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Abstract—In this work we review the definition and basic
properties of the different types of fuzzy sets that have appeared
up to now in the literature. We also analyze the relationships
between them and enumerate some of the applications in which
they have been used.
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I. INTRODUCTION

It has been widely accepted, from the definition of Fuzzy

Sets (FSs) in 1965 [163] and its generalization by Goguen in

1967 [61] (L-FSs), that the main obstacle in their application

is the attribution of membership degrees to the elements, since

these depend on the application and the context. For this

reason, Zadeh [164], [165] elaborated on the fact that in fuzzy

logic everything is allowed to be a matter of degree (where the

degree could be fuzzy). Hence, in 1971 [164], Zadeh presented

the concept of Type-n Fuzzy Sets (TnFSs), which includes

Type-2 Fuzzy Sets (T2FSs).

Since 1971, several different types of FSs have been in-

troduced, some of them aimed at solving the problem of

constructing the membership degrees of the elements to the

FS, and others focused on representing the uncertainty linked

to the considered problem in a way different from the one

proposed by Zadeh.
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cada, Universidade Federal do Rio Grande do Norte, Campus Universitário
s/n, 59072-970 Natal, Brazil.

J. Montero is with the Facultad de Ciencias Matemáticas, Universidad
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In Table I a historical sequence of the appearance of the

different types of fuzzy sets is displayed. In Table II we present

a list of the acronyms.

TABLE II
NAMES AND ACRONYMS

Name Acronym

Atanassov Intuitionistic Fuzzy Sets AIFSs
Bipolar-Valued Fuzzy Sets of Lee BVFSLs
Bipolar-Valued Fuzzy Sets of Zhang BVFSZs
Complex Fuzzy Sets CFSs
Fuzzy Sets FSs
Fuzzy Rough Sets FRSs
Fuzzy Soft Sets FSSs
Grey Sets GSs
Hesitant Fuzzy Sets HFSs
Interval Type-2 Fuzzy Sets IT2FSs
Interval-Valued Atanassov

Intuitionistic Fuzzy Sets IVAIFSs
Interval-Valued Fuzzy Sets IVFSs
m-Polar-Valued Fuzzy Sets mPVFSs
Neutrosophic Sets NSs
Pythagorean Fuzzy Sets PFSs
Set-Valued Fuzzy Sets SVFSs
Shadow Sets SSs
Type-2 Fuzzy Sets T2FFs
Type-n Fuzzy Sets TnFSs
Typical Hesitant Fuzzy Sets THFSs
Vague Sets VSs

Related to Table I, the goals of this work are the following:

1.- To introduce the definition and basic properties of each

of the types of FSs.

2.- To study the relationships between the different types

of fuzzy sets. In particular, to show that Hesitant Fuzzy

Sets (HFSs) are, conceptually, the same as Set-Valued

Fuzzy Sets (SVFSs), as defined by Grattan-Guinness.

However, Torra provided an explicit definition for union

and intersection of HFSs, whereas this was not the case

for Grattan-Guinness’ SVFSs.

3.- To analyze the difference between Interval-valued Fuzzy

Sets (IVFSs) and Interval Type-2 Fuzzy Sets (IT2FSs),

and to show that both are related to HFSs.

4.- To analyze the relationships between IVFSs, Atanassov

Intuitionistic Fuzzy sets (AIFSs), Interval-Valued

Atanassov Intuitionistic Fuzzy Sets (IVAIFSs), HFSs,

SVFSs and T2FSs.

5.- To highlight some applications of each of the types of

FSs.

Figure 1 presents a clear snapshot on the relationships
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TABLE I
HISTORY OF THE TYPES OF FUZZY SETS.

Year Event

1971 Zadeh introduces the idea of Type-n Fuzzy Set (TnFS) and therefore, Type-2 Fuzzy Set (T2FS) [164].

1975 Zadeh presents the definition of Type-n Fuzzy Set [165].

1975 Sambuc proposes the concept of an Interval-Valued Fuzzy Set (IVFS) under the name of Φ-Flou Sets [124]. Zadeh suggests
the same notion of interval-valued fuzzy set in [165] as a particular case of type-2 fuzzy sets. In 1976 Grattan-Guinness speaks
of IVFSs [66] and, in the eighties, Gorzalczany [62], [63], [64], [65] and Turksen [138], [139], [140] finally fix the naming
and first properties of IVFSs.

1976 Mizumoto and Tanaka [104], Dubois and Prade [49] in 1979 and in 1998 Mendel and Karnik [80] propose the mathematical
definition of a T2FS, as well as the first operations on such sets.

1976 Grattan-Guinness presents the notion of Set-Valued Fuzzy Set (SVFS) [66] as well as some operations based on previous
developments for many-valued algebras [161].

1983 Atanassov presents the definition of Atanassov Intuitionistic Fuzzy Set (AIFS) [4], [5].

1986 Yager gives the idea of Fuzzy Multiset [156].

1989 Atanassov and Gargov present the notion of Interval-Valued Atanassov Intuitionistic Fuzzy Set (IVAIFS) [6].

1989 Grey Sets (GSs) are defined by Deng [43].

1990 Dubois and Prade introduce the definition of Fuzzy Rough Set [50].

1993 Gau and Buehrer define the concept of Vague Set (VS) [60].

1996 Zhang presents the definition of Bipolar Valued Fuzzy Set (BVFSZ) [166]. We call them Bipolar Valued Fuzzy Sets in the
sense of Zhang.

1998 Pedrycz introduces the notion of Shadow Set [115].

2000 Liang and Mendel introduce the idea of Interval Type-2 Fuzzy Set (IT2FS) [81].

2000 Lee introduces a new concept with the name of Bipolar-Valued Fuzzy Set [84]. We call them Bipolar Valued Fuzzy Sets in
the sense of Lee (BVFSL).

2001 Maji, Biswas and Roy introduce the notion of Fuzzy Soft Set [88].

2002 Smaradache introduces the concept of Neutrosophic Set [132].

2002 Kandel introduces the concept of Complex Fuzzy Set [119].

2006 Mendel et al. present their mathematical definition of IT2FS [94].

2010 Torra introduces the notion of Hesitant Fuzzy Set (HFS) [137].

2013 Yager gives the idea of Pythagorean Fuzzy Set (PFS) [157].

2014 Bedregal et al. introduce the notion of Typical Hesitant Fuzzy Set (THFS) [14].

2014 Mesiarova-Zemankova et al. present the concept of m-Polar-Valued Fuzzy Set (mPVFS) [100].

among the extensions. T2FSs encompass SVFSs and hence

also hesitant sets, which include IVAIFSs. The latter contain

IVFSs, which are mathematically identical to AIFSs. Finally,

FSs are included in all of them.

T2FSs

Fig. 1. Representation of the inclusion relationships between different types
of fuzzy sets.

The paper starts by presenting the concepts of FSs and

L-FSs (in Sections 2 and 3, respectively). In Section 4, we

analyze T2FSs and their relationship with other types of FSs.

