whenever

f I and g ffi. One shows, by suitably approximating functions in /’ with ele-
ments of ffi, that invariant subspaces are actually invariant under multiplication
by elements of ’. The invariant subspace generated by a function f is
denoted by [f], and we say that f is cyclic if [f] t. Similarly, a subspace J
ofH2(11)) is called invariant if it is closed, and invariant under multiplication by
polynomials in the coordinate functions Zl, z2,.., on ID. The invariant sub-
spaces are actually invariant under multiplication by H(ID). We write

[f]r/,() for the invariant subspace generated by f e H2(ID), and say that f is

cyclic if [f]H2((R)) H2 (IDol).
A moment’s reflection on the definition of T0 reveals that 991, q92, q93,.., form

a complete system in L2(0, 1) if and only if the image of- under T0 is dense in
L2(0, 1). After an application of the transformation S, using (5-1), the latter con-
dition becomes the requirement that Sq9 times the set (fi S- of finite Dirichlet
series be dense in ,, id est, that Sq9 be cyclic in t. By the isometry between
and H2(ID) supplied by the operator back in Section 2, the following can be
said.
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THEOREM 5.5. Let q be as above. Then the following are equivalent:
(a) the system qgl, q92, q93,.., is complete in L2(0, 1);
(b) the function Sq9 is cyclic in f; that is, the subspace So[ is dense in :;f;
(c) the function Sq is cyclic in HE(ID).
A necessary condition for the completeness of the system {qgn}n mentioned by

Beurling in his 1945 seminar (confer [1, p. 378]), is that the function Sip(s) be
zero-free in the half-plane s > 1/2. We shall prove something slightly stronger.
For a sequence z (zj)j in ID, let Ilzll/ sup(Izj]’j 1,2,...} and Ilzll-=

levi 2. We extend this notation to sets f ID by taking suprema over all the
points in f.

LEMMA 5.6. If the system q91, (P2,... is complete in L2(0, 1), and f c D has
IIf ll/ < 1 and Ilf ll/ - < then

inf I s 0(z)l > 0.

Proof. In view of Theorem 5.5, we need to show that if # H2(]I)) is cyclic,
then I#1 is bounded away from zero on f. We argue by contradiction. So, sup-
pose is not bounded away from zero on f; then there is a sequence of points
z(k) in f such that #(z(k)) 0 as k +03. When/2(N) is given the weak top-
ology, its closed unit ball becomes a compact metric space (the Banach-Alaoglu
theorem), so that by the Bolzano-WeierstraB theorem, the sequence {z(k)}k pos-
sesses a cluster point z(03), with [[z()ll/ < 1 and Ilz()ll/= < +. By the con-
ditions on f, SUpza 1-Ij (1- Iz[2) -1 < +03, so that point evaluations in f are

uniformly bounded. It follows that as the subsequence of points z(kl) converges
to z(03), the function values g(z(kl)) converge to g(z(03)), so that (z(03))= 0.
We conclude that g cannot be cyclic, as it is annihilated by a bounded point
evaluation.

Remark. In particular, it follows that for the system 1, 2,... to be com-
plete, a necessary condition is that

sup ISqg(s)[ > O,
Ns>ro

for any tr0 > 1/2. This result is sharp, in the sense that for complete systems,
infs>l/21Stp(s)l 0 can occur. An example is given after Corollary 5.8. A slightly
more refined necessary condition for completeness can be obtained from Theorem
4.10: for all characters ;t, the function (Stp)z(s) nanz(n)n-s must be outer
in H2(1/2). Also, by a remark Helson makes in [16], it is necessary that (Sp)z
almost surely be outer in Hi2(+).

