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An elementary introduction to perturbative renormalization and renormalization group is presented.
No prior knowledge of field theory is necessary because we do not refer to a particular physical
theory. We are thus able to disentangle what is specific to field theory and what is intrinsic to
renormalization. We link the general arguments and results to real phenomena encountered in
particle physics and statistical mechanics.2@4 American Association of Physics Teachers.
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[. INTRODUCTION seemed hopeless to the non-specialist to understand renor-
] ) ] malization because it required prior knowledge of quantum
Hans Bethe in a seminal 1947 paper was the first to calmechanics, relativity, electrodynamics, etc. This state of af-
culate the energy gap, known as the Lamb shift, between thgyjrs contributed to the nobility of the subject: studying the
2s and 2p levels of the hydrogen atomThese levels were yltimate constituents of matter and being incomprehensible
found to be degenerate even in Dirac's theory, which init well together. However, strangelat least at first sight
cludes relativistic corrections. Several authors had suggesteHe theoretical breakthrough in the understanding of renor-
that the origin of the shift could be the interaction of the malization beyond its algorithmic aspect came from Wilson’s
electron with its own radiation fieldand not only with the work on continuous phase transitiochhe phenomena that
Coulomb field. However, to quote Bethe, “This shift comes take place at these transitions are neither quantum
out infinite in all existing theories and has therefore alwaysmechanicaf nor relativistic and are non-trivial because of
been ignored.” Bethe’s calculation was the first to lead to aheir cooperative behavior, that is, their properties at large
finite, accurate result. Renormalization—in its modern perdistances! Thus neither: nor c are necessary for renormal-
turbative sense—was bofrSince then it has developed into jzation. Something else is at work that does not require quan-
a general algorithm to get rid of infinities that appear at eacym mechanics, relativity, summation over virtual states,
order of perturbation theory ifialmos} all quantum field ~Compton wavelengths, etc., even if in the context of particle
theories(QFT).”"" In the meantime, the physical origin of physics they are the ingredients that make renormalization
these divergences has also been explaifse@ Ref. 8 for pecessary. In fact, even divergences that seemed to be the
many interesting contributions on the history and ph”osoph)h]ajor prob|em of QFT are now considered On|y as by_
of renormalization and renormalization group products of the way we have interpreted quantum field theo-
~In QFT, as in ordinary quantum mechanics, the perturbarijes. We know now that the invisible hand that creates diver-
tive calculation of any physical process involves, at eactyences in some theories is actually the existence in these
order, a summation ovewirtual) intermediate states. How- theories of a no man’s land in the ener@y length scales
ever, if the theory iS Lorentz inVariant, an |nf|n|te number Offor Wh|Ch Cooperative phenomena can take p|ace' more pre_
supplementary states exist compared with the Galilean casgsely, for which fluctuations can add up cohereffiyn
and their summation, being generically divergent, producegome cases, they can destabilize the physical picture we were
infinities. The origin of these “new” states is deeply rooted relying on and this manifests itself as divergences. Renor-
in quantum mechanics and special relativity. When these twenhalization, and even more renormalization group, is the right
theories are combined, a new length scale appears, built OWay to deal with these fluctuations.
of the massm of the particles: the Compton wavelength  One of the aims of this article is to disentangle what is
filmc. It vanishes in both formal limit$s=0 andc=,  specific to field theory and what is intrinsic to the renormal-
corresponding, respectively, to classical and Galilean theazation process. Therefore, we shall not look for a physical
ries. Because of Heisenberg inequalities, probing distancesodel that shows divergencEs}’ but we shall rather show
smaller than this length scale requires energies higher thaihe general mechanism of perturbative renormalization and
mc® and thus imply the creation of particles. This possibility the renormalization group without specifying a physical
to create and annihilate particles forbids the localization ofnodel.
the original particle better than the Compton wavelength be-
cause the particles that have just been created are strictly A TOY MODEL FOR RENORMALIZATION
identical to the original one. Quantum mechanically, these
multi-particle states play a role even when the energy in- In the following, we consider an unspecified theory that
volved in the process under study is lower tac?, because involves, by hypothesis, only one free paramefgin terms
they are summed over as virtual states in perturbation theorgf which a functionF(x), representing a physical quantity, is
Thus, the divergences of perturbation theory in QFT are dicalculated perturbatively, that is, as a power series. An ex-
rectly linked to its short distance structure, which is highlyample in QFT would be quantum electrodynami{GED),
nontrivial because its description involves the infinity of which describes the interaction of charged particles such as
multi-particle states. electrons with the electromagnetic field. For high energy pro-
Removing these divergences has been the nightmare am@sses, the mass of the electron is negligible and the only
the delight of many physicists working in particle physics. It parameter of this theory in this energy regime is its charge,
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which is therefore the analog gf,. F can then represent the defined expansion. The hypothesis is therefore that the prob-
cross section of a scattering process as, for instance, the scim does not come from the perturbation expansion itself,
tering of an electron on a heavy nucleus in which case  that is, from the functiond=;(x), but from the choice of
the energy—momentum four-vector of the electron. The couparameter used to perform it. This hypothesis means that the
pling constanty, is defined by the Hamiltonian of the sys- physical quantity, F(x), initially represented by its ill-
tem, andF is calculated perturbatively using the us@ala  defined expansion E@1), should have a well-defined pertur-
Feynmam approach_ Another important examp|e is Continu_bation expansion once it is calculated in terms of the physi-
ous phase transitions. For fluid$; could represent a cal parameteF(u). This is the simplest hypothesis we can
density—density correlation function and for magnetism amake, because it amounts to preservingxtiependence of
spin—spin correlation functiolf Yet another example is the the functionsF;(x) and only modifying the coupling con-
solution of a differential equation that can arise in somestantg,. Thus, we assume th&t(x) is known at one point
physical context and that can show divergen@e® the fol-  ,, and we defingy by

lowing).
It is convenient for what follows to assume tHagx) has F(u)=0r- ()
the form: In the following, and by analogy with QFT, we cajk the
F(x)zgo+g§F1(x)+ggF2(x)+ e (1) renormalized coupling constant and Eg) a “renormaliza-

tion prescription,” a barbarian name for such a trivial opera-
Up to a redefinition ofF, this form is general and corre- tion. _ - _ o
sponds to what is really encountered in field theory. Let us We are now in a position to discuss the renormalization

now assume that the perturbation expansiorF()f) is |||_ pI’Ogr.am. It COﬂSIStS. Of I’epal’ametl’lZIng the pel’turbatlon ex-
defined and that thE;(x) are functions involving divergent Pansion of- so that it obeys the prescription of E§). The
guantities. An example of such a function is point here is that we cannot use E8) together with Eq(1)
because Eq(l) is ill-defined. We first need to give a well-
« dt defined meaning to the perturbation expansion. This is the
Fi(x)=a o TFx’ (20 regularization procedure which is the first step of any

renormalizatiorf®?! The idea is to define the perturbation

which is logarithmically divergent at the upper limit. This expansion ofF by a limit such that(i) the F;(x) are well-
example has been chosen because it shares many commaefined before the limit is taken, arii) after the renormal-
features with divergent integrals encountered in QFT: thdzation has been performed, the original formal expansion is
integral corresponds to the summation over virtual states anicovered when the limit is taken.
a(t+x) ! represents the probability amplitude associated We thus introduce a new set 6kgularized functionsF ,
with each of these statés. andF; ,, involving a new parametek, which we call the

A simple although crucial observation is that because thereegulator, and such that fok finite all these functions are
is only one free parameter in the theory by hypothesis, onlyinite. We thus define
one “measurement” of(x), say at the poink= u, is nec-
essary to fully specify the theory we are studying. Such zfA(X):FA(X'QO*A):90+9(2)F1,A(X)+98F2,A(X)+
measurement is used to fix the valueggfso as to reproduce )
the experimental value df(u). For QED for instance, this There are infinitely many ways of regularizing the's and
procedure would mean that: for the example given in Eq2), it can consist for instance in

(i) We start by writing a general Hamiltonian compatible introducing a cut-off in the following integral:

with basic assumptions, for example, relativity, cau- A dt
sality, locality, and gauge invariance. Fia)=a| - )
.. . . 0 X
(i)  We calculate physical processes at a given order of
perturbation theory. Different regularization schemes can lead to very different