Section 5 is devoted to Set-Valued Fuzzy Sets and Hesitant

Fuzzy Sets. In Section 6, we study IVFSs and in Section 7

we analyze the case of IT2FSs. We then review in Section 8

AIFSs and the specific cases of Neutrosophic sets, BVFSZs

and BVFSLs. We discuss in Sections 9, 10 and 11 IVAIFSs,

Fuzzy Multisets and n-Dimensional Fuzzy Sets. In Section 12

we recall the definitions of Fuzzy Rough Sets, Fuzzy Soft Sets

and Multi-Valued Fuzzy Sets. We finish with some conclusions

and references.

II. FUZZY SETS

Łukasiewicz, together with Lesniewski, founded in the

twenties of the XXth century a school of logic in War-

saw that became one of the most important mathematical

teams in the world, and among whose members was Tarski.

Łukasiewicz introduced the idea of distributing the truth values

uniformly on the interval [0, 1]: if n values are considered,

then 0, 1
n−1 ,

2
n−1 , · · · , n−2

n−1 , 1 are the possible truth values; if

there is an infinite number of truth values, one should take

Q ∩ [0, 1]. The negation is defined as n(x) = 1 − x, while

x⊕ y = min(1, x+ y) is also fixed.

In the line of Łukasiewicz’s studies, Zadeh ([163]) intro-

duced fuzzy sets in his 1965 work, Fuzzy Sets. His ideas on

FSs were soon applied to different areas such as artificial in-

telligence, natural language, decision making, expert systems,

neural networks, control theory, etc.

From now on, we denote by X a non-empty universe, either

finite or infinite.

Definition 2.1: A fuzzy set (or type-1 fuzzy set) A on X
is a mapping A : X → [0, 1].

The value A(x) is referred to as the membership degree of

the element x to the fuzzy set A.
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An equivalent definition is given by A = {(x, µA(x)) | x ∈
X} with µA : X → [0, 1], explicitly providing the membership

degree of each x ∈ X . Note that this definition attempts to

identify the FS with the graph of the mapping A given in Defi-

nition 2.1. Many other notations have been used for fuzzy sets

in the literature. For example, in the early years of FS theory,

a common way to describe a FS A (see [104], for instance) on

a finite universe X was A =
∑n

i=1 µA(xi)/xi, whereas the

notation A =
∫

X
µA(xi)/xi was used for an infinite universe

X . These definitions lead to important notational problems

and misconceptions, since in fact no summation or integration

is taking place.

We denote by FS(X) the class of FSs on the universe X
(note that, in fact, FS(X) = [0, 1]X). A partial order relation

≤F on FS(X) can be defined as follows. Given A,B ∈
FS(X), A ≤F B if the inequality A(x) ≤ B(x) holds for

every x ∈ X . Equivalently, we have the following important

result.

Proposition 2.1: [163] (FS(X),∪F,∩F) is a complete lat-

tice, where, for every A,B ∈ FS(X), union and intersection

are defined, respectively, by

A ∪F B(x) = max(A(x), B(x)) , and (1)

A ∩F B(x) = min(A(x), B(x)) . (2)

It is important to recall that a lattice L is a partially ordered

set where, for each pair of elements, there exist a supremum

and an infimum. If there exist a supremum and an infimum

for every subset of L, then the lattice is called complete.

The first criticism to FS theory concerns the order rela-

tion ≤F. Despite Zadeh presented FSs in order to represent

uncertainty, ≤F happens to be a crisp relationship. This

fact has led Willmott [146], Bandler and Kohout [10] and

others to consider the concept of inclusion measure. These

measures have been widely used in fields such as mathematical

morphology [42], or image processing [76].

When using the operations defined in Eqs. (1) and (2)

together with the standard negation, n(x) = 1 − x for all

x ∈ [0, 1], neither the law of contradiction nor the law of the

excluded middle hold. Nowadays, the operations in Eqs. (1)

and (2) are expressed in terms of t-norms and t-conorms [28],

[34], [58], [82].

Note that we can define a fuzzy set over the set of all fuzzy

sets on a given universe X , leading to level 2 fuzzy sets [83].

Of course this can be generalized to level k fuzzy sets [164].

III. A GENERALIZATION: L-FUZZY SETS

Goguen [61] realized that, other than its lattice structure,

there was no relevant reason to use the interval [0, 1] in the

definition of FSs. This observation led him to the introduction

of the concept of an L-fuzzy set.

Definition 3.1: Let L be a complete lattice. An L-fuzzy set

A on X is a mapping A : X → L.

Given a complete lattice L, the class of L-fuzzy sets on

the universe X is denoted by L-FS(X). Note that, with this

notation, if L = [0, 1] (and considering the max and min
operations), then FS(X) is the same as L-FS(X). Again,

L-FS(X) can be endowed with a partial order relation, which

is induced by the lattice structure of L as follows. Given

A,B ∈ L-FS(X), A ≤L B if the inequality A(x) ≤L B(x)
holds for every x ∈ X , where ≤L denotes the order relation

of the lattice L. Equivalently, we have the following result.

Proposition 3.1: [61] (L-FS(X),∪LF,∩LF) is a complete

lattice, where, for every A,B ∈ L-FS(X), union and inter-

section are defined, respectively, by:

A ∪LF B(x) = A(x) ∨B(x) , and

A ∪LF B(x) = A(x) ∧B(x) ,

where ∨ is the greatest lower bound or meet operation and ∧
is the least upper bound or join operation.

From Proposition 3.1 it is clear that FSs are a special case

of L-fuzzy sets for which L = [0, 1] and the maximum and

minimum take the role of the join and meet, respectively. The

notion of L-FS allows some types of FSs to be emcompassed

within a single theoretical framework.

IV. TYPE-2 FUZZY SETS

A. Origin of the Concept

In 1971, and using the ideas given in [18], Zadeh settled in

his work [164] that the problem of estimating the membership

degrees of the elements to the fuzzy set is related to abstraction

-a problem that plays a central role in pattern recognition.

Therefore, the determination of the membership degree of

each element to the set is the biggest problem for applying FS

theory. Taking these considerations into account, the concept

of type-2 fuzzy set was given as follows: A T2FS is a FS for

which the membership degrees are expressed as FSs on [0, 1].
Later, on December 11, 2008, Zadeh proposed the follow-

ing definitions in the bisc-group mailing list:

Definition 4.1: Fuzzy logic is a precise system of reasoning,

deduction and computation in which the objects of discourse

and analysis are associated with information which is, or is

allowed to be, imperfect.

Definition 4.2: Imperfect information is defined as infor-

mation which in one or more respects is imprecise, uncertain,

vague, incomplete, partially true or partially possible.

On the same date and place, Zadeh made the following

remarks:

1.- In fuzzy logic, everything is or is allowed to be a matter

of degree. Degrees are allowed to be fuzzy.

2.- Fuzzy logic is not a replacement for bivalent logic

or bivalent-logic- based probability theory. Fuzzy logic

adds to bivalent logic and bivalent-logic-based probabil-

ity theory a wide range of concepts and techniques for

dealing with imperfect information.

3.- Fuzzy logic is designed to address problems in rea-

soning, deduction and computation with imperfect in-

formation which are beyond the reach of traditional

methods based on bivalent logic and bivalent logic-based

probability theory.

