
INFORMATION TO USERS

This mmudpt has krn npioducd fr#n th miaolilm master. UMI films

the tl»d dinctly from the original or copy uknitbd. Thus, ronn thesis anâ

dimataion copies am in typmwiter face, whik oth«r may be tram any type d

compubr prhtar.

Th. quility d thk nproductton Ir depondant upon thr qurlity of th.

copy submittmâ. Broken or inâistim! pnnt, cdomd or poor quslity illustntionr

and photographs, print bkrd(hrwgh, substanâarû matgins, and impmper

rliinmwrt can adwrseiy a f k ! reproduction.

in th. unlikely evmt that th. withor did not senâ UMI a cornplete manuMpt

and thore are missing pages, awim will be notad. Alm, if uniuthorizrd

copyright material had to k mnoved, a note wiH indiata th. deîetiori.

Phtognphr induâeâ in the original manusctipt have hem reproduod

xmgnphically in this copy. Highrt quriii W x W blia< md white

photwnphic printr m aviitibk for my photogmphr or i l l u s t ~ s appaiing

in this copy br m adô.ddioonrl charge. Contact UMI diruüy to ordrt.

Bell & Homll Informetion and Leaming
3ôô North Zeab Rwd, Ann A-, MI 481061346 USA

800.521-

A HISTORICAL APPLICATION PROFILER FOR USE BY PARALLEL
SCHEDULERS

Richard Gibbons

A thesis submitted in conformity with the requirements

for the degree of Master of Science

Graduate Department of Computer Science

University of Toronto

@ Copyright by Richard Gibbons 1997

National Library 1 O canada
B i b l i o t y nationale
du Cana

A uisitions and Acquisitions et
~gio~mphic Services services bibliographiques

395 WaUingtori Street 305, rue Wdlington
W O N K I A M ûttawaON K 1 A W
Cuiedi canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
élecîronique .

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

Abstract

A Historical Application Profiler for Use by Parallel Schedulers

Richard Gibbons

Master of Science

Graduate Department of Cornputer Science

University of Toronto

1997

Scheduling Algorithms that use application and system knowledge have been shown to

be more effective at scheduling parallel jobs on a multiprocessor than algorithms that

do not. This thesis focuses on obtaining such information for use by a scheduler in a

network of workstations environment.

The log files from three parallel systems are examined to determine the best way

of categorizing parallel jobs for storage in a job database and the job information that

would be useful to a scheduler. A Historical Profiler is proposed that stores information

about prograrns and users, and manipulates this information to provide schedulers with

execution time estimates. Several preemptive and non-preemptive versions of the FCFS,

EASY and Least Work First scheduling algorithrns are compared to evaluate the utility

of the profiler. It is found that both preemption and the use of application execution

t ime estimates obtained from the Historical Profiler lead to improved performance.

Acknowledgement s

The log files containing historical job information for several systems that are discussed

in this thesis were obtained from production NOW and multiprocessor sites. Universityl,

a site that has chosen to remain anonymous, supplied the log files for their network of

workstations. Kim Johnson was kind enough to provide me with the NASA Lewis NOW

log files. Steve Hotovy allowed me to access the Corne11 Theory Center IBM SP2 log files.

I appreciate these people's willingness to provide me with the data upon which much of

the research in this thesis is based.

Platform Cornputing deserves credit for providing LSF for use in the POW project,

and for discussing met hods of implement ing scheduling algorit hms on top of LSF.

1 would also like to thank Eric Parsons, who created much of the Job and System

Information Cache. His efforts made the implementation of the algorithms discussed

in this thesis much easier. Eric also provided valuable feedback on many of the ideas

presented in t his t hesis. T hese comments were appreciated.

Ken Sevcik, my advisor, provided many helpful comments and criticism throughout

the creation of the thesis. His input greatly enhanced the quality of this work. I also

appreciate his understanding of my priorities when writing this thesis, and his extreme

efforts to support those priorities.

Thanks also go to Songnian Zhou, my second reader, for his interest in this work and

his constructive comments.

Finally, 1 would like to thank NSERC for providing the funding that enabled me to

do t his research.

Contents

1 Introduction 1

. 1 . 1 Objectives 3

2 Context and Previous Work 5

2.1 Load Balancing on Networks of Workstations 5

. 2.2 Workload Characterization 7

. 2.3 Parallel Application Characterizat ion 10

. 2.4 The EASY Scheduler 14

. 2.5 Selected Scheduling Results 16

. 2.6 Methods for Ascertaining Application Characteristics 20

3 workload Characterization 22

. 3.1 Corne11 Tbeory Center IBM SP2 23

. 3.2 University1 Network of Workstations 27

. 3.3 NASA Lewis Network of Workstations 29

. 3.4 Conclusions 31

4 The Implementation of the Hiitorical Profiler 34

. 4.1 The Environment 35

. 4.2 The Interface 37

. 4.3 The Design 40

. 4.3.1 Overview 40

. 4.3.2 HistoricalProfilerRepository Design 42

. 4.3.3 Methods of Estimating Executable Information 46

5 Schedulers that Use Application Knowledge 51

. 5.1 Structure of Algorithms 52

. 5.2 First Corne. Fint Serve 55

. 5.3 Least Estimated Work First 55

. 5.4 Least Estimated Remaining Work First 56

. 5.5 EASY-kill 58

. 5.5.1 High Level Design 59

. 5.5.2 Interface 61

. 5.5.3 Implement a t ion Issues 62

. 5.6 EASY-Preemptive 63

5.7 Processor Assignment Heuristics for Preemptive Disciplines 64

6 Evaluation of Algorithms 68

. 6.1 Method 68

. 6.2 Results 73

6.2.1 The Relative Performance of the Non-Preernpt ive Schedulers . . . 71

. 6.2.2 The Value of Filling 77

. 6.2.3 The Value of Preemption 79

. 6.2.4 The Value of Knowledge 82

. 6.2.5 Summary 87

7 Conclusions and Future Work 88

. 7.1 Future Research 90

. 7.1.1 Varying the Parameters of the Experiments 90

. 7.1.2 Improvements Related to the Historical Profiler 92

7.1.3 Additional Scheduling Disciplines Worth Examining 94

Bi bliography

List of Tables

. 2.1 Application Characteristics 1 'L

. 2.2 Scheduling Terrns 15

3.1 Corne11 Theory Center: Wall dock time and Processor tirne Averages and

. Coefficients of Variation 26

3.2 Wall Clock Average and Coeficient of Variation for the University1 and

. NASA Lewis 28

. 5.1 An Inefficient LERWF Allocation Procedure 65

. 5.2 LERWF Assigning Processors to Jobs 65

. 6.1 Parameters Used in the Experiments 69

. 6.2 Artificial Workload: Executable Specificat ions 71

. 6.3 Classification of Algorithrns 74

6.4 Performance of Scheduling Algorithrns ("pron means use of the profiler.

. "actn means use of actual service times) 75

List of Figures

3.1 Cornell Theory Center: Parallel Job Submission Rate vs . Time of Day . 24

3.2 Cornell Theory Center: Number of Parallel Jobs vs . Interarrival Time

. (adapted from Hotovy, et ale's paper [HSOSG]) 25

. 3.3 NASA Lewis: Parallel Job Submission Rate vs Time of Day 30

. 3.4 NASA Lewis: Number of Paraliel Jobs vs Interarrival Time 31

. 4.1 The Interface to the Profiler Class 39

. 4.2 The Interface to the ExecutionTirne Class 40

. 4.3 High-level Design of the Historical Profiler 41

. 4.4 The Historical Profiler's Interna1 Design 43

. 5.1 Pseudwcode for Scheduling Algorithms 53

. 5.2 The EASY Scheduler 60

. 6.1 The Non-Preemptive Schedulers' Mean Response Times 76

. 6.2 The Impact of Filling on Mean Response Times 78

. 6.3 The Impact of Preemption on Mean Response Times 80

. 6.4 The Impact of Knowledge on Mean Response Times 83

vii

Chapter 1

Introduction

Studies have indicated that existing networks of workstations (NOWs) are not being used

at full capacity. Douglis and Ousterhout's examination of the Sprite operating system's

process migration facilities [DO911 finds that even during the daytime on weekdays, over

two-thirds of workstations are idle. Similarly, Mutka and Livny's study of the usage of

13 to 20 workstations over 9 months [ML91, Mut921 discovers that even at the busiest

times, 55% of capacity is available. More recent analysis by Arpaci, et al. of a cluster

of 53 workstations [ADV+95] finds that the total number of idle workstations remained

roughly constant, such that more than 60% of workstations were available at any given

moment.

Such findings encourage viewing a network of workstations as a single system with

excess capacity, rather than as multiple distinct machines intended for individual use.

This idea immediately leads one to consider methods of improving t h e performance and

functionality of such a system. One such method would be to use the excess capacity of

NOWs to run parallel jobs. This, in eflect, is treating the NOW as a parallel machine.

Previously, most parallel programming was doue on parallel processors. However

NOWs are becomiag increasingly popular as a substitute. Anderson, Culler and Patter-

son attribute this trend to several factors [ACP95]. NOWs offer a significantly better

price-performance ratio t han a massively parallel processor (MP P) . They do not have

the one to two year lag that exists betweea the release of a new processor and its use in

an MPP. F'urthermore, since workstations generally already include an operating system,

NOWs do not suffer to the same extent from the complications and high cost of creating

an entirely new operating system. Additionally, with the large excess capacity of NOWs,

existing NOWs can be used as a parallel machine with little additional cost.

The study by Arpaci, et al. [ADV+95] confirms the viability of running parallel and

sequential workloads simultaneously on NOWs. Using simulations based on traces and

benchmarks, t hey demonstrate that it is possible to provide acceptable service to inter-

active users while still allowing parallel jobs to have good performance. The technique

in this study is t o allow the coscheduling of parallel jobs using processors that have been

idle for at least three minutes. To ensure that interactive users are not inconvenienced,

parallel threads are migrated a s soon as interactive use of a workstation resumes, and

a daily limit is set on how many times parallel jobs can run on a given machine. This

technique relies on the facts that, in general, a constant number of machines are idle at

any tirne, and 95% of idle time is spent in intervals longer than 10 minutes. even though

half of the idle periods are less than three minutes long.

These findings support the argument that doing parallel computation on NOWs is

both feasible and desirable. However, for parallel applications to be commonly run

on networks of workstations, operating system support for these applications in this

environment is required. The support needed ranges from infrastructure to help parallel

applications run on several machines and communicate with each other, to software to

make the development of programs in this environment easier. This thesis will focus on

one particular area that requires support, parallel job scheduling.

Much research has focused on parallel job scheduling in multiprocessors, and the

area is still open to inquiry. It seems natural that many of the scheduling results that

apply to multiprocessor systems rnay also apply to scheduling parallel jobs in a NOW

environment. However, on cloaer examination, this rnay not be so self-evident, because

the job mixes found in the two environments rnay be very different. Because machines

in the NOW environment rnay be less reliable than the processors in a multiprocessor

and communication rnay be slower, users rnay chwse to run different types of jobs in the

two environments. This is even more likely to be true if the users have access to both

a multiprocessor and a NOW acting as parallel machine. Despite these misgivings, it is

still worthwhile considering results obtained in multiprocessor environments.

Previous research in these multiprocessor environments has indicated that knowledge

of application characteristics can improve the performance of parallel system schedulers

[MEBSO, PD89, GST91, MEB91, Wu93, AS97, PS96j. However, very few practical meth-

ods of determining application characteristics for use by a scheduler have been suggested

or implemented (DAC96, NVZ96b, NVZ96al.

1.1 Objectives

The overall goal of this thesis is to determine a reasonable way for scheduling algorithrns

for parallel jobs executing on a NOW to achieve better performance by using knowledge

of the historical resource usage of individual applications. This will be done by analysis

of parallel job patterns on production networks of workstations, and by implement ing

and analyzing scheduling algorithms that can take advantage of this workload character-

ization. The resulting system will be tested and evaluated on a sixteen node network of

workstat ions.

Chapter 2 will discuss previous results that impact this work. It presents both earlier

workload characterization studies, and analysis of the characteristics of parailel applica-

t ions. It t hen describes some parallel scheduling algorit hms t hat use application knowl-

edge. This chapter is intended to provide a broad overview of relevant research preceding

this thesis.

The parallel workloads of one rnult iprocessor machine and two networks of worksta-

tions are examined in chapter 3. The goal of this analysis is to identify commonalities

among the workloads in the three production sites. This examioation contributes to the

determination of features of the workload that are both predictable and useful in im-

proving scheduling effectiveness. The prirnary focus will be met hods of classify ing jobs

so that the coefficients of variation for wail dock execution time and processor time of

each class will be relatively small.

Chapter 4 will use the results of Chapter 3 when specifying the implementation of a

"database", called the historical profiler, that contains information about the historical

resource usage of applications. The purpose of this chapter is to present the issues

associated with creating a Historical Profiler in a NOW environment. To this end, it will

present several features that a profiler should have to be useful to a scheduler. Methods

of storing the data that consider the tradeoff between storage space and amount of detail

are proposed. Finally, this chapter presents algorithms for transforming raw execution

time data about jobs into approximate execution time functions more easily used by the

scheduler. The execution time function for an application indicates its expected execution

time as a function of the number of processors it is allocated.

Chapter 5 contains a discussion of the issues associated wi t h implement ing schedulers

that use the Historical Profiler. This chapter serves a dual purpose. First, it introduces

the algorithms to be used to test the performance of the Historical Profiler. Second, it

indicates the difficulties encountered in designing several parallel scheduiers in a NOW

environment. Several preemptive and non-preemptive variants of three scheduling ai-

gorithms are examined, First Corne First Serve (FCFS), Least Estimated Work First

(LEW F), and Lifka's EASY [Lif95].

These scheduling algorithms are used to test the performance of the Historical Pro-

filer. C hapter 6 evaluates the performance of t hese algori t hms in scheduli ng parallel

applications to run on a NOW, using information from the Historical Profiler. I t com-

pares this performance to the performance of the algorithms when perfect knowledge

of execution times of the applications is available. The workload used to evaluate the

algorithms is presented, followed by analysis of the results of the experiments. The goal

is to determine how well these scheduling algorithms perform when using the profiler,

relative to the ideal.

Chapter 2

Context and Previous Work

This chapter presents results preceding the work in this thesis. Section 2.1 discusses load

balancing on networks of workstations and the Load Sharing Facility, LSF [LSF96]. Sec-

tion 2.2 presents previous workioad characterization studies and techniques. Section 2.3

briefly surnrnarizes methods for characterizing parallel applications. Section 2.4 discusses

the EASY scheduler, followed by Section 2.5 which presents other scheduling algorithms

t hat could potentially use workload information, if it were available. This section moti-

vates Section 2.6, which describes methods that scheduling algorithms currently use to

obtain workload information.

2.1 Load Balancing on Networks of Workstations

Load balancing on NOWs has been investigated for over a decade. Several NOW modeliog

and simulation studies [ELZ86, MTSSO] support the hypot hesis t hat relat ively simple load

balancing algorit hms can result in large improvements in the average execut ion t imes of

jobs. A simulation using job traces frorn production VAX machines [Zho88] confirms

these findings. Zhou finds that under a rnoderate load of approximately 60% processor

utilization, mean resporise times improve by 30-60%, and that even with light loads, the

performance of every host improves. A more recent UNlX study by Harchol-Balter and

Downey [HBD96] analyses the lifetime distributions of processes and proposes a policy

for preemptive migration. Using trace-driven simulations, they show that their policy

CHAPTER 2. CONTEXT AND PREVIOUS WORK 6

reduces mean delays by 3550% compared to non-preemptive migration where jobs can

only be migrated before they have started.

Many implementations and algorithms for load balancing bave been proposed. Early

efforts include Leblang and Chase's implementation of a parallel make on a network

of workstations [LCS'I] and Theirner's techniques for finding hosts for remote execution

[TL89]. A more recent study by Kunz using an artificial workload [Kun911 examines the

use of different host workload descriptors to determine where to schedule processes. He

discoven that using the node with the minimal number of tasks in the run queue leads

to the most efficient dispatching of jobs.

Implementations of distributed operating systems, such as V [Che881 and Sprite

[D091], provide support for load sharing. However, subsequent research, on systems

such as the Condor [LLM88] and Utopia [ZZWD93], focuses on implementing load shar-

ing in a layer on top of the workstation operating system. In particular, LSF version 2.2,

a commercial version of Utopia, is the load sharing system used in this thesis.

LSF, Load Sharing Facility [LSF96], provides transparent interactive and batch load

balancing on a heterogeneous NOW. LSF is implernented on top of UNIX and a shared file

system. It dynamically provides resource informat ion, including number of processors,

relative speed, and physical memory available on each host, and load information such

as processor load, available memory/swap space, and I/O and paging activity. LSF

automatically selects the hosts on which to run a job, based on the resource requirements

of the job, and the current load conditions. Restrictions and resource limits may be

specified for queues, for users, or for hosts. Accounting systems record the resource

usage of al1 jobs on the system in log files.

Minimal support for parallel jobs is provided by LSF through a generic interface.

Parallel applications that use packages such as PVM or MPI can be started by LSF's

batch interface using shell scripts provided by LSF or written by the application prw

gammers. An Application Programming Interface (API) provides programmers with

access to most of LSF's features, including the remote execution of threads. This the-

sis will focus on enhancing LSF's batch execution features using the LSF API and LSF

accounting mechanisms.

CHAPTER 2. CONTEXT AND PREVIOUS WOHK

2.2 Wor kload C haract erizat ion

The primary goal of resource allocation algorithms, including scheduling algorithms, is

to provide the workload on the system with effective access to system resources. The

meaning of Ueffective" depends on the resource being allocated, the workload, and the

system. As a result, when creating a scheduler, it is useful to examine the workload that

will be scheduled.

Many workload characterization studies of parallel and sequential applications exe-

cuting on different platforms exist. However, there are none that deal specifically with

NOWs running parallel production workloads. This could be because running parallel

jobs on NOWs is a new approach, so little data is available. However, despite this lack

of data, there are other workload characterization st udies t hat are of interest.

An early study by Agrawala, Mohr and Byrant [AMB76] oii a two processor Univac

workload presents several techniques used frequently in workload characterization stiidies.

They discuss different job models and the use of clustering theory in the classification of

jobs.

A diRetent appmach is used in a uniprocessor modeling study by Devarakonda and

Iyer [DI89]. This study uses cluster analysis and state-transition modeling of trace files

from a UNlX system to create a job model. This model is able to predict execution time

with a high correlation to the actual execution time. The errors are relatively small,

with 80% of jobs falling within half a standard deviation of the predicted value. The

log files also have the interestiog property that 21% of executables account for 92% of

jobs. Any program with the same path and name is considered the sarne executable;

if two programs are in different directories but have the same name, they will still be

considered different executables'. These results indicate that, in sequential systems at

least, it should be possible for a scheduler to use historical data to accurately predict

applications7 execution time.

Since the presumption of this thesis is that the NOW is being used as a parallel

'For the work in this thesis, a slightly different rnethod L u d . Executables are claeifieà only

by name, not by path. As a resdt, any two programs with the same name but possibly in diflerent
directories are still considered the same executable.

CHAPTER 2. CONTEXT A N D PREVIOUS WORK 8

machine, multiprocessor workload characterizations are more relevant to this research

t han uniprocessor st udies. Several studies of mult i processor machines exist . Pasquale,

Bittel, and Kraiman present a workload characterization of a production Cray X-MP

based on two months of data from 1989 [PBKSI]. Their clustering analysis shows that

88% of the jobs accounted for less than 2% of the processor time. However, 2% of jobs

used 86% of the processor time, 77% of the rnemory space-time product, and 21% of the

I/O time. They analyse the arrival rate of jobs, and find a common pattern of workload

increasing from 8:OOam to noon, remaininq roughly constant until 5:00pm, and then

decreasing until 9:OOprn.

An earlier study of job arrival patterns in a multiprocessor was done by Calmarossa

and Serazzi [CS85]. They analyse 14 one-day periods using polynomial-fitting techniques

to derive functions for the arrival rate based on the time of day and cluster analysis to

find goups of applications that have similar arrival behaviour. They verify their findings

with a second set of data from a different month.

The most complete characterization of a multiprocessor system, an iPSCJ860 hyper-

cube, is presented by Feitelson and Nitzberg [FN95]. This study categorizes jobs by

degree of parallelism and analyses each category in terms of the number of jobs, average

processor t ime, cumulative processor t ime, and type of jobs. Fur t hermore, t hey analyse

job submission rate, average job length, and job interarrival times in terms of time of

day. They conclude by profiling both user activity in terms of number of jobs submitted

and applications used, and applications in terms of the number of times each application

is run and the variance in execution length. Some of their interesting results include:

1. A small number of large jobs consume most of the resources.

2. Despite the fact that system-wide job run times and interarrival times have a high

coefficient of variation, the job run times of multiple executions of the same appli-

cation on the same number of nodes tend to have a coefficient of variation less than

one.