(i) We fix the free parametés) of the initial Hamiltonian  intermediate calculations, but must all lead to identical
to reproduce at this order the experimental data.  results?? For instance, dimensional regularization is widely

. . used in QFT because it preserves Lorentz and gauge
This last step requires as much data as there are free pggmmetries>>23we do not need here to specify a regular-

rameters. Once the parameters are fixed, the theory is cOyation for the functionF, because our arguments will be
pletely determined and thus predictive. One could then th'nlrgeneral and the few calculations elementary.

that it does not matter whether we parametrize the theory i e g regularization scheme has been chosen, it is pos-
terms ofgo, which is only useful in intermediate calcula- gjple to use the renormalization prescription, E8), to-
tions, or with a “physical,” that is, a measured quantity gether with the regularized expansion, Ed), to obtain a
F(u), becausg, will be replaced by this quantity anyway. ye|l-defined perturbation series fBr, in terms of the physi-
Having this freedom is indeed the generic situation in physea| couplinggg. If this expansion makes sense—this is the
ics, but the subtlety here is that the perturbation expansion %normalizability hypothesis—it must be finite even in the
F(x) is singular, and, thus, so is the relationship betwgen |imit A oo, because it expresses a finite physical quantity
andF(w). Thus, it seems (_:ruc_|al_to reparameterezn terms F(x) in terms of a physical quantitys. Thus, the renormal-

of F(u) when the expansion is ill-defined. ization program consists first in changing(x,g,) to

The renormalizability hypothesiis that the reparametriza- ; . ;
tion of the theory in terms of a physical quantity, instead ofFA(X’go’A)’ then in rewritingF, in terms ofgg and u,

Jo, is enough to turn the perturbation expansion into a well-  F ,(X,0g,A)—FA(X,0r, 1), (6)
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and only then taking the limi\ — at fixed gg and u. If
this limit exists,F..(x) is by hypothesis the functioR(x):

F(X):F(Xngv/"L) = FA(ngRI/*L)' (7)

A—so0

o]

F(X)=gr+ a(u—X)0Z f +0(gd), (16)

o (t+x)(t+pu)

which is obviously well defined and such that the prescrip-
tion of Eq.(3) is verified. We say that we have renormalized

Of course, the divergences must still be somewhere, and Wee theory to this order.

shall see that they survive in the relationship betwggand
Or; at fixedgg, go diverges whem\ — . In the traditional

Before going to the next order of perturbation theory, let
us note two important facts. First, the renormalization proce-

interpretation of renormalization, this divergence is supposedure consists of “adding a divergent tern#,g to F, to
to be harmless becausgg is supposed to be a nonphysical remove its divergence. The cancellation takes place between

guantity. We shall come back to this point later.

the second term of its expansion and the first one of order

The renormalization program is performed recursively,g,. Both lead to a term of ordeg, the one coming from
and we now implement it order by order to see how it worksine expansion ofj, in terms of gr being tuned so as to
and the constraints on the perturbation expansion that it imzgncel the divergence of the other. This mechanism of can-
plies. Let us emphasize that the series expansion we shall ugg|iation is a general phenomenon: a divergence coming

in intermediate calculations are highly formal because they,,m thenth term of the perturbation expansion is canceled

are ill-defined in the limitA =cc. They are justified only by

the result we finally obtain: a good perturbation expansion i

terms ofgg .
* Renormalization at order g At this orderF(x) is con-
stant and given by

FA(X)=go+0(g5). 8
Thus the use of Eq3) leads to
9o=0r+O(g3). (9)

« Renormalization at order. Our only freedom to elimi-
nate the divergence &f,(x) is to redefineg,. Because we

are working perturbatively, we expamgg as a power series

in gg. Thus, we set

Go=9rt 620+ 639+ -+, (10
where 5,g~O(gR). At ordergé we obtain
FA(X)=0gr+ 8,0+ grF14(X) +O(gR), (1)

where we have usegé=g3+0O(g3). If we impose Eq(3)
at this order, we obtain

82,0=—0gaF1A (1), (12
which diverges whem\ — . In our example, Eq(5), we
find

A dt A+

_ 2 — 2
0,9=—agr o t+a agrlog P

(13

If we substitute Eq(12) into Eq.(11), we obtainF , to this
order:

FA(X)=gr+ga(F1a(X) —F1A (1)) +0(g3). (14)

It is clear that this expression fét, (x) is finite for all x at
this order if and only if the “divergent” part of; ,(x) (the

part that becomes divergent whan- ) is exactly canceled

by that of Fy s (u), that is, if and only if

Fia(X)—Fya(w) is regular inx and p for A—oe.
(15

by the expansion in powers @fz of the n—1 preceding

Nerms. Second, this cancellation is possible forxatinly if

the divergence ofF;,(x) is a number, that is, is
x-independent. If it is not so, theff; , (X) —F 5 (u) would
still be divergentvVx+# w. This divergence would require the
imposition of at least one more renormalization prescription
to be removed and this second prescription would define a
second, independent, coupling conste®e Appendix A for
two functions, one renormalizable and one that is).nbhe
necessity for a second measuremenf¢x) would contra-
dict our assumption that there is only one free parameter in
the theory. Thus we conclude that this assumption drastically
constrains the-dependence of the divergences at orgr
We actually show in the following that this constraint propa-
gates to any order of perturbation theory in a nontrivial way.
We also will show that together with dimensional analysis
and for a very wide and important class of theories, these
constraints are sufficient to determine the analytical form of
the divergences.

* Renormalization at orderé; We suppose thd can be
renormalized at ordec_qﬁ, that is, condition(15) is fulfilled.
To understand the structure of the renormalization procedure,
it is necessary to go one step further. At orgérwe obtain

FA(X)=0r+ 820+ 829+ (g&+20r529) F1 4 (X)
+g3F,A(X)+O(gR), (17)

where we have useg3=g>+O(gp) andgi=gi+2grd,g
+0(gR). We again impose the prescription E&) and ob-
tain
839=29R(F1A(1))? = g&Fap (1). (18
If we substitute Eq(18) in Eq. (17), we obtain
FACO=0r+GRIF1A(X) = F1(1) ]+ gR[F2(X)
—Faoa(p) = 2F A (p) (F1a(X) —F1a(p))]

+0(gR)- (19)

This condition of course means that the divergent part ofonce again, we require that the divergence has been sub-

F14(X) must be a constant, that is, Xsindependent. If this
is so, then we define the functiofr(x)—now called
renormalized—as the limit df ,(x) whenA —oo. The con-
dition (15) is fulfilled for the example of Eq(2), and we
trivially find that F(x) reads:
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tracted for allx which imposes on th&-dependence of the
divergent part of;  (x):

Foa(X)—Faa(u) = 2F A () (Fqp(X)

—Fya(w)) is regular inx and u as A—x. (20
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Note that this constraint involves not onfy,,, but also  x-independent. In our example of Ed®) and(24) we find
Fia . Itis convenient to rewrité; ,(x) andF,,(x) as the S+ A
sum of a regular and of singuléwhen A —«) part: F5 A (X)=2a%logA IogWJrfg(A). (28

. =FS$ r
FiaCO=FiA()+ R, 00. 21 By expanding log\ log(x+A)/Ax in powers of At and by
Becausex + anything finite=, this decomposition is not again redefining the regular parte$ , , we obtain a simpler
unique: theF} ,(x) are defined up to a regular part. It is form for F3 , (x):

H S
convenient to choosE7 , (x) such that S \(X)= —2a2log A logx-+f5(A). (29)
FIA()—Fis(p) — 0, (220 This relation will be important in the following when we
A= shall discuss the renormalization group.
which, of course, implies conditiofi5). We show in Appen- Let us draw our first conclusion. Infinities occur in the

dix B that, reciprocally, this choice is always possibl¢li§) ~ perturbation expansion of the theory because we have as-
is fulfilled. As already stated, E422) means that the diver- sumed that it was not regularized. Actually, these diver-
gent part ofF ; , is x-independent. We can actually impose agences have forced us to regularize the expansion and thus to
more stringent condition off$ , because, by again tuning introduce a new _scaI_A. Once regularlzatlon hqs _bee_n per-
the regular part of; ,, we can choos&S, to be com- formgd,_ renormalization can be achieved by ellmmaglag _

: : A The limit A—c0 can then be taken. The process is recursive
pletely independent of, for any A. We thus define . .