4.- In fuzzy logic the writing instrument is a spray pen

with precisely known adjustable spray pattern. In bi-

valent logic, the writing instrument is a ballpoint pen

(see Fig. 2, which also appeared in the same place).
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Fig. 2. Representation of the uncertainty in fuzzy logic, which according to
Zadeh can be seen as a spray pen.

5.- The importance of fuzzy logic derives from the fact that

in much of the real world, imperfect information is the

norm rather than exception.

All of these considerations justify the use of FS theory

whenever objects are linked to soft concepts, i.e. do not show

clear boundaries. Nevertheless, the way to design membership

functions might be non-evident, and faces a wide variety of

difficulties. In such circumstances, it seems reasonable to make

use of the so-called generalizations (types) of FSs, which

might better accommodate the knowledge available in the

context of the application. In fact, the introduction of many

of such generalizations is directly associated to the need of

building FSs that allow us to represent objects described

through imperfect information, as well as to represent the lack

of knowledge or uncertainty of the considered experts.

B. Basic Definitions

From the notion of T2FS given by Zadeh in [164], and the

study made in [165], we have the following definition.

Definition 4.3: A T2FS A on X is a mapping A : X →
FS([0, 1]).

From Definition 4.3 it can be seen that, mathematically,

a T2FS is a mapping A : X → [0, 1][0,1]. We denote by

T2FS(X) the class of T2FSs on the universe X .

Note that any A ∈ FS(X) can also be seen as a T2FS for

which the membership degree is given by a singleton on [0, 1],
that is:

S(t) =

{

1 if t = A(x)

0 otherwise.

Elaborating on Zadeh’s definitions for union and intersec-

tion of FSs, Mizumoto and Tanaka [104] in 1976 and Dubois

and Prade [49] in 1979, proposed the following definition of

union and intersection for T2FSs.

Definition 4.4: For every A,B ∈ T2FS(X),

A ∪T2F B(x) = A(x) ∪F B(x) , and

A ∩T2F B(x) = A(x) ∩F B(x) .

Proposition 4.1: (T2FS(X),∪T2F,∩T2F) is a complete lat-

tice.

With the union and intersection given in Definition 4.4 the

classical definitions of union and intersection ∪F and ∩F given

by Zadeh for FSs [48] are not recovered. Consider a finite

universe X = {x1, x2, x3}, and consider the following FSs

on X (see [22]):

A = {(x1,
1

2
), (x2,

1

3
), (x3, 1)}, and (3)

B = {(x1,
1

4
), (x2,

1

2
), (x3,

1

7
)}. (4)

We have that, for instance, A ∪F B =
{(x1,

1
2 ), (x2,

1
2 ), (x3, 1)}. Alternatively, let AT2 and BT2 be

analogous T2FSs, i.e.:

AT2(x1)(t) =

{

1 if t = 1
2

0 otherwise

AT2(x2)(t) =

{

1 if t = 1
3

0 otherwise

AT2(x3)(t) =

{

1 if t = 1

0 otherwise

and

BT2(x1)(t) =

{

1 if t = 1
4

0 otherwise

BT2(x2)(t) =

{

1 if t = 1
2

0 otherwise

BT2(x3)(t) =

{

1 if t = 1
7

0 otherwise.

Then we have that

AT2 ∪T2F BT2(x1)(t) =

{

1 if t = 1
4 or t = 1

2

0 otherwise,

AT2 ∪T2F BT2(x2)(t) =

{

1 if t = 1
2 or t = 1

3

0 otherwise

AT2 ∪T2F BT2(x3)(t) =

{

1 if t = 1
7 or t = 1

0 otherwise

which does not coincide with our previous result. Moreover,

observe that a T2FS is recovered, instead of a FS.

Alternative definitions of union and intersection have been

provided for T2FSs extending Zadeh’s union and intersec-

tion [70], [73]. For example, the operators

(A ⊔T2F B)(x) = sup{min(A(y), B(z)) | max(y, z) = x}
(A ⊓T2F B)(x) = sup{min(A(y), B(z)) | min(y, z) = x}

are based on Zadeh’s extension principle.

Remark 1: Note that (T2FS(X),⊔T2F,⊓T2F) becomes a

basic algebra, but not a lattice, since the absorption law does

not hold (see [71], [72], [73]).

From the ideas given by Karnik and Mendel [80] in 1998,

Mendel and John [93] provide in 2002 the following definition:

Definition 4.5: A T2FS A is characterized by a type-2

membership function µA(x, u), where x ∈ X and u ∈ Jx ⊆
[0, 1], i.e.,

A = {(x, µA(x, u)) | x ∈ X,u ∈ Jx ⊆ [0, 1]} , (5)
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in which 0 ≤ µA(x, u) ≤ 1. A can also be expressed as

A =

∫

x∈X

∫

u∈Jx

µA(x, u)/(x, u) , Jx ⊆ [0, 1] , (6)

where
∫∫

denotes union over all admissible x and u.

For discrete universes,
∫

is replaced by
∑

. From a mathe-

matical point of view, however, this definition leads to several

problems. Apart from the confusion that may arise from

the use of integral (or summation) symbols when no such

operations are actually carried out, the use of a subset Jx
may lead to ambiguities and even to conceptual difficulties,

as we see in the case of Interval T2FSs. In any case, the

equivalence between Definition 4.3 and the one by Mendel and

John is straightforward. Just recall that, given A ∈ FS([0, 1]),
its support is defined as

supp(A) = {t ∈ [0, 1] | A(t) > 0} . (7)

Following the notation by Mendel and John, Jx = supp(A(x))
and µA(x, ·) = A(x).

In Fig. 3, we display the most relevant contributions to the

mathematical formalization of the notion of a T2FS.

Fig. 3. Schematic representation of the history of the mathematical formal-
ization of T2FS.

C. Some Considerations about T2FSs

Next, some important aspects about T2FSs are considered:

1.- Notation. Mizumoto and Tanaka in 1976 [104] and

Mendel and John in 2002 [93] used the following

notation:
∫

x∈X

∫

t∈Jx

A(x, t)/(x, t) Jx ⊂ [0, 1] , (8)

where Jx is the primary membership of x ∈ X and,

for each fixed x = x0, the FS
∫

t∈Jx0

A(x0, t)/t is the

secondary membership of x0.

We propose a clarifying notation as follows: observe that

a T2FS assigns to an element in the universe X a mapping

A(x) : [0, 1] → [0, 1]. It is quite usual to represent FSs

(or type-1 fuzzy sets) by a mapping A

{(x,A(x)) | x ∈ X} . (9)

In this type-1 case, A(x) is a real number in [0, 1] for

every x ∈ X . In the case of type-2 fuzzy sets, we have

that A(x) is a mapping (a type-1 fuzzy set) instead of a

real number, i.e.,

A(x) : [0, 1] → [0, 1]

t 7→ A(x)(t) .

Taking these considerations into account, Walker and

Walker in [70] suggested the following notation for a

T2FSs:

A = {(x, (t, A(x)(t))) | x ∈ X, t ∈ [0, 1]} . (10)

An easier notation, following the ideas in Aisbett,

Rickard and Morgenthaler in [1], is the following one.