The first finding is also supported by Pasquale, et al.% study [PBKSI]. These re-

sults indicate that while the overall distribution of job executioo times in the system is

CHAPTER 2. CONTEXT AND PREVIOUS WORK 9

hyperexponential, it should still be possible to predict the execution times of individual

applications.

The most recent studies of mu1 tiprocessors are Hotovy 's examinat ions of a production

IBM SP2 system [Hot96, HS0961. These are the only workload characterization studies

that note that the system utilization increases over a nine month period. He observes an

increase in both the weekly backlog and rnedian wait times. He examines the number of

jobs and the processor time by the number of processors requested, and observes that

most jobs requested a number of nodes that is a power of two. Hotovy's results differ

from those of Feitelson, et al. and Pasquale, et al. in that the average job duration does

not clearly increase for an increased number of processors. Instead, the duration is the

highest for sequential jobs, then decreases for up to sixteen processors. The duration

then increases for up to 32 processors but levels off for jobs requiring more processors.

Preliminary analysis of more recent log files of the same site by Parsons [Par971 appears

to confirrn this increasiag trend for small numbers of processors, followed by a leveling

off for jobs using more processors. This system is examined in more detail in Section 3.1.

Each of these studies has focused on specific systems. However, it is also worthwhile

exploring the methodology of workload characterization. Calzarossa and Serazzi [CS931

do t his when they examine the common feat ures of workload characterizat ion studies.

They present a five step methodology for the analysis of workloads and the construction

of art i ficial workloads.

1. Formulation of the characterization ievel and basic components.

2. Choice of instrumentation.

3. Collection of data.

4. Analysis of data using partit ions, parameter distributions, sampling, static charac-

terizations, dynamic characterizations, and the construction of models.

5. Determiaing the validity of the mode1 on other data.

They also suggest parameters on w hich to focus for various st udies. Unfortunately,

they do not address the workload characterizations of NOWs; they primarily emphasize

network issues. For parallel applications, they suggest a focus on many characteristics of

such applications, including t hose presented in the next section.

2.3 Parallel Application Characterizat ion

Workload characterization is important for resource allocation, but it is also worthwhile

to investigate the system at a finer granularity, the individual applications. The analysis

of characteristics of parallcl applications is valuable since systerns software can be written

to optimize the performance of such applications. However, there are many different ways

that applications can be analysed. This section will present some of those methods.

One technique is to measure characteristics of applications using simulations while

varying the size of data sets or various application parameters. There are many studies

of this type. Woo, et al.5 analysis of the SPLASH-2 programs [WOT+95], 12 benchmark

programs for shared address multiprocessors, takes this approach. Using execution-driven

simulations, it analyses the programs in terms of speedup, load balancing, working sets,

communication to computation ratio, and spatial locality. Cypher, et al. [CHKM931

do a similar study on eight parallel scientific applications running on two different mul-

tiprocessor architectures. They analyse the applications in terms of memory, 110, and

processing requirement s, communication to computation ratio, message t raffic, scaling

of problem size and scaling of the number of processors. A further study of this type is

done by Nguyen, Vaswani and Zahorjan [NVZgôa]. They examine several applications

in the Perfect [CKPKSO] and Splash-2 [WOT+95] benchmark suites running on a KSRS

in terms of speedup and sources of slowdown. The major problem with such studies is

that it is difficult to tell whether the applications studied really are representative of

applications in production systems.

A similar technique that determines how system characteristics affect performance

is to execute representative applications on different configurations of a system. Lantz,

Nowicki and Theimer conducted an early study of this type examining a client/server

system [LNT85]. Using graphics and text benchmarks, they found that the bandwidth

of the network had only a small role in determining the performance of the system. More

important factors were the speed of the machines involved and the transport protocol.

CHAPTER 2. CONTEXT AND PREVIOUS WORK 11

Al1 the studies presented thus far focus on actual applications. However, much the*

retical work has addressed more general models of parallel applications. Sevcik discusses

the many different levels and types of t heoretical characterizations [Sev89]. Low level

characterizations such as data dependency graphs and task precedence graphs exist. The

former deals with operations on data that are required to be sequential, while the latter

decomposes an application into dependencies bet ween purely sequent ial tas ks. However,

in practice, such low level characterizations can be both difficult to obtain for large

applications and difficult to use.

Higher level characterizations have been proposed, and some of the definitions of terms

used in higher level parallel application characterization appear in Table 2.1. Amdahl

[Amd67] established an influential approach to characterizing parallel applications by

identifying a limit on the speedup of an application with p processors, S (p) , based on

the fraction f of the application that is intrinsically sequeritial:

The execution time function, T(p) , is a popular way of characterizing an application

in terrns of the number of processors it uses. T (p) is the execution tirne with p processors.

This characterization has the benefit that it can generally be measured easily by running

the application several t imes wit h different numbers of processors.

Various methods of defining the parallelism of an application in terms of a single

number have been proposed, including the minimum and maximum parallelism. Eager,

Zahorjan, and Lamwska investigate the use of average parallelism, A, and the tradeoff

between speedup and efficiency for varying numbers of processors [EZL89]. The speedup

and efficiency functions are defined in terms of the execution time function:

Eager, et al. note that speedup and efficiency are inversely related to each other, so

bot h meaurementg cannot si mu1 taneously be low for any allocation of processors. They

CHAPTER 2. CONTEXT AND PREVIOUS WORK

Table 2.1 : Application Characteristics

-- - - -- - - - - - . .

Characteristic Defini t ion

Execution Time A function that for any p is equal to the duration of the

Funct ion T (p) application executing on p processors.

Speedup Function The ratio of the execution tirne for the application running

S (P) on one processor to the execution time of the application

on p processors.

Efficiency Function The ratio of the speedup for the application using p

E (P) processors to p.

Average Parallelism The average number of busy processon during the

execution of an application if an unlimited number are

available.
- - - -

Maximum Parallelism The maximum number of busy processors during the

execution of an application if an unlimited number are

avai lable.

Minimum Parallelism The minimum number of busy processors during the

execution of an application if an unlirnited number are

available.

Processor Working The number of processors that rnaximizes the product of

Set (pws) the speedup and efficiency functions.

The ratio of the time required for an application to

execute on p processon to the time required on an

infinite number of processors.

CHAPTER 2. CONTEXT AND PREVIOUS WORK 13

also note that the average parallelism can approximate the knee of the graph of speedup

versus execut ion t ime.

Ghosal, Serazzi and Tripathi [GSTSI] expand on this work by actually finding the knee

of the speedup versus execution time graph. The processor working set (pws) is defined

as the value of p that minimizes the ratio of the execution time to the efficiency, %, or,

correspondingly, maximizes the product of the speedup and efficiency. Conceptually, the

pws attempts to indicate with a single parameter the threshold at which the gain in the

speedup of an application is worth the marginal cost of using an additional processor.

Methods of characterizing the parallelisin of applications are also a popular research

topic. Majumdar, Eager and Bunt [MEBSI] propose a function that provides an indica-

tion of the variability in parallelism:

This function is the execution time attainable by a job with A processors when pr*

cessor sharing, using time-slicing, is employed.

A more detailed way of characterizing the parallelism of an application is in terms of

the parallelism profile [Sev89]. The parallelism profile of an application is a graph of the

maximum number of processors that an application can use a t various times during its

execu t ion.

One problem with many of t hese characterizations is t hat t hey rely on knowledge of

the execution time function. It is possible to measure the execution time function, but

to get a smooth curve from incomplete data, a mode1 of the function is required. Several

functions have been proposed as models, and a t least two representations are used several

times in the literature.

Dowdy [Dow881 proposes an execution signature of the following form to characterize

an application by execution rate ~ (p) :

The variables Ci and C2 are constants specific to

sion, the execution time function may be derived:

(2.5)

the application. From t bis expres-

CHAPTER 2, CONTEXT AND PREVIOUS WORK 14

The main alternative to Dowdy's model is Sevcik's model [Sev94]. Sevcik's more

general proposed model for the execution time function is based on four parameters.

The work of an application is represented as W. A function +(p) represents the degree to

which work is not evenly spread among processors. The increase in work per processor

due to parallel processing is a, while the communication delays and other delays that

increase with p are represented b y the product o p . Sevcik's formulation is:

Dowdy's formulation (equation 2.6) is an instance of Sevcik's formula, where W = C2,

(p) = 1, cr = CI and p = O. Wu [Wu931 characterizes applications in terms of both

Dowdy's and Sevcik's forms, and finds applications where Dowdy's form has large errors.

The problem arises because Dowdy's execution signature is a non-decreasing function

in p. However, for any parallel application, there is a point where the congestion and

communication overhead become so great that assigning an additional processor to the

application slows it dowa rather than speeding it up. Sevcik's funct ion does not have the

same disadvantage, since it has the p p term to deal with this situation.

2.4 The EASY Scheduler

When investigating scheduling, it is wort hwhile examining popular current algorithms in

order to judge both the performance of the algorithms and the requirements of users.

Users are starting to demand the availability of certain features in scheduling software

[RSLS95]. One response to this demand bas been Lifka's creation of the Extensible

Argonne Scheduling sYstem (EASY). EASY (Lif951 was designed with the help of users

of the IBM SP system on which it was originally intended to run. Since that time, it has

become increasingly popular and has been adopted by other sites [SCZHW].

EASY was designed according to users' goals of fairness, simplicity, predictability,

exclusive access to nodes, and support for different job types. To satisfy the goal of

simplicity, t here are twelve UNIX-like commands wi th intuitive functions. Yet , despite

CHAPTER 2. CONTEXT AND PREVIOUS WORK

Table 2.2: Scheduling Terms

- . -- --

Characterist ic Definit ion

static scheduling The number of processors assigned to a job cannot change

after that job has begun execution.

dynamic scheduling The number of processors assigned to a job can change

after a job haa begun execution.

preempt Temporarily stop the execution of a job or a thread.
- - -

tesume Continue the execution of a preempted job or thread.

migrate Move a job or thread that was running on one or more

processors to continue execution on a different processor

or set of processors.

adap t i ve The number of processors assigned to a job when it

initially begins execution is determined by the scheduler.
- - - - -- - -- - -

non-adaptive The number of processors that must be assigned to a job

is specified by the user, not the scheduler.

run to completion Once started, a job executes to completion wit h no

preemption or migration.

cosc heduling Al1 the threads of a job are run simultaneously on

di fferent processors.

space-s haring Jobs have exclusive access to the processors assigned

to them.

this simplicity, EASY is able to meet al1 the other goals. To ensure that the users'

exclusive access to nodes does not compromise the fairness of access, an accounting

system is included. Each user has a limited quota of processor-minutes. After t hat quota

has been exceeded, the user is not allowed to submit any more jobs.

Fairness and predictability are implemented using a static scheduling scheme based

on FCFS with backfilling. When a job is submitted, the user must specify the duration

of the job. Any job that fails to complete within the specified duration is killed. The

FCFS with backfilling algorithm means that jobs are run in strict first come first serve

order, except when a job can be run on available processors without delaying the start

of any other job submitted before it. This algorit hm ensures t hat, at any time, users can

see the current schedule of every job in the system, and know that a submitted job will

start execution no later than the time reflected in the current schedule.

The main drawback of this scheme is that it is far from optimal for either response

time or efficiency. In an effort to remedy this situation somewhat, a new implementation

of EASY is planned that allows executing jobs access to available nodes [SCZH96]. If a

running job could use more processors than it currently has, it can request access to idle

nodes as long as the request will not delay other jobs.

2.5 Selected Scheduling Results

Workload characterization results from Section 2.2 suggest that parallel application per-

formance is predictable, whik the success of EASY, described in Section 2.4, indicates

that users are willing to specify limits on the run-time of applications. These results

naturally lead to the question of whether knowledge of application characteristics cao

improve the performance of scheduling algorithms. The majority of results indicate that

the answer is uyes".

Majumdar, Eager and Bunt's simulation [MEBSO] of an artificial workload running on

a shared memory multiprocessor compares the mean response time using FCFS and RR

(round-robin) policies to SNPF and SCDF schedulers. SNPF allocates processes to the

job with the smallest number of processors not yet allocated. Thus, jobs that demand

few processors will, in effect, be scheduled before jobs that demand more processors.

CHAPTER 2. CONTEXT AND PREVIOUS WORK 17

SCDF, srnallest cumulative demand first, allocates free processon to the job with the

least cumulative demand, where the cumulative demand is the product of the number of

processors the job uses and the length of the job. The study discovers that the greater

the variability in demand, the more beneficial is the additional workload knowledge that

SNPF and SCDF possess, and the better is the performance of algorithms that use

preemp t ion.

An alternative technique used in several other studies is to use instead knowledge

of the processor working set for scheduling. Ghosal, et al. [CSTSI] use four benchmark

applications running on a sixteen transputer machine to compare various static scheduling

algorithrns that use the pws. They suggest allocating to jobs a number of processors

equal to their pws (the PWS rule) as a viable scheduling strategy, although they note

that allocating the pws does not maximize average speedup. They do not compare in

depth t heir algorit hms using the processor working set to any other algori thms.

A synt hetic workload-based simulation by Majumdar, Eager and Bunt [MEBS 11, how-

ever, does compare the performance of algorithms using the pws to algorithms using other

application characteristics. This study focuses on the identification and use of appropri-

ate application characteristics for scheduling. It finds that the PWS rule yields near

optimal performance for many workloads. Majumdar, et al. also suggest other static

scheduling algorithms that use knowledge of both A, the average parallelism of the ap-

plication, and w (A) , and the execution time attained by a job using A processors when

processor sharing is used among the active threads. Furthermore, they propose a form of

dynamic scheduling, program behavtour-based scheduling, where the number of processors

assigned to an application changes whenever the speedup or average parallelism of the

application changes. Not surprisingly, this type of scheduling leads to lower average re-

sponse times than static scheduling, where the number of processors cannot change after

the application has started executing.

A study by Chiang, Mansharamani, and Vernon [CMV94] a few years later seems to

contradict these results. It finds that algorithms that use average parallelism and the

processor working set perform worse than alternative static policies that do not use such

information. Using simulation and an artificial workload, Chiang, et al. discover that

CHAPTER 2. CONTEXT AND PREVIOUS WORK 18

both adaptive static partitioning with a maximum limit on the number of processors

allocated, ASP-max, and shorteat demand first with a maximum limit on number of

processors allocated, SDF-max, perform better than policies using A and pws. With

ASP-max, a new job is allocated either al1 the idle processors in the system, or its

maximum parallelism. When a job completes, its processors are allocated in a round

robin fashion to jobs waiting in an FCFS queue. SDF-max schedules jobs in order of

increasing demand wit h an upper limit on the number of processors assigned to a each job.

Chiang, et al. also determine that EQ, a dynamic policy that assigns an equal number of

processors to al1 the jobs in the system (up to maximum parallelism), outperforms al1 the

ot her policies presented. They explain the contradictions to previous studies by ci ting

differences in the policies and workloads examined. This result is verified by Parsons and

Sevci k [PS95].

Sevcik is responsible for two studies examining the use of knowledge of application

behaviour when scheduling. In the first [Sev89], he compares several static scheduling

algorithms that use knowledge of average parallelism, system load, and minimum and

maximum parallelism. His simulations lead to the conclusion that at low loads, knowl-

edge of average parallelisrn is sufficient. However, at higher loads, schedulers that use

additional information can improve mean response times.

In the second study, Sevcik [Sev94] examines several special cases of allocating P

processors to N applications for which execution t ime funct ions (equat ion 2.7) are known.

He derives optimal allocations to minimize average response time for one application on

P processors, N applications on two processon, N identical applications on P processors,

and two applications on P processors.

Several ot her researchers propose scheduling algori t hms based on the execut ion signa-

tures and speedup functions of applications. Park and Dowdy [PD891 note that execution

signatures may be obtained experimentally, and may be used to calculate correspondiog

speedup functions. They observe that such a function may be used in scheduling to max-

imize the throughput of a system. They support this assertion by presenting an iterative

method that can be used by a dynamic scheduler to determine the optimal allocation of

processors to jobs.

CHAPTER 2. CONTEXT AND PREV~OUS WORK 19

Wu [Wu931 uses Sevcik's execution time function (equation 2.7) to analyse several

parallel applications in a non-uniform memory access (NUMA) environment. He t hen

shows that a stat ic scheduling algorithm using information about the execut ion t ime

function outperforms a dynamic scheduling scheme where the applications notify the

system of how many processors they would like. He explains this result by the overheads

associated wit h the dynamic policy.

Simulations by Anastasiadis and Sevcik [AS971 of three workloads continue this line

of research. This study demonstrates that, at high loads, static algorithrns that use

workload knowledge can outperform an EQ policy with no overhead. At lower loads the

EQ algorithm remains better because it is a dynamic scheduling strategy. They also

show that SDF-max does not generally perform better than SDF as is claimed in the

study by Chiang, Mansharamani, and Vernon [CMV94]. Rather, the maximum limit on

the number of processors assigned to an application simply optimizes the performance of

the algorithm for a particular workload and arriva1 rate.

Parsons and Sevcik [PS96] provide additional results about the performanceof schedul-

ing algori t hms that use the execution tirne function. This research focuses on the benefits

of application knowledge of applications with various memory requirements. This mod-

eling study shows that, if there is no correlation between the execution time and memory

size of jobs, a dynamic algorithm with knowledge of the execution time function only

moderately outperforms an EQ algorithm. However, if memory requirement and execu-

t ion t ime are correlated, t be algorit hm with knowledge outperforms the EQ algorit hm

by a large margin. Parsons and Sevcik propose several algorithms to take advantage of

this result and find, using simulations, that at al1 loads, the algorithms using application

knowledge are able to outperform EQ. They note tbat the jobs in the study have vastly

different execution time functions, and t hat a workload of jobs wit h less diverse execution

time functions would not benefit from the same performance improvements.

A similar study of dynamic schedulers based on Dowdy's execution signature (equa-

tion 2.5) is described by Brecht and Guha [BG96]. They find that algorithms that use

application characteristics such as jobs' remaining work, efficiency, and processor working

set are able to outpedorm a simple EQ algorithm. In particular, an algorithm that con-

CHAPTER 2. CONTEXT AND PREVIOUS WORK 20

siders both the remaining work of jobs and their efFiciency results in the most significant

improvements in performance. Like Parsons and Sevcik [PS96], Brecht and Guha point

out that the possible improvement over EQ is affected by the variability in execution

times, the efficiency of jobs, and the systern load.

2.6 Met hods for Ascertainhg Application C harac-

teristics

It is clear from findings in Section 2.5 that knowledge of application characteristics can

be used to improve the performance of a scheduler. This section will discuss methods

that have been used to gather information about application characteristics.

One method of measuring application parallelism is a tool created by Kumar [KumSS].

His tool inserts statements into application code to determine ideal porollelism, which

is the ultimate level of parallelism attainable by the code if it were to run with no

overhead on an infinite number of processors. However, the tool as proposed has a major

disadvantage. It requires special versions of an application to be created and riin to

determine the application characteristics. Such a procedure greatly inconveniences users

of the system. A sirnilar disadvantage exists with an idea Sevcik [Sev94] presents, of

having the user provide estimates of execut ion characterist ics.

Another approach is to measure application characteristics at run time. Dusseau,

Arpaci and Culler [DAC961 use this method with their implicit scheduling technique for

distributed time-shared workloads. Local schedulers use communication and synchroniza-

tion events that are implicit in parallel applications to estimate load imbalances. The

local schedulers are able to determine from this data when to schedule parallel applica-

tions so that that multiple processes in a job have a high probability of being scheduled

simultaneously. It does this without passing around any global information such as mes-

sages to synchronize clocks. Simulations for artificial workloads show that this method

yields response times no more than 25% longer than for coscheduling algorithms (defined

in Table 2.2), and for coarse-gained algorithms can be 25% better. This method has the

advantage of not requiring extra effort from either the application programmer or the

user to achieve acceptable scheduling.

CHAPTER 2. CONTEXT AND PREVIOUS WORK 21

Nguyen, Vaswani and Zahorjan [NVZ96b, NVZ96aI use a combination of code in-

strumentation and hardware monitors to determine run time characteristics of iterative

applications. These studies assume that the behaviour of future iterations of loops will

be similar to the behavior of past iterations of the same loop. %y determiniag the ex-

ecut ion t imes of the loop over several iterat ions wit h varying processor allocations, the

scheduler is able to estimate the speedup characteristics of the application. Simulations

of a variety of workloads indicate that a variant of the EQ scheduler that uses runtime

information, ST-EQUI, is able to outperform an EQ scheduler that does not. Further-

more, the performance of ST-EQUI is almost comparable to that of a scheduler that

uses perfect information about the application. The main disadvantage of this method

is that, thus far, it requires that the application programmer instrument his code.