and can be performed only if the divergences possess, order

F3 o (x)=f1(A). (23 by order, a very precise structure. This structure ultimately
’ expresses that there is only one coupling constant to be
In our example, Eq(5), we can choose renormalized. This means that imposing only one prescrip-
+x tion atx= w is enough to subtract the divergences fonall
fi(A)=alogA, X =a Iog(v). (24 In general, a theory is said to be renormalizable if all diver-

gences can be recursively subtracted by imposing as many
We now substitute E¢23) into Eq.(20) and, using the same prescriptions as there are mdepender_]t parameters in the
kind of arguments as in Appendix B, we obtain a constraintheory. In QFT, these are masses, coupling constants, and the

on the singular part d&, ,(x) similar to the one off$ , (), normalization of the fields. An important and non-trivial
Eq. (22): ’ ‘ topic is thus to know which parameters are independent, be-
cause symmetries of the thedlike gauge symmetrigsan
SA)=F3 A () =2 F1(A)[FLA(X)=Fa(m)] — 0. relate different parametefand Green functions
A—ee Let us once again recall that renormalization is nothing but
(25 a reparametrization in terms of the physical quanggy.>®
Equation(25) can be rewritten as The price to pay for renormalizing is that g, becomes
S ; infinite in the limit A — o0, see Eq(12). We again emphasize
[F2a(0) =211 (A)F1 1 (X)] that if gy is believed to be no more than a non-measurable
—[Faa(w) =21 (A)F A (1)] — O. (26)  parameter, useful only in intermediate calculations, it is in-
' ’ Asoo deed of no consequence that this quantity is infinite in the

. limit A—oc. Thatg, was a divergent non-physical quantit
Equation(26) hsas thes same Str“Ctl;"e as B2 up o the  paq peen commogil0 belief for de?:ades in F()nglT Thg physi)éal
replacementF; ,—F; \—2f,(A)F; . and therefore has egyits given by the renormalized quantities were thought to
the same kind of solution as E(®3): be calculable only in terms of unphysical quantities likg

S () =2 F1(A)F] \(X)+Fo(A), 27 (called bare quantitigsthat the renormalization algorithm

’ ’ could only eliminate afterward. It was as if we had to make
wheref,(A) is any function ofA and is independent of. two mistakes that compensated for each other: first introduce
We see in Eq(27) that unlikeF; ,(x), the divergent part of bare quantities in terms of which everything was infinite, and
FZA(X) depends orx. However, this dependence is entire|y then eliminate them by addlng other divergent quantities.
determined by the first order of the perturbation expansionndoubtly, the procedure worked, but, to say the least, the

The 8,9 term, necessary to remove tg?) divergence, INterpretation seemed rather obscure.
has produced at ordeg’ an x-dependent divergent term: Before studying the renormalization group, let us now spe-

20r620F14(x). This kind ofx-dependence is also a general cialize to a particular class of renormalizable theories.
phenomenon of renormalization: theounteryterms that re-

move divergences at a given order produce divergences @i, RENORMALIZABLE THEORIES WITH

higher orders. If the theory is renormalizable, these diverp|MENSIONLESS COUPLINGS

gences contribute to the cancellation of divergences present

in the perturbation expansion at higher orders. Thus, pertur- A very important class of field theories corresponds to the
bative renormalizability, that is, the possibility of eliminating situation whereg, is dimensionless, ang, which in QFT
order by order all divergences by the redefinition of the coutepresents coordinates or momenta, has dimengwnsaore
pling(s), implies a precise structure ¢the divergent parts of  generally wherg, andx have independent dimensionsn

the successive terms of the perturbation series. At ander four-dimensional space—time, quantum electrodynamics is in
the singular part oF, , involvesx-dependent terms entirely this class, because the fine structure constant is dimension-
determined by the preceding orders plus one new term that iess; quantum chromodynamics and the Weinberg—Salam
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model of electro-weak interactions are also in this class. Irdimensional analysis. We have already partially studied this
four space dimensions, the* model relevant for the case with the example given in E¢) where Fia(x) is

Ginzburg—Landau-Wilson approach to critical phenomenaogarithmically divergent, a characteristic feature of these
is in this class too. This particular class of renormalizablerenormalizable theories. In particular, we have shown that in

theories is the cornerstone of renormalization in field theothjs case, renormalizability imposes at or@érthatF;A is

ries. of the form given in Eq(29). Let us now use dimensional

Our main goal in this section is to show that, indepen-y,,yy<is that once again imposes tRgt, depends only on
dently of the underlying physical model, dimensional analy-X/A The only freedom we have to reconstruct a function of
sis together with the renormalizability constraint determine™ ™ y s . . )

/A from the form of F;, given in Eq.(29) is to add a

almost entirely the structure of the divergences. This under® - Pur = :
lying simplicity of the nature of the divergences explains that'€gular function to it. It is not difficult to find how to proceed
there is no combinatorial miracle of Feynman diagrams inPecause the only admissible term including folpgx is
QFT as it might seem at first glance. Let us now see in detallog® A/x:
how it works.

Becauser ,(x) has the same dimension gg, it also is A
dimensionless and so are thg ,(x). The only possibility log? —=log? A — 2 log A logx+ log? x. (32
for a dimensionless quantity like to be a function of a X
dimensional variable likex is that there exists another di-
mensional variable such th&t depends orx only through  Thus, to obtain the dimensionally correct extension of the
the ratio of these two variables. Apart fromthe only other  term—2a?log A logxin Eq.(29), we extracta? log? A from
quantity on whichF depends isA, which must therefore f,(A) and add the regular term? log?x:
have the same dimensionasThis is indeed the case in our
example, Eq(5). Thus, the function§; ,(x) depend onthe _ , >
ratio x/ A only2® Let us show that this is enough to prove 2a”log A logx+15(A)
that theFy ,(x) are sums of powers of logarithms with, for ——2a®log A logx+ a?log? A +[f,(A)—a®log” A]
most of them, p.rescribed prefactors. — —2a2log A logx+ a2 log? A + a2 log? X+ [ f,(A)

Let us start withF3 , (x). On one hand, we have seen that

by redefining the regular part ¢f, ,(x), we could take its —a’log’ A]
singular partFiA(x) independent ofx, Eqg. (23). On the A
other hand, we know thdt; ,(x) is a function ofx/A. Thus, —a? Iogzy +[fo(A)—a?log? A]. (33

by redefining FR’A(X), it must be possible to extract an

x-dependent regular part(x), of this function so as to build
the x/ A dependence d?i/\(x): ThUS, we obtain for the new fUnCtidﬁ;A(X):

X
] x=f(—)=f A)+r(x). 30 A
l,A( ) A 1( ) ( ) ( ) ;A(X)=a2 |092;+f2(A)—a2|ngA. (34)
Hence,F$ , is separable into functions of only and of A

only which sum up to a function of/A. We show in Ap-

— 2?1002 -
pendix C the well-known fact that only the logarithm obeys Now, for fo(A) —a”log"A, we can repeat thg same argu
this property. We obtaifisee Eqs(C3) and (C4)] ment as the one used previously o, (x) [which is equal

to f1(A), Eq.(23)]: it is a function ofA that must become a
X A function of x/A only by adding a function ok. It is thus
1= _fl(X) =f(A) =Ty (x)=alog~-. 3D 4is0 a logarithm, see Eq&30) and (31) and Appendix C.

i i . . Therefore, we add a lagterm toF35 , (x) and obtain the final
Therefore, for renormalizable theories and for dlmensmnlesgesum ’

functions such ag$-, only logarithmic divergences are al-
lowed at ordergg (in QFT, this is the so-called one-loop
term). This is the reason why logarithms are encountered
everywhere in QFT. Note that because of dimensional analy-
sis, the finite part ofF ,(x) is nothing butr(x), up to an
additive constant, at \east far—co. Th|s. can b.e checked fgr where B is a pure number. We emphasize that although it is
the example given in Ed5). Thus, by dimensional analysis, _ . oo g .
the structure of the divergence determines that of the ﬁnité(—lndependent, the term” log”A mv_olved n F2A(%) anses .
part (up to a constant Notice that things would not be that from the_logA Iogxte_rm thanks to dimensional analysis. It is
simple if F, (x) depended on another dimensional parameterthus entirely determined by the term of ordggrof perturba-
which is the case of massive field theories where masses afi@n theory. Only the sub-leading logarith@log A/x is new.
momenta have the same dimension. In this case, the finité is not difficult now to guess the structure of the next order
part is only partially determined by the singular one. of perturbation: it involves a log\/x with a prefactora®, a