Definition 4.6: Let A : X → FS([0, 1]) be a type-2

fuzzy set. Then A is denoted as

{(x,A(x, t)) | x ∈ X , t ∈ [0, 1]} , (11)

where A(x, ·) : [0, 1] → [0, 1] is defined as A(x, t) =
A(x)(t).

2.- Computational efficiency. T2FSs lead to an increasing

computational complexity compared to T1FSs. However,

there have been significant efforts in speeding up the

computational analysis and handling of T2FSs.

3.- Type-n Fuzzy Sets (TnFSs). Type-3 fuzzy sets can also

be defined as FSs for which the membership degree of

each element is given by a T2FS [83]. Moreover, it is

possible to define recursively type-n fuzzy sets as fuzzy

sets whose membership values are type-(n-1) fuzzy sets.

The computational efficiency of these sets decreases as

the complexity level increases. From a theoretical point

of view, it is necessary to carry out a complete analysis

of type-n fuzzy set structures and operations. But up to

now, no applications have been developed using TnFSs.

4.- Applicability. Various applications have employed type-

2 fuzzy sets, including the work of Mendel et al. on

computing with words and perceptual computing [95],

[96], [98], [99], by Hagras [68], [69], by Castillo in

control [35], and by Xia et al. in networks ([150]).

V. SET-VALUED FUZZY SETS AND HESITANT FUZZY SETS

A. Set-Valued Fuzzy Sets

In 1976, Grattan-Guinness [66] defined SVFSs as FS for

which membership degrees are expressed as subsets [0, 1].
Formally, we have the following definition.

Definition 5.1: A SVFS A on X is a mapping A : X →
2[0,1] \ {∅}.

Here 2[0,1] is the power set of [0, 1], that is, the set of all

subsets of [0, 1].
We denote by SVFS(X) the class of all SVFSs on X . A

SVFS A can be seen as a T2FS BA by defining, for each

x ∈ X , the FS BA(x) : [0, 1] → [0, 1] as follows

BA(x)(u) =

{

1 if u ∈ A(x)

0 otherwise.

As the set 2[0,1], with the classical definitions of union and

intersection between (crisp) sets, is a bounded lattice, we have

the following result.
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Proposition 5.1: (SVFS(X),∪SVF,∩SVF) is a complete lat-

tice, where, for every A,B ∈ SVFS(X),

A ∪SVF B(x) = A(x) ∪B(x) ,

A ∩SVF B(x) = A(x) ∩B(x) .

However, as in the case of T2FSs, with ∪SVF and ∩SVF the

union and intersection of FSs, as defined by Zadeh, are not

recovered. Grattan-Guinness did not consider this problem in

his work, but a possible solution was provided by Torra [137],

as explained in the following section.

Remark 2: An interesting open problem is to provide a

lattice structure on SVFS(X) in such a way that Zadeh’s union

and intersection are preserved when restricted to FSs.

B. Hesitant Fuzzy Sets

In [137], Torra proposed to express membership degrees as

subsets of [0, 1], giving birth to the so-called Hesitant Fuzzy

Sets (HFSs), which he defined as “a function that when applied

to X returns a subset of [0, 1]” [137]. Clearly, this definition

turns out to be exactly the same as SVFSs. However, in [137],

and contrary to what Grattan-Guinness did, Torra proposed a

definition of union and intersection for SVFSs that extends

those by Zadeh. Given A,B ∈ SVFS(X), Torra defined:

A ∪HF B(x) = (12)

{t ∈ A(x) ∪B(x) | t ≥ max(inf A(x), inf B(x))}, and

A ∩HF B(x) = (13)

{t ∈ A(x) ∪B(x) | t ≤ min(supA(x), supB(x))}.

C. Some Considerations about HFSs

Next, some important aspects about HFSs are considered.

1.- Unfortunately, (HFS(X),∪HF,∩HF) is not a lattice. For

example, let X = {x}. Consider the SVFSs A and B with

A(x) = {0.3, 0.5, 0.6} and B(x) = {0.4, 0.5, 0.7, 0.8},

then A ∩HF B(x) = {0.3, 0.4, 0.5, 0.6} and therefore

A ∪HF (A ∩HF B)(x) = {0.3, 0.4, 0.5, 0.6} which is

different from A(x). Consequently A∪HF (A∩HFB) 6= A,

and the law of absorption does not hold.

2.- Recently, HFSs have been used in group decision mak-

ing problems [123], and extended to Computing with

Words [121], [122].

D. Typical Hesitant Fuzzy Sets

When the membership degree of each of the elements is

given by a finite and non-empty subset of [0, 1], HFSs are

called Typical Hesitant Fuzzy Sets (THFSs) [14], [16]. Most of

the works applying HFSs actually make use of THFSs [123].

VI. INTERVAL-VALUED FUZZY SETS

A. Basic Definitions

In 1975 Sambuc [124] presented the concept of Interval-

Valued Fuzzy Set (IVFS) with the name of Φ-fuzzy set. Zadeh

suggested the same notion of interval-valued fuzzy set in

page 242 of [165] as a particular case of type-2 fuzzy sets.

That same year, Jahn [78] wrote about these sets. One year

later, Grattan-Guinness [66] established a definition of an IV

membership function. In the same decade IVFSs appeared in

the literature in various guises and it was not until the 1980s,

with the work of Gorzalczany and Türksen [56], [62], [64],

[65], [138], [140], [141] that the importance of these sets, as

well as their name, was definitely established.

Let us denote by L([0, 1]) the set of all closed subintervals

of [0, 1], i.e.,

L([0, 1]) = {[x, x] | (x, x) ∈ [0, 1]2 and x ≤ x}.

Definition 6.1: [124] An IVFS A on X is a mapping A :
X → L([0, 1]).

0 1 2 3 4 5
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Fig. 4. Example of an interval-valued fuzzy set.

The membership degree of x ∈ X to A is given by A(x) =
[A(x), A(x)] ∈ L([0, 1]), where the mappings A : X → [0, 1]
and A : X → [0, 1] correspond to the lower and the upper

bounds of the membership interval A(x), respectively. An

example of an IVFS can be seen in Fig. 4. We denote by

IVFS(X) the class of IVFSs on the universe X .

Obviously, if A(x) = A(x) for every x ∈ X , the considered

set is a FS. So, FSs are particular cases of interval-valued fuzzy

sets.

In 1989, Deng [43] presented the concept of grey sets.

Dubois proved that these sets coincide with IVFSs [51].

Besides, the so-called shadowed sets (SSs) were sug-

gested by Pedrycz [115] and further studied by Pedrycz and

Vukovich [116], [117]. Given a A ∈ FS(X), a shadowed set

B induced by a A is an IVFS on X such that the membership

degree of an element x ∈ X is either [0, 0], [1, 1] or [0, 1];
i.e. B is a mapping B : U → {0, 1, [0, 1]}, where 0, 1, [0, 1]
denote complete exclusion from B, complete inclusion in B
and complete ignorance, respectively. It is easy to see that

these sets are a particular case of IVFSs.