An alternative method of determining application characteristics is to keep a historical

database containing data on every job that has been run on the system. Despite results

discussed in Section 2.2 that seem to indicate that this approach holds some potential,

it has not been implemented by anyone up to now, but will be addressed in this thesis.

Chapter 3

Workload Characterization

When designing parallel scheduling algorithms, it is useful to analyze the workloads

on both multiprocessing systems and networks of workstations running parallel jobs.

Such analysis provides an idea of the important characteristics of jobs runaing on such

machines. For this thesis, in particular, such analysis is critical, since this work focuses

on the creation of a Historical Profiler to be used by parallel job scheduling algorithms.

Before such a profiler can be created, it is necessary to decide what information could be

useful to a scheduler. An analysis of workloads lets us do this.

Ideally, this workload analysis would focus on the parallel jobs running on production

networks of workstations. Unfortunately, there are several difficulties with this strategy.

The first is that traces of production sites are generally not available. Either the site does

not support detailed traces, or the traces contain confidential information. A further dif-

ficulty is t hat the use networks of workstations as rnult iprocessors is only now starting to

become feasible wi t h the development of high-speed networks and networking protocols.

As a result, there are few sites that execute parallel jobs on networks of workstations in a

production mode. Additionally, in some of cases where parallel jobs are run on networks

of workstations, the jobs are actually run on a single multiprocessor workstation on the

networ k.

To reduce these difficulties, this thesis will examine not only the parallel workloads on

two production networks of workstations, but also the multiprocessor workload described

by Hotovy, et al. [Hot96, HS0961. The characterization of parallel applications in a

multiprocessor environment may be relevant to networks of workstat ions used as parallel

machines. In both cases, the goal is to run parallel jobs in an environment that has

multiple processors and communication paths between the processors. However, it may

be that, due to the slower communication in NOWs and the distributed memory of the

systems, users run different jobs or different versions of the same jobs on NOWs than they

run on multiprocessors. Despite these potential problems, we will consider multiprocessor

workload characterizations relevant to a NOW environment.

Three sites will be examined. The mult iprocessor site, the Cornell Theory Center IBM

SP2, is examined in Section 3.1. The two network of workstations sites are the anonymous

University1 researcb site, described in Section 3.2, and the NASA Lewis site, addressed

in Section 3.3. In each case, the focus will be on the parallel jobs that are running on the

systems, and the sequential jobs will be ignored. A brief description of each system will

be presented, and the log files will be analyzed. This analysis will be limited to aspects

of the workload that are potent ially useful to a parallel job scheduler, and t bat can easily

be stored in a database. Section 3.4 summarizes the relevant conclusions that may be

drawn from the workload analysis.

3.1 Cornell Theory Center IBM SP2

The Cornell Theory Center IBM SP2 consists of 512 processing nodes, each of which has

from 128 MB to 2048 MB of memory, and 2 GB of disk capacity for swap space. There

are two types of nodes, wide and thin nodes. Wide nodes have four times the cache and

four times the bandwidth between the cache and memory relative to thin nodes. During

the 169 days of log files, the nurnber of nodes available for batch jobs varied from 200 to

430. There were a total of 54,042 batch jobs, of which 25,831, or 48%, were parallel.

The system has five queues based on t be maximum execution time of jobs: 15-minute,

3-hour, ô-hour, 12-hour, and 18-hour. The lbmiaute queue has the highest priority,

while the rest of the queues have equal priority. If a job exceeds the maximum duration

allowed in a given queue, the job is killed. LoadLeveler, the scheduler used in this system,

supports a space sharing run t o completion policy. To ensure that jobs eventually receive

service, it increases the priority of the jobs that have waited the longest to receive service.

Users are allowed to have a maximum of two jobs simultaneously executing, although

more are permitted to be in the queues.

Hour of Day

Figure 3.1: Corne11 Theory Center: Parallel Job Submission Rate vs. Time of Day

Hotovy, et al. [Hot96, HS096] analyzed several features of this workload, which are

presented briefly here. They noted that over the six-month time period, the use of the

machine, measured by user-node time, increased, but the number of jobs declined. This

difference was caused by a large (250%) increase in the duratioo of jobs and an increase

in the average number of processors used by each job. Throughout the entire time period,

the system had an average utilization of only 60%, where the utilization is the percentage

of processors allocated to active jobs. During most of the period, the number of queued

jobs increased, as did the average wait time. In terms of parallelisrn, over half of the

jobs were serial, but these jobs accounted for only 8.6% of the user-node tirne. 55% of

parallel jobs requested a number of nodes that was a power of two. Hotovy did not find

a clear relationship between the number of processors and the job duration. He found

that sequential jobs had the longest job duration. The duration decreased for jobs using

2 to 16 proceasors, and then increased again for jobs of higher parallelism.

Several aspects of this workload were not analyzed by Hotovy, but are useiul for

scheduling, in particular, the number of jobs submitted by time of day. This information

is relevant, because it has been shown (Sev94, PS961 that static schedulera should reduce

the number of processors allocated per job when the load increases. Thus, knowledge

of when t he load is likely to increase in the future is useful. Figure 3.1 shows this, for

lnterarrival Time (s)

Figure 3.2: Cornell Theory Center: Number of Parallel Jobs vs. lnterarrival Time
(adapted from Hotovy, et al.'s paper [HS096])

both weekdays and weekends. This graph is extremely similar to the ones presented by

Feitelson and Nitzberg [FN95] and by Pasquale, et al. [PBKSl], with a peak at noon,

and a low at 8:00 am. A graph of the number of jobs dispatched by time of day looks

very similar, but is smoother, as would be expected. The interarrival time graph for the

Cornell Theory Center site, in Figure 3.2, based on work by Hotovy, et al. [HS096], has

a shape extremely similar to that of a corresponding graph presented by Feitelson and

Nitzberg [FN95].

Hotovy performs no analysis of the variance of job run times for the systern, individual

jobs, or queues. However, such data is useful, since it provides an indication of the possible

performance improvements attainable by the scheduling algorit hm. It also shows which

statistics are useful to store in a database for use by a scheduler. This analysis of the

variance of run times is presented in Table 3.1. The relatively high system-wide coefficient

of variation1 for both the wall-clock timeand the processor time is noteworthy. The higher

the value, the more differences there are among the jobs and the more potential benefit

there is from a scheduler that distinguishes among jobs. If the scheduler can classify jobs

into categories that have lower coefficients of variation, it should be able to to schedule

'The coefticient of variation, or C.V. is the ratio of the ritandard deviation to the mean of the

distribution.

Table 3.1: Corne11 Theory Center: Wall clock time and Processor tinie Averages and
Coefficients of Variation

Type Wall Avg. Wall C.V. Processor Avg. Processor C.V.

By user 6315 3.9 84894 2.9

By parallelism 6202 4.6 765 16 2.8

15 min queue 714 18.9 1870 3.7

3 hour queue 3690 10.0 25286 3.6

6 hour queue 578 1 1.7 85880 3.0

12 hour queue 17935 3.8 280292 1.7

18 hour queue 30072 1.5 377261 1.7

3 < N u m . J o b s < 2 0 6626 1.5 198099 1.9

Num Jobs 2 20 6198 4.7 75329 2.8

the ent ire system more effective1 y.

One possible classification is to divide the jobs based on the user initiating the jobs,

with the premise that each user tends to initiate jobs with similar characteristics. Ta-

ble 3.1 shows this category. Each number for the classifications by user is calculated to

only include users who ran more than five jobs. Each user is given a weighting in the

averages and coefficients of variation proportional to the number of jobs that user ran.

The results indicate that overall there is less variance in both wall clock and processor

time when jobs are classified this way. Alternatively, jobs can be classified based on

t heir parallelism. Using a weighted average as with user, t his classification, too, results

in a lower coefficients of variation. It might be expected that a reasonable classification

would be by queue, since differeot queues, by definition, are supposed to contain different

type of jobs. This intuition is validated by Table 3.1, where most of the queues have

lower coefficients of variation than the system, especially the longer queues. The two

exceptions are the wall clock time for the 15 minute and 3 hour queues. This result could

be due to users using these queues for development, testing, and debugging, while the

longer queues were used exclusively for production jobs.

Perhaps the most natural way of classifying jobs is by the executable that is run,

since it seems likely that multiple executions of the same executable should perform

similarly. Unfortunately, the Corne11 Theory Center log files do not contain any means

to directly identify the executable that was used, so this hypothesis cannot easily be

tested. However, close analysis of the number of jobs by number of processors requested

shows some interesting clustering. As Hotovy notes (Hot961, requesting a power of two

number of processon seems popular. Similarly, requesting multiples of 10 and 25 seems

popular. In contrast, many of the processor allocations that are not powers of two, or

multiples of 10 or 25, have not been requested at all. This situation makes it particularly

noticeable when an allocation is popular, but does not obviously fa11 into one of the three

popular categories. It seems reasonable that, in many of these cases, a single executable

that requires a specific number of processors is being run. lsolating these cases can give

a hint about the variance of executables,

Table 3.1 shows the results of dividing the jobs into two sets. Al1 the jobs with the

same degree of parallelism are placed in the same category. For each category, if the

number of job executions in that category is greater than five and less than 20, it is put

in one set. If the number of job executions is greater t ban or equal to 20, it is put in

the other set. The weighted averages and weiglited average coefficients of variation of

both sets are in Table 3.1. As is expected, the C.V. of the first set is relatively small,

supporting the hypothesis that individual executables have low coefficients of variation.

Further evidence that supports this hypothesis is that the users who ran the most jobs

(presumably using the SP2 for many different tasks with different executables) tended

to have a higher C.V. than users who ran fewer jobs (presumably using system only

occasionally, with a single executable.) Thus, although the results are by no means

conclusive, there is some evidence that individual executables have a lower coefficient of

variation than the overall system.

3.2 Universityl Network of Workstations

Universityl (which shall remain anonymous) does parallel computing research using a

network of workstations running LSF. The system has 85 users using IBM RS/6000

Table 3.2: Wall Clock Average and Coefficient of Variation for the University1 and NASA
Lewis

Type Univl Avg. Univl C.V. NASA Avg. NASA C.V.

System-w ide 242 4.1 351 15 3.9

By user 232 4.1 35049 2.5

By queue 146 3.8 35839 2.8

By parallelism 209 3.6 35252 2.9

By executable 64 0.6 42124 2 .O

By executable, user, parallel. 60 0.6 46490 1.5

and DEC Alpha workstations. There are short, normal, and long queues for each type

of machine, as well as a single queue for al1 parallel jobs. The log files for this site

cover 440 days and 16,000 jobs. The default LSF scheduling algorithms of round-robin,

FCFS, and fairshare are used to schedule the system. Fairshare schedules jobs based

on queue priority, user id, how much processor time the user has used recently, and

the amount of time the job has been in the queue. Each user is allocated by the system

administrator a number of shares of the system, and the scheduler gives the user processor

time proportional to the number of shares. The scheduler uses an FCFS policy. However,

if a user has used a small proportion of their share of processing time relative to the other

users, their jobs are given high priority and skip over the other jobs in the queues.

Unfortunately, there are several difficulties with the analysis of data frorn this site.

Much of the resource information acquired by LSF and recorded in the log files is inac-

curate for parallel jobs. The only data that are accurate are wall dock times, job names,

user ids, numbers of jobs, numbers of processors used, and queues used. In addition, only

90 of the 16,000 jobs are parallel, less than 196, and these jobs are submitted by only two

users to two queues. Tbus, it is impossible to make generalizations €rom these log files,

altbough it is possible to identify some trends.

Among the parallel jobs, the maximum degree of parallelism is seven, while the av-

erage is 4.6. As indicated by Table 3.2, University1 has a high system-wide coefficient

of variation for wall-clock execution time, but the weighted average C.V. of the sets of

jobs partitioned by parallelism is lower, similar to the results from the Cornell Theory

Center. The weighted average C.V. by queue is also slight ly lower. The results also indi-

cate that classifying jobs by the name of the executable leads to a very small coefficient

of variation. This is due to the fact that the very long running executables were only

run a few times, but pushed up the average execution time and the C.V. of the entire

system. A classification by executable, user, and parallelism is also effective, with a C.V.

of only 0.6. This classification seems reasonable since different users may use the same

executables in different ways, and the executables are li kely to perform differently based

on the number of processors.

A graph of the number of sut>missions by time of day has roughly the same shape

as that of the Cornell Theory Center SP2, but is based on too few jobs to support any

st rong conclusions.

3.3 NASA Lewis Network of Workstations

The NASA Lewis network of workstations is used by 25 users for simulations, analysis

and code developrnent. It, like the Universityl site, also runs LSF. The system consists

of 60 SUN, HP, SGI, and IBM RS/6000 workstations running primarily over an Ethernet

network, but also over FDDI and ATM networks. The queues are configured for short,

regular, long, and night jobs. Additional queues exist for parallel jobs that use PVM,

although the majority of parallel jobs are submitted to t be regular queue. The default

LSF scheduling algorithms described in Section 3.2 are used. The log files for NASA

Lewis contain data for 3,682 jobs over a period of 152 days.

NASA Lewis data has a higher proportion of parallel jobs than Universityl, with 395

parallel jobs, about 11% of al1 jobs. Ten users submitted al1 the parallel jobs run on the

system. The maximum degree of parallelism is 23, while the average is 6.1. Thus, despite

the high ratio of users to workstations, the parallelism is relatively low. This could be due

to slow communications and the overhead of distributed memory; jobs actually slow dowa

when they are run on too many processors. Nevertheless, analysis of the parallel jobs

on the NASA Lewis system is more significant than the analysis of Universityl's parallel

workload due to the higher proportion of parallel jobs. Unfortunately, the limitations of

Hour of Day

Figure 3.3: NASA Lewis: Parallel Job Submission Rate vs. Time of Day

LSF's log-file records for parallel jobs, mentioned in the previous section for Universityl,

constrain the analysis of the workload on this site, too.

Figure 3.3, which shows the parallel job submission rate versus the time of day, has a

similar shape to the Cornell T heory Center's corresponding Figure 3.1. The associated

interarrival time graph, in Figure 3.4, is extremely jagged due to the low number of

jobs, which makes it difficult to compare to the corresponding rnultiprocessor graph in

Figure 3.2. However, the jobs appear to have a broader distribution of arriva1 times;

tliere are several jobs which have very short interarrival tirnes and several that have very

long interarrival times. This is expected, considering the small number of jobs distributed

over a large interval.

Table 3.2 contains the average wall clock times and coefficients of variation for the

NASA Lewis site. Similar to both the Cornell Theory Center site and the Universityl

site, this site ha9 a relatively high system-wide C.V. of 3.9. Like both of the other sites,

classifying the jobs into various categories results in a lower weighted average C.V. for the

categories. Classifying jobs by user, queue, and parallelism resulted in a smail decrease

in the C.V., while classifying by executable was more effective. A classification by exe-

cutable, user, and number of processors proved most effective, with a weighted average

C.V. of 1.5. This result indicates that the wall clock execution time of an executable run

lnterarrival Time (s)

Figure 3.4: NASA Lewis: Number of Parallel Jobs vs. Interarrival Time

by a given user on a given number of processors tends to have low variability.

3.4 Conclusions

Both the results of the previous sections and the results of Feitelson and Nitzberg [FN95]

and Pasquale, et al. [PBKSI] indicate that, across many systems, the submission rate at

a given time of day is predictable. Al1 the graphs of the submission rate versus time of

day, including Figure 3.1 and Figure 3.3, have a similar shape. Such a shape is expected,

since it mirron the work activity of a typical person during a typical day. Naturally, the

usage of the system is expected to increase a t 9:00 am when people generally start work.

The g a p h s of job interarrival times were less consistent, but still reasonably similar.

Because of this extreme similarity, it would be useful putting such data in a database,

but this would not help a lot. If a scheduler were to only consider the "average" workload,

to plan for such a workload on an extraordinary day, such as a holiday, it could allocate

resources in an inefficient manner. Thus, a more complicated historical model would

be necessary. However, a simpler and more effective strategy might be one that takes

into account the current load and extrapolates the future load using a static model of

the changes in submission rate a t different times of the day. Thus, although the results

indicate that the systems have consistent submission rates based on time of day, this

does not necessarily imply the best strategy for a scheduler would be to use complicated

models derived from the historical data.

On the ot ber hand, analysis of the log files does indicate that i t is useful classifying jobs

iato categories, since categories can be found that have a lower average variability in wall

clock execution time than the overall system. In particular, although categorizing jobs by

queue, user, and parallelism are effective, it appears that the most effective categories are

based on the executable being run, or a combination of the executable, user, and degree

of parallelism. This result is intuitive, since the characteristics of executables should not

change to a large degree during different executions, particularly if the jobs are started

by the same user with the same number of processors. One reasonable case where this

might not be true is where different jobs based on a single executable treat different

problems sizes (e.g., different matrix sizes in a matrix factorization algorithm). In this

case, it may be possible to classify a job not only by the executable, user, and number

of processors, but also by the job's memory usage. Unfortunately, due to limitations in

the data available, this hypothesis cannot be tested by examination of the log files we

analyse.

The most important result of the analysis of these log files is that the use of histor-

ical information should be useful to a scheduler to predict the future behavior of jobs.

According to these workloads, the most useful classification of jobs is by executable, user

and degree of parallelism.

CHAPTER 3. WORKLOAD CHARACTERIZAWON

intro

Chapter 4

The Implementation of the
Historical Profiler

Results of Cbapter 3 indicate that classifying parallel jobs allows reasonable predictions

of the wall-clock execution times of jobs. In particular, categorizing jobs according to

the executable name, degree of parallelism, and user name leads to smaller coefficients of

variation for each of the categories than the coefficient of variation for the entire system.

These results naturally lead to the idea of predicting jobs' resource requirements based

on historical data.

Such predictions would be extremely useful to scheduling algorithms. As discussed

in Section 2.5, rnany results indicate that knowledge of application characteristics is

beneficial when scheduling parallel jobs. In particular, Sevcik (Sev941 has sliown methods

of calculating the optimal schedule based on knowledge of the applications' execution

time functions. As a result, a method that provides some indication of applications'

characteristics is valuable.

Although researchers have used a variety of techniques to determine the application

characteristics (see Section 2.6), in accordance with the results of Chapter 3, the approach

discussed here will be using a "databasen containing historical information about jobs, a

Histon'cal Profiler. A first step in designing such a component is defining the important

features that should be supported. Analysis of the ways job information is used by the

scheduling algorithms described in Sections 2.5 and 2.6 shows that three main features

would be useful.

1. A method of obtaining an estimate of the time a job will take to execute, with some

CHAPTER 4. THE IMPLEMENTATION OF THE HISTORICAL PROFILER 35

indication of the possible error in the estimate.

2. A method of approximating the execution time function for a given job, including

error ranges. This feature cao be used by a scheduling algorithm to find a good pro-

cessor allocation to jobs in order to rnaximize efficiency or minimize mean response

t ime.

3. Hypothesis testing that allows schedulers to ask questions such as, "Based on his-

torical data, can we be 95% confident that the mean execution time of job A at

least n minutes longer than the mean execution time of job B?".

This chapter will discuss the implementation of a Historical Profiler that supports

these three features in the NOW environment.

4.1 The Environment

The experimental platform consists of a network of workstations environment, with 16

IBM RS/6000 UNIX workstations communicating over Ethernet, Fast Ethernet, and

ATM networks. The Ethernet network will be the primary network used for al1 experi-

mentation. This system is used exclusively for parallel applications and systems research;

none of the workstations is intended for general, daily interactive use.

The development of a Historical Profiler and scheduling algorithms for parallel jobs

in this environment requires system support in several areas. First, there must be job

management facilities accessible by the scheduler. The scheduler must be able to learn

what jobs are in the system and their current status. Furthermore, it must be able to

modify the status of jobs to take actions such as starting a given job on a particular set of

processors. Similarly, there must be host management facilities accessible to the scheduler

so that the scheduler can know which hosts are available. To obtain information for the

Historical Profiler, account ing information about al1 bat ch jobs in the system must be

available. Other features that are useful, but not strictly requiring system support, are

queue management facilit ies and a user interface for submitting and modifying jobs.

The commercial Load Sharing Facility [LSF96, ZZWD931 from Platform Computing

supports many of t hese requirements. LS F allows access to system informat ion t hrough

CHAPTER 4. THE IMPLEMENTATION OF THE HISTOREAL PROFILER 36

the LSF Application Progamming Interface (A H) . LSF supports access to al1 the job

information required and allows an external scheduler to modify jobs to specify when

and on which processors each job will be started. It also provides both host and queue

management facilities that enable an external application to determine the status of each

host and queue. Furthermore, using the account and event log files that LSF maintains,

historical information about jobs and system events is available. LSF also provides a

convenient graphical user interface for submitting jobs and monitoring the system.

One dificulty with the LSF API is that accessing information requires crossing address

spaces. In addition, it does not provide a convenient way to store state information to be

used by scheduling algorithms (e.g., the amount of time that the job has been suspended).