Let us now show that the structure B} , also is entirely log® A/x term with a prefactor which is a function efand 3
determined for renormalizable theories with dimensionlesand a log\/x with a prefactor independent af and 8. A
couplings both by the renormalizability hypothesis and byprecise calculation shows that

S 2 2A A
24 (X)=a“log ;+,8Iog;, (35
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, A s 3 oA aa, sl By substituting this expression in Eg&36) and (39), we
FR(X)=agylog- - +a’golog”— +a’gglog’ -+ - obtain atO(gp):

A 5 A " n n
+,6’gglog; + Eaﬁgglog2;+ FA(X)=gr+ a9§e|09; +a29%|092; +a39é|093;"'

A 3100 12t o2
+ygélog;+---. (36) +BgrlogL +5aBgrlog” -

41002 ...
We have written the series so as to exhibit its “triangular” +v9rlog X
nature: the first line corresponds to the leading logarithms, (42

the second to the sub-leading, etc., andritrecolumn to the Thus, we find that the renormalization process leaves un-

(n+1)th order of perturbation. The leading logarithms arechanged the functional form &%, , Eq. (36), and just con-
entirely controlled by thgé term, the sub-leading logarithms sists in replacing do,A) by (gr,u). This very important

by both thegg and g3 terms, etc. It is clear that order by fact is related to a self-similarity property that we study in
order for the divergent terms, only the log term is new, all thedetail from the renormalization group viewpoint. Notice that
log?, log®, etc., terms are determined by the preceding orderssf course any explicit dependence dnand g, has been
This structure strongly suggests that we can, at least partiallg|iminated in Eq(41) and that the limitA —o can now be
resum the perturbation series. We notice that although thgafely taken, if desired.

leading logarithms form a simple geometric series, this is N0 Ngte that we have obtained logarithmic divergences be-
longer true for the sub-leading logarithms where, for in-cayse we have studied the renormalization of a dimension-
stance, the factor &B/2 of Eq.(36) is non-trivial. Thanks to  |egg coupling constant. I, was dimensional, we would
the renormalization group, there exists a systematic way t@aye obtained power law divergences. This is for instance

perform these resummatidiigsee the following what happens in QFT for the mass terfisge also in the
We again emphasize that for our simple toy model thefollowing the expansion in Eq45)].

divergences together with dimensional analysis determine al-
most entirely the entire functioR(x) in the limit of largeA.
To show this explicitly, we rewrité- as IV. RENORMALIZATION GROUP

FA(X,90,A)=go+ F}(X,00,A) +F}(X,g0,A) (37 Although the renormalization group will allow us to par-
: s : 4 tially resum the perturbation expansion, we shall not intro-
W:th FA(X’QO’A)Z given by Eq..(36) .at O(9o) and' duce it in this way. Rather, we want to examine the internal
FA(X,80,A)~O(gp). ~ From  dimensional  analysis, consistency of the renormalization procedure.

FA(X,0o,A) is also a function ok/A only which, by defi- We have chosen a renormalization prescription at the point
nition, is finite whenA —o. Thus, for largeA, x=u wheregg is defined. Obviously, this point is not spe-
X cial, and we could have chosen any other paintor u” to
F;\(XigOiA):f(X’gO) =7(049o). (38)  parametrize the theory. Because there is only one indepen-
dent coupling constant, the different coupling constays
F'.(x) is therefore almost-independent for largd: itis a ~ =0r(#), Gr=0r(x"), 9r=0gr(x") should all be related in
(go-dependentnumber in this limit. For the sake of simplic- such a way that F(x)=F(x,u,0r)=F(X,x",9R)
ity, let us consider the case where it is vanishing: =F(x,u",gR), etc. This means that there should exist an

= A)=gntES A equi\(alence class of parametrizati_ons of _the same the.ory and
A(%80,A)=Got F1(X.90, ) (39 that it should not matter in practice which element in the

with F}(x,90,A) a function of x/A only. By using the class is chosen. This independence of the physical quantity

renormalization prescription, E€B), we can calculatgg as with respect to the choice of prescription point also means

a function ofg, and A/ and by formally inverting the se- f[hat. the changes of parametrizations shoul_d tﬁ;eaor.mal—
ries, we obtain aD(gl): ization) group law: going from the parametrization given by
) R/ -

(u,gR) to that given by fu’,gg) and then to that given by
(n”,gg) or going directly from the first parametrization
(u,0gR) to the last one &”,gR) should make no difference,

Jo=0r— ag3 Iog£+g3 azlogzé—,ﬁ'log£
ROTERTE, O © n

A 5 A A see Fig. 1.
+g4 —ylog—+ = aBlog?— — o |093_}. (40) Put this way, this statement seems to be void. Actually, it
mo2 M M is. More precisely, it would be so if we were performing

exact calculations: we would gain no new physical informa-
tion by implementing the renormalization group law. This is
. beca_use this group law does not re_flect a symmetry of 'ghe
(0n 1) (g, 1) (ol 1) physics, but only of the parametrization of our solution. This
’ ® situation is completely analogous to what happens for the
I A solution of a differential equation: we can parametrize it at
> time t in terms of the initial conditions at timé, for in-

Fig. 1. An illustration of the renormalization group: the two equivalent ways Stance, or we can use the_ equation itself to Fa|CU|at_e the
to compose changes of parametrizations. solution at an intermediate timeand then use this solution
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as a new initial condition to parametrize the solution at time €2

t. The changes of initial conditions that preserve the final ~ Y(t)=ro| 1+ e(t—to)+ ?(t_t‘))z +0(€). (51)
solution can be composed thanks to a group law. Let us

consider, for example, the following trivial, but illuminating, Thus, the first order in the perturbation expansion, together

example: with the group law, determines entirely the term of highest
o B degree in—tg at the next order. Of course, to verify exactly
y=ey(®)., y(to)=ro, (42) the group law, we should pursue the expansioreito all

the solution of which is orders. It is easy to show that to orde"; the term of highest

ty=f(rg,t—tg)=roet 1o, 43 degree int—t, is completely determined by both the first-

YO =1(ro,t=to)=ro _ 43 rder result and the group law and coincides with the pertur-

The group law can be written &s bation result: €"(t—to)"/n!. Thus, the only information
f(ro,t—to)=f(f(ro,7—to),t—7 Vr, (44)  9iven by the perturbation expansion is that all subdominant

, ) , , terms, €"(t—ty)P with p<n, vanish in this example. We
which you can verify using the exact solution, E43). The  ¢q,1d now show how the implementation of the group law

non-trivial point with these group laws is that, in general, jots ys resum the perturbation expansion. Unfortunately, this
they are violated at any finite order of the perturbation &Xexample is too simple and some important features of the

pansions. In our previous example, we obtain to order renormalization group are missed in this caSee Appendix
y()=F1(rg,t—to)=ro(1+e(t—ty)), (45) E for a complete discussion of the implementation of the
renormalization group on this exampléle therefore go

and back to our toy model for which we specialize to renormal-
f1(f1(rg,7—to),t—7)=ro(1+e(t—ty)) izable theori_es yvith dimensionless couplings. _ _

5 Renormalization group for renormalizable theories with
+eTo(t—7)(7—1p). (46)  dimensionless coupling8Ve now reconsider our toy model,

The group law is verified to ordarbecause the perturbation EdS:(4), (36), and(37), from the point of view of the renor-
expansion is exact at this order. However, it is violated by gnalization group. For the sake of simplicity, we keep only
term of ordere? that can be arbitrarily large even for smgll  the dominant terms at each order, that is, apart fggmthe
providedt—t, is large enough. divergent ones in Eq39). _ _

The interest of the group law, E6#4), is that it is possible _Flrst, notice that in the same way is clearly associated
to enforce it and then to improve the perturbation resultWith the scaleu, Eq. (35)! S0 isgo with the scaleA because
Actually, when renormalization is necessary, the group lawfrom Ed. (36), we find
Itets us partially resum the perturbation series of divergent FA(x=A)=go. (52)
erms. . . _ _ .