Regarding the lattice structure of IVFSs, we can state the

following.

Proposition 6.1: Given a universe X ,

(IVFS(X),∪IV,∩IV), with the operations defined, for
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A,B ∈ IVFS(X) and for every x ∈ X , by:

A ∪IV B(x) = [max(A(x), B(x)),max(A(x), B(x))] ,

A ∩IV B(x) = [min(A(x), B(x)),min(A(x), B(x))] ,

is a bounded lattice.

Note that (L([0, 1]),∪IV,∩IV) is a bounded lattice, where,

for every [a, b], [c, d] ∈ L([0, 1]), we have:

[a, b] ∪IV [c, d] = [max(a, c),max(b, d)] ,

[a, b] ∩IV [c, d] = [min(a, c),min(b, d)] .

From Proposition 6.1 it can be stated that IVFSs are a

particular case of L-fuzzy sets.

B. Different Interpretations of IVFSs

Two different semantics can be considered for IVFSs [108]:

1) The membership degree of an element to the set corre-

sponds to a value in the considered membership interval.

We can not say in a precise way what that value is, so

we just provide bounds for it.

2) The membership degree of each element is the whole

closed subinterval provided as membership, understood

as an element in the lattice of closed subintervals of

the unit interval. From a mathematical point of view,

this interpretation is very appealing, but, in our opinion,

it is not easy to see what it implies in the applied

field. Moreover, in this case, we find the following

paradox [25].

For FSs and with the standard negation it holds that

min(A(x), 1 − A(x)) ≤ 0.5 for all x ∈ X . But for

IVFSs, if we also use the standard negation N(A(x)) =
[1−A(x), 1 −A(x)], there is no equivalent bound for

min([A(x), A(x)], [1 −A(x), 1 −A(x)]) .

Remark 3: Some authors consider that, when working

with IVFSs, the fact that an analogon of the inequality

min(A(x), 1−A(x)) ≤ 0.5 does not hold is a problem for the

use of IVFSs. However, from our point of view, such objection

is similar to the criticism to Zadeh’s theory when he showed

that fuzzy logic does not satisfy the law of contradiction and

the law of excluded middle. So we consider that the lack of

such an inequality does not make invalid the application and

study of IVFSs.

C. Relationships Between IVFSs, SVFSs, HFSs and T2FSs

There exist certain relationships between the extensions

reviewed so far.

Proposition 6.2: [26] IVFSs are a particular case of SVFSs

(and hence of HFSs and therefore also of T2FSs).

In particular, if A is an IVFS, a SVFS hA is recovered by

hA(x) = [A(x), A(x)] = A(x) (14)

for every x ∈ X . Assuming that A,B ∈ IVFS(X), they can

be treated as SVFSs. Then, from Eq. (12)

hA∪HFB(x) = [max(A(x), B(x)),max(A(x), B(x))] (15)

and

hA∩HFB(x) = [min(A(x), B(x)),min(A(x), B(x))] . (16)

This leads to the following result.

Proposition 6.3: Union and intersection of IVFSs consid-

ered as HFSs are the same as union and intersection of IVFSs

themselves.

In 1995, Klir and Yuan showed [83] that, from an IVFS,

a T2FS can be built as in Figure 5. In this figure, the

membership interval for each point ui in the referential set is

defined by the lower and the upper bound of the shadowed area

at that point. To build the fuzzy set that defines the membership

of ui to the corresponding type-2 FS, the membership for each

point (of [0, 1]) inside that shadowed area is made equal to one.

Finally, in order to get a continuous membership function, we

build a trapezoidal membership function by slightly displacing

the lower and the upper bounds.

Later, in 2007 Deschrijver and Kerre [45], [46] and

Mendel [90], showed that IVFSs are particular cases of T2FSs.

D. Some Considerations about IVFSs

Next, some important aspects of IVFSs are considered:

1.- Measures yielding intervals. From the definition of

IVFSs, and following Gorzalczany [62], the compatibility

degree between two IVFSs can be defined as an element

in L([0, 1]). Other information measures (interval-valued

entropy, interval-valued similarity, etc.) [15], [21], [27],

[79], [111], [120], [134] should also be given by an

interval. However, most of the works proposing measures,

produce scalar measurements instead of interval ones. It

is clear, however, that from a theoretical point of view,

two different types of information measures should be

discriminated: those that yield scalars and those that

yield interval-valued measurements. Obviously, problems

arise in the interpretation of both types of measures.

Moreover, if the result of the measure is an interval, its

length reflects the lack of knowledge [32] linked to the

considered measurement.

2.- Computational cost. Due to the current developments

in hardware and computer machinery, the computational

load of working with IVFSs is not significantly greater

than that of working with type-1 fuzzy sets [147].

Fig. 5. Construction of T2FSs from IVFSs
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3.- Linear orders. Often non-linear orders are used to sort

intervals, which leads to undesired problems in appli-

cations where sorting takes a key role, e.g. decision

making. In [29] it is shown that the order that must be

used for a given application depends on the application

itself. Namely, the same order should not be used for all

possible applications. In particular, in those applications

where a linear order is needed in order to compare inputs

(e.g., in decision making problems, for instance, see [29]),

experts may not have enough information to choose or

produce such total order. This fact can lead to inconsistent

results, since the choice of the order influences strongly

the final outcome. In [33] some methods to build linear

orders among intervals, for those applications where such

orders are needed, are explained.

4.- Applications. There exist a variety of works in the litera-

ture in which the use of IVFSs allows for an improvement

of the results obtained with T1FSs. Moreover, and from

a cognitive point of view, it comes out that, for these

applications, the definition of parameters is not more

complicated than the definition of the parameters for

their fuzzy counterparts [125]. For instance: In classifi-

cation problems [125], [126], [127], [128], [130]. The

experimental results presented in [128] show that the

approach using IVFSs (named IVTURS) improves the

results of two state-of-the-art fuzzy classifiers like FARC-

HD [2] and FURIA [77]. Image processing. IVFSs can

be used for representing those areas of an image where

experts have problems to build the fuzzy membership

degrees. In this case, The use of IVFSs leads to improved

segmentation or detection of features [11], [30], [31],

[32], [59], [109], [136], [162]. For some decision making

problems, the use of IVFSs allows to choose a solution

when FSs fail to do so [36]. Finally, IVFSs have also

been used successfully in web problems [86], pattern

recognition [39], medicine [40], etc. see also [97], [149].

VII. INTERVAL TYPE-2 FUZZY SETS ARE AN

UNINTENDED GENERALIZATION OF IVFSS

From the notion given by Karnik and Mendel in 1998 of

T2FSs and Definition 4.5, Interval Type 2 Fuzzy Sets were

defined in 2006 (see [94]) as follows.

Definition 7.1: When all µA(x, u) = 1, then A is an IT2FS.

Hence, according to [94], an IT2FS corresponds to

A(x) = {(u, 1) | u ∈ Jx ⊆ [0, 1]} (17)

for every x ∈ X .

It has been proven in [26] that IT2FSs represent a gener-

alization of the concept of IVFSs and that both concepts are

not equivalent.