These difficulties are handled by another layer, the Job and System Information Cache

(JSIC). The JSIC, developed by Eric Parsons [Par971 with lielp from the author, stores

job, queue, and host information in the scheduler's address space. To update this data, it

periodically polls LSF using the LSF APL The JSIC also abstracts the LSF API interface

into a form more easily used by schedulers and the Historical Profiler. For instance, it

provides a function cal1 for moving a job between queues, and another for specifying the

hosts on which a job will run.

Using these two layers has several advantages and disadvantages. A major advantage

is that they greatly simplify the development of scheduling algorithms and the applica-

t ion profiler. They provide the infrastructure required by al1 the scheduling algorit hms,

witbout requiring extensive design, programming, and testing. In addition, since LSF

is commercial software, many of the difnculties with fault tolerance associated with a

distributed environment are solved by LSF. For instance, if the machine running the

scheduler should crash, LSF can automatically start the scheduler on another machine,

transparently to the users of the system.

Perhaps the primary advantage is that LSF is used at production sites. As a result, it

may be possible in the future to incorporate the algorithms developed into these sites for

bot h impmved performance and furt her research. Furt hermore, LSF can be used on many

different platforms. Thus, software developed on top of LSF in a portable laquage such

as C++ is likely to be portable too. As a result, the Historical Profiler and the scheduling

CHAPTER 4. THE IMPLEMENTATION OF THE HISTORICAL PROFILER 37

algorithms developed in this thesis should be easily portable to different platforms.

However, there are several disadvantages to using the LSF and JSIC layers. First,

source code for LSF is unavailable since the software is commercial, so LSF cannot be

modified or patched. Second, this choice tends to restrict any software developed to use

only features supported by LSF. For instance, since LSF does not record in the account

files the processor time for parallel jobs1, this information is not easily accessible to the

historical profiler. Third, LSF waa not originally intended for this type of use, but rat her

has its own algorithms for determining where and when to run jobs. As a result, any

scheduling algorithm built on top of LSF is required to configure the system in such a

way that LSF will "decide" to schedule only those jobs that the scheduler wants to run.

Despite these disadvantages, the use of the LSF and JSIC layers is justifiable, since a

great deal of effort would be required to build infrastructure that is already provided by

LSF.

Limitations in the current version of LSF affect the profiler directly in several ways.

information about resource usage for parallel jobs is not reliable. As a result, the most

natural measure of the "work" done by an executable, the processor time, cannot be used

in this environment. Similarly, determining the problem size by the amount of memory

used is also not feasible. For this version of LSF, as a substitute for using processor time

to measure the work of a job, the wall clock execution time will be used. The system,

including the interface, will be designed so that in future releases when better information

is available, it can be easily used in estimates.

4.2 The Interface

The Historical Profiler is a C++ object-oriented design consisting of two object classes,

the Profiler and the ExecutionTime classes. A Profiler object stores and retrieves job

historical data. ExecutionTime objects, which store information about a specific job, are

returned by the Profiler object in response to queries about a job. An ExecutionTime

object is an approximate execution time function for a job, with associated error ranges.

It ensures that a scheduler trying to determine processor allocations does not incur the

lThL pmblem is expected to be mmedied in a future releaae of LSF.

CHAPTER 4. THE IMPLEMENTATION OF THE HISTORICAL PROFILER 38

overhead of calling the Profiler more tban once.

The public methods of the Profiler class are shown in Figure 4.1. The updateProf i ï e r ()

method has to be called by the scheduler periodically to ensure that the Profiler bas the

most up-to-date information available. The three features of (i) obtaining an estimate

of execution time, (ii) obtaining an approximation of the execution time function, and

(iii) hypothesis test ing are provided using the @ E s t h a t e () , getExecTimeFunct ion() ,

and compare JobEst inat ea (1 met hods, respectively. Al1 of these methods identify jobs

by the name of the executable and the user who ran the executable. In Chapter 3, it was

found that classifying jobs by both the executable name and user name led to relatively

low coefficients of variations. Thus, this is a reasonable way of identifying jobs.

The profiler uses two other pieces of information for al1 its estimates: the attained

wali dock time, attainedWallClock, and the maximum memory usage, memsize. The

attained wall clock time is the length of time that the job under consideration has been

running, while the maximum memory usage is the maximum amount of memory that it

has used thus far in its execution. The attained wall clock time is used in the predictions

so that the longer the job has run, the longer the total execution time will be predicted

to be. If the job bas already run for ten minutes, the prediction for the total job duration

will exclude the data for jobs that ran less than ten minutes. The inclusion of the memory

size metric is based on the premise that the problem size has a positive correlation to the

execution time of an executable, and the maximum memory used gives an indication of

the problern size.

The ge tEr t ima te0 method predicts the execution tirne for the specified job that

uses the specified number of processors, numprocs. When the method is called, the

conf idenceDer i rd input must be a value between zero and one, specifying the percent-

age confidence desired for the confidence interval. The estimated mean total execution

time is returned in eatimate, while conf idenceIn te rva l s i s . is set to a value equal to

half the width of the confidence interval.

The gotExecTimeFunction() method returns an ExecutioaTime object for the spec-

ified executable name, user, maximum memory size, and wall clock execution time corn-

bination. This object may be used to determine execution time confidence intervals for

CHAPTER 4. THE IMPLEMENTATION OF THE HISTORICAL PROFILER

updateProfiler()

Inp uts:

None

Outputs:

None

getEstimate0

Inputs:

string executionCommand string user

float at tained WallClock float mernSize

Outputs:

Boolean status float est imate

getExecTimeFiinction()

Inputs:

string executionCommand string user

0oat a t tai ned WallClock

Outputs:

Execut ionTime ExecutionTimeFunction

int numprocs

float confidenceDesired

fioat confidenceIntervalSize

float memSize

compareJobEstirnates()

Inputs

float di fference Boat confidence string executionCommandA

stringexecutionCommandB stringuserA string userB

int numProcsA int numProcsB float a t tained WallClock A

float a t t ained WallClockB fioat memSizeA float memSizeB

Outputs:

boolean trut hValue

Figure 4.1: The Interface to the Profiler Class

CHAPTER 4. THE IMPLEMENTATION OF THE HISTORICAL PROFILER

estimateTime0

Inputs:

float num Procs

Outpu ts:

float estimate

float confidence

float error

Figure 4.2: The Interface to the ExecutionTime Class

different processor allocations.

The compareJobEst imates () met hod does bypothesis testing, comparing the pro-

jected execution times of two jobs, A and B. Both jobs are identified by executable

narne, user, maximum memory size, wall clock execution tirne, and number of proces-

sors, as with getEetimate0. This method returns a boolean indicating whether with

confidence confidence, the mean total execution time of job A is greater than or equal

to difference times the mean total execution time of job B.

The ExecutionTime interface, shown in Figure 4.2, consists of a single method,

estimateTime(). When this method is called with the specified number of processors

numprocs, it will return an estimate for the mean total wall clock execution time for the

job. If confidence is specified to be between zero and one, then error will be set to

half of the width of a confidence interval based on the value confidence.

4.3 The Design

4.3.1 Overview

The Historical Profiler obtains al1 of its information from the accounting files from LSF.

However, searching al1 the data in the log files for al1 historical executions of a single

executable whenever a scheduler requests information about that executable would be

extremely costly. To deal with this difliculty, the application profiler has its own perma-

nent repository to store data in a more appropriate format.

CHAPTER 4. THE ~IPLEMENTATION OF THE HISTORICAL PROFILER

Figure 4.3: High-levei Design of the Historical Profiler

Figure 4.3 shows the structure of the Historical Profiler. At the bottom is LSF,

which obtains data about the jobs from the log files. The Job and System Information

Cache calls functions in the LSF API to read this data. It then convcrts LSF's data

structures into its own data structures, and stores the information in the Historical

Profiler reposi tory.

When the scheduler at the top of Figure 4.3 requests information from the Historical

Profiler, the profiler first asks the JSIC to update the information in the Historical Profiler

Repository. Then the Historical Profiler reads the information from the Historical Profiler

Repository, and transforms the data into the format requested by the scheduler. If the

scheduler requests a single estimate or the testing of a hypothesis, the result is returned

to the scheduler. If, instead, the scheduler requests the execution time function, the

Historical Profiler creates an ExecutionTime ob ject for the speci fied job. Subsequently,

the scheduler can request, from the ExecutionTime object, the evaluation of the job's

execution time function T(p) , where p is the number of processors assigned to the job.

CHAPTER 4. THE IMPLEMENTATION OF THE HISTORICAL PROFILER

4.3.2 Hist orical Profiler Repository Design

The Historical Profiler Repository contains al1 the data used by the Historical Profiler

for predicting job execution tirnes. Thus, the design of the repository depends primarily

on the data required by the profiler. However, a secondary issue of some importance is

minimizing the permanent storage space required for the reposi tory. These two cri teria

are the prirnary factors affectiog the design of the repository.

As noted in Section 1.2, schedulers rcqucst information based on executable name

and user name. Thus, since information is always requested based on these criteria, it is

natural to index jobs by the combination of executable and user names. Of course, this

means that if a user has not run a particular executable, or an executable has never been

run before, the profiler will be unable to find information in the repository. To remedy this

deficiency, the profiler also stores data for each executable name irrespective of user, and

for the entire system, irrespective of both executable and user. As a result, the profiler

always bas data available for predicting execution times, though if the executable has

never been run before, the estimate may have a high error.

Obtainiog an approximation of the execution time function for a job requires esti-

mates of the job's execution time for several different processor allocations. In addition,

since the interface allows the execution time est imates to Vary dependiog on the current

execution time and the memory usage, this data must also be available in the repository.

Furt hermore, error calculat ions require knowledge of the number of data points. These

factors lead to the development of the structures shown in Figure 4.4.

The repository consists of ExecEntry structures, one for each executable-user pair.

Each ExecEntry bas an index, a date when this entry was last modified, a numExecuted

integer specifying the number of jobs included in this structure, and a three-dimensional

RunEntry array, runTimeTota1. The RunEntry array contains the data used to estimate

run times. Its dimensions are based on the three ways the scheduler can further define a

particular job: by the number of processors, execution time so far, and memory usage.

Although memory usage is unavailable in this version of LSF, it is included here for use

with future versions.

To find information about a particular executable, user, number of processors, exe-

CHAPTER 4. THE IMPLEMENTATION OF THE HISTORICAL PROFILER

RunEntry Structure {

0oat tirneTotal

float t i mesquareci

float procTotal

float num Entries

1

RunEntryArray Structure {

RunEntry theArray(MAXMEMENTRIES1

1

ExecEntry Structure {

string index

time date

int aumExecuted

RunEntryArray runTimeTotal[MAXPROCXNTRIES][MAXEXEC-TIiNTRIES]

findRunEntry0

Inputs

float numProcs float execTime float memSize

Outpuk

RunEntry foundRunEntry

Figure 4.4: The Historical Profiler's Interna1 Design

CHAPTER 4. THE IMPLEMENTATION OF THE HISTORICAL PROFILER 44

cution time, and memory usage combination, the Historical Profiler first finds the ap-

propriate ExecEntry structure in the repository using information about the executable

and user. Then it calls the f indRunEntry0 method with the number of processors,

execution time, and memory usage to find in the runTiieTota1 array the appropriate

RunEntry structure containing the desired data.

Each RunEntry consists of data for deterrnining an execution time estimate and error

for a specified combination of number of processors, execution time, and memory usage.

It includes a nuiEntrier field for the number of jobs used to obtain this data. The

tirneTotal field is the sum of the execution times of each of the jobs included in this

entry, while the t imesquared field is the sum of the squares of the execution times. These

fields can be used to calculate the average and standard deviation of execution times.

For this version of the Historical Profiler, the times in these fields are wall clock times.

However, when processor times are available in LSF, these will be more appropriate times

to use. A single RunEntry could contain data for different numbers of processors, since

each RunEntry consists of a subset of the entire range of processor allocations. As a

result, proctotal field is required, containing the sum of the number of processors used

for al1 the jobs included in the entry. Combined with the numEntries field, this may be

used to calculate the average number of processors for al1 the jobs that fit in this subset

of processor allocations.

Each executable and user combination has an ExecEntry structure containing multi-

ple RunEntry structures, each with different average numbers of processors. As a result,

it is possible to obtain from these RunEntry structures several execution time and stan-

dard deviation estimates for different numbers of processors. If more tban two points

are available (due to the job being run at least three times with different processor a l l e

cations), these estimates may be used to approximate an execution tirne function. The

method of actually approximating the function is discussed in detail in Section 4.3.3.

Thus far, this design leaves several issues unresolved. The first is the size of the

runTimeTota1 array and the related issue of determining the functions to map from the

number of processors, execution times, and memory usage to an index this array. Since

the array is three-dimensional, increasing the size of one dimension of the array tends to

CHAPTER 4. THE IMPLEMENTATION OF THE HISTORICAL PROFILER 45

greatly increase the permanent storage space required for the repository. As a result, the

natural way of indexing "number of processors" dimension of the ninTimeTota1 array

by the actual number of processors is infeasible. Instead, it is necessary to group several

processor allocations into a single category. Since speedup curves of jobs tend to bave

decreasing dope for increasing number of processors (as the inefficiencies due to parallel

processing get more and more significant), finer granularity of data is desirable for few

processors, while coarser granularity is sufficient for a geater number. A3 a result, a

logarithmic function [log(n)l for n processors will be used to categorize the data. This

function yields categories for one, two, three and four, five to eight, and nine to sixteen

processors. Similar logarithmic functions, with different bases, will be used for the other

dimensions of the array.

A disadvantage of this design is every job is weighted equally. If the use of a particu-

lar executable changes, the information in the repository will be slow to reflect the new

usage, and the estimates will be inaccurately reflecting outdated information. It would

be more desirable to weight more recent jobs more heavily than older jobs. Unfortu-

nately, such weight ing would g e a t ly complicate the calculat ion of confidence intervals.

The calculation of confidence intervals assumes that every job is distributed around an

actual mean, and every job is as relevant as every other job. Weighting jobs differently

contradicts these assumptions. One possible solution is to scale dowo the weighting of

the existing data by a constant multiplier whenever RunEntry is updated. However, if

this multiplier is anything other than one, the error estimates obtained by the current

method are invalidated. In this thesis, such a weightiag will not be used.

An unresolved difficulty is dealing with jobs whose processor allocations are not con-

stant throughout the execution of the job. This is an important issue, since it is likely

that in the future, dynamic schedulers will become more prevalent due to their good per-

formance. This thesis will avoid the issue and focus only on jobs with constant processor

allocations.

CHAPTER 4. THE IMPLEMENTATION OF THE HISTORICAL PROFILER

4.3.3 Met hods of Estimating Execut able Information

The repository can supply al1 the data required by the Historical Profiler, but the profiler

is required to manipulate this information into a form usable by the scheduler. In par-

ticular, the profiler bas to be able to make estimates of job lengths and approximations

of execution t ime functions, and do bypothesis test ing. Error estimation and hypot hesis

testing both require some assumptions about the distribut ion of the data being examined.

Iu this case, the assuiiiption will be that the execution tines arc Normally distributcd

about an actual mean. This Normal distribution will be approximated by a Student-t

distribution.

Sevcik's execution time function (Equation 2.7) is more general tban most alterna-

tives. The execut ion time funct ion (Equation 2.6) based on Dowdy's execut ion signature

is non-increasing, whereas Sevcik's function is not. The fact that Sevcik's function can

increase is particularly important in a distributed environment with high communica-

tion overheads, since it is likely that some jobs will slow down when run on too many

processors. In order to simplify approximations, the i (p j term that appears in Sevcik's

function will be approximated by a constant 4 term. Thus, the execution time funct ion

used in approximations will be:

Least squares is a standard way of approximating functïons such as the execution

time function. However, the data is not evenly distributed. It could be that a user runs

a job once with one processor, and ten times with sixteen processors. In this case, it is

inappropriate to give bot h est imates the same weigbting. Thus, a weighted least squares

approximation is more reaponable. This method of approximating equations is discussed

in detail by Draper and Smith [DSBl]. Briefly, this method requires solving the following

formula for b:

where

CHAPTER 4. THE IMPLEMENTATION OF THE HISTORICAL PROFILER

The execution time function bas three terms. The three terms of the 6 matrix for

which we solve are the three coefficients in Sevci k's execution t ime function. The Y rnatrix

contains n observed execution times with diflerent processor allocatioria, p l , ...pn. The X

array contains the evaluation for the specified processor allocations of the indeterminates

in the three terms in Sevcik's function. Thus, since the coefficients in Sevcik's function for

which we are solving are multiplied by i, 1, and p, X contains the a row containing the

evaluation of these entries for each observed execution time. For instance, if the execution

time for the executable were available from when a job was run on two processors, one row

of X array would be [+ 1 2 1. V is a diagonal matrix containing standard deviations of

the execution time estimates in Y. Error bounds and confidence intervals for equations

derived by this formula may be calculated. With an allocation of po processors, a 6

confidence interval for an execution time estirnate Y. based on n observations is:

w here:

1 + 6
t(n. -

2
): Student-t function

To further clarify the procedure used to obtain these estimates, an example is useful.

Suppose an executable were run a total of sixty times, soine of which were with one

processor, some wit h four processors, and some wi t b eight processors. Furt hermore,

suppose the observed average execution times with each of these processors were 8350,

2500, and 1700 seconds respectively and the observed standard deviations were 4 175,

CHAPTER 4. THE IMPLEMENTATION OF THE HISTORICAL PROFILER

1250, and 850 respectively. Then:

We can then calculate b to be:

The approximation for the execution time function for this executable would be:

Thus, the estimate for the amount of time the job would take to complete with 16

processon would be 1600 seconds. A 95% confidence interval C for the estimate is:

CHAPTER 4. THE IMPLEMENTATION OF THE HISTORICAL PROFILER

In the Historical Profiler, ExecutionTime objects encapsulate data for solving these

equations. An ExecutionTime object stores 6, the execution time function which is the

solution to Equation 4.3.3, and the (X'V-lx)-' term of Equation 4.3.3. The Execution-

Time objects can use this information to estimate the execution time and a confidence

interval for a job using a specified number of processors.

If a scheduler requests an execution time estimate rather than the execution time

function, the Historical Profiler calculates the execution time based on an execution time

function approximation. It uses the executable name, user name, current execution dura-

tion, and maximum rnemory size inputs to find the three or more data points required to

calculate the execution time function. Then the execution time function is evaluated for

the specified number of processors t o obtain the execution time estimate and confidence

interval that are returned. It could be that there is insufficient data to approximate an

execution time function, but there is data available for a specified number of processors.

This could happen if a user only runs a particular job using the sarne number of proces-

sors each time. In this case, an estimate and confidence interval for the execution time

are calculated using standard techniques. The estimate is the average execution time for

t hat number of processors, w hile the confidence interval is estimated using an assumpt ion

of a Student-t distribution and the standard deviation of the observations. If there is

still not enough data, the data for the executable including al1 users is used to provide

an estimate. If there is still insufficient information, then al1 executables ever run in the

system are used.

This method of estimating run times has the major disadvantage that the estimate

of the remaining run time could be less than the run time already attained. This is

unreasonable, particularly considering that information about the attained run time is

available and used by the Historical Profiler when making its predictions. In this case, if

the sum of the estimate E and three times the confidence interval requested is still less

than the run time aheady attained, R, a new estimate E' will be used:

CHAPTER 4. THE IMPLEMENTATION OF THE H~STORICAL PROFILER

Thus, the estimate increases in multiples of E as the job duration increases.

Hypothesis testing comparing the mean execution times for two jobs identified by

name, user, number of processors, current execution duration, and memory usage is the

remainiog feature provided by the historical profiler. The mean execution times and

standard deviations are calculated for the specified jobs with the specitied allocations

of processors. Using the assumptions that the distributions of run times are Normal,

standard statistical techniques using the Student-t distribution determine whether to

accept the hypot hesis. Allen's formulation [A11781 of t hese equat ions follows. The two

jobs, x and y have, based on n and m observations, mean execution times estimates of 2

and y and sample standard deviations of s. and s,. The hypothesis is that the differenre

in the actual mean execution times is geater than do, or Cr; - CS, > do. With confidence

6, the hypothesis is true if t > t (v , 6) . where t(6, u) is the Student-t function, and

For example, suppose x and y have been run 30 and 40 times respectively, and are

observed to have mean execution times of 700 and 300 seconds and standard deviations of

900 and 500. If we want to determine if x is 95% likely to have an actual mean execution

tirne more than 300 seconds greater than y, we calculate t and v to be:

((9002 130) + (500'/40))~

= (9002/30)2/(29) + (5002/40)2/(39)
x 42.29

Since 0.5484 is less than t(42.29,0.95) B 1.682, the hypothesis is not supported.

