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Abstract 
 Biological neural networks continue to inspire new developments in algorithms and 
microelectronic hardware to solve challenging data processing and classification problems. Here, we 
survey the history of neural-inspired and neuromorphic computing in order to examine the complex 
and intertwined trajectories of the mathematical theory and hardware developed in this field. Early 
research focused on adapting existing hardware to emulate the pattern recognition capabilities of 
living organisms. Contributions from psychologists, mathematicians, engineers, neuroscientists, and 
others were crucial to maturing the field from narrowly-tailored demonstrations to more 
generalizable systems capable of addressing difficult problem classes such as object detection and 
speech recognition. Algorithms that leverage fundamental principles found in neuroscience such as 
hierarchical structure, temporal integration, and robustness to error have been developed, and some 
of these approaches are achieving world-leading performance on particular data classification tasks. 
In addition, novel microelectronic hardware is being developed to perform logic and to serve as 
memory in neuromorphic computing systems with optimized system integration and improved 
energy efficiency. Key to such advancements was the incorporation of new discoveries in 
neuroscience research, the transition away from strict structural replication and towards the 
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functional replication of neural systems, and the use of mathematical theory frameworks to guide 
algorithm and hardware developments. 

Introduction 
The mammalian brain has been the subject of scientific inquiry for decades, largely due its 

unique computational capabilities and its inherent ability to adapt and learn within a modest power 
budget (<50W). Many attempts to emulate the characteristics of biological neural networks have 
been made, especially in the microelectronics field where specialized brain-inspired hardware is 
being developed to fabricate “smart” systems (Kumar 2013). However, limitations in our 
understanding of how biological neural networks function have hindered the ability of engineered 
systems to solve challenging problems. Discovering the mechanisms of biological neural system 
functionality is crucial for the next generation of electronic hardware to meet the data science and 
“big data” demands of the 21st century. For instance, decades of research and billions of dollars have 
been invested in various forms of pattern recognition, and while substantial improvements have been 
made, synthetic electronic systems still cannot approach the abilities of human perception on 
particular problems (Gelly et al., 2012; Borji and Itti, 2014). This may be due in part to the primary 
focus on replicating the cortex for most neuromorphic and neural-inspired systems, whereas a more 
comprehensive approach that incorporates the modulatory role of other brain regions (striatum, etc.) 
might provide new breakthroughs. 

A major challenge to harnessing the mammalian brain’s computational capabilities is the lack 
of detailed understanding of its operating principles. Despite those limitations, neuroscience and 
psychology research have provided a strong foundation for the development of mathematical 
algorithms such as artificial neural networks (ANNs) and machine learning (Figure 1). Early work by 
psychologists led to theories on learning while the field of neuroscience has brought insight into how 
individual neurons may represent and process information via the development of tools such as the 
patch clamp technique (Neher et al., 1978). Other technologies such as in vivo electrodes have been 
crucial to neuroscience discoveries, including the activity of place cells and their impact on our 
understanding of how neural systems may use timing to encode information (O’Keefe, 1976; 
O’Keefe and Recce, 1993). Recently, neuroscientists have begun to appreciate the representational 
capacity of populations of neurons - a shift made possible by advances in large-scale recording 
technologies that permit simultaneous monitoring of thousands of neurons (Stevenson and Kording, 
2011). Churchland et al.’s (2012) work with multi-electrode recordings highlighted the importance of 
considering dynamics in population coding, specifically the role of oscillatory-like neural activity for 
preparing and conducting physical activities such as arm movement. Other technology advances in 
techniques such as live brain imaging have improved the correlation of regional brain activity to 
particular computational tasks (Villringer and Chance, 1997; Price, 2012). On the other end of the 
scaling spectrum, advances in molecular-level investigations of neural circuitry have also shaped our 
understanding of the role played by different cell types in the brain (He et al., 2012; Hu et al., 2014). 
A major challenge for the neuroscience field is the difficulty in making the connection between 
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neural activity and function across scales. High performance computing resources have been 
leveraged to use information theory to understand how individual cell-based phenomena such as 
adult neurogenesis can impact the overall computational capability of a large network (Aimone et al., 
2014).  New initiatives at U.S. federal agencies are bridging this gap between the molecular biology 
of individual neurons and cognitive functions (Cepelewicz, 2016), and the Brain Research through 
Advancing Innovative Neurotechnologies (BRAIN) initiative is focused on developing new tools for 
such measurements (Insel et al., 2013). The European Human Brain Project (HBP) is organized 
around the idea of improving our understanding of the brain, and also has neuromorphic computing 
as a major thread of research (Calimera et al., 2013). Considerations for the scaling of neuromorphic 
systems indicate the difficulty in emulating biological neural systems under the constraints of both 
mature and newly developed hardware (Hasler and Marr, 2013). With new technology to address 
these scientific questions, new theories of neural computation should be forthcoming and thus aid the 
development of neural-inspired algorithms and hardware systems to address existing challenges in 
data processing and analysis. The history of neuromorphic computing is complex (Boahen, 2005; 
Hammerstrom, 2010; Indiveri et al., 2011; Schmidhuber, 2015), and the purpose of this review is to 
highlight the important contributions made to the field by researchers who leveraged new discoveries 
in neuroscience, generated approaches aimed at functional replication of neural systems, and 
developed rigorous mathematical analyses of algorithms and hardware systems. 