Note that in the definition given in [94] (Eq. (5)) Jx ⊆ [0, 1]
is used, so this is also the case for Definition 7.1 obtained from

Eq. (5). However, it is well known that with such mathematical

expression Jx may be any subset of [0, 1], not just a closed

subinterval. Hence, this is similar to the SVFS definition given

by Grattan-Guinness in 1976 in [66]. Hence, for any IT2FS A,

it is enough to consider the SVFS hA given by hA(x) = Jx
for every x ∈ X .

In the literature, there has been a confusion about IT2FSs

and IVFSs where it was mentioned in some work that both

concepts are the same [90].

VIII. ATANASSSOV INTUITIONISTIC FUZZY SETS

A. Basic Definitions

In 1983, Atanassov presented [4] his definition of AIFS.

This work was written in Bulgarian, while in 1986 he pre-

sented these ideas in English [5].

Definition 8.1: An AIFS A on X is a mapping

A : X → D([0, 1]) = {(x, y) ∈ [0, 1]2 | x+ y ≤ 1}.
A(x) = (µA(x), νA(x)) for all x ∈ X , where µA(x) is

the membership degree of the element x to A and νA(x) is

the non-membership degree. Both values should satisfy the

restriction

0 ≤ µA(x) + νA(x) ≤ 1 . (18)

Atanassov also introduced two definitions for these sets:

1.- The complement of A(x) = (µA(x), νA(x)) is Ac =
(νA(x), µA(x));

2.- For each x ∈ X , the intuitionistic or hesitance index in

the considered set A is given by:

πA(x) = 1− µA(x)− νA(x) .

Note that πA(x) is a measure of the hesitation of the expert

to assign a numerical value to µA(x) and νA(x). For this

reason, we consider AIFSs to be an extension of FSs in the

sense given by Zadeh in 1971.

In 1993 Gau and Buehrer [60] introduced the concept of

Vague Set and later, in 1994, it was shown to be the same as

AIFS [23].

B. Relaxing the Restriction on the Membership Degrees: Neu-

trosophic Sets, Bipolar Valued Fuzzy Sets, Pythagorean Fuzzy

Sets

If, for each x ∈ X , we take µA(x) + νA(x) = 1, then

the considered set A is a FS in Zadeh’s sense. So, FSs are a

particular case of those defined by Atanassov.

From Eq. (18), the following inequality follows:

min(µA(x), νA(x)) ≤ 0.5 . (19)

If, in Definition 8.1, the restriction given in Eq. (18) is

relaxed, we obtain Neutrosophic sets (NSs) as defined by

Smaradache in 2002 [132], and Pythagorean fuzzy sets (PFSs),

defined by Yager in 2013 [157].

Definition 8.2: A NS A on X is a mapping A : X →
[0, 1]

2
.

Definition 8.3: A PFS A on X is a mapping

A : X → {(x, y) ∈ [0, 1]2 | x2 + y2 ≤ 1} .
Yager studied the negation operation and its relationship

to the Pythagorean theorem. He compared Pythagorean fuzzy

sets with AIFSs. The former are used currently in Decision

Making [158]. In any case, the following result is straight.

Corollary 8.1: AIFSs are PFSs.
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Allowing to consider a negative value for νA(x), we find the

bipolar valued fuzzy sets, presented by Zheng in 1996 [166].

Definition 8.4: A bipolar valued fuzzy set in the sense of

Zhang (BVFSZ) A on X is a mapping A : X → [0, 1] ×
[−1, 0].
It is usual to denote A(x) = (ϕ+(x), ϕ−(x)) with

ϕ+ : X → [0, 1] ,

ϕ− : X → [−1, 0] .

Obviously, ϕ+(x) + ϕ−(x) ∈ [−1, 1]. In these sets, ϕ−(x)
captures how much the environment of the problem opposes

to the fulfillment of ϕ+(x). Nowadays, several works exist

about these sets [167], [168].

Besides, in 2000, Lee [84] uses the name of bipolar-valued

fuzzy sets to represent the following sets.

Definition 8.5: A bipolar-valued fuzzy set in the sense of

Lee (BVFSL) on X is a mapping

A : X → [−1, 1] .

Note that a BVFSL is mathematically very similar to a FS,

since the only change is that the range of the membership

function A is [−1, 1] instead of [0, 1]. However, the semantics

are different. In fact, the name of bipolar-valued fuzzy set

comes from the fact that a bipolar scale is considered, with

negative valued considered to be opposite from positive ones.

Observe that also Zhang’s BVFS can be seen as bipolar,

although involving two poles in two different scales. Moreover,

BVFSLs are just a particular case of BVFSZs, since given

A ∈ BVFSL(X):

A = {(x,A(x)) | x ∈ X} ,
it can be seen as identical to the BVFSZ

Â = {(x,max(A(x), 0),min(A(x, ), 0)) | x ∈ X} .
Note the pole −1 in Lee’s sets corresponds to the membership

degree (0,−1), whereas the pole 1 corresponds to (1, 0).
AIFSs are also a particular case of bipolar-valued fuzzy

set. Even more, and regarding Zhang’s approach, if we have

an Atanassov intuitionistic pair (µ, ν) [151], with µ, ν ∈ [0, 1]
and µ+ν ≤ 1, since we can consider the linear transformation

F : [0, 1] → [−1, 0] given by F (t) = t − 1, we see that the

pair (µ, ν) becomes a new pair (p, q) ∈ [0, 1] × [−1, 0] with

p+ q = µ+ ν − 1 ≤ 0.

C. Relationships Between AIFSs, IVFSs, SVFSs and HFSs

In 1989 Atanassov and Gargov [6], and later Deschrijver

and Kerre [45], proved that from an IVFS we can build an

AIFS and vice versa.

Theorem 8.2: The mapping

Φ : IVFS(X) → AIFS(X)

A 7→ A′

where A′(x) = (µA(x), νA(x)) = (A(x), 1 − A(x)), is a

bijection.

Theorem 8.2 shows that IVFSs and AIFSs are identical from

a mathematical point of view. With this identity in mind, we

have the following corollary of Proposition 6.2.

Corollary 8.3: AIFSs are a particular case of HFSs and

hence of SVFSs. Moreover, the union and intersection of

AIFSs are preserved if they are considered as HFSs.

Although IVFSs and AIFSs are mathematically identical,

from a conceptual point of view, they are completely different.

As pointed out in [108], the absence of a structural component

in their description might explain this result:

(a) The representation of the membership of an element

to a set using an interval means that the expert doubts

about the exact value of such membership, so such an

expert provides two bounds, and we never consider the

representation of the non-membership to a set.

(b) By means of the intuitionistic index, we represent the

hesitance of the expert in simultaneously building the

membership and the non-membership degrees.

From an applied point of view, the difference between both

concepts has also been clearly shown by Ye in [159]. On

page 204 of this work, Ye adapted an example by Herrera

and Herrera-Viedma [74]. Ye’s example runs as follows: n
experts are asked about a money investment in four different

companies. Ye considered that the membership to the sets

that represent each of the companies is given by the number

of experts that would invest their money in that company

(normalized by n), and the non-membership is given by

the number of experts that would not do so. Clearly, the

intuitionistic index corresponds to the experts that neither

provide a positive nor a negative answer about investing in

that company. In this way, Ye showed that:

1.- The results obtained with this representation are closer

to the decision of investors than those obtained in [74]

using Zadeh’s FSs.