A similar hypothesis would be true if a confidence of only 60% were requested, since

0.5484 > t(42.29,0.95) n 0.255.

Chapter 5

Schedulers that Use Application
Knowledge

In order to evaluate the usefulness of the Historical Profiler to schedulers, it is necessary

ta compare the performance of various scheduling algorithms. In this thesis, only static

algorithms, algorithms that do not permit applications to change the number of requested

processors, will be examined. In addition, al1 of the algorithms will be space-sharing

algorithms; jobs will have exclusive access to the processors they are assigned. Eight

variants of three basic algorithms will be compared:

1. First Come, First Serve (FCFS)

2. First Come. First Serve Fill (FCFS-fill)

3. Least Estimated Work First (LEWF)

4. Least Estimated Work First Fill (LEWF-fill)

5. Least Estimated Remaining Work First (LERWF)

6. Least Estimated Remaining Work Fint Fill (LERWFfill)

Alt hough many of the complications of implementing scheduling algorit hms in a NO W

environment are overcome by developing it on top of the LSF and JSIC layers, some

CHAPTER 5. SCHEDULERS THAT USE APPLICATION KNOWLEDGE 52

difficulties are simply abstracted to a higher level. Instead of making the UNIX hosts

perform the actions specified by the scheduling algorithm, the problem becomes making

LSF perform the actions specified by the scheduling algori t hm. Additionally, t here are

sometimes distributed systems issues that are not handled by LSF or the JSIC.

This chapter will discuss issues associated with designing and implementing each of

these scheduling algorithms in the NOW environment described in Section 4.1. First, the

general design that al1 the algorithm have in common will be discussed in Section 5.1.

Then each of the algorithms will be defined and their use in this context will be justified.

Finally, in Section 5.7, the heuristics used by preemptive disciplines to assign processors

will be discussed.

5.1 Structure of Algorithms

All the non-preemptive algorithms have a very similar high-level design. All the algo-

rithms have two queues, a pending queue and a running queue. No jobs in the pending

queue execute, while al1 jobs in the running queue' execute. Jobs are initially submitted

to the pending queue. Whenever a job finishes, the algorithm sorts the pending queue

and selects the first job in this queue. If sufficient processors are free to run the job, the

job is scheduled by assigning the hosts for the job, and moving it to the running queue.

The pseudo-code for this algorithm is shown in Figure 5.1.

There are two different ways this general scheduling algorithm can be modified to

create specific scheduling algorithms. First, the sort procedure on line 3 can be modified.

By changing the sorting method, differeot algorithms can be created. For instance, if

the sort routine sorts the jobs in increasing order of submission times, the scheduling

discipline will be First Corne First Serve.

The second way of changing the functionality of the algorithm is by setting the

fillingon flag (in lines 6 and 17) to TRUE. If this flag i s FALSE, the algorithm will

schedule the jobs in strictly the order specified by the sorting algorithm. For instance,

if the sorting algorithrn has a 1-processor job followed by a 16-processor job and there

lSince al1 the jobs in the running queue execute, this queue actually functions M a set; al1 jobs have

the same priority and are treateà the eame way. However, this eet is implemented ueing an LSF queue,

so, for coosistency, the queue terminology will be used.

CHAPTER 5. SCHEDULERS THAT USE APPLICATION KNOWLEDGE

while (TRUE) (
numFreeProcessors = f indNumFree~rocessors()

s o r t Jobs (pendingpueues)

currJob - getFirstEntry (pendi-ueue)

v h i l e (f i l l i n g o n += TRüE AND

getNumProcesaors(cuttJob) > numFreeProceasors)

currJob = getNext Entry (pendingQueue)

v h i l e (getNumProcesrorr (currJob) <= numFreeProcessors) {

asr,ignFreeHoats(curtJob)

removeFrom~ueue(cu~Job, pendingQueue)

addToC)ueue (curr Job, runaingQueue)

numFreeProcesaors = numFreeProcessors - getNumProcessors(cunJob)

curr Job - getNextEntry (pendingQueue)

whi le (f i l l i n g O n -= TRUE AND
getNumProcesciors (currJob) > numFreeProcessors)

curr Job - getNextEntry (pendingQueue)

>

v a i t For Jobcornplet i on ()
1

Figure 5.1: Pseudo-code for Scheduling Algorithms

CHAPTER 5. SCHEDULERS THAT USE APPLICATION KNOWLEDGE 54

are 16 processors in the system, the 1-processor job will run, the 16-pmcessor job and

al1 other jobs in the queue will be blocked, leaving 15 processors idle. If this flag is true,

the order of activation will no longer be strict. Instead, if there are available processors

but the first job in the sorted pending queue requires more processors than are available,

the algorithm will search through the pending queue looking for another job that can use

those processors. If it finds such a job, it starts that job immediately. So according to

this algorithm, if there are 16 processors in the system, and the five jobs in the ordered

queue require one, sixteen, nine, seven and six processors respectively, the jobs requiring

one, nine and six processors are started.

LSF and the Job and System Information Cache provide much of the basic function-

ality required to implement the scheduling algorithm. Initial submittal of the jobs can

be done by users through LSF's batch interface. Since the JSIC queries LSF to obtain

information about the state of the system whenever a job changes state (arrives, finishes,

suspends, resumes, etc.), determining the number of free processors (as in line 2 of the

algorithm) is a simple function cal! to the JSIC. The combination of the JSIC and LSF

also contains the queue management functionality required in lines 4, 7, 11, 12, 14 and

17, as well as a way to assign specific processors to jobs, as in line 10. As would be

expected from load-balancing software, LSF supports the remote execution of parallel

jobs so that jobs are started when they are moved to the run queue.

The preemptive algorit hms have a similar structure, but the pseudo-code for the

algorithms becomes quite complex. Instead of sorting only the jobs in the pending

queue, the jobs in both queues are given an absolute ordering in the system. Then it is

determined, using a similar method of allocating processors in order of the jobs in the

queues, which jobs are to be running and which jobs are not. If a job is not supposed

to be running but currently is in the run queue, the job is moved to the pending queue

and suspended. If a job is supposed to be running, but is currently in the pending queue

and bas never been started, it is assigned processors and moved to the run queue to start

it. If a job is supposed to be running, but is currently suspended, and the processon on

which it was running are free, the job is resumed and moved to the running queue. Thus,

overall the algorithm is mostly the same, except for some extra details for preemption

CHAPTER 5 . SCHEDULERS THAT USE APPLICATION KNOWLEDGE 55

and resumption, and the fact that al1 the jobs in the system are examined rather than

just those in the pending queue.

5.2 First Corne, First Serve

FCFS is a very basic run-to-completion scheduling algorithm. Arriving jobs are placed

in a first in, first out queue. The first job in the queue is blocked (as are al1 jobs that

arrived later than that job) until at least as many processors as it requested are free.

The job is then removed from the queue and run on the requested number of processors.

The whole process is repeated for the next job in the queue whenever a job is completed

and there are new processors available for assignment.

This algorithm is attractive for its simplicity. However, il; has the disadvantages of

generally having both poor efficiency and poor mean response times (since, in the nefil1

version, a running job requiriag a single processor c m block the entire queue if the first

job in the queue requests every processor). However, in the context of the thesis, despite

the fact that it does not use application knowledge, this algorithm is worthwhile for

cornparison for several reasons. First, it is a simple, well-known baseline for comparing

algorithms. Second, it is very similar to the EASY-kill scheduler, so cornparisons between

these two algorithms are interesting. Finally, the algorithm is used in some production

systems.

The design and implementation of this scheduler is simple; it has the same basic

structure of Figure 5.1. In order to ensure the FCFS property, the sorting algorithm that

is used on the third line of this algorithm sorts in order of increasing submission time.

For the basic FCFS algorithm, f illingon is set to FALSE so that there is strict FCFS

ordering. In order to get the filling version of the algorithm, FCFS-fill, the f illingon

flag is set to TRUE. For a description of the effects of filling, see Section 5.1.

5.3 Least Estimated Work First

Least Estimated Work First is a run-to-completion policy that is similar to FCFS, but

uses a different queuing order. Instead of ordering jobs by submission time in line 3 of

CHAPTER 5 . SCHEDULERS THAT USE APPLICATION KNOWLEDCE 56

Figure 5.1, jobs are ordered by increasing estimated execution time. The result is that

jobs expected to be short are run first, while jobs expected to be long wait for al1 the

short jobs to finish.

This strategy is worthwhile because it leads to a low mean response time in many sit-

uations, and provably optimal average response times in some situations (e.g. scheduling

on sequential machines and scheduling parallel applications with perfect speedup that

can be assigned any number of processors [Sev94]). This algorithm is appropriate for

study in this context because it requires some knowledge of the characteristics of the

applications.

The design of the LEWF algorithm is largely the same as general scheduling algorithm.

The only additional issues that are raised by this algorithm are the methods of estimating

the execution time. There are many different ways of obtaining estimates, including

having the user inform the scheduler, having the application inform the scheduler itself,

and obtaining the data from an outside source such as the Historical Profiler. In this

thesis, two methods will be used to obtain estimates by al1 algorithms that require them.

The first will be the application giving the scheduler perfectly accurate information about

its run tirne. The second will be using the Historical Profiler. The estimate from the

profiler will be calculated by requesting a confidence interval for the execution time for

the job. The estimate will be the sum of the estimate and half the 95% confidence

interval. In otber words, it will be equal to the greatest value in a confidence interval

that has a 95% chance of including the mean.

As with FCFS and FCFS-511, there is a filling version of LEWF called LEWF-fiII.

This is the same algorithm as LEWF, but has the f illingOn flag set to TRUE, whereas

with LEWF, this flag is FALSE. This flag ensures that a job will not be blocked if there

are sufficient processon available to run the job, as described in Section 5.1.

5.4 Least Estimated Remaining Work First

Least Estimated Remaining Work First is similar to LEWF, but instead of being run-

to-completion, LERWF is a preemptive discipline. Whenever a job finishes or a new job

arrives, al1 the jobs in the system are ordered by estimated remaining execution time.

CHAPTER 5. SCHEDULERS THAT USE APPLICATION KNOWLEDGE 57

Then, in order, jobs are assigned their requested numbers of processors until not enough

processors are available to fulfill the requirements of the next job in the queue. If the

first job in the queue cannot run, al1 the jobs with estimated execution duration greater

than that job will be blocked. Any jobs that were previously running, but are no longer

assigned processors are preempted. Any preempted jobs that are reassigned processors

are resumed.

As would be expected, this algorithm has many of the benefits of LEWF, with the

additional benefit of allowing long running jobs to be preempted to make way for newly-

submitted jobs. It is particularly interesting for use with the Historical Profiler, since the

Historical Profiler's job duration predictions increase as the iength of the job increases.

At the same time, the actual work done increases, so the amount of work remaining

decreases. The difference between the two is likely to lead to estimates that decrease

as the job is run. However, as soon as the job duration becomes large enough that the

profiler excludes a set of data for jobs that were shorter than the current duration, the

est imate will increase suddenly before resuming the decreasing trend. The result may

be similar to a multi-level feedback queue, where a job runs at a high priority for a few

minutes, but priority decreases as the job ages.

The addition of preemption to the LEWF algorithm to form LERWF leads to some

complications. The process of preemption is relatively easy. The job is moved to the

pending queue for preemption, and back to the running queue for resumption. LSF will

suspend any job that is moved to the pending queue. However, there is no migration for

parallel jobs, only preemption. As a result, not only do there have to be the required

oumber of processors available when a paused job continues, but the available processors

must include the processors on which the job was running originally.

There are several methods of ensuring that, with high probability, the original pro-

cessors are available. One would be to find the optimal scheduling so that the correct

processors are available when they are required. With multiple suspended jobs and mul-

tiple queued and running jobs, this solution is both complicated and computationally

expensive. Instead, a simple heuristic approach can be used. The processors that are

oeeded the soonest by the pending jobs will be the last to be assigned to new jobs. As a

CHAPTER 5. SCHEDULERS THAT USE APPLICATION KNOWLEDGE 58

result, the processors required by the next suspended job will have a higher probability

of being free wben the job is ready to run. However, if a paused job is scheduled to run,

but at least one processor it requires is in use, the paused job (and al1 other jobs in the

pendhg queue) will be delayed until the processors become available. This heuristic is

not optimal, but it is both simple and computationally feasible. One alternative to this

heuristic is discussed in Section 5.7.

One additional overhead of preemption is specific to the use of LSF. Whenever a

preempted job is resumed, it takes some time for LSF to restart that job. It requires up

to 30 seconds from the time a suspended job is first moved to the run queue to when

it actually starts running. This extra overhead is not negligible, particularly with an

algorithm like LERWF, where a single long-running job caa potentially be preempted

and resumed many times as shorter jobs arrive.

As with al1 the other algorithms already described, there is a filling variant of the

LERWF algorithm, LERWF-fill. Section 5.1 describes how this filling algorithm is dif-

ferent from the regular algorithm.

Lifka's EASY scheduler [Lif95], discussed in Section 2.4, is a FCFS with backfilling algo-

rithm which has proven popular in some multiprocessor environments. Users appreciate

its simplicity and predictability. The perceived "fairnessn and the benefits of knowing

the latest time that a job will start compensates for the inefficiencies arising from the

scheduling strategy. In Lifka's implementation, users are required to provide estimates of

job durations, and if jobs exceed these durations, they are killed. This implementation

will be similar, but perfectly accurate "estimatesn and Historical Profiler estimates will

be used instead of user estimates. The algorithm will, like Lifka's algorithm, kill jobs

that exceed their predicted run times.

For several reasons, this algorithm is of interest. The first reason follows from the

results of the chapter 3. In some multiprocessor systems, parallel jobs make up almost

50% of the workload, while in the NOW environment, parallel jobs are still relatively

infrequent (1 1% in one environment we examined and less than 1% in the other.) The

CHAPTER 5. SCHEDULERS THAT USE APPLICATION KNOWLEDGE 59

availability of a popular and familiar multiprocessor scbeduler in the NOW environment

could encourage users to view the NOW as a parallel system, rather thaa as just worksta-

tions. This may make them more cornfortable running parallel jobs in the environment.

A second reason is that, thus far, the EASY algorithm has not been irnplemented in a

NOW environment, so the issues associated with a distributed implementation have not

been explored. Also, EASY is suited to a distributed environment because it does not

require preemption, migration, or reallocation of processors. A final reason is that with

EASY, whenever a user submits a job, a maximum limit on the execution time must be

provided. The scheduler uses this data to predict when jobs can be scheduled, and to

determine when it can perform backfilling without delaying previously submitted jobs.

It should be noted that this algorithm is very similar to FCFS-fill, but slightly differ-

ent. In FCFS-fiIl, jobs will not be blocked from running if there are sufficient processors

available to start the job. With EASY, the backfilling property is slightly different. Jobs

will only be backfilled if they do not delay a previously submitted job. Thus, in EASY,

a job A can be blocked from running even if there are sufficient available processon to

start the job. This will happen if starting job A now will result in a previously submitted

job B being unable to start at some later time (due to job A running on the processors

required by job B when B is scheduled to start). If EASY and FCFS-fil1 are presented

with the same set of jobs submitted at the same time, EASY might not immediately run

al1 the jobs that FCFS-fil1 does, even if t here are processors available. However, if t here

are pmcessors available, FCFS-fi11 will not delay starting any job that EASY starts.

5.5.1 High Level Design

Since this algorithm is more complicated than the other algorithms, a discussion of the

design of the algorithm requires more detail. Figure 5.2 shows the structure of EASY.

The idealized model of EASY as a single queue where jobs are ordered for execution

using a FCFS algorithm with backfilling is replaced with a two queue model, as with

the other algorithms discussed. The two queues appear at the bottom of Figure 5.2.

The Job and System Information Cache and LSF layers are the next two layers, as they

are in the Historical Profiler. As before, they supply data to the scheduier and Save

I EASY
-
b

O Data Structures I

;-:
: Roaw A l b a i a ~ Liu ;
l

Figure 5.2: The EASY Scheduler

CHAPTER 5. SCHEDULERS THAT USE APPLICATION KNOWLEDGE 61

information for quick access. Above the JSIC is the EASY scheduler itself. It has its

own data structures, the Processor Allocation List and the Dependency List, which are

discussed in Section 5.5.3. One additional layer not required by the other algorithms

is the EASY Interface layer. This layer permits users to query the scheduler to find

information specific to the EASY scheduler that is unavailable through LSF.

The overall structure of the algorithm is very similar to the algorithm presented in

Figure 5.1 with the f illingon dag set to TRUE. The sort algorithm of line 3 would sort

in order of increasing submission time, as with FCFS. The primary difference is in the

filling. Instead of starting a job when it is not on the front of the queue, but there

are sufficient processors available, more analysis haa to be done. The schedule of prior

submitted jobs has to be deduced. If scheduling that job to run now would mean that

a prior submitted job would be delayed because it requires a processor that would be in

use by the current job, the current job cannot be started.

5.5.2 Interface

The functionality provided by LSF is sufficient for the interfaces of the other disciplines.

However, EASY has several features which LSF does not support directly:

a getjid: returns the job id of the job running on the specified node.

spfree: returns the status of the various nodes. Since EASY and LSF have different

views of the system, the status according to LSF can differ from the status according

to EASY.

r spwhat: returns the number of processors currently free, and the amount of time

for which they will be free.

a spwhen: for an existing job, returns the latest tirne that job will start execut-

ing. For a hypotbetical job specified by a aumber of processors and a maximum

execut ion t ime, returns t be latest time for that job to start executing.

r spq: returns a list of al1 the jobs in the system, with their estimated or actual start

times.

CHAPTER 5. SCHEDULERS THAT USE APPLICATION KNOWLEDGE 62

r spusage: returns a list of each node in the system, the user currently using the

node, and the time by which the user will finish using the node.

Perhaps surprisingly, implementing this interface is one of the most difficult tasks

in creatiog EASY in a NOW environment. The difficulty arises due to the distributed

nature of the system. There is a single scheduling algorithm for the entire system on

one machine in the system. However, users on different workstations have to be able

to interface with this central scheduler. T h , the EASY Interface modulc is rcquircd

to allow the users of individual workstations to communicate with the single EASY

scheduler. The EASY Interfaces must query LSF to determine on which workstation

the EASY scheduler is running. LSF has this information since LSF is responsible for

starting the EASY scheduler originally. The EASY interfaces can then establish their

own socket interfaces to the scheduler for communication.

Despite these interface issues, LSF and the Job and System Information Cache are

still able to handle rnany of the other interface requirements. For example, Interface

issues such as job submission and queue management, handled by these layers for the

FCFS algorithm discussed in Section 5.2, are also relevant for EASY.

5.5.3 Implement at ion Issues

The primary goal when implementing EASY was for the implernentation to be robust,

while the secondary goal was efficiency. Robustness is particularly important in a dis-

tri buted environment where workstations and networks can fail. The algorit hm is im-

plemented so that whenever a job finishes, every job in the entire system is rescheduled.

This strategy is required, since if a job finishes prematurely, it could potentially change

the time when every other job is scheduled to start. This feature also ensures that any

changes in the scheduling strategy due to temporary errors in the system are corrected

as soon as any job finishes.

EASY has two primary structures to provide functionality that is unavailable in the

JSIC or LSF layers, the processor allocation list and the dependency list. Due to ef-

ficiency concerns, it is undesirable to rescbedule the entire system whenever a new job

arrives, or a user queries the system. As a result, it is necessary for EASY to maintain a

CHAPTER 5. SCHEDULERS THAT USE APPLICATION KNOWLEDCE 63

processor allocation list, from which the current schedule can be deduced. The processor

allocation list may be quickly examined to determine information such as when the usage

of part icular processors is scheduled to change.

The second interna1 structure retained is the dependency list. With EASY, it is

possible to specify that a job cannot start until another job has finished. Although LSF

provides this feature when it is doing the scheduling directly, it is not in our context,

so it is necessary to duplicate this functionality inside EASY using the dependency list.

This list contains al1 the jobs that cannot start until some other specified job finislies.

Whenever the system is rescheduled, EASY must consult this list to ensure that it does

not start a dependent job before the prior job finishes.

EASY-preemptive is very similar to EASY. The algorithm is the same, except that instead

of killing a job when its time expires, EASY-preemptive preempts the job and moves it

to the back of the FCFS queue, just as if it had been resubmitted. The estimate of the

duration of the job is set to its original value. Then, instead of starting the job at the

appropriate time, EASY resumes the job. As a result, the predictability of EASY is

maintained, but jobs are not killed.

This algorithm is included in this study for several reasons. The primary reason is that

using the Historical Profiler with EASY has one major disadvantage. When the maximum

execution time elapses, EASY kills the job. However, the Historical Profiler is unlikely to

always make perfect predictions; it is probable that jobs will arise that run longer than

the duration predicted by the profiler. Hence, some jobs will be prematurely killed. The

EASY-preemptive scheduler attempts t o remedy this problem. This algoritbm may still

not be usable in practice, since swap space is required for the preempted jobs, but it is

an improvement over EASY. A second reason this algorithm is examined is to compare

this algorithm to both LERWF, the only other preemptive algorithm, and the original

EASY algorithm.