Historical development of data-driven computing  
The early 20th century witnessed many advances in neuroscience and psychology, including 

developments in theories around learning, information representation, and neuroanatomy. 
Psychologists and neuroscientists at the time were among the earliest researchers to explore ideas in 
regard to viewing neurobiological organisms as templates for developing computational systems. 
Together, the fields of neuroscience and psychology led to the rise of data-driven computing methods 
in the form of ANNs and machine learning (Figure 1). Data-driven computing - in contrast to 
numerical computing which relies on the construction of closed-form equations and explicit 
programming – relies on the processing of example data to produce generalized models for analyzing 
new data and/or mapping data to new representations. This branch of computing uses data processing 
algorithms that mimic the anatomy of neural systems with layers of computing units (neurons) 
spanned by massive numbers of connections between computing units. For the purposes of our 
discussion here, we refer to the mimicry of neurobiological anatomy for computing as “neuromorphic 
computing” in contrast to methods such as machine learning which can be characterized as “neural-
inspired computing” in that the algorithms are driven by high-level concepts of human cognition such 
as decision-making and reinforcement-based learning. Within machine learning, two sub-branches 
emerged with statistical machine learning focusing on static problems and dynamic machine learning 
focusing on problems where the time domain needs to be included. With this suite of algorithmic 
developments, hardware systems were developed to simulate biological neural systems and to 
implement neuromorphic and neural-inspired systems for addressing particular application areas.  
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Neural modeling and simulation  