5.4. The Dirichlet-type space. We introduce next a subspace ofg which
seems to play a natural role in the study of the completeness problem. To this
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end, let

denote the number of divisors of a natural number n. As a function of n, the
number of divisors is quite irregular, but it is well known that d(n) O(n’) holds
for every 6 > 0; however, the average order of d(n) is log n (confer [13, pp. 260-
266]). We denote by the collection of Dirichlet series -]nl ann-s for which

la.I: a(.) <
n=l

Clearly, ot c . For the interesting class of series with totally multiplicative
coefficients (amn aman), we have the opposite inclusion. Indeed,

Zlanl2d(n) Zlanl 2

?1 n

in this favorable case. The identity can be verified by expanding both sums as
Euler products. If we write n 1-Ip pVp, where the product runs over the primes,
and all but finitely many of the nonnegative integers vp are zero, we have, some-
what formally,

]a.[ 2d(n) y ..ap.la2 a 12(1 + v2)(1 + v3) (1 + Vp)
n tl

y(1 + v2)la212 Z(1 + v3)la312 Z(1 + Vp)lapl2,...
v2=0 v3=0 vp=0

(1 -la212) -2 (1 -la312)-2... (1 -]ap]2)-2. R(1 -lapl2) -2,
p

provided that each lapl < 1, and al 1. Note that if some lapl 1, the sequence
{an}n is not even in/2(IN). We have, by using a similar argument,

Z lanl2 --1-i (1--1apl2) -1,
n=l p

where al 1 and lapl < 1. The product converges if and only if

y lap] z < +c, ]ap[ < 1.
p
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This is a necessary and sufficient criterion for a Dirichlet series with totally multi-
plicative coefficients to belono to the space g’, and thus to the space 9ga.
The reciprocal series of a Dirichlet series f(s) y], a,n-s with totally multi-

plicative coefficients and aa 1 is

1 oo

f(s)
y #(n)ann-S
n=l

where #(n) is the M6bius function. A direct calculation yields

for the expressions defining the norms in a and in. These norms are finite if
and only if ,p lapl 2 < +. This criterion for l/f(s) differs from the one for f(s) in
one respect: the condition lapl < 1 is skipped.

5.5. Completeness, continued. We now use the space oct to formulate a fairly
general sufficient condition for completeness.

THEOREt 5.7. The system {tpn}, is complete in L2(0, 1) if one of the followin9
conditions is fulfilled:

(a) Stp and 1/Stp are both in
(b) Sq ll and 1/Sq
(c) Sq and 1/Sq //l.

Proof. We first look at parts (a) and (b). As before, we write 1/Sq(s)=,, b,n -s. Put Rv (s) En-I b,n-s" Suppose we can show that IISoRNIIe has a
bound that is independent of N. Then SqgRv tends to the constant function 1
weakly, as N -. +. By standard functional analysis, 1 is in the norm closure of
Sq’, so that Sq9 is cyclic in a’. Under condition (b), it is clear that this bounded-
ness condition is fulfilled, by the estimate I[Rl[ae < [[1/Sq[[a. Under condition
(a), we apply the Cauchy-Schwarz inequality,

k
Z anbm
m,n:

mn=k,m<N

d(k) {a,,[Z[b,[ 2
k m,n:mn=k

where we used that d(mn) < d(m)d(n). Part (a) follows. Under condition (c), we
just multiply Sq with the function 1/Sq in ’, to get that 1 [Sq], so that Sq is
cyclic. The proof is complete, ff]
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COROLLARY 5.8. If the coefficients of Sq9 9g are totally multiplicative, the
system (tPn}n is complete in L2(0, 1).

Proof. According to the previous subsection, we have that both Stp and l/St#
are in, because the coefficients are totally multiplicative. The assertion now
follows from part (a) of Theorem 5.7. [5]

Remark. It follows that in the context of the example considered after Theo-
rem 5.2, we have completeness if and only if z > 1/2. This reproves a theorem of
Helson [16].

Example.
with

We use Theorem 5.7 to construct a complete system 1,

inf [Sq(s)[ 0,
s>1/2

as promised in the remark following Lemma 5.6. Let bl---1, b2--0, and put
bp p-1/2(log log p)2/3 for prime indices p > 2, and extend the sequence multi-
plicatively, so that bran bmbn. By Chebyshev’s theorem [19, Vol. 1, p. 25], the
series

1[bpl2
(log log p)4/3p p:p>2 P

(summation over the primes) converges if and only if

n=3 n(log log n)4/3 log n

converges. Since the last series converges by the integral test, we conclude from the
results of the previous subsection that the functions and 1/ are in, where