Let us now see how this improvement of the perturbation-et us define a third coupling constant associated with the
series works for the example of the differential equatit®). scaleu’,
In this case, the divergence occurs tgr— —oo. Thus,t, Falp')=gk, (53)
plays the role of the cut-off\, t—t, of log A/, andt— 7 of ) _ _ _
log u'/u. Oncet, is finite, no divergence remains, but the and study the relaztlonsmp between these different coupling
relics of the divergences occurring fop— — o are the large  constants at ordeg,. From
violations of the group law because both the divergences and
these violations originate in the fact that the perturbation  F,(x,go,A)=do+ agjlog
expansion is performed in powers eft—ty) and not ofe.
To further study the relevance of the group law, it is inter-we obtain
esting to forget the higher order terms of the perturbation
expansion for a while and to look for an improved approxi-
mation that coincides at orderwith the perturbation result
and that obeys the group law at ordet A

. r_ 2
fl:{np(ro,t_to)zro(l‘*' e(t_to)+62G(t_to)) (47) gR_gO_i_agolog(?

By imposing the group law, Eq44), to ordere®, we obtain By eliminatingg, between these two equations, we find
a functional equation fo6:

G(t—te)=G(7—t)+ G(t—7)+(r—to)(t—7).  (48) 9k=0r* agilog
If we differentiate Eq.(48) with respect tot, and taket,

<] TO(g). (54)

gr=0o+ agjlogl —|+0(gd), (55)

)

+0(gy). (56)

Ll 3
o +O(gRr), (57

and thus, as expected, the group law controlling the change

=7, e obtain, setting=t—r, of prescription point is verified perturbatively. We note that
G'(X)=x+G'(0). (49)  the essential ingredient for this composition law is that Eq.
(57) is independent of\. This is what ensures that the same
BecauseG(0)=0, Eq.(49) implies that form can be used to changgy,A) into (ggr,«) and then
X2 (gr,) into (gg,u"). This independence, in turn, is nothing
G(x)= 5 +ax (500  but the signature of perturbative renormalizability which lets

_ _ _ . us completely eliminate at each ordegy(A) for (gr,u).
where a is arbitrary. Fora=0, this result is actually the Perturbatively, everything looks fine. However, the previous
perturbation result to order® because calculation relies on a formal step that is not mathematically

176 Am. J. Phys., Vol. 72, No. 2, February 2004 Bertrand Delamotte 176



Eq. (57), the seriegr=gr(go) Must be inverted to find, (62
=(do(gr) While, for A —oo, the seriegr=0ggr(go) is clearly

not convergent and thus not invertible. Thus, the neglectedhe functionf is then said to be thself-similar approxima-
terms of ordemg? in Eq. (57) involve a term proportional to  tion at ordern of the exact relationship betweegy and

log A/ulog u'lu—analogous to the termt€ 7)(7—to) of  Gr->C First notice one crucial thing. Our first aim was to
Egs.(46) and(48—which is neglected because it is of order study the perturbation expansion of a functinn a power
g3, but which is very large for large (see Appendix @  series of a coupling constagh. Then we have discovered
From a practical point of view, the existence at any order ofthat the logarithmic divergence at ordg% propagates to all
these large terms of higher orders spoil the group law so thajrders so that the expansion is actually performed in
the independence of the physical results with respect to thg, log A/u instead ofg,. BecauseA is the regulator, it is

! /B

correct, at least for largd. Indeed, to go from Eq(56) to w\ wm'
f(QmV)“‘(“( R ), )

choice of prescription point is not verified. supposed to be very large compared withso that the large
As in the case of the differential equatigd7), we can |ogarithmic terms invalidate the use of the perturbation ex-
look for an improved functiont""", pansion. Reciprocally, it is clear that perturbation theory is
perfectly valid if it is performed between two scalgs and

+ O(gé), Mo Which are very gloge. Thus, instead of using p_erturbation
theory to make a big jump between two very distinct scales,

(58) say A and i, we should use it to perform a series of very

. 3. ) . little steps for which it is valid at each of them. In geometri-
for which the group law at ordegy is obeyed. Itis shown in ¢4 terms, the fact that the perturbative approach is valid only

Appendix D that this constraint implies that between two very close scales means that we should not use
TR, perturbation theory to approximate the equation of the curve
G(x)=a”log”x+ Blogx, (59 given by the functionf, Eq. (61), that joins the points

where 3 is arbitrary. Thus, (u,9g) and (u',gg), but we should use it to calculate the
(field of) tangent vectors to this curve, that is, its envelope.
> 31 o The curve itself should then be reconstructed by integration,
+a“gylog X see Appendix E. By doing so, the group law will be auto-

. , (A
F™P(X,90,A) =0+ agylog <

3 A
+gOG ;

| , (A
F'"™P(x,90,A)=0o+ agglog M

matically verified because, by construction, the integration
3 A 4 precisely consists in composing infinitesimal changes of rep-

+ Bdglog| — | +O(gy). (60) ization infini i i i
0 X 0 arametrization infinitely many times. Let us consider again

Eq. (55). We want to calculate the evolution g&(u) with u
Once again, we find that the group law together with thefor a given model specified byA(,g,). Thus we define
orderg(z) result determines the leading behavior at the next J
order, here the I0gA/X) term. Moreover, we find that the lg(gR)ZMﬁ , (63
group law imposes the existence of the samé tegn as the I gg.A
one found from the renormalizability constraint, E¢35) . , e . .
and (36), and allows the existence of a sub-leading Ioga-\gg':g 8&;{?15;;263(':25'2';grsmslr:gg;'té%?rgfstgi(;?‘ummg con-
rithm. Although nontrivial, this should not be too surprising > ! . P WO d).
because the renormalizability constraint means that &nise We trivially find to this order from Eq(55),
well defined aix= y, it also is everywhere and in particular ~ B(ggr)=— ag3+0(g?), (64)
at x=pu'. The renormalizability constraint is therefore cer- o : ; ;
tainly necessary for the impleme_ntation of the group law. Asgggaitnhus, by trivially inverting the series of EBS), we
in the example of the differential equation, E@2), we
should pursue the expansion to all orders to obtain an exactly B(gr)=— ag§+ O(g%). (65)
verified group law. It is clear that by doing so, we would find . . :
the sam% ex%ansion as the one o>l/)tainegd from the renormalgl-bot\g’i’n”c we integrate Eq(63) together with Eq.(65), we
izability constraint. Thus, if we use perturbation theory to

calculate the coefficient in front of the first leading logarithm , Or
(of orderg3) and impose the group law, we should be ableto ~ 9rR™ “w (66)
resum all the leading logarithms. To do the resummation of 1—agRIogI

the sub-leading and sub-sub-leading logarithms, a knowledge

of, respectively, the ordeg3 and g terms is required. This relation has several interesting properties.

Clearly, we need to understand how to systematically con- (i) When expanded to ordes, the perturbation result to

struct the functiorf giving gi in terms ofgg and u/u',?’ this order is recovered, Eq57). This is quite normal be-
causeB(ggr) has been calculated to this order.

, M (i) When expanded to all orders, the whole series of lead-
9r= f( gR’?)' (61) ing logarithms is recovered. This is more interesting because
B(gr) has been calculated only to ordgf, but simply
such that means that all the leading logarithms are determined by the
* its expansion at orden is given by thenth order of first one.
perturbation theory, (iii) The group lam(62) is obeyed exactly. We have thus
« the group law isexactlyverified: found the functionf of Eq. (61) to this order. It is very
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M!
=alog—. 71
@ gM (7D

to verify that theB function found in Eq(65) is not modified ———+ —log| =

if we add the leading logarithmic term of ordgj to relation 9r 9= @ "\Or @tfBOr

(55): There is no simple solution of this transcendental equation. It
is however possible to obtain an iterative solution that is

2 +o(gh). (67 validif the O(g?) term is small compared with th@(g3)

M one, that is, ifggB/a<1. It is obtained by replacingg in

The independence of thg function with respect to the the third term of Eq(71) by its expression obtained to order
addition of the successive leading logarithmic terms meanng, Eq. (66):
that this function is indeed the right object to build self-

instructive to check the group law directly from H§6) and 1 1 g (gR a+ Bgk

A
gr=0o+ agjlog| —| + a?g}log? "

similar approximations out of the perturbation expansion. gL= 9Rr (72
Let us now return to thed function itself. First, we have R o m\
calculated the logarithmic derivativedgg/du instead of 1_“9R|097+;9R|09 1_“9R|09?

the ordinary derivative with respect jobecause we wanted .
to have a dimensionleggfunction. Second, even the dimen- It is easy to check that E¢72) resums exactly all the leading

sionless quantity,3(gg), could have depended of/p. and sub-leading logarithms of the perturbation expansion Eq.