By providing insight into how neurobiological systems compute, neural modeling and 
simulation platforms hold great promise for supporting the development of neuromorphic and neural-
inspired algorithms and hardware. Simulations of neural tissue have been conducted many years, 
starting with the small pattern-recognition learning network simulated by Farley and Clark (1954, 
1955) using an IBM 704 digital computer. Even at the time of these early simulations, the limitations 
of using conventional off-the-shelf hardware were readily apparent, particularly in regard to scaling 
and density (1011 neurons and 1015 synaptic connections in ~1000 cm3) as well as the separation of 
memory and processing. Simulations of biological neural systems have advanced in conjunction with 
the advances in microelectronics and computational hardware. The first large-scale brain simulation 
effort in Europe, the Blue Brain Project, was largely focused on supercomputer simulations with high 
performance computing resources (Markram, 2006). Subsequent work from this project demonstrated 
a detailed simulation of cortical circuitry by integrating multiple sources of experimental data 
(Markram et al., 2015). Additional groups have leveraged similar resources to simulate neural tissue, 
including a thalamus-cortex model to reconstruct functional magnetic resonance imaging signals 
(Izhikevich and Edelman, 2008), and a 109 neuron/1013 synapse cortical system with simulated EEG 
signals (Ananthanarayanan et al., 2009). The Semantic Pointer Architecture Unified Network (Spaun) 
was a large-scale (25 million neurons) computational model of multiple human brain regions capable 
of performing tasks such as image recognition and sequence recall (Eliasmith et al., 2012; Stewart 
and Eliasmith, 2014). This neural model leveraged the Neural Engineering Framework (NEF) 
approach wherein representations of information were mapped into the spatiotemporal domain with 
“spiking” neural networks and synaptic connections between neurons were used to approximate 
mathematical operations (Eliasmith and Anderson, 2003). Spiking neural networks (SNNs) are neural 
models that capture essential aspects of neural operation, such as spike dynamics, synaptic 
conductance, and plasticity while leaving out less central features such as axonal voltage propagation 
and spatial processing due to dendritic computations. These models represent a compromise between 
simulation run-time and biological fidelity which makes them well-suited for large-scale neural 
simulations and for the development of energy-efficient, fault-tolerant neuromorphic hardware 
devices. Due to the parallel nature of neural computation, a number of research groups have 
implemented parallel versions of SNN simulators for use on supercomputing clusters (Gewaltig et al. 
2007), graphics processing units (GPUs) (Beyeler et al., 2015; Nowotny, 2010), and even specialized 
neuromorphic chips (Esser et al., 2013; Thomas et al., 2013). One example of a highly parallelized 
SNN simulator is CARLsim, an open source C/C++ based SNN simulator that allows for the 
execution of spiking neuron models with realistic spike dynamics on both generic x86 CPUs and 
standard off-the-shelf NVIDIA GPUs (Beyeler et al., 2015). The parallelized GPU implementation of 
CARLsim was written to optimize four key performance metrics: parallelism, thread divergence, 
memory bandwidth, and memory usage (Nageswaran et al., 2009). CARLsim uses a number of 
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approaches to achieve high performance on GPUs such as using a hybrid neuron/synapse-parallelism 
scheme, performing data buffering to reduce thread divergence, and utilizing sparse representation 
techniques such as address event representation to reduce memory and bandwidth usage. CARLsim 
distinguishes itself from other simulation platforms by providing a number of important features 
together in a single software package. These features include platform compatibility (Linux, Mac OS 
X, and Windows), a test suite for code verification, rigorous code documentation, a MATLAB 
toolbox for visualization of neuronal and synaptic information, support for several spike-based 
synaptic plasticity mechanisms, and a network-level parameter tuning framework (Carlson et al., 
2014). 

Early neuromorphic algorithms and hardware systems 

Biological neural systems have long served as an inspiration for developing new algorithms 
or engineering hardware systems to perform particular tasks. The earliest neuromorphic and neural-
inspired systems replicated large-scale mechanisms observed in biological organisms such as reflex 
movements and maze-finding. And due to the limited knowledge of how neurobiological systems 
functioned, these systems were largely phenomenological. As the neuroscience field matured and 
more detailed knowledge of neural tissue functionality was discovered, researchers were able to 
improve the specificity and complexity of neural-inspired hardware. Many of the neural-inspired 
algorithms and hardware developed in the first half of the 20th century stemmed from research in both 
neuroscience and psychology (Figure 1). Psychologists H.D. Baernstein and C.L. Hull (1931) 
developed a model hardware system to replicate conditioned reflexes using a battery powered system 
made of push buttons (sensory organs), electrochemical cells (memory storage), thermoregulatory 
switches (synapses), and copper wire (nerves) (Dalakov 2016). A similar biomimicry hardware 
system developed several decades later was the homeostat (Ashby, 1960). Designed to emulate the 
homeostatic properties of biological organisms, this electromechanical system contained several 
control units with variables that were continually compared against target values. Input into the 
system that caused changes in the variables triggered internal feedback that restored the variables 
back towards their targets and thus stabilized the system. In addition to biological functions such as 
reflexes, researchers also developed maze-solving neuromorphic hardware (Ross, 1933; Bradner Jr, 
1937). These systems largely relied on classical conditioning via trial-and-error exploration, with 
failed paths being retained and avoided on subsequent trials. Later, maze-navigating systems such as 
the Theseus magnetic mouse developed by Claude L. Shannon (1951) leveraged existing hardware 
such as telephone relay circuits and mechanical motors to enable the trial-and-error navigation of 
user-defined mazes.  