The design of the EASY-preemptive algorithm is essentially the same as the design

for EASY. The main difference is that the scheduler has to store information about the

CHAPTER 5. SCHEDULERS THAT USE APPLICATION KNOWLEDCE 64

preempted jobs so that it can resume them at the appropriate time on the same processors

that they originally were using. The heuristic used when assigning processors is identical

to the algorithm than for LERW F. Newly started jobs are assigned the processors required

by the suspended job that will run next only if there are no other processors available.

If a job cannot resume because a processor it was using is unavailable, it waits until the

processor is available.

EASY and EASY-preemptive both already have their own method of backfilling.

Consequently, it does not make sense to have special Ufill" versions of these two schedulers.

5.7 Processor Assignment Heuristics for Preemptive

Disciplines

The preemptive algorithms currently use a simple heuristic to determine which processors

to assign to which jobs. For any job that is about to run, the scheduler attempts to avoid

assigning any processor required by the next preempted job in the pending queue. This

strategy helps to ensure that these processors are not in use when the preempted job is

supposed to run. In an attempt to improve the performance of the preemptive algorit hm,

a slightly different method for assigning processors is tested.

The problem with the original policy is that it does not take into account the total

number of processors in the system when assigning processors to a new job. Suppose

there are a total of sixteen processors. The suspended job with the least work requires

nine, and the job to be started requires eight. It is of no use to avoid assigning the

processors required by the suspended job to the new job because the two jobs cannot

ever run concurrently anyway. Avoiding allocating them in this case has no benefit, and

can actually hurt.

Suppose that you have the jobs in Table 5.1 with a LERWF-fil1 algorithm using this

poor method of allocating processors. First A is submitted and started on processors 1

to 3. Then B is; it preernpts A and is assigned processors 2 to 16, avoiding processor 1

since it is required by A. Now suppose that C is submitted. B is the next job to run, so

C ha9 to avoid the processors that B wants to use. So it has to use processor 1, since it is

the only processor that B has not been allocated. So C is allocated processors 1, and 4 to

CHAPTER 5 . SCHEDULERS THAT USE APPLICATION KNOWLEDGE

Table 5.1: An Inefficient LERW F Allocation Procedure

Job Remaining Work # Processors Processors Assigned

A 300 3 1-3

B 200 15 2-16

C 1 O0 7 To be determined

Table 5.2: LERWF Assigning Processors to Jobs

Job Remaining Work # Processors Processors Assigned

E 50 6 To be determined

9. Despite the fact that it should be possible to run jobs A and C at the sarne time since

t here are enough free processors, with this processor allocation i t is not possible, because

both A and C require processor 1. This is a problem that is particularly noticeable with

the fil1 variant of LERWF where many long jobs requiring few processors are started due

to the filling.

One alternative method of assigning processors uses two rules. First, whenever a new

job is assigned processors, the suspended jobs are first examined to see which jobs can

run immediately, at the same time as this job. If there are such jobs, the processors

required for those jobs are assigned last to this job. If there are are still more processors

available than can be used for both the current job and the suspended jobs that can be

immediately run, the processors used by suspended jobs that could potentially be run at

the same time as the current job are assigned last.

An example can help to clarify these policies. Suppose we have jobs in Table 5.2 in a

system with sixteen processors, numbered from one to sixteen. Job E is the job that has

just arrived. Before it arrives, Jobs C and D will be running, since they have the least

CHAPTER 5 . SCHEDULERS THAT USE APPLICATION KNOWLEDGE 66

remaining work, and they can run a t the same time. Job A will also be running, since

its processors are not being used by C or D. When E arrives, it is noted that E and D

cannot run concurrently, because seventeen processon would be required. D bas more

work remaining, so it is suspended. Now the problem is determining which processors to

assign to E. First, it looks at the jobs that could potentially be run concurrently. A, B, or

C can be. C has the le& remaining work, so it should definitely be resumed; t herefore,

E will not be assigned the processors required by C. If both E and C are running, then

B cannot be resumed, since B requires a processor, number 14, that will be in use by C.

This leaves A, which can be resumed, so the processors assigned to A cannot be assigned

to E. So after the first set of decisions, A can be assigned any processors except numbers

13 to 16.

Next, it is necessary to consider the second rule that processon assigned to jobs that

could potentially be run concurrently with E should not be assigned. Obviously, D cannot

ever run at the same time as E, since tbere are insufficient processors. However, if C were

to finish, E and B could run a t the same time. Therefore, E should also not be assigned

the processors required by B, processors 7-12. At this point, there are no more jobs

that could potentially be started a t the same time as E, so the processors that have not

already been eliminated are assigned to E, up to the number requested by E. So E would

end up running on processors 1-6. If B had required eight processors rather than seven,

and the extra processor was not one being used by jobs A or C, E would have been forced

to use one of the processors required by B, since E has to be started.

This alternative method initially appean as though it could be an improvement over

the other algoritbm, since it appears to increase t h e probability that small jobs can

run concurrently in the system. However, jome informa1 experimentation indicates that

this is not true. In fact, this alternative method of assigning processors has a worse

performance, by 5 to 25%. The cause of this seems to be that this strategy tends to

assign the same processors to al1 the joba requiring few processors. If there is a long

running job requiring few processors that is at the front of the queue, al1 the other jobs

that are run in the mean time end up being assigned the same processors. So when the

long job finishes, oone of the remaining jobs are able t o run concurrently. The original

CHAPTER 5. SCHEDULERS THAT USE APPLICATION KNOWLEDGE 67

algorithm does not suffer from this problem to the same extent. Instead, near the end

of the test, most of the processors are required by approximately the same number of

preempted jobs.

It is clear from these results that the particular heuristic a preemptive algorithm uses

for assigning processors can affect the performance of the algorithm a great deal. The

original algorithm appears better according to experimental results, and is the algorithm

used in the rest of this thesis. Further research and experimentation is still required to

find a better heuristic.

Chapter 6

Evaluation of Algorit hms

This chapter discusses the methods of testing the performance of the schedulers presented

in the previous chapter, and presents the results of such tests. The primary criterion by

which performance will be judged is mean response tirne. The response time for a job is

the amount of time the job spends in the system, from the time it is submitted until it

completes. The version of EASY that kills job will be excluded from the mean response

time calculations, since the killed jobs make comparisons meaniagless. Secondary factors

that will be examined include the utilization, the total time required to process al1 jobs,

the number of jobs killed and suspended, and the number of times any particular job is

suspended. The utilization is the average percentage of processors running jobs during

the test.

Section 6.1 discusses the methods of evaluating the different scheduling algorithms.

The test workload, the arriva1 rate, and the data initially available to the profiler are

examined. Section 6.2 presents and analyses the results of the experiments.

There are several factors that can affect the performance of the scheduling algorithms

and comparisons among these algorithms. This section will discuss the factors that can

affect performance and how these factors will be dealt with when testing the algorithms.

It will discuss the characteristics of test workload and the issues associated with the

Historical Profiler. A summary of the parameters used in the experiments is presented

in Table 6.1.

Table 6.1 : Parameters Used in the Experiments

Number of Executables 13

Number of Jobs 200

Interarrival Time Distribution Exponent ial

Interarrival Time Mean 150 s

Profiler est imate greatest value in a 95% confidence interval

Number of Processors Distribution Uniform

Minimum number of processors 2

Maximum number of processors 16

One of the main factors that can affect the apparent periormance of a scheduler is the

test workload. For instance, FCFS and LEWF algorithms perform identically if every

job is exactly the same, but very differently if there is a high variance in execution times.

The workload consists of parallel applications that can either be real or synthetic. Real

applications are somewhat simplified versions of typical applications that are used in pro-

duction environrnents. The SPLASH-2 benchmarks [WOT+95] would be an example of

this type of application. Synthetic applications are special applications that are designed

to resemble real applications, but have less complexity. Therefore, their characteristics

are both predictable and modifiable. We choose to use synthetic applications due to

their flexibility and predictability. Because of these traits, it is relatively easy to run

several tests with the assurance that each scheduling algorithm treats precisely the same

set of jobs with the same characteristics. A difficulty with choosing to experiment with

real applications is that few paralie1 algorithms have been ported to run reasonably on

NOWs.

In the experiments, one synt hetic application with characteristics t hat can be spec-

ified by command line parameters will be used to simulate multiple applications. This

synthetic application is a simple program that takes as parameters a Dowdy fraction

parameter, the total work in seconds, and the processors on which to run. The job is

initially started on one procesaor. It spawns identical threads on al1 the other processors.

All the threads go t o sleep for a period of time t . After the sleep time elapses, al1 the

threads of the job terminate and the job finishes. The sleep time t is calculated as follows:

where W is the total work parameter, D is the Amdahl's fraction sequential "parameter"

(discussed in section 2.3), and p is the number of processors parameter. This equation is a

sariant of Dowdy's execution time function (Equation 2.6), drrived hy setting W = Ci +
C2 and D = $$. By varying the parameters, this application can simulate applications

with different amounts of work and different efficiencies. Since al1 of the scheduling

algorithms provide exclusive access to machines, the scheduling results are not affected

by the fact that none of the jobs do real work. The jobs act as a Uplace-holders",

indicating wbich processors are in use. This allows real use of the system to continue

during the tests without affecting the results significantly.

Since the Historical Profiler uses information based on executable name for job pre-

dictions, the test workload is required to have different executables. In this case, there

are thirteen executables, each an instance of the synthetic application. Each executable

has a fraction sequential with value 0.001,0.01, or 0.1, a unique average amount of work,

and a unique coefficient of variation in work. In order to obtain realistic estimates of

the work and variance in work, the NASA Lewis workioad is used. This set of log files

is chosen because it is a NOW system, and contains more parallel jobs than the other

NOW system.

The work parameter to pass to the synthetic application to simulate the different

executables is derived frorn these NASA Lewis log files as follows. The first twelve

executables of the workload have rnean work egual t o &, of the product of the number

of processors and the mean execution time for the twelve most frequently run parallel

executables. The tbirteenth job comprises a11 the other parallel executables that were

run in the system (approximately 35% of the jobs). The & scaling factor is used so that

a test with many jobs finishes in a reasonable amount of time. Of course, this scaling

substantially increases the impact of the scheduling overhead on the results of the tests.

In addition to the mean work, some variability in the applications' run times is re-

Table 6.2: Art ificial Workload: Executable Specifications

Executable Fraction (%) Mean time (s) C.V. Frac. Sequential D

Test 1

Test2

Test3

Test4

Test5

Test6

Test7

Test 8

Test9

Test 10

Test 1 1

Test 12

Test 13

quired, so that al1 the jobs for a given executable do not run for the same duration. In

this case, the coefficients of variation for the applications are chosen to be the same as the

coefficients of variation for the corresponding executables in the NASA workload. The

coefficient of variation for the t hirteent h executable is chosen similarly, but taking into

account al1 the remaining jobs in the system. The specifications for al1 these executables

are shown in Table 6.2.

The actual work W required for a given job in Equation 6.1 is randomly determined

based on the mean and variance asociated with the corresponding executable. If the

coefficient of variation is less than one, an Erlang distribution of work is assumed, if equal,

an exponent ial distribution, and if greater, a hyperexponential distribution. Suppose M

is the mean of the distribution, C is the coefficient of variation, and rand() is a function

that returns a random number between O and 1. To calculate the work for a job witb an

Erlang distribution, the following formulas [SLTZ77] are used.

~ f = ~ (& log(rand())) if i < a

(A log(rand())) ot herwise

To calculate the work for an exponential distribution, the followiog equation is used:

For the hyperexponential distribution, these equations are used:

-Mlog(rand()) if i < a

-M log(rand()) otherwise

To determine which executable to run next, a random determination is made. The

probability of a given executable being the next job submitted is equal to the proportion

of the number of jobs for this executable in the NASA Lewis workload. The experiment

consists of executing two hundred jobs.

Since the jobs described will complete faster if they have more processors, the distri-

bution of the processors required for the jobs can affect the results. In these experiments,

only parallel jobs are used. Thus, jobs can use between 2 and 16 processors. The nurnber

actually required for a given job is randomly chosen from a Uniform distribution over

the integers two to sixteen.

At this point, the applications that will be used in the tests have been specified in

terms of work, number of processors, and execution time functions. However, another

factor can affect the performance of the simulated system: the interarrival times of jobs.

One option is to submit al1 two hundred jobs at once, as though a large batch workload

were submitted. However, this type of workload is not very realistic if different executa-

bles are in the workload. Thus, the approach used for the tests is to have pseudo-random

interarrival times between jobs. The interarrival times are chosen from an Exponential

distribution with a mean time of 150 seconds. This number was chosen so that over a long

enough period, the utilizat ion of the system with efficient scheduling, would approach

75%. Thus, the system will generally have jobs executing, but not have long queues of

waiting jobs.

The other factor that can significantly affect the results is the initial state of the

Historical Profiler repository. it is desirable to have some data, since otherwise it will

require too many jobs to execute before the Historical Profiler has any impact on the

scheduling algorithm. As a result, in our experiments, the repository is seeded by t wenty-

five random executions of each of the thirteen executables.

The other profiler issue is the type of estimates that are used for the tests. As

discussed in Chapter 4, the estimates provided by the profiler include error estimates in

terms of a confidence interval. In al1 the tests requiring an estimate of the executioii

time for a job obtained from the profiler, the estimate will be equal to the greatest value

in a 95% confidence interval about the mean. Specifically, it will be cqual t o the sum

of the estimate and the confidenceinterval values that are returned by a cal1 to

@ E s t imate 0.

In order to ensure a fair test of the algorithms, a single sequence of pseudo-random

numbers is used. Thus, in a single experinient, every algorit hm must handle the exact

same jobs subrnitted a t the exact same times, and the repository contains the exact same

informat ion.

6.2 Results

This section will discuss the results of the experiments in which different schedulers are

used to schedule a particular test workload. Table 6.3 classifies the algorithms examined

by their preemptability, whether they use filling, and the type of knowledge they use

for their predictions. In this table and the rest of the chapter, the variants of EASY

that do not kill jobs will be referred to as EASY, while the variant that does kill jobs

will be referred to as EASY-kill. This section wil1 examine each of the dimensions of

this table. Section 6.2.1 will discuss the relative performance of the non-preemptive

algorithms. Section 6.2.2 compares the performance of the algorithms that use filling

to those that do not. Following this is Section 6.2.3 which compares the performance

Table 6.3: Classification of Algorit hms

I I Non-Preempt ive I Preemp t ive I
Non-Filling 1 Filling

No Knowledge

Non-Filling

I Approx. Knowledge

of the non-preemptive algorithms to the corresponding preemptive algorithms. Finally,

Section 6.2.4 will compare the performance of the different algorithms using no knowledge,

imperfect knowledge, and perfect knowledge.

The results for this chapter are summarized in Table 6.4. In this table, the average

response time is calculated as the average time from when a job is submitted until it

finishes. The wait time is the average time from when a job is submitted until it first

begins executing. The total time is the time required for completing al1 200 jobs. The

utilization, U, is calculated using the set of al1 jobs in the test, J, where, for a job i E J ,

pi is the number of processors used by that job, and t i is the run time of the job. In the

following equation for utilization, T is the total time required for the test and P is the

number of processon in the system (in our case, sixteen):

Filling

FCFS

Exact Knowledge

6.2.1 The Relative Performance of the Non-Preemptive Sched-

FC FS-fil1

EASY-kill-pro

ulers

LEWF-pro

EASY-act

LEWF-act

Table 6.4 contaios the result of using different schedulers to schedule the test workload.

To judge the relative performance of the algorithms it is worthwhile comparing the per-

formance of the simplest non-filling, non-preempt ive versions of the algori t hms using

perfect service time knowledge, FCFS, EASY-act and LEWF-act. Figure 6.1 shows the

LEW F-filLpro EASY-pre-pro I LERW F-fill-pro l
LEW F-611-act

LERWF-pro

LERWF-act LERW F-fill-act

Table 6.4: Performance of Scheduling Algorithms (upro" means use of the profiler, "act"

means use of actual service times)

Algori t hm Kill Susp./# times Resp.(s) Wait (s) Total Time (s) Util. (%)

FCFS O O 6480 6251 43986 64.6

FCFS- fil1 O O 2284 2056 37609 75.0

LEW F-act O O 1031 804 4 1 760 67.3

LEW F-pro O O 2965 2738 391 16 71.6

LEW F-fill-act O O 926 697 39271 72.0

LEW F-fill-pro O O 1259 1031 38234 74.0

LERWF-act O 311124 908 469 44456 63.7

LERW F-pro O 251121 2404 1565 48017 61.5

LERW F-fill-pro O 381163 1678 389 4544 1 65.8

lNote: This time is not given because 24 long-running jobs w e n killed. If this fact is ignorecl, the mean

response time is 763.

Rasporise Tirne

Wait Time

FCf S EASY-act LEWF-act

Figure 6.1: The Non-Preemptive Scbedulers' Mean Response Times

relative performance of these three algorithms. The wait times in this figure are high

relative to the execution times because most jobs have to wait in the pending queue for a

relatively long time before they begin executing. If the job interarriva1 times were longer,

this wait time would be shorter.

The FCFS algorithm has the worst response time by far and also has relatively poor

total time for the test. This is an expected result, since jobs requiring only a few seconds

of rua time might wait a long time for a longer job to finish. This can be seen by the

relatively large wait time for t his algorithm. The total time required for the entire exper-

iment is also bigh, almost comparable to some of the preemptive scheduling algorithms,

despite the fact that the overhead for this algorithm is relatively low. This algorithm is

the only algorit hm t bat does not use any application knowledge for scheduling.

The EASY-act algorithm is the FCFS algorithm with backfilling. If there are available

processors, and a job can run on those processors without delaying previous jobs, that

job will be run. The addition of backfilling greatly improves both the response time and

the total time for the entire test. Short jobs have a good chance of being run relatively

quickly on the available processors, since, due to their short run time, they are unlikely

to delay other jobs.

The other non-preempt ive scheduler using accurate estimates, LEW F-act , has the

best response tirne of al1 the non-preemptive schedulers. This is an expected result,

since it means that shorter jobs will not have to wait for longer jobs to finish. This is

evident from the relatively low wait time. The total time required for the experiment

is reasonable, but not great. However, the throughput of the algorithm could still be

improved by attempting to use as many processors as possible, rather than least work

first, if the variances in run times within a group of jobs are low. If al1 the jobs have

approximately the same run time, the order in which the jobs are run will not change

the mean response time much. If it is possible to pack the jobs to make use of the idle

processors, then both the throughput and mean response times will improve. This i s

done by LEWF-fill.

Thus, as expected, the most basic algorithm, FCFS, was the worst, EASY was better,

and LEWF was the worst. This ordering provides a basis for comparing the other variants

of these algorithms.

6.2.2 The Value of Filling

Filling is the f int addition to the basic algorithms which will be examined. Figure 6.2

compares the mean response times for filling and non-filling algorithms. Since the variants

of LEWF order the queues in an attempt to minimize the mean response time, it was not

clear that changing this ordering by using filling would lead to improved response times.

However, the experiments show that in general, filling improves both the response times

and the total time required to process the 200 jobs.

It is intuitive that FCFS would be improved by the addition of filling, so the results

are not surprising. The average response time is reduced by almost twwthirds, while the

total time required decreases by 17%. The addition of filling to FCFS means that jobs

that could not be started if strict ordering were used can be started earlier. Thus, the

wait times decrease, as is evident from the test, and, since more jobs are being run a t

once, the throughput increases and total time required for the test decreases.

- Response Time

Wait Tirne

FCFS LEWF-act LEWF-pro LERWF-ad LER WF-pro
FCFS-f III LEWF-tlll-ad LEWF-fillpm LERWF-fill-act LERWF-fill-pro

Figure 6.2: The Impact of Fiiling on Mean Response Times

The effects on the Least Work First algorithms are more interesting. In al1 cases, filling

improves the mean response times and the total times. For LE W F-act and LEW F-fill-act ,

the mean response times and total tirnes improve by 11% and 6%, respectively. Similar

results are evident for LERWF-act and LEW RF-fill-act, where the t imes improve by 6%

and 4%, respect ively.

For the four algorithms using the profiler, the results are more extreme. LEWF-fill-

pro's mean response t ime is only 42% of the mean response t ime of LEWF-pro. The total

tirnes improve slightly. The results for LERWF are similar, with the filling version hav-

ing a mean response time of approximately twethirds that of the non-filling algorithm.

LERWF-fill-pro is particularly noteworthy for its short mean wait time compared to the

mean response time. Jobs are started quickly, hence the short mean wait time. But they

are also frequently preempted, leading to the large difference in mean response time and

the mean wait time.