2.- In the considered problem, the interval interpretation

does not make much sense besides its use as a math-

ematical tool.

D. Some Considerations about AIFSs

Next, some important aspects about AIFSs are considered.

1.- Measures yielding pairs. Each membership degree in a

AIFSs is bivalued. For this reason, we consider that

information measures such as entropy [21], [134] or

similarity [9], [133] should also yield bivalued measure-

ments. As happened with IVFSs, a discrimination should

be made between measures yielding scalar or bivalued

measurements. This fact is discussed in [17], [110], where

the two interpretations of entropy [21], [134] are jointly

used to represent the uncertainty linked to an AIFS. We

think that it is necessary to carry out a conceptual revision

of the definitions of similarity, dissimilarity, entropy,

comparability, etc., given for these sets. This becomes

more relevant given the light computational overhead in

working with two numbers instead of with a single one.

2.- Linear orders. In many applications it is problematic to

choose the most appropriate linear order associated to

that application [33], [151]. We should remark that the

chosen order directly influences the final outcome, so it

is necessary to study the conditions that determine the

choice of one order or another [33].



1063-6706 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TFUZZ.2015.2451692, IEEE Transactions on Fuzzy Systems

11

3.- Terminological problem with the name intuitionistic. It is

well known that the term intuitionistic was used in 1907

by Brouwer, in 1930 by Heyting, etc. So, 75 years before

Atanassov used it, it already had a specific meaning in

logic. Moreover, one year after Atanassov’s first use of

it in Bulgarian, Takeuti and Titani (1984) (see [135])

presented a set representation for Heyting ideas, using

the expression intuitionistic fuzzy sets. From our point

of view, this means that in fact the correct terminology

is that of Takeuti and Titani. Nevertheless, all these

facts have originated a serious notation problem in the

literature about the subject. To solve this problem, several

different solutions have been proposed:

1) To use the notation AIFSs; that is, Atanassov in-

tuitionistic fuzzy sets. However, Atanassov himself

asserts that his original naming must be kept [7].

2) To use the name of IF-sets [67].

3) To use the name Bipolar Fuzzy Sets. In particular, in

2005 in [54], the following sentence appears: in fact,

since the term bipolarity seems to be agreed upon

in some communities, from preference modelling

to cognitive psychology, as capturing the separate

handling of positive and negative aspects of infor-

mation, one may suggest a more radical change and

call IFSs bipolar fuzzy sets. However, it is important

to say that, in the fuzzy setting, with the word

bipolar we have the same problem as with the word

intuitionistic, since the term bipolarity was used in

the fuzzy setting by Zhang [166] and Lee [84], eight

and five years, respectively, before the proposal in

2005.

4.- Applications. Extensions have shown to be very useful

in problems of decision making [55], [85], [112], [152],

[153], [154], [159], [169], [170]. In general, they work

very well in problems in which we have to represent the

difference between the positive and the negative repre-

sentation of something [37], in particular in cognitive

psychology and medicine [19]. Also in image processing

they have been used often, as in [20], [89]. We should

remark that the mathematical identity between these sets

and IVFSs makes that, in many applications in which

IVFSs are useful, so are AIFSs [41].

IX. INTERVAL-VALUED ATANASSOV INTUITIONISTIC

FUZZY SETS

A. Basic Definitions

IVFSs and AIFSs can be extended to a more general

framework to simultaneously deal with uncertainty in both

membership and non-membership values. This consideration

leads to the concept of Interval-Valued AIFS (IVAIFS), as

given by Atanassov and Gargov in 1989 [6].

Definition 9.1: An IVAIFS A on X is a mapping

A : X → LL([0, 1]) = {([µ, µ], [ν, ν}]) |
[µ, µ], [ν, ν] ∈ L([0, 1]) such that µ+ ν ≤ 1}.

Recall that L([0, 1]) denotes the set of all closed subintervals

of the unit interval.

In Definition 9.1, IVAIFSs are adapted to Zadeh’s ideas

on the problem of building the membership degrees of the

elements to the FS. Moreover, if for every x ∈ X we have

that µ(x) = µ(x) and ν(x) = ν(x), then we recover an AIFS,

so the later are a particular case of IVAIFSs. As in the case of

AIFSs, the complement of a set is obtained by interchanging

the membership and non-membership intervals.

We represent by IVAIFS(X) the class of all IVAIFS over a

universe X .

Definition 9.2: Given A,B ∈ IVAIFS(X), we define

A ∪IVAIFS B = {(x,A ∪IVAIFS B(x)) | x ∈ X}

where

A ∪IVAIFS B(x) =

([max(µA(x), µB(x)),max(µA(x), µB(x))]

[min(νA(x), νB(x)),min(νA(x), νB(x))])

and

A ∩IVAIFS B = {(x,A ∩IVAIFS B(x)) | x ∈ X} ,

where

A ∩IVAIFS B(x) =

([min(µA(x), µB(x)),min(µA(x), µB(x))]

[max(νA(x), νB(x)),max(νA(x), νB(x))]).

Note that LL([0, 1]) with the operations in Definition 9.2

is a lattice. Consequently, IVAIFSs are a particular case of

L-fuzzy sets.

Proposition 9.1: The set (IVAIFS(X),∪IVAIFS,∩IVAIFS)
is a complete bounded lattice.

B. IVAIFSs are a Special Case of HFSs

In general, the membership degree ([µA(x), µA(x)]) and

the non-membership degree ([νA(x), νA(x)]) may overlap and,

hence, the operations in Eq. (12) cannot be applied directly in

order to consider the HFS structure. To solve this problem,

intuitively it is necessary to found a procedure which separates

the membership interval from the non-membership interval.

This can be done in many ways, just by choosing any func-

tion which maps membership intervals and non-membership

intervals into two disjoint subsets of [0, 1]. For instance, if

considering

j : L([0, 1]) → L([0, 1])

[x, x] 7→ [
1

3
x,

1

3
x] ,

and

j : L([0, 1]) →L([0, 1])

[x, x] 7→[
1

3
(1 − x) +

2

3
,
1

3
(1− x) +

2

3
] =

[1− 1

3
x, 1− 1

3
x],

then we have the following result.

Proposition 9.2: IVAIFSs are a particular case of HFSs.
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Proof. Consider the mapping that assigns, to each IVAIFS A,

the set

hA(x) = j([µA(x), µA(x)]) ∪ j([νA(x), νA(x)]) .

This mapping defines a bijection between the class of IVAIFSs

and that of HFSs such that, for every x ∈ X , hA(x) belongs to

{[a, b]∪ [c, d]|0 ≤ a ≤ b ≤ 1
3 and 2

3 ≤ c ≤ d ≤ 1 , c− b = 2
3}.