A significant disadvantage for many of these early neuromorphic systems is that they lacked 
formalized algorithmic guidance and relied largely on empirically-observed phenomena. As such, 
large-scale behaviors (e.g. reflexes and maze-finding) could be modeled phenomenologically with 
trial-and-error, but only under strictly defined conditions meaning the systems lacked the adaptive 



 6

properties exhibited by biological organisms. As the fields of neuroscience and psychology advanced, 
more detailed and algorithm-directed demonstrations of biological functions in neuromorphic 
hardware were developed. One of the earliest examples of the development of a theoretical 
framework for neural-inspired algorithms occurred in 1943 when Warren E. McCulloch, a 
neurophysiologist, worked with Walter H. Pitts, a self-trained logician, to develop the McCulloch-
Pitts neuron model (1943). This model was the first step for ANN research by incorporating several 
neuroscience principles, including neuron spiking, limited temporal summation of inputs, and 
inhibitory and excitatory connections within networks. Also discussed by McCulloch and Pitts was 
the phenomenon of learning, which at the time they felt could “require the possibility of permanent 
alterations in the structure of nets” via changes in the excitation threshold of neurons (McCulloch and 
Pitts, 1943). While the McCulloch-Pitts neuron was an important development, a mechanism for 
learning was not fully explored until work pioneered by the psychologist Donald O. Hebb (1949). 
Hebb’s rule of connected cells firing in concert to “induce lasting cellular changes” postulated a basic 
mechanism for synaptic plasticity that was later demonstrated in vitro in biological neurons (Dan and 
Poo, 2004). This Hebbian learning principle along with the mathematics of McCulloch-Pitts neurons 
were part of the inspiration behind Marvin Minsky’s Stochastic Neural Analog Reinforcement 
Calculator (SNARC), a vacuum-tube based hardware system capable of simulating “rat-in-a-maze” 
type problems (Minsky, 1952). The machine’s “synapses” were initiated with random values, but the 
weight probabilities changed over the course of the system operation based on the correctness of each 
path choice selected while navigating the maze. 

The selection of maze-finding as an application for the earliest neuromorphic system was to 
be expected given that it represents one of the simplest classes of problems with well-defined and 
static constraints and boundaries. More challenging problems such as recognizing patterns within 
noisy data require more sophisticated algorithm and hardware development. The Perceptron, invented 
by Frank Rosenblatt (1958, 1960), was one of the first algorithms to be drawn from neuroscience 
ideas with regard to individual neurons and how they were perceived to process information. The 
concept behind the Perceptron was to use thresholding integrators (neurons) to act on a set of inputs 
with connections of variable strength (synapses). After training the Perceptron on labeled data, new 
unlabeled data input into the system is linearly separated into different classes. Initially simulated on 
an IBM computer, the Perceptron was eventually built in custom hardware known as the Mark I 
Perceptron, a 3-layer classifier that could learn visual patterns (Hay et al., 1960). The Mark I 
Perceptron was built using a 20x20 array of semiconductor photodiodes as the sense layer, an 
association layer with fixed weights connected to the sense layer, and a response layer with variable 
weights in the form of motor-adjusted potentiometers connected to the association layer (Tappert, 
2011). This work represented a substantial shift away from traditional neural-mimicry and towards 
leveraging mathematical formulations to guide the assembly of specialized hardware. Later 
developments included multilayer perceptrons (Rosenblatt, 1962); however, concerns about the 
applicability of perceptrons to data that is not linearly separable led to reduced interest in Perceptron-
based algorithms (Minsky and Papert, 1969). In this same timeframe, Bernard Widrow and Ted Hoff 
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(1960a) developed the least-mean-squares algorithm, a simplified method to estimate gradients and 
minimize the error between an input and target vector during training procedures. The algorithm was 
implemented in a hardware system called ADALINE (Adaptive Linear Neuron) which relied on 
potentiometers and switches to demonstrate learning. Widrow later developed a three-terminal 
electrochemical resistor with memory device (termed a “memistor”) to take the place of large 
potentiometers and to improve the resolution of changes in the synaptic weights (Widrow, 1960b). In 
addition to several hardware differences with the Perceptron, the ADALINE system sent weights 
directly between layers instead of thresholding weighted sums of inputs. Later developments by 
Winter and Widrow (1988) included a second iteration termed MADALINE which consisted of 
“many” ADALINE elements and was capable of handling classification problems in which the data 
was not linearly separable, which as mentioned earlier was a primary disadvantage of the Perceptron. 