. (41). Note that contrary to the one-loop result, H§6),
However, the evplutlon OQR(.'“) betweeny and u +du which resums only the leading logarithms, the exact expres-
cannot depend in perturbation theory @dn because the

. : : 4 : sion in Eq.(71) contributes also to the sub-sub-leading loga-
Tgt?grrlyblestvssgrgﬁiu)vzg dgirzzr,r;]?jl'ezsebrl]fj'stgﬁlypg;u;gzzv,e "ithms as well as the sub-sub-sub-leading ones and so on and
and not onA. Thus, being dimensionless, th# function so forth.

cannot depend op alone and is thus only a function gk.

This property is general for any renormalizable theory: in theV. SUMMARY

space of coupling constants, te€function is always docal
function. Third, theB function is the function to be expanded

in perturbation theory because it is given by a true series i _ . ; _
P y g y parameter in which perturbation series are expanded. In par-

and not ingg log A/u. This is clear for our example, Eq. % . . " .
?6R5) where tﬁgregis #0 logarithm, and can be erc))ven ?Or_ncle physics, this parameter is in general a coupling constant

; like an electric charge involved in a Hamiltoniamore pre-
Egg;lywt‘)ayﬁt:g tfﬁgf wing argument. If we use Eqe1) and cisely the fine structure constant for electrodynamid#is

parameter is also the first order contribution of a physical

(1) The long way of renormalization starts with a theory
flepending on only one parametgg, which is the small

of quantity F. In particle/statistical physicsk is a Green/
B(9r)=— @(gRiy)\yzl- (68  correlation function. The first order of perturbation theory
neglects fluctuations—quantum or statistical—and thus cor-
If f is a double series ig and in logu/u’), responds to the classical/mean field approximation. The pa-
P P rameterg, also is to this order a measurable quantity because
f( ORr, —,) => an pOr logP —, (69 itis given by a Green function. Thus, it is natural to interpret
M n.p M it as the unique and physical coupling constant of the prob-

it is clear from Eq(68) that only terms withp=1 contribute  €m. If, as we suppose in the followingy is dimensionless,
to 8(g), with the logarithm replaced by-1. Thus we im- SO isF. Moreover, ifx is dimensional—it represents mo-

mediately deduce from this argument and from E#) that ~Menta in QFT—it is natural thdt does not depend on it as
is found in the classical theory, that is, at first order of the

B(gr)=— agk— BIE— YJr+O(QR). (70 perturbation expansion.

It is easy to check that the first two coefficientsa and (2) If F does depend ox, as we suppose it does at second

— B, are universal in the sense that for two different theories"der of perturbation theory, it must depend on another di-

; / - mensional parameted, through the ratio ok andA. If we
arametrized b ,u) and i), the two B functions . > T
Eave the same):‘igsﬁ[ tl\LN)o coef?cRielrft)s in their e’?(pansions. have not included this parameter from the beginning in the

This method of computing thg function also lets us by- model, thex-dependent terms are either vanishing, which is

pass the strange way to calculate it that we have used in Eq‘é’.hat happens at first qrder, or infinite as Fhey are at second
and higher orders. This is the very origin of divergences

(64) and (65), where we have first expressgd in terms of (from the technical point of view

Go t0 caIcuIateﬁ_(gR) asa fgnction 08o gnd then, by inver- (3) These divergences require that we regulafizeThis

sion of the Series, re-obtained a functiongy. T_hese two requirement, in turn, requires the introduction of the scale
steps are priori dangerous because they both involve largey 5t \yas missing. In the context of field theory, the diver-
Iogarlthms.. Actually, they always cancel each other. This Ca@ences occur in Feynman diagrams for high momenta, that
be seen directly ]‘or the example of E§7) and the reason s at short distances. The cut-off suppresses the fluctua-
for this cancellation comes from Eq8) and (69), which tions at short distances compared withi L. In statistical

show that no Inversion of series is needed to calcule_lt hysics, this scale, although introduced for formal reasons,
B(9R)- Th,ere IS no miracle here, becaus_e only the behavio as a natural interpretation because the theories are always
aty=u/u'=1, which of course does not involvie matters.  gffective theories built at a given microscopic scale. It corre-
Fmaély, we mention that the integration of tfunction  sponds in general to the range of interaction of the constitu-
at O(ggr)—analogous to a two-loop result in QFT—Ileads to ents of the model, for example, a lattice spacing for spins,
an implicit equation foigy that generalizes Eq66): the average intermolecular distance for fluids. In particle
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physics, things are less simple. At least psychologically. Itsubjeci. We see here a key to the relevance of renormaliza-
was indeed natural in the early days of quantum electrodytion: two very different scales must exist between which a
namics to think that this theory was fundamental, that is, notontrivial dynamicgquantum or statistical in our examples
derived from a more fundamental theory. More precisely, itcan develop. This situation &priori rather unnatural as can
was believed that QED had to be mathematically internallybe seen for phase transitions, where a fine tuning of tempera-
consistent, even if in the real world new physics had to occuture must be implemented to obtain correlation lengths much
at higher energies. Thus, the regulator scale was introducddrger than the microscopic scale. Most of the time, physical
only as a trick to perform intermediate calculations. The limitsystems have an intrinsic scdle time, energy, length, efc.
A—o was supposed to be the right way to eliminate thisand all the other relevant scales of the problem are of the
unwanted scale, which anyway seemed to have no interpr&ame order. All phenomena occurring at very different scales
tation. We shall see in the following that the community noware thus almost completely suppressed. The existence of a
interprets the renormalization process differently. unigue relevant scale is one of the reasons why renormaliza-

function of x. The price is that different values of now mandatory because the masses of the known particles are