Thus, filling is relatively more helpful with the algorithms t hat use the profiler. This

result may be because, with the non-filliog algorithms, inaccurately long estimates for

jobs requiring few processors do not hurt the performance nearly as much in the fil1

version, since these jobs are likely to be started relatively early regardless of the estimates.

To a certain extent in the non-preernptive algorithms, these gains are reduced when a

long running job requiring few processors is used to "fill", and it later delays a short

running job requiring many processors. However, it is evident from the results of these

experiments t hat t his tradeoff is definitely wort hwhile.

In summary, in every case, filling leads to improved response times and reduced total

times. It is more important for those algorithms that use less knowledge than it is for

those that use more.

6.2.3 The Value of Preemption

Preemption is the second addition to the basic algorithms that will be examined. It is

worthwhile distinguishing preemptive schedulers from the non-preemptive schedulers be-

cause the preemptive schedulers require the additional complexity of preemption. Thus,

although the preemptive algorithms may have better performance, when actually decid-

ing which algorithm to use, it is necessary to consider also the additional irnplementation

effort required for preemption and the additional potential for error because of the corn-

plexi ty.

In this case, there are five pairs of algorithms that differ only in that one is preemp-

tive and the other is not, EASY-kill-pro and EASY-pre-pro, LEWF-act and LERWF-act,

LEW Fpro and LERW F-pro, LEW F-611-act and LERW F-fill-act, and LEW F-fill-pro and

LERWF-fill-pro. The relative performances of the final four pairs of algorithms is dis-

played in Fi y r e 6.3. Another comparison might be made between the preemptive version

and non-preemptive versions of EASY that use perfect data. However, such a comparison

is uninterest ing because no jobs are preempted, and so the algorit hms lead to the exact

same fichedule and have the exact same performance (that of EASY-act).

A comparison of the performance of the non-preemptive EASY scheduler using the

profiler to the performance of a preemptive version of the same scheduler is meaningless.

EASY-kilCpro, the version without the preemption, disposes of al1 the jobs faster than

any other algoritbm. But this is because twenty four long running jobs are killed by the

scheduler when they exceed the estimate. Thus, the average response time is undefined,

- Response Time

Wait Timr

LEW F-act LEWF-pm LEW F-f ill-act LEWF-fiII-pia
LERWF-act LEFIWF-pro LERWF-fill-act LERWF-till-pro

Figure 6.3: The Impact of Preemption on Mean Response Times

since these killed jobs never complete. The same twenty-four jobs are preempted by

EASY-pre-pro. Because EASY-prepro does not kill jobs due to inaccurate estimates, it

is the better algorithm. The percentage of jobs killed, 12%, is noteworthy. This gives

some indication of the degree to which the job execution times exceeded the mean. The

profiler was requested to return a confidence interval such that there was 95% chance the

actual mean duration for jobs of a given executable be within that interval. The highest

value in this confidence interval was the estimate of the job duration. Thus, from the

large number of jobs killed, we can deduce that a relatively large number of jobs had

execution times greater than the estimated mean, even when a high estimate of the mean

was used.

The LEWF-act and LERWF-act algorithms, the first and second bars in Figure 6.3,

make a more interesting cornparison. The non-preernpt ive algorit hm has a mean response

time 14% longer than the preemptive version. As is evident from the big 71% difference

in the wait times of the algorithms, this improved mean response time is due to the fact

that long jobs that are running can be preempted in order to run shorter jobs. In the

non-preemptive version, if a long job starts running, subsequently arriving shorter jobs

must wait iintil that long job finishes if there are too few available processon. Because

preempted jobs require more wall-clock time from when t hey are fint started to when

they finish, the difference in the average response time and the average wait time is higher

for LERWF-act than for LEWF-act, but this increase is still less than the improvement

in average wait time. The total time for the preemptive algorithm to process al1 the jobs

is longer than the total for the non-preemptive algorithm, perhaps due to the overhead

of resumption mentioned in Section 5.4 (the description of the LERWF algorithm).

The results for LEWF-pro and LERWF-pro are presented as the next two bars in

Figure 6.3. Unlike the previous two algorithms, however, t hese algorithms use imperfect

information when scheduling. As with perfect information, the non-preemptive algorit hm

has a 23% longer average response time tban the preemptive algorithm. The improve-

ment in response t imes arises from the reduction in wait t imes for jobs, for the reasons

described in the previous paragraph. The total time required to process al1 the jobs is

23% higher for the preemptive scheduler than for the non-preemptive scheduler, due pri-

marily to the overhead associated with the 121 preemptions and resumptions. Comparing

these two algorithms reveals one disadvantage of using the profiler with non-preemptive

algorithms: the estimate at first is relatively inaccurate due to the large confidence in-

terval that is used. With preemptive algorithms, poor estimates can be remedied as it

becomes apparent that a long job is running, but this is not possible with non-preemptive

algorit hms.

The relative performance of LEWF-fill-act and LERWF-fill-act helps to confirm that

preemption improves the mean response time, but increases the total time required for

the experiment. The preemptive version in this case had an 8% improvement in mean

response times and was 12% worse for the total time required.

The LEW F-fill-pro and LERW F-fill-pro algorit hms offer seemingly contradictory te

sults. In this case, the non-preemptive algorithm has a better average response tiine by

33%. This is not due to jobs being started later; the average wait time for the preemptive

algorithm is less than 38% of the wait time of the non-preemptive algorithm. Ratber,

this poor response time is due to overhead of preernption and the limitations of the

current heuristic for allocating processors (which was discussed in Section 5.7). All the

jobs that require few processors are often assigned the same processors, so that several

jobs of this type cannot run concurrently. Jobs are started relatively quickly, but alter

they are suspended, it takes a long time before they are resumed. This hypothesis is

supported by the fact that this algorithm easily has the highest average suspended time

for al1 suspended jobs. It is expected that improved heuristics for assigning processors

could reduce the mean response time for LERWF-fill-pro, but identifying such improved

heuristics is left to future research.

In summary, preemption generally lowers the mean response times. However, a good

heuristic for assigning processors to jobs is required to achieve the maximum benefits for

preemption.

6.2.4 The Value of Knowledge

It is difficult to determine improvements in the performance of scheduling algorithms due

to the use of the Historical Profiler because the algorithms that use the profiler not only

use application knowledge, but require application knowledge. Thus, i t is impossible to

compare the performance of an algorithm not using the profiler to the same algorithm

using it. As a result, to compare the effects of knowledge, comparing different algm

rithms is required. Three different levels of knowledge will be compared: no knowledge,

imperfect knowledge, and perfect knowledge. No knowledge will be represented by the

variants of FCFS, imperfect knowledge will be represented by the algorithms that use

the Historical Profiler (the algorit hms with a '-prow suffix), while perfect knowledge will

be represented by the algorit hms that use the actual execution t imes of the applications

(the algorithms with a "-actn suffix.) The first two algorithrns in Figure 6.4 are the two

FCFS algorithms. Every other pair of algorithms in the figure consists of one scheduler

using perfect application knowledge and the same scheduler using i mperfect knowledge.

1s Knowledge Beneficid?

Comparing the use of no knowledge to the use of any knowledge, even imperfect knowl-

edge, shows clearly that knowledge is highly beneficial. Both FCFS and FCFS-fil1 are

- Response Time

WalTime

FCFS EASY-act LEWF-acl LEWF-fill-aa LER WF-act LER WF-fiII-ad
FCF S-fiIl EASY-Pte-pro LEWF-pro LEWF-fill-pro LERWF-pro LERWF-fiIlpro

Figure 6.4: The Impact of Knowledge on Mean Response Times

much worse tban the LEWF and LERWF algorithms that use the same type of filling.

In the case of FCFS, the poorest comparable algorithm is LEW F-pro, which still has a

mean response timeless than half that of FCFS. The preemptiveversion of this algorithm,

LERW F-pro, improves on this performance slight ly, w hile the algorit hms t hat use perfect

knowledge have mean response times less than one sixth of that of FCFS. The perfor-

mance of FCFS-fil1 is also poor. Once more, there is almost a 50% improvement in mean

response times using LEW F-fill-pro. LRW F-fill-pro, despite the problems in allocat ing

processors descri bed in section 5.7, has a rnean response t ime less t han t hree-quarters

that of FCFS-fill. The algorithms that use perfect knowledge again outperform FCFS-

fill, this time wit h mean response times of approximately twefifths of that of FCFS-811.

Thus, schedulers using the knowledge-based Least Work First strategy outperform by a

wide margin comparable FCFS algorithms in al1 the cases examined.

Comparing the variants of FCFS to EASY-act and EASY-pre-pro does not reveal

a significant difference. Both of these EASY variants outperform FCFS, but this is an

unfair comparison since both algorithms use backfilling. Thus, it is more appropriate to

compare them to FCFS-fill. Both variants of EASY have slight ly worse response times

than FCFS-fill, less than 10% worse. It would be expected that these three algorit hms

would have similar performance, since they are very similar disciplines. (For a discussion

of the similarities and differences, see Section 5.5.) The reaaon EASY does not perform

better despite its use of application knowledge is because the knowledge is mainly being

used to provide predictability to users, not to improve mean response times. The only

way the additional knowledge improves the performance is by allowing EASY to backfill

jobs without violating the FCFS property of the algorithm. Since the FCFS-fil1 algorithrn

can already do similar filling, this does not lead to a difference in performance.

Thus, with the exception of EASY, the use of even imperfect knowledge improves

mean response times a great deal over the use of no knowledge.

The Impact of the Accuracy of Knowledge on Non-Preemptive Disciplines

It is now worthwhile examining in more detail the improvements over FCFS that are

possible due to the use of knowledge. In particular, it is interesting comparing the

improvements over FCFS in mean response t ime t hat are attainable using imperfect

knowledge to the improvements attainable using perfect knowledge. This provides and

indication of what fraction of the potential improvement due to knowledge is attainable

using the Historical Profiler. First, we will examine the non-preemptive schedulers.

For the LEWF algorithrn, the improvement over FCFS due to iniperfect knowledge is

large, but still is not close to the possible improvement with perfect knowledge. LEW F-

pro has mean response times 46% as long as FCFS, while LEWF-act has mean response

times of only 16% as long. Both algorithms outperform FCFS in terms of total time, too,

with total times of only 95% for LEWF-act and 89% for LEWF-pro of that of FCFS.

The higher througtipu t of the algorithm using imperfect knowledge is due to the fact t hat

the job length estimates to a large extent depend on the number of processors assigned

to a job. Therefore, jobs requiring few processors in general have high estimates, and

tend to be run after the jobs requiring many processors. This is particularly true due

to the large confidence intervals being used for the estimates, which tend to increase the

dependence of the estimate on the number of processors, and reduce the dependence on

the executable name. As a result, the jobs requiring many processors, which have to be

run by themselves in general anyway, tend to run first. The jobs requiring few processors

run last, but since they require so few processors, several jobs can be run at once, leading

to very few processors being idle.

With the filling versions of the LEWF algorithm, LEWF-fill-act and LEWF-fill-pro,

imperfect knowledge does not hurt the algorithm nearly as much. The mean response

time of LEWF-fill-act is approximately 41% of the mean response time of FCFS-fill, wbile

the LEWF-fill-pro is 55% of FCFS-811. Thus, only a 14% difference relative to FCFS-fil1

remains to be overcome by improving the accuracy of knowledge. The mean response

times of these two algorithms are so close because inaccurately long estimates for jobs

requiring few processors do not hurt the rnean response time nearly as much in the non-

filling versions of the algorithms. Such jobs requiring few processors are likely to be

started relatively early regardless of the estimates. In terms of the throughput, bot h al-

gorit hms are very similar. The total time required for bot h experiments is approximately

4% worse than with FCFS-fill,

Thus, for the non-preemptive schedulers, the accuracy of knowledge is more impor-

tant for the non-filling algorit hms. The filling algorithm using imperfect knowledge has

performance only slightly worse t han the same algori t hm using perfect knowledge.

The Impact of the Accuracy of Knowledge on Preernptive Disciplines

The preemptive LERWF algorithms have similar results to the non-preernptive LEWF

algorithms. The non-filling scheduler using the profiler, LERWF-pro, has an average

response time equal to 37% of the average response time for FCFS. For the scheduler

using pedect information, LERWF-act, the average response time is 14% of tbat of FCFS.

In terms of throughput, LERWF-pro shows a 9% increase over FCFS, while LEWF-act

shows a 1% increase. The 23% difference in mean response times is not caused by

difficulties in distinguishing between different executables. In general, the jobs are run

in the "correctn executable order ao that the executabfes with the least work are Min

before the oaes wit h more. The problem arises in distinguishing between different jobs

involving the same executable. In this case, the jobs requiring more processors are run

first, since it is expected that the more processors available, the shorter the job1 (a result

that may not necessarily be true in a real workload). As a result, when the profiler is

used for scheduling, several jobs with short execution times but requiring few processors

are delayed until the end of the test, after longer jobs with more processors have finished.

It is expected that this difficulty would be overcome to a large degree if the jobs' memory

usage were taken into account (assuming a correlation exists in general between memory

usage and execution lengt h).

LERWF-fill-pro requires an even larger percentage improvement to achieve the per-

formance of LERWF-fill-act. In this case, LERWF-fill-pro has a mean response time

equal to 73% of that of FCFS-611, while LERWF-fill-act has a mean response time of

37% of that of FCFS-fill, The total times for the tests are 21% and 13% worse than

FCFS-811, respectively. The problem with LERWF-fill-pro, as discussed in Section 5.7, is

the heuristic for assigning processors to jobs. Near the end of the test, many preempted

jobs require the same processors and thus cannot be run simultaneously. Since the mean

response tirne of LEWF-fill-pro is much lower than that of LERWF-fill-pro, it is also

clear that it is possible to improve the response times of this algorithm significantly.

For EASY-act and EASY-pre-pro, there is not much difference between the perfor-

mance using perfect and imperfect knowledge. The average response time using imperfect

information with EASY-pre-pro is only 3% worse than the version using perfect infor-

mation, even when taking into account the overhead due to preemption. The utilization

is almost 5% lower. The preemptive algotitbm has a lower average wait time, but more

than makes up for it because jobs require longer, on average, to complete. There are

three potential causes of this. First, there is additional overhead associated with pre-

empting jobs. Second, preempted jobs require more wall-clock time from when tbey are

first started until they finish. Third, inaccurate estimates have an effect on backfilling.

Because high estimates are used (as explained in Section 6.2.3), fewer jobs can be back-

filled without risking violating the guarantee that no job will be delayed by any job with

'This is caused by the jobe that were used to seed the profiler's repoeitoty. For any job, the amount of
work was selecteà according to the wotkload distribution, and the number of processors wae selected from
a uniform distribution. The run time of tbat job waa then calculated to be approximately proportional
to the ratio of the work to the number of proceseors, leading to a negative correlation between the run
tirne and the number of procesaors.

a later submission time. Despite these factors, the performance of the two algorithms

is very close. This implies that EASY-pre-pro could be an alternative to EASY at sites

where the users want the benefits of EASY, but want to have the option of allowing the

scheduler to estimate job run times.

Thus, for the preemptive schedulers, the mean response times using irnperfect knowl-

edge are good, but are farther from the ideal than for the non-preemptive schedulers.

Overall, the schedulen using the imperfect information of the profiler vastly outperform

the FCFS schedulers. For al1 but the LERW Ffill-pro algorithms, the algorithms using

the profiler get 75% of the way to the minimum average response time attainable using

perfect infor mat ion.

6.2.5 Summary

Tbe experiments lead to the following main results.

1. Out of the three basic, non-preemptive algorithms, FCFS is the worst, EASY-act

is better, and LEWF-act is the best.

2. Filling reduces the mean response times attainable for ail disciplines.

3. Preemption reduces the mean response times attainable for most disciplines.

4. The heuristic that the preemptive disciplines use for assigning processors to jobs

has a large impact on the mean response times attainable using those disciplines.

5. Schedulers that use application knowledge can attain lower mean response times

t han t hose t hat do not .

6. In many cases, schedulers that use the imperfect knowledge from the profiler can at-

tain most of the possible knowledge-related improvements to mean response times.

Chapter 7

Conclusions and Future Work

Analysis of log files obtained from one multiprocessor system and two NOWs showed

that classifying jobs by executable, user and degree of parallelism led to coefficients of

variation in wall-dock run time much lower than for al1 the jobs in the entire system.

This led to the idea that it is possible to estimate run times for jobs classified in this way

much more accurately than would be possible only using information about the entire

system.

A database called a Historical Profiler was proposed in Chapter 4 to take advantage

of this result. To increase the reliability of the software and decrease the development

time, the profiler was built on top of LSF and a Job and System Information Cache.

This design choice made i t relat ively easy to obtain the data required by the profiler and

facilitates putting the profiler into practice a t a production site. The one disadvantage

it had was that it constrained the design to the information and mechanisms provided

by LSF.

It was decided that the profiler should have three features that would be useful to a

scheduler:

1. A metbod of obtaioing an execution time estimate wit h an error tolerance.

2. A method of obtaining an approximate execution time function with error ranges.

3. Hypothesis testing that can determine whether, wit h a particular level of confidence,

one job's mean execution time will be greater than another's by a specified amount.

The profiler consists of two parts. The lower part is a repository containing data that

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 89

is indexed by executable and user, but further classifies jobs by the number of processors

used, the memory usage, and the execution time. This design allows the profiler to

obtain accurate predictions by clôssifying jobs according to executable, user, and level

of parallelism. It also allows the estimates to become even more accurate if the problem

size is inferred from the memory usage and as the execution of the job progresses. If the

duration of the job is known to be greater than a particular value, any historical jobs

that did not run at longer than the current duration can be ignored when estimating the

job's execution time.

The second half of the profiler, above the repository, consists of functions for efficiently

manipulating the repository data into a form easily usable by the scheduler. These

functions are needed because several complicated statistical techniques are required to

transform the raw data to support the three specified features.

In order to test the Historical Profiler, scheduling disciplines were required. Chapter 5

introduced three basic algorithms, FCFS, LEWF, and EASY, with filling and non-filling

versions of the first two algorithms. In addition, preemptive variants of LEWF and

EASY were proposed. These algorithms were chosen because they were either well-

known, or simple, or known to have good performance in certain situations. Much of the

functionality required to implement the algorithms was already provided by function calls

to LSF or the JSIC. Without this support, the impiementation would have been much

more difficult. It would have been necessary to build an interface for submitting jobs and

examining the status of jobs, hosts and queues. A method of starting, preempting and

resuming parallel jobs on a network of workstations would have had to be implemented.

Finally, information about the resource usage of al1 jobs in the system would have bad

to be obtained for use by the Historical Profiler. With LSF, the log files already store

most of the required information.

The most important results of this thesis arose from the experiments discussed in

Chapter 6. Of the non-preemptive algorithms, LEWF had the best response time, fol-

iowed by EASY, while FCFS was worst, and this ordering was evident for most of the

variants of these three algorithms. The addition of preemption proved to be beneficial

for most of the algorithms that exploited it. For most algorithms, it resulted in smaller

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 90

mean response times. For the version of EASY that used the profiler, the addition of pre-

emption resulted in jobs not being killed when the profiler returned inaccurate estimates.

Filling also proved beneficial; it reduced the mean response times for al1 the algorithms

examined.

The results of further experiments resolved the primary issue of whether the use of

application knowledge derived from historical data could be used to improve the perfor-

mance of a scheduler. The addition of knowledge was beneficial in al1 cases. Schedulers

using even the imperfect knowledge of the profiler significantly outperformed the FCFS

algorithms that used no knowledge. In al1 but one case, the algorithms using the Histor-

ical Profiler were able to achieve over 75% of the performance improvements possible by

the addition of knowledge. For the remaining algorithm, LERW F-fill-pro, there was still

a large improvement over the no knowledge case, even though the performance was not

nearly as close to the performance of the comparable algorithm using perfect knowledge

as for the other algorithms. Overall, it is clear that the improvements in mean response

times due to using the Historical Profiler are substantial. The profiler is effective at

predicting the characteristics of jobs.

7.1 Future Research

This work may be extended in a number of ways. The parameters for testing the existing

algori t hms can be varied, the funct ionali ty of the Historical Profiler can be extended,

and different scheduling disciplines can be examined. The subsequent three sections

will discuss these different approaches to extending the results. First, other experiments

using the current algorithms will be discussed in Section 7.1.1. This will be followed

in Section 7.1.2 by a discussion of improvements related to the the Historical Profiler.

Finally, Section 7.1.3 will propose different scheduling disciplines that could be used for

furt her experiment at ion.

7.1.1 Varying the Parameters of the Experiments

There are several parameters in the test that could potentially affect the performance of

the Historical Profiler and the scheduling disciplines examined. Further experimentation

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 91

could be done to determine the sensitivity of the results to the parameters used in the

experiments. For instance, only one sequence of synthetic jobs was used for al1 the ex-

periments. Addit ional experiments using different sequences of pseudo-random numbers

to generate the synthetic workload would help increase confidence in the validity of the

results.