(s) ,, bnn-s. Let o be given by Sq 1/. The completeness now follows
from Theorem 5.7. The estimate

tI)(tr) > Z pl/Z+(log log p)2/3 n3 nl/2+(log log n)2/3 log np:p>2

where Chebyshev’s theorem has been used again, shows that (I)(tr)+ as
tr 1/2, since the fight-hand-side series diverges for tr 1/2. It follows that
Sq(a) -, 0 as tr - 1/2.
THEOREM 5.9. Let Sqg(s) 1 + ’]p app-s, summing only over the primes. Then

the system {tPn}n is complete in L2(0, 1) ifand only ifp lap[ < 1.
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Proof. To see the necessity, observe that ifp lapl > 1, there exist a positive
integer N and a point z (zl, z2,...) e ID with zi 0 for j > N, such that (Pi is
the jth prime)

Sqg(z) 1 + apjzi O.
i=1

By Lemma 5.6, we cannot have completeness.
To get the sufficiency, we introduce the auxiliary function g 1- Sq, and

note that I] 11 < 1. The function 1 an (1 )(1 + +... + gn-) tends to 1
in the norm ofg as n +, and for each n, it is in Sq’. It follows that Sq9 is
cyclic. V1

6. Possible directions of further investigation. According to a theorem of
Helson (Theorem 4.4), we have that for f e f, with series expansion (2-I), the
Dirichlet series

fx(s) a,z(n)n-s

converges in the half-plane Ns > 0, for almost all characters Z. In terms of the
coefficients, this amounts to having, almost surely in Z,

N

anz(n) O(N) as N +, (6-1)
n=l

for each fixed e > 0. In view of Theorem 4.5 and Carleson’s theorem on the almost-
everywhere convergence of Fourier series with 12 coefficients [6], which cover the
probabilistic and deterministic extremes, the following conjecture seems reason-
able: for almost all Z,

N

an)(n) 0(1) asN +c.

The conjecture appears to be related to the question of how many of the stochastic
variables z(n) on a given interval N < n < N + k are mutually independent. The
latter translates into the following basic number-theoretic problem: What is the
multiplicatively rational dimension of the interval N < n < N + k? Here, the mul-
tiplicatively rational dimension of a set E of positive integers is the dimension of
the -linear span of log E over the field . For instance, the multiplicatively
rational dimension of the interval 1 < n < k equals the number of primes < k.
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By Corollary 4.7, almost every z(s) converges to a zero-flee analytic function
in the half-plane Ns > 1/2. It will now be indicated how this result may be used
to obtain information about particular characters. Given positive reals M and e,
let f(e, M) be the set of all ;t for which

z(n)
n=l

< M. N1/2+e,

for all N 1,2,3, By Corollary 4.8, the p-mass of f(e,M) tends to 1 as
M +, for fixed e. A point ;to in E is a mass point for f(e, M) provided that
each open neighborhood of ;to, intersected with f(e, M), has positive p-mass. If;to
is a mass pointfor some f(e, M), then (Zo extends analytically to a zero-freefunction
on Ns > 1/2 / e. This is so because this function may be approximated by func-
tions (z(s) which lack zeros on Ns > 1/2, in the topology of uniform convergence
on compact subsets of Ns > 1/2 + e. This may be a way to handle nonprincipal
Dirichlet characters, a topic to be discussed below.
As a matter of definition, a character is a multiplicative mapping

and if we like, we may extend it to all of \{0} by setting ;t(-1) equal to 1 or
-1. The characters that so extend continuously to the archimedian completion
IR\{0} are of the type 7.(r) Jr[ -it for some real number t (if we fix Z(-1) 1).
There are also the nonarchimedian completions p, the p-adic number field, for
a given fixed prime p. The Dirichlet characters associated with p are the ones
that extend continuously to p \{0}, and one checks that for some k IN, when
restricted to the integers, they are periodic with period pk, except on numbers
divisible by p. Traditionally, one sets the value of the Dirichlet character ;t equal
to zero on the integers divisible by p, but this is not our choice here. The princi-
pal Dirichlet characters take value 1 on all integers indivisible by p. (There are
several because we do not prescribe the value at p.) The nonprincipal Dirichlet
characters all have partial sums n:n<N 7.(n) that grow like O(log N) as N tends
to infinity (with the traditional definition, these sums are actually bounded), so at
first glance they seem like ideal candidates for mass points. In the final analysis,
this may prove to be naive.
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