correspond to different values of the coupling constaiee ~ MUch smaller than a hypothetical cut-off scalesitill to be -
fined as the values df for thesex). Actually, it no longer dlsrc]:overed, Wh?rg new phgsms should take pIacE. This is a
makes sense to speak of a coupling constant in itself. Th{?‘elt er unnatural situation, because, contrary to phase transi-
. . . ) ons, there is no analog of a temperature that could be fine-
only meaningful qoncept is the paip(gr(p)) of cquplmg .tuned to create a large splitting of energy, that is, mass,
constants at a given scale. The relevant question Now igcajes. The question of naturalness of the models we have at
What are the physical reasons in particle/statistical physic;ragent in particle physics is still largely open, although there
that make the coupling constants depend on the scale whilg,s peen much effort in this direction using supersymmetry.
they are constants in the classical/mean field approxima- (5) The classical theory is valid down to the Compton/
tion?” As mentioned, for particle physics, the answer is theqqre|ation length, but cannot be continued naively beyond
existence of new quantum fluctuations corresponding to thg,;g scale; otherwise, when mixed with the quantum formal-
ppssibility of creatingand annihilgting particles_ at energie_s ism, it produces divergences. Actually, it is known in QFT
higher tharmc®. What was scale independent in the classicaknat the fields should be considered as distributions and not
theory becomes scale dependent in the quantum theory bgs ordinary functions. The need for considering distributions
cause, as the available energy increases, more and more pasmes from the nontrivial structure of the theory at very
ticles can be created. The pairs @firtual) particles sur-  short length scale where fluctuations are very important. At
rounding an electron are polarized by its presence and thushort distances, functions are not sufficient to describe the
screen its charge. As a consequence, the charge of an eléeld state, which is not smooth but rough, and distributions
tron depends on the distanter equivalently the energyat  are necessary. Renormalizing the theory consists actually in
which it is probed, at least for distances smaller than theyuilding, order by order, the correct “distributional continu-
Compton wavelength. ation” of the classical theory. The fluctuations are then cor-
Note that the energy scal@c® should not be confused rectly taken into account and depend on the scale at which
with the cut-off scale\. m¢c® is the energy scale above which the theory is probed: this nontrivial scale dependence can
quantum fluctuations start to play a significant role while only be taken into account theoretically through the depen-
is the scale where they are cut-off. Thus, although the Compdence of théanalog of th¢functionF with x and thus of the
ton wavelength is a short distance scale for the classicaioupling with the scale..
theory, it is a long distance scale for QFT, the short one being (6) If the theory is perturbatively renormalizable, the pairs
A~ There are thus three domains of length scales in QFTtu,g(x)) form an equivalence class of parametrizations of
above the Compton wavelength where the theory behavase theory. The change of parametrization fromg(u)) to
classically (up to small quantum corrections coming from (u’,g(u’)), called a renormalization group transformation,
high energy virtual processgdetween the Compton wave- s then performed by a law which is self-similar, that is, such
length and the cut-off scald ~! where the relativistic and that it can be iterated several times while being
quantum fluctuations play a great role, and below! where  form-invariant?”*°This law is obtained by the integration of
a new, more fundamental theory has to be invoKel. sta- P
tistical physics, the analog of the Compton wavelength is the ,B(QR)IM& ) (73)
correlation length which is a measure of the distance at I go.A
which two microscopic constituents of the system are able to_ ) _ o
influence each other through thermal fluctuatidhsor the ~ This function has a true perturbation expansion in terms of
Ising model, for instance, the correlation length away fromdr unlike the perturbative relation betweegr(u) and
the critical point is the order of the lattice spacing and thegr(x') Which involves logarithms ofi/u" that can be large.
corrections to the mean-field approximation due to fluctuaThe integration of Eq(73) partially resums the perturbation
tions are small. Unlike particle physics where the masses anseries and is thus semi-nonperturbative eve@(ifz) has
therefore the Compton wavelengths are fixed, the correlatiobeen calculated perturbatively. The self-similar nature of the
lengths in statistical mechanics can be tuned by varying thgroup law is encoded in the fact thafgg) is independent of
temperature. Near the critical temperature where the phasg®
transition takes place, the correlation length becomes ex- In particle physics, thes function gives the evolution of
tremely large and fluctuations on all length scales betweethe strength of the interaction as the energy at which it is
the microscopic scale of ordér*, a lattice spacing, and the probed varies and the integration of tjsefunction resums
correlation length add up to modify the mean-field behaviomartially the perturbation expansion. First, as the energy in-
(see Refs. 32, 33 and also Ref. 34 for a bibliography on thigreases, the coupling constant can decrease and eventually
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vanish. This is what happens wher>0 in Egs.(65 and  malizable couplings. This is the interpretation of nonrenor-
(66). In this case, the particles almost cease to interact analizable couplings. They are not terrible monsters that
very high energies or equivalently when they are very closehould be forgotten as was believed in the early days of QFT.
to each other. The theory is then said to be asymptoticallyfhey are simply couplings that the RG flow eliminates at
free in the ultraviolet domaift® Reciprocally, at low ener- low energies. If we are lucky, the renormalizable couplings
gies the coupling increases and perturbation theory can neecome rather small after their RG evolution betwéeand
longer be trusted. A possible scenario is that bound states atke scaleu at which we work, and perturbation theory is
created at a sufficiently low energy scale so that the perturvalid at this scale.
bation approach has to be reconsidered in this domain to take We see here the phenomenon of universality: among the
into account these new elementary excitations. Non-Abeliamfinitely many coupling constants that aaepriori necessary
gauge theories are the only known theories in four spaceto encode the dynamics of the infinitely many degrees of
time dimensions that are ultraviolet free, and it is widely freedom of the theory, only a few ones are finally relevant.
believed that quantum chromodynamics—which is such &Il the others are washed out at large distances. This is the
theory—explains quark confinement. The other importanteason why, perturbatively, it is not possible to keep these
behavior of the scale dependence of the coupling constant Bouplings finite at large distance, and it is necessary to set
obtained fore< 0 in which case it increases at high energies.them to zerd? The simplest nontrivial example of universal-
This corresponds, for instance, to quantum electrodynamicdy is given by the law of large numbeighe central limit
For this kind of theory, the dramatic increase of the couplingtheorem which is crucial in statistical mechanigéin sys-
at high energies is supposed to be a signal that the theofgms Where it can be applied, all the details of the underlying
ceases to be valid beyond a certain energy range and th_g[obabmty distribution of thg constituents of thg system are
new physics, governed by an asymptotically free thebke irrelevant for the cooperative 'phe.nor_nen_a Wh}ch are gov-
the standard model of electro-weak interactiohgs to take €rned by a Gaussian probability distributinThis drastic
place at short distances. redu<_:tion of complexity is prepisely W_hat is necessary for
(7) Renormalizability, or its nonperturbative equivalent, Physics because it lets us build effective theories in which
self-similarity, ensures that although the theory is initially Only @ few couplings are kept. Renormalizability in statis-
formulated at the scald, this scale together witly, can be tical field theory is one of the nontrivial generalizations of
entirely eliminated for another scale better adapted to th&he central limit theorem. o
physics we study. If the theory was solved exactly, it would (8 The cut-offA, first introduced as a mathematical trick
make no difference which parametrization we used. HowdC regularize integrals, has actually a deep physical meaning:
ever, in perturbation theory, this renormalization lets us't IS the scale beyond which new physics occur and below
avoid calculating small numbers as differences of very larg&Vhich the model we study is a good effective description of
ones. It would indeed be very unpleasant, and actually meart€ Physics. In general, it involves only the renormalizable
ingless, to calculate energies of order 100 GeV, forcouplings and thus cannot pretend to be an exact description
instance—the scalg of our analysis—in terms of energies Of the physics at all scales. HoweverAfis very large com-
of order of the Planck scale10'° GeV, the analog of the pared with the energy S(_:ale n Wh'.Ch we are interested, all
scaleA. In a renormalizable theory, the possibility to pertur- "onrénormalizable couplings are highly suppressed and the

: e .. effective model, retaining only renormalizable couplings, is
batively eliminate the large scale has a very deep meaning: fil'e ' . S I
is the signature that the physics is short distance insensitiv\éa“t‘rj].a”dt z(ijccuratétge fW|I§gn RdG ;(;;]mallsm IS V‘(’jelll Su'&?d
or equivalently that there is a decoupling of the physics af? this study, see Refs. 35 and)38 some models—the
different scales. The only memory of the short distance scal symptotlcally free ones—_lt is possible to formally take the
lies in the initial conditions of the renormalization group IMit A—¢ both perturbatively and nonperturbatively, and
flow, not in the flow itself: thes function does not depend on there is therefore no reason to invoke a more fundamental
A. We again emphasize that, usually, the decoupling of th&h€ory taking over at a finitéout large A. Let us emphasize
physics at very different scales is trivially related to the ex-Neré several interesting points.
istence of a typ_lcal scal_e such that the_ influence of all phey; For a theory corresponding to the pait,gr(x)), the
nomena occurring at different scalgs is almost completely limit A— must be taken within the equivalence
suppressed. Here, the decoupling is much more subtle be- class of parametrizations to which u(gr(x))
cause there is no typical length in the whole domain of belona<® AF\) fivergent nonrenularized Megr]&nll;ation
length scales that is very small compared with the Compton ox angsi(.)n consistg i taki _goo while kze i
wavelength and very large compared with 1. Because in- P ny= PINggo

teractions among particles correspond to nonlinearities in the
theories, we could naively believe that all scales interact with
each other—which is true—so that calculating, for instance,
the low energy behavior of the theory would require the de-
tailed calculation of all interactions occurring at higher ener-
gies. Needless to say that in a field theory, involving infi-
nitely many degrees of freedom—the value of the field at
each point—such a calculation would be hopeless, apafii)
from exactly solvable models. Fortunately, such a calculation
is not necessary for physical quantities that can be calculated
from renormalizable couplings only. Starting at very high (iii)
energies, typically\, where all coupling constants are natu-
rally of order 1, the renormalization group flow drives almost

all of them to zero, leaving only, at low energies, the renor-
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finite. From this viewpoint, the origin of the diver-
gences is that the pair\(=«,g,) does not belong to
any equivalence class of a sensible theory. Perturba-
tive renormalization consists in computirgy as a
formal powers series imgg (at finite A), so that
(A,g0) corresponds to a mathematically consistent
theory; we then take the limik — .

Because of universality, it is physically impossible to
know from low energy data if\ is very large or truly
infinite.