Another parameter of the experiments was the ioterarrival times of jobs. The in-

terarrival times were calculated so that the average utilization would be approximately

75%. Since the utilization of real systems Vary, it would be worthwhile to varying the

interarrival times to see how the relative performances of the algorithms change when the

utilization changes. In particular, the performance of the algori t hms wit h jobs having

interarrival times of zero would be interesting, since such tests would imitate the effects

of a large batch submission or a night queue that only starts processing its jobs after a

part icular t ime.

Tests with a more realistic workload could be done to verify the results of this thesis.

A parallel workload from a NOW site could be used to "generate" the applications t hat

are to be scheduled. Synt hetic applications wit h al1 the characteristics of the applications

frorn the log files could be submitted to the scheduler with the same interarrival times

as existed in the original system. If a number of NOW sites were used, such experiments

would provide strong evidence of the desirability of a given algorithrn. A tool for gener-

ating a workload from an LSF log file in such a manner would be extremely valuable for

both tuning a scheduler for a specific site and for systems software testing and evaluation.

This technique was not used for this research for three reasons. First, because there

are few parallel jobs in the NASA Lewis log files that are distributed over a period of

several months, the interarrival times are too long to make the test interesting. Second,

there is not enough variability in the number of processors allocated to jobs. Finally,

there are not enough jobs in the log files to both seed the Historical Profiler and have

different jobs for the test.

However, upon more thought, these difficulties can be rernedied. The actual inter-

arriva1 times in the log files can be ignored, and replaced by shorter, pseudwandornly

generated interarrival times as was doue for the actual experiments. The lack of variabil-

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 92

ity in the number of processors can be remedied by assumiog or calculating an execution

time function for each executable. This calculation could be done when there is enough

data available for the executable; otherwise, assuming the executable conforms to a set

of random values chosen from a reasonable range would be sufficient. Once this exe-

cution time function is known, a random number of processors can be assigned to the

job, as was done in this thesis. The final difficulty of too few jobs is a more difficult

problem. One solution is to continue to seed the database with random jobs, as was done

in these experiments, and use the "actual" jobs from the log files only for the jobs that

are scheduled.

Alternatively, installing the schedulers at existing production LSF sites could be in-

teresting. It would be difficult to make the same direct comparisons between the mean

response times of the algorithms as were done in t his thesis, since different jobs with dif-

ferent interarrival times would be scheduled. However, such installations would allow the

investigation of many issues. For instance, if the workload did not evolve significantly and

the tests were conducted over a relatively long period of time, using different scheduling

algorithms would allow general comparisons of mean response times. The number of jobs

in the queues at various times of the day could also be examined. In addition, the users'

reactions to the use of different schedulers would be wort hwhile investigating. Thus, t his

approach could lead to many interesting results.

7.1.2 Improvements Related to the Historical Profiler

In addition to examining the effects of changing the parameters of the workload, it is

also worthwhile investigating the effects of changing the various inputs to the Historical

Profiler. First, it would be interesting to determine the sensitivity of the schedulers to

the initial job data that the Historical Profiler has available. In the experiments for this

thesis, the profiler was seeded with a history of 25 jobs for each executable. The results

of experiments without initial data amilable to the profiler or with more data available

for some executables than others could also prove interesting. Such tests are particular

important considering that if the profiler were installed at a production site, it would

initially have no information about any executables.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 93

A second Historical Profiler parameter worth examining is the confidence interval

used in the estimates. In particular, the non-filling algorithms might be irnproved by

using less conservative estirnates from the profiler. Currently, the estimate is equal to

greatest value in a 95% confidence interval. If instead a much smaller confidence interval

were used, Say 6090, jobs with high variability would have relatively lower estimates and

would be scheduled sooner. Such a change would have a positive effect for short jobs

that are instances of executables with highly variable run times, since these jobs would

be less likely to wait for longer running jobs. However, it would have a negative effect

for long jobs that are instances of executables with highly variable run times since long

jobs could run before shorter jobs. Thus, the overall effect is uncertain.

There are several features of the Historical Profiler that could be changed to improve

the performance of the profiler and the strength of the results of the experiments. First,

because of limitations in the current version of LSF, neither the processor time nor

the memory usage were used by the profiler for making estimates. It is likely that the

inclusion of this data will increase the accuracy of predictions and reduce the difference in

mean response times between the schedulers using perfect and imperfect information. Of

course, for such information to affect the results of the experiments, a more complicated

workload specification would have to be used that includes both processor time and

memory usage. Real applications may have to be used, which would greatly complicate

the testing.

A further improvement would be to add methods that do not focus on predicting the

mean run time for executables, but instead can Say with some confidence t bat a given job

will finish in a certain amount of time. This could be done in the following way. Suppose

that there is a given job that is an instance of a particular executable with an observed

mean execution time with coefficient of variation greater than one. A method in the

Historical Profiler could use a hyperexponential cumulative distribution function with

the specified mean and variance to estimate a duration such that the actual duration of

the job will be less than this estimate a specified percentage of the time. Such estimates

would likely be more useful t han the current predictions of the remaining execution time.

To make the functioning of the Historical Profiler consistent, several changes would

CWAPTER 7. CONCLUSIONS AND FUTURE WORK 94

be required, but the basic design could stay the same. Al1 the job information required is

already in the repository, and methods of calculating the mean and coefacient of variation

already exist. The execution time function predictions of the Historical Profiler would still

be useful if the profiler were modified in this way; e~timates of the mean and coefficient of

variation would still be required, and dynamic and adaptive schedulers would still require

knowledge of the execution time function to determine how many processors to allocate

to specific jobs. The main changes would be adding new methods to the profiler interface

and adding a way to generate a cumulative distribution function with a specified mean

and coefficient of variation. In addition, for consistency, a new type of hypothesis testing,

wbich compares the distribution functions of jobs rather than just mean response t imes

with a confidence tolerance, would have to be implemented.

A further expansion of the Historical Profiler combined with the idea presented in

the previous section of generating a workload from log files could lead to a very powerful

scheduling combination. The profiler could be used not only to predict the execution

times of individual jobs, but also to determine the scheduling algorithm to use at a given

site.

Finally, there are several features of the Historical Profiler that were not used to

their full potential by any of the tests. Hypothesis testing was not used at all. The

approximation of the execution time function was used by the algorit hms, since they

obtained their point estimates for the execut ion time from the calculated execution time

function. However, the algorithms used did not take full advantage of this feature in the

way that a dynamic algorithm could. These algorithms will be discussed in more detail

in the next section.

7.1.3 Additional Scheduling Disciplines Worth Examining

This tbesis only discussed non-adaptive space sharing scheduling algorithms that did not

permit the migration of jobs. This is a small subset of al1 scheduling algorithms; it is

worthwhile considering the periormance of the profiler with other types of scheduling

disciplines.

Many of the performance problems of the LERWF algorithms were attributed to the

CHAPTER 7. CONCLUSIONS A N D FUTURE WORK 95

methods of assigning processon. The problems arose because preempted jobs could not

resume if the processors that they required were being used by anotber job, even if there

were a sufficient number of available processors in the system. This problem would be

avoided if the scheduling algorithms supported migration since suspended jobs would no

longer be required to use specific processors. It is likely that this addition would especially

improve the performance of the scheduling algorithms using imperfect information, since

these algorithms tended suffer from this problem more than those that used perfect

information. Thus, the difference in the mean response times of migratory versions of

the LERWF algorithm using perfect and imperfect information would probably be smaller

than the difference for the non-migratory versions examined in this thesis.

An examination of dynamic algorithms that use the profiler would be particularly

interesting. Currently, the profiler does provide execution time function approximations

for executables. As shown by Sevcik [Sev94], knowledge of the actual execution time

functions can be used by dynamic algorithms to find the processor allocations that achieve

close to optimal average response t imes. Thus, the approximated execut ion t ime funct ion

is likely to be useful to a dynamic algorithm. It would be worthwhile compariog the

performance of dynamic algorithrns that attempt to use the execution time function

approximation to minimize mean response time to EQ, a dynamic algorithm that assigns

an equal number of processors to each job in the system and that has been shown to

have good performance over a large range of workloads [PS95].

However, as mention in Section 4.3.2, actually using the Historical Profiler to obtain

these execution time function approximations is complicated by the fact that dynamic

jobs are being scheduled. With the static algorithms, it is relatively easy to approximate

the execution time function. A number of point estimates of the executable execution

times with different numbers of processors can be found. A curve can be fitted to these

point estimates to obtain the execution time function, as was done in t his t hesis. However,

w it h dynamic algorit hms, the processor allocations can change. If the allocations change,

such point estimates are no longer well-defined. If a job runs on four processors for ten

minutes, and then starts running on eleven processors for another ten minutes, it is

unclear how to use these times to approximate an execution time function. It does not

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 96

make sense to derive a single point estimate for a specific number of processors from

such a job. Thus, a more complicated method is required for the Historical Profiler to

approximatc the execution time functions for dynamic jobs. This method is left to future

research.

Future work is still required to address many of the issues raised by this thesis.

However, the most important issue, the issue on which other results can be built, has

been resolved. [t bas been shown that it is feasible to use a historical profiler to store

information about previously run parallel jobs, and that this information can be used to

predict the characteristics of future jobs. These predictions can irnprove the performance

of schedulers substantially.

Bibliography

[ACP951 T. Anderson, D. Culler, and D. Patterson. A case for NOW (networks of

workstat ions). IEEE Micro, pages 54-64, February 1995.

[ADV+95] R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu, T. E. Anderson, and

D. A. Patterson. The interaction of parallel and sequential workloads on a

network of workstations. In Proceedings O$ the 1995 ACM SIGMETRICS

Conference on Measurement and Modeling of Cornputer Systems, pages 267-

278, May 1995.

[A11781 A.O. Allen. Probability, Statzstics and Queueing Theory with Cornputer Sci-

ence Application. Academic Press, Toronto, 1978.

[AMB76] A.K. Agrawala, J.M. Mohr. and R.M. Bryant. An approach to the workload

characterization problem. Cornputer, g(6): 18-32, June 1976.

[Amd67] G. Amdahl. Validity of the single-processor approach to achieving large-

scale computing capabilities. In Proceedings of the 1967 A FIPS Con ference,

volume 30, AFlPS Press, pages 483-485, 1967.

[AS971 S.V. Anastasiadis and K.C. Sevcik. Parallel application scheduling on net-

works of workstations. To appear in: Journal of Parallel and Distributed

Computing, June 1997.

[BG96] T.B. Brecht and K. Guha. Using parallel program characteristics in dynamic

procesaor allocation policies. Performance Eualuation, 27(8):5 19-539, Octo-

ber 1996.

BIBLIOGRAPHY 98

David R. Cheriton. The V Distributed System. Communications of the ACM,

31 (3):3l4-333, March 1988.

R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. Architectural re-

quirements of parallel scientific applications witb explicit communication. In

Twentieth Annual International Conference on Cornputer Architecture, pages

2-13. IEEE Computer Society Press, 1993.

G. Cybenko, L. Kipp, L. Pointer, and D. Kuck. Supercornputer performance

evaluation and the Perfect benchmark. In Proceedings of the 1990 lnterna-

tional Conference on Supercomputing. ACM SICARCH Cornputer Architec-

ture News, pages 254-266, September 1990.

S.-H. Chiang, R. K. Mansharamani, and M. K. Vernon. Use of application

characteristics and limited preernption for run-to-completion parallel proces-

sor scheduling policies. In Proceedings of the 1994 ACM SIGMETRICS Con-

ference on Meusurement and Modelling of Computer Systems, pages 33-44,

May 1994.

M. Calzarossa and G. Serazzi. A characterization of the variation in time of

workload arriva] patterns. IEEE Transactions on Cornputers, C-34(2): 156-

162, February 1985.

M. Calzarossa and G. Serazzi. Workload characterization: a survey. Proceed-

ings of the IEEE, 81(8):ll36-1KiO, August 1993.

A.C. Dusseau, R.H. Arpaci, and D.E. Culler. Effective distributed scheduling

of parallel workloads. In Proceedings of the 1996 ACM SiGMETRICS Con-

fennce on Meosurement and Modeling of Computer Systems, pages 25-36,

1996.

M.V. Devarakonda and R.K. Iyer. Predictability of process resource usage:

A measurement-based study on UNIX. IEEE Transactions on Soflware En-

gineering, 15(12):1579-1586, December 1989.

BIBLIOGRAPHY 99

[DO911

[Dow88]

(DS8 I]

[EL2861

[EZLSS]

[FN95]

[CST91]

[HB Dg61

[Hot 961

F. Douglis and J. Ousterhout. Transparent process migration: Design alter-

natives and the Sprite implementation. Software: Practice and Ezperience,

21 (8):757-785, August 199 1.

L. W. Dowdy. On the part itioning of mult iprocessor systems. Technical

Report Technical Report 8806, Vanderbilt University, March 1988.

N.R. Draper and H. Smith. Applied Regression Anaipsis, 2nd ed. John Wiley

and Sons, Toronto, 1981.

D.L. Eager, E.D. Lazowska, and J. Zahorjan. Adaptive load sharing in homo-

geneous distributed systems. IEEE Transactions on Soflware Engineering,

12(5):662-675, May 1986.

D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup versus efficiency in

parallel systems. IEEE Transactions on Cornputers, 38(3):408-23, 1989.

D.G. Feitelson and B. Nitzberg. Job characteristics of a production parailel

scientific workload on the NASA Ames iPSC/ 860. In Proceedings of IPPS '95

Workshop on Job Scheduling Strategies for Parallel Processing, pages 215-

227, April 1995.

D. Ghosal, C. Serazzi, and S. K. Tripathi. The processor working set and

its use in scheduling multiprocessor systems. IEEE Transactions on Soflware

Engineering, 17(5):443-453, May 1991.

Mor Harchol-Balter and Allen B. Downey. Exploiting process lifetime distri-

butions for dynamic load baiancing. In Proceedings of the 1996 ACM SIC-

METRICS ConJerence on Measunment and Modeling of Computer Systems,

pages 13-24, May 1996.

S. Hotovy. Workload evolution on the Cornell Theory Center IBM SP2. In

Proceedings of IPPS '96 Workshop on Job Scheduling Strutegies for Parallel

P messing, paga 15-22, April 1996.

BIBLIOGRAPHY 100

S. Hotovy, D. Scheider, and T. O'Donnell. Analysis of the early workload on

the Corne11 Theory Center IBM SP2. In Proceedings of the 1996 ACM SIC-

METRICS Conference on Measurernent and Modeling of Computer Systerns,

pages 272-273, May 1996.

M. Kumar. Measuring parallelism in computation-intensive scien-

tific/engineering applications. lEEE Transactions on Computing, 37(9): 1088-

1098, Septernber 1988.

T. Kunz. The influence of different workload descriptions on a heuristic load

balancing scheme. IEEE Transactions on SoJlware Engineering, 1 ï(ï):ï%-

730, July 1991.

D. B. Leblang and R. P. Chase, Jr. Parallel software configuration manage-

ment in a network environment. Sofiware, 4(6):28-35, November 1987.

D.A. Lifka. The ANL/IBM SP scheduling system. In Proceedings of lPPS '95

Workshop on Job Scheduling Strategies for Parallel Processing, pages 187-

191, April 1995.

M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - A hunter of idle

workstations. In Proceedings of the 8th Intemation Conference on Distributed

Cornputer Systerns, 1988.

K.A. Lantz, W.I. Nowicki, and M.M. Theimer. An empirical study of dis-

tributed application performance. lEEE Transactions on Soflware Engineer-

ing, 11(10):1162-1174, October 1985.

LSF Users's Guide. Platform Computing Corporation, 5001 Yonge St, Suite

1401, North York, ONT, Canada M2N 6P6, 1996.

S. Majumdar, DL. Eager, and R.B. Bunt. Scheduling in multiprogrammed

parallel systems. In Proceedings of the 1988 ACM SIGMETRICS Conference

on Measunment and Modelling of Computer Systems, pages 104-1 13, May

1990.

BIBLIOGRAPHY 101

S. Majumdar, D.L. Eager, and R.B. Bunt. Characterization of programs for

scheduling in multiprogrammed parallel systems. Performance Eualuation,

l3(2): 109-1 30, February 1991.

M. Mutka and M. Livny. The available capacity of a privately owned work-

station environment. Performance Eualuation, 12:269-284, July 199 1.

R. Mirchandaney. D. Towsley. and J .A. Stankovic. Adapt ive load sharing

in heterogeneous distributed systems. Journal of Parallel and Distributed

Cornputing, 9(4):331-346, August 1990.

M. W. Mutka. Estimating capacity for sharing in a privately owned worksta-

t ion environment. IEEE Transactions on Soflware Engineering, l8(4):319-

328, April 1992.

T.D. Nguyen, R. Vaswani, and J. Zahorjan. Parallel application characteriza-

t ion for mult iprocessor scheduling policy design. In Proceedings of IPPS '96

Workhop on Job Scheduling Strategies for Parallel Processing, pages 105-

118, April 1996.

T.D. Nguyen, R. Vaswani, and J. Zahorjan. Using runtime measured

workload characteristics in parallel processor scheduling. In Proceedings of

IPPS '96 Workshop on Job Scheduling Strategies jor Parallel Processing,

pages 93-104, April 1996.

E. W. Parsons. Using Resource Requinmenkr in Multiprogmmmed Multipro-

cessor Scheduling. Ph. D. thesis, University of Toronto, Toronto, Ontario,

Canada, 1997.

J. Pasquale, B. Bittel, and D. Kraiman. A static and dynamic workload

characterization study of the San Diego Supercornputer Center Cray X-MP.

In Proceedings of the 1991 ACM SiGMETRICS Conference on Meusurement

and Modeling of Cornputer Systems, pages 218-219, 1991.

BIBLIOGRAPHY 102

[PD891

[PS95]

[P S96]

[RS LS95]

[SCZH96]

K.H. Park and L. W. Dowdy. Dynamic partitioning of multiprocessor systems.

International Journal of Parallel P mgmrnming, 18(2):91-120, February 1989.

E. W. Parsons and K.C. Sevcik. Multiprocessor scheduling for high-variability

service time distributions. In Proceedings of IPPS '95 Workshop on Job

Scheduling Strategies for Paralbl Processing, pages 76-88, April 1995.

E.W. Parsons and K.C. Sevcik. Benefits of spwdup knowlrdge in memory-

constrained multiprocessor scheduling. Performance Evaluation, 27(8):253-

272, October 1996.

M. E. Rosenkrantz, D. J . Schneider, R. Leibensperger, and M. Shore. Re-

quirements of the Corne11 Theory Center for resource management and pro-

cess scheduling. In Proceedings of lPPS '95 Workshop on Job Scheduling

Strategies for Parallel Processing, pages 192-203, April 1995.

J . Skovira, W. Chan, H. Zhou, and S. Hotovy. The EASY-LoadLeveler API

project . In Proceedings o j IPPS '96 Workshop on Job Scheduling Stmtegies

for Parallel Processing, pages 23-28, April 1996.

K.C. Sevcik. Characterizations of parallelism in applications and their use in

scheduling. In Proceedings of the 1989 ACM SIGMETRICS Conference on

Meusurement and Modeling of Computer Systems, pages 171-1 BO, May 1989.

K. C. Sevcik. Application scheduling and processor allocation in multipro-

grammed parallel processing systems. Performance Evaluation, 19: 107-1 40,

1994.

K.C. Sevcik, A.I. Levy, S.K. Tripathi, and J. Zahorjan. Improving approxi-

mations of sggregated queueing network subsystems. In K.M. Cbandy and

M. Reiser, editon, Computer Perfonnance, pages 1-22. North Holland Pub-

lishing, 1977.

BIBLIOGRAPHY 103

[T L89]

[WOT+95]

[Wu931

[Zho88]

[ZZ W Dg31

M. M. Theimer and K. A. Lantz. Finding idle machines in a workstation-

based distributed systern. IEEE Transactions on Software Engineering,

15(11): 1444-1458, November 1989.

S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2

programs: Characterization and methodological considerations. In Proceed-

ings of the 22nd Annual International Symposium on Cornputer Architecture,

pages 24-36, Junc 1995.

CS. Wu. Processor scheduling in mult iprogrammed shared memory numa

mult iprocessors. M. Sc. t hesis, Depart ment of Corn pu ter Science, Uni versi ty

of Toronto, Toronto, Ontario, Canada, October 1993.

S. Zhou. A trace-driven simulation study of dynarnic load balancing. tEEE

Transactions on Soflwan Engineering, l4(9): 1327-1341, September 1988.

S. Zhou, X. Zheng, J . Wang, and P. Delisle. Utopia: a load sharing facility for

large, heterogenous distributed cornputer systems. Software: Practice And

Etperience, 23(12): 1305-1 336, December 1993.