The result follows. �

Remark 4: Note that the choice of the factor 1
3 for the defi-

nition of j and j is arbitrary. In fact, any value δ ∈ ]0, 1
2 [ also

works, since the only relevant aspect is that the membership

interval and the non-membership interval for each element are

transformed into intervals in L([0, 1] that are disjoint.

With this definition, for any two interval-valued AIFSs, it

holds that

hA∪HFB(x) =
[

max(
1

3
µA(x),

1

3
µB(x)),max(

1

3
µA(x),

1

3
µB(x))

]

∪
[

min(1− 1

3
νA(x), 1 −

1

3
νB(x)),

max(1 − 1

3
νA(x), 1 −

1

3
νB(x))

]

=

[

max(
1

3
µA(x),

1

3
µB(x)),max(

1

3
µA(x),

1

3
µB(x))

]

∪
[

min(νA(x), νB(x)),max(νA(x), νB(x)

]

.

Hence the classical union and intersection operations be-

tween IVAIFSs are recovered.

C. Some Considerations about IVAIFSs

Some important aspects about IVAIFSs have to be consid-

ered.

1.- Measures as pairs of intervals. It is necessary to study

two different types of information measures: those whose

outcome is a single number [24] and those whose out-

come are two intervals in [0, 1].
2.- Applications. Nowadays there are several works using

these sets [87], [148], [155], [160]. However, none of

them shows an example where the results obtained with

these sets are better than those obtained with FSs or other

techniques. As it happened until recent years with IVFSs,

it is necessary to find an application that provides better

results using these extensions rather than using other sets.

To do so, results with IVAIFSs should be confronted to

those obtained with other extensions, which is something

that it is not done so far. For the moment, most of the

studies are merely theoretical ([8], [57], [145]).

X. FUZZY MULTISETS AND N-DIMENSIONAL FUZZY SETS

Besides, the idea of a fuzzy multiset (MS) was given by

Yager in 1986 in [156] and later developed by Miyamoto

in [105]. In these multilevel sets, several degrees of mem-

bership are assigned to each element.

Definition 10.1: Let n ∈ N0. A MS A on the universe X
is a mapping

A : X → [0, 1]n .

If, in Definition 10.1, we impose u1 ≤ u2 ≤ · · · ≤ un,

where A(x) = (u1, . . . , un), an n-dimensional fuzzy set is

obtained [13], [131]. Nevertheless, it is worth to point out the

relation of these families of fuzzy sets with the classification

model proposed in [3], and the particular model proposed

in [107], where fuzzy preference intensity was arranged ac-

cording to the basic preference attitudes.

Proposition 10.1: MSs are a particular case of SVFSs.

XI. FOUR TYPES OF SPECIAL SETS WITH A FUZZY SET

GENERALIZATION

In this section three types of sets are recalled. They are

treated differently from the ones in previous sections because

the way in which they deal with uncertainty is intrinsically

different. For instance, rough set theory is a tool for the

analysis of indistinguibility of objects/classes [114]. In [114]

it is argued that rough sets, even dealing with uncertainty, can

not be compared to FSs, since they are measuring a different

kind of uncertainty. We leave for the future the analysis of

the relations between the four types of sets considered in this

secion an the other types of fuzzy sets that we have analyzed

in the work.

A. Fuzzy Rough Sets

From the concept of rough set given by Pawlak in [113],

Dubois and Prade [50] propose the following definition.

Definition 11.1: Consider a universe X and let R be a fuzzy

similarity relation on X . Let A ∈ FS(X). A fuzzy rough set

on X is a pair (R ↓ A,R ↑ A) ∈ FS(X)× FS(X) where

(i) R ↓ A : X → [0, 1] is given by R ↓ A(x) =
infu∈X max(1−R(u, x), A(u)),

(ii) R ↑ A : X → [0, 1] is given by R ↑ A(x) =
supu∈X min(R(u, x), A(u)).

These sets can be considered as a generalization of FSs in

our sense. They have been widely used in the literature, for

example in data reduction (feature selection, instance selection,

...) [142], [44].

B. Fuzzy Soft Sets

Based on the definition of a soft set [12], [106], Maji et al.

presented [88] the following definition.

Definition 11.2: A pair (F,A) is called a fuzzy soft set

(FSS) over X , where F is a mapping given by F : A →
FS(X), where FS(X) denotes the set of all fuzzy subsets of

X and A is a set of parameters.

C. m-Polar-Valued Fuzzy Sets

The idea of bipolarity is related to the existence of two

poles, but can be generalized to consider any arbitrary num-

ber. This point of view leads to introduce the notion of a

multi-polar-valued fuzzy set. This concept may be defined as

follows.
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Definition 11.3: [100] Let m ≥ 2. An m-polar-valued

fuzzy set (mPVFS) on X is a mapping

A : X → {1, . . . ,m} × [0, 1] .

Note that this type of sets extends the BVFSs. Note also that

the semantics becomes much more complicated, in particular

because a given pole is not necessarily opposite to any other

one. From a formal point of view, given two m-polar-valued

fuzzy sets A and B, their union is defined as [101], [102],

[103]:

A∪B = {(x, ((k,max(πk(A(x), πk(B(x)))))
m

k=1) | x ∈ X} ,

while their intersection is defined as

A∩B = {(x, ((k,min(πk(A(x), πk(B(x)))))mk=1) | x ∈ X} ,

where, if (x) = {(1, t1), . . . , (m, tm)}, t1, . . . , tm ∈ [0, 1],
then πk(A(x)) = tk. From a mathematical point of view,

{1, . . . ,m} × [0, 1] is equivalent to [0, 1]m, and a bounded

lattice structure is recovered.

D. Complex fuzzy sets

In 2002, Ramot et al. [119] proposed the idea of a complex

fuzzy set (CFS) (which was later also developed by Dick [47])

as follows.

Definition 11.4: A CFS A on the universe X is a mapping

A : X → D

where

D = {reis | r, s ∈ [0, 1] and i =
√
−1}

That is, the membership function of a CFS A takes its values

from the unit disk in the complex plane. Note that, in this way,

FSs are just a particular case of CFSs.

XII. CONCLUSIONS

In this work we have introduced the definition and the

basic properties of different types of FSs that can be found

in the literature. We have also analyzed their relationships.

In particular, we have proved that the notion of a hesitant

fuzzy set is the same as the notion of a set-valued fuzzy set as

introduced by Grattan-Guinness in 1976, although the former

is equipped with union and intersection operations that allow

to extend the union and intersection defined by Zadeh for

FS. We have also proved that Atanassov intuitionistic fuzzy

sets, vague sets, grey sets, interval-valued fuzzy sets, interval-

valued Atanassov intuitionistic fuzzy sets and some types

of bipolar sets are particular cases of set-valued fuzzy sets.

Moreover, we have also shown that the original mathematical

formulation of interval type-2 fuzzy set also corresponds to a

set-valued fuzzy set.

As said before, there exist different ways to handle uncer-

tainty and imperfect information. Nowadays, there exist in the

literature several combinations of the different types of fuzzy

sets considered up to now. For instance, IVFSs and soft sets

in [144], AIFSs and rough sets [75], IVFSs and HFSs [38],

[118], soft sets and HFSs [143] and many other combinations.
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