Although mathematically consistent, it seems unnatu-
ral to reverse the RG flow while keeping only the
renormalizable couplings and thus to imagine that
even at asymptotically high energies, Nature has used
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only the couplings that we are able to detect at lowwhich is still (logarithmically divergent for allx#0. The
energies. It seems more natural that a fundamentalifference between the two examples given in E&.and
theory does not suffer from renormalization problems.(A1) is that in the last one, once the linear divergence has
String theory is a possible candidéfe. been subtracted, the logarithmic sub-divergence remains.
o Subtracting it would require us to impose a second prescrip-
To conclude, we see that although the renormalization protion that would define a new coupling constant. In the ab-
cedure has not evolved much these last thirty years, our insence of this second coupling constant, the logarithmic di-
terpretation of renormalization has drastically chantfettie vergence cannot be subtracted and the model is
renormalized theory was assumed to be fundamental, while §onrenormalizable.
is now believed to be only an effective ong&;was inter- | et us examine how a second coupling constant could
preted as an artificial parameter that was only useful in insplve the problem. Generically, this second coupling, which

termediate calculations, while we now believe that it correqye call\,, already contributes at first order. We take as an
sponds to a fundamental scale where new physics occurgyiample

nonrenormalizable couplings were thought to be forbidden,

while they are now interpreted as the remnants of interaction _ 2 t 3

terms in a more fundamental theory. Renormalization group FA(X)=goFAox+adp 1 dtt+x +0(9o)- (A5)
is now seen as an efficient tool to build effective low energy o o

theories when large fluctuations occur between two very difl-€t us take as renormalization prescriptions,

fgre.nt scales that change the physics qualitatively and quan- yg N

titatively. W(X: 0)=\A\g, (AB)

A
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+0(gd). (A9

Obviously, this expression converges when-cc. The two
APPENDIX A: TOY MODELS FOR renormalization prescriptions let us subtract the linear diver-

RENORMALIZABLE AND NONRENORMALIZABLE gence as well as the logarithmic sub-divergence. We empha-
PERTURBATION EXPANSIONS size that in the previous example we only eliminated the

second divergence at ordgé. At higher orders, there are
We give an example of a nonrenormalizable theory and ofwo ways a theory can behave, characterized by two different
a theory which needs two couplings to be renormalized. Letenormalizability properties. The first one is that all diver-

us suppose that gences can be removed to all orders by renormalizing only
A t the two couplinggyg andA. A variant of this possibility is
Fia(x)= af dt—, (A1)  thata third coupling—or a finite number of new couplings—
' 1 t+Xx turns out to be necessary and sufficient to remove the diver-

gences. In this case, the model is renormalizable at the price
of introducing all the necessary couplings. The second pos-
sibility is that the new interaction term, which has induced
the existence of they term inF, generates new divergences
FA(0)=0r. (A2)  at higher orders. In this case, new interaction ter(asd

Note that it was not possible in the example of E5).to take coupling constanjsare required to remove the new diverj
=0, because this choice would have lead to a divergencgences' These new terms can themselves generate new diver-

of the integral at the lower bound. In EGA1) taking x=0 is gences at even higher orders, which require new couplings to

possible because the lower bound of the integral is nonvang]ea;fln?r?t\éerg c?igg fg ; mog :pg ns é)cg;zg'r;r};h::nsgsg't;]ng'rg;[\?g_
ishing and actually plays somewhat the role of a nonV"’m'shéjences and the model is perturbatively nonrenormalizable.

which, unlike the example of Ed5), is linearly divergent.
To renormalize this function, we have to impose a prescrip
tion at one point, and we choose

ing u. We have
5 A
020= _“QRL dt, (A3) APPENDIX B: DERIVATION OF EQ. (22)
so that Let us show that it is always possible to make the choice
A dt used in Eq(22). Due to condition(15), we have generally
_ _ 2
FAx)=0r angJ T (A4) FS 000~ FS()—0gi(x,n) when A, (BY)
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where the limitg; is a well-defined function satisfying ) A b 3. oA [ A
g1(X, )= —0g1(u,x). If we first evaluateF$,(x) in Eq. 90o=9r— @Jrlog M +2a°gglog M ~9rG n
(B1) atx=1 for instance and gt =1 and subtract them, we 4

obtain thatg; has the following form: +0O(9R)- (D4

Thus, substituting this expression fgg in gr=9x(d0), EQ.

(X, p) = - , B2 .
91(%, 1) =01(X) ~g1(p) (B2) (D2). we obtain
namely, a combination of the same function ofand . A
Then, by redefining$ : Fi,A—”:_iA—gl.WE satisfy Eq. 0h=0r+ g3 log i,) +93 2a2(|092(_)
(22). Note that the previous choice of singular part is not Hr M
necessary and is only convenient. A A A A
—Iog(—)log(—,) +G —,)—G(—) . (D5)
“ © 2 M

The group law is obeyed at this order if the relation between
gr andgg is of the same form as the one betwegrandgy,
Eqg. (D3). This condition requires

APPENDIX C: LOGARITHMIC DIVERGENCES IN
RENORMALIZABLE THEORIES WITH
DIMENSIONLESS COUPLINGS

A (,U- s
—|+g3G| —|+0(gd), D6
M) 9rCG| -, (9r) (D6)

2otz

By differentiating this relation with respect th and by tak-

Note that in full generality, the regular part we addft{¢A) ing A =g, we find, setting<=p/p":

could depend om\: r ,(x). However, because it is regular, , ,10gXx G'(1)

we can choose to add only theindependent function cor- G'(X)=2a ~ T (D8)
responding to the\ —oo limit of r,: r(x)=r.(x). If we . i . )
differentiate Eq.(C1) with respect tox and then takex= 1 If we take into account thab(1)=0, we find by integration

We prove for renormalizable theories with dimensionless gr=0OrT LYQ%'OQ
couplings thatF$ ,(x) must be a logarithm. If we use Eq.
(23), dimensional analysis, and the freedom to choose th@"d thus

regular part ofF, , , we have

!

(D7)

< 2a? Iog%log%JrG
iA(x)=f(K)=f1(A)+r(x). (C1)

and A =1/y, we obtain G(x)=a?log? x+ B logXx, (D9)
, r'(1) where g is arbitrary.
f'(y)= : (C2
y
and thus APPENDIX E: THE RENORMALIZATION GROUP
f(y)=—alogy, (C3 APPLIED TO A DIFFERENTIAL EQUATION

where the minus sign has been written for convenience. We show how the renormalization program can b_e imple-
From (C1) and(C3) we conclude thaf (x)=r(x)=—f(X) mented for the example of the differential equatiG?)

and that whose exact solution is
. X A y(t)=f(ro,t—to) =roe . (ED)
100 = f(K) =fx)-T(A)=a Iog;. (€4 In perturbation theory, we find

2
€
APPENDIX D: RENORMALIZATION GROUP y(t)=ro| 1+ e(t—ty) + ?(t—t0)2+ SR (E2
IMPROVED EXPANSION

We show how to derive Eq59). Consider the definition

of FMP: ¥
20
i 2 A 3 4
F'™P(x,90,A)=go+ agglog X +095G| —| +O(gp)- 15
(DY)
We can calculategr and ggr from their definitions(where 10
F'™P is used instead df) and from Eq.(D1):
2 an| A 4
9r=0ot agglog| —|+gG| —] +O(gp), (D2) .
H M 5 10 15 20
A . . . o
’_ 2 il 3~ 4 Fig. 2. The curvey(t) as a function oft. The (thick) lower line is the
9r=9o+ agplog w' + gOG( ’) +0(9go)- (D3) approximation of ordek, see Eq(E2). The other lines represent tlfield

) ) ] of) tangent vectors to the curve—the envelope—given bygHenction,
If we invert the seriegr=0r(go) of Eqg. (D2), we obtain Eq. (E7).
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At order €°, y(t) is constant and finite, whereas, at any “Electronic mail: delamotte@Ipthe jussieu.fr
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y(r)=r,. (E3)

If we perform the calculation to orde¢, we find to first
order:

r,=ro(l+e(7—tg))+0(€?), (E4)
and thus, as expected,
y(t)=r (1+e(t— 7))+ O(€?). (E5)

The theory is perturbatively renormalizable at this order bey
cause by imposing a single renormalization prescription, it is

possible to completely eliminatg andr,. Let us define the
B-function forr . by

ar , of
BD=57| el (E6)
We find
B(r.)=er ,+0(€). (E7)

It is very instructive to perform this calculation at higher
orders because we then find that thée) result of Eq.(E7)
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