Advances in neuroscience inspire developments in neuromorphic algorithms and hardware 
  
The algorithmic framework provided by McCulloch, Pitts, Hebb, Widrow, Rosenblatt and 

others laid a strong foundation for future decades of neural-inspired algorithms theory and hardware 
development driven by real-world applications. One of the first practical application drivers was 
pattern recognition, a term defined as “the extraction of the significant features from a background of 
irrelevant detail” by mathematician O.G. Selfridge (1955). Around this time, pattern recognition 
gained popularity amongst experimental psychologists and mathematicians (French, 1954; Dinneen, 
1955; Fitts et al., 1956). In these examples, the focus was on understanding how visual patterns such 
as written characters and shapes within noisy backgrounds were detected. Whereas the work 
described earlier such as the Perceptron, the SNARC system, and other maze-navigating hardware 
were designed for pattern recognition applications, they were motivated by non-specific generalized 
concepts found in biological neural systems. The next generation of pattern recognition 
neuromorphic systems were more directly motivated by neuroscience research on specific neural 
systems such as the studies performed by neurophysiologists David Hubel and Torsten Wiesel (1959) 
on the V1 region of the mammalian visual cortex. Overall, Hubel and Wiesel’s studies supplemented 
earlier work that cast sensory regions that correspond to activity in a particular neuron (receptive 
fields) as “feature detectors” (Barlow, 1953). Although the concept of receptive fields had been 
around for some time, Hubel and Wiesel’s studies provided a new level of detail in regard to the 
selectivity of individual neurons to particular shapes and shape orientations. In addition, their work 
highlighted the importance of combined excitatory and inhibitory regions within fields to produce 
selectivity to particular stimuli, to improve contrast, and to aid in the perception of movement. The 
first algorithm designed to mimic visual perception using a hierarchical cascading network structure 
was the Cognitron and subsequently the Neocognitron developed by Kunihiko Fukushima (1975; 
1988). Building off neuroscience work on individual neuron representations in the visual system, this 
learning algorithm was demonstrated to be resilient to noise, changes in positon, and geometrical 
distortion, which naturally led this approach to be used to detect 2D patterns in image data such as 
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handwritten digits. The Neocognitron is an example of an unsupervised learning algorithm wherein 
the data is not labeled and classification accuracy is determined after the data is processed. On the 
other hand, supervised learning methods are used in cases where the data is labeled beforehand, and 
test data are evaluated in comparison to ground truth labeled data. A significant neural-inspired aspect 
of the Neocognitron design was the specialization of different “cells” within the network: receptor 
“cells” that receive the input data, “S-cells” which act as feature extractors from the raw data, “C-
cells” which receive fixed connections from S-cells and allow for variations in stimuli to impact the 
network consistently, and “V-cells” which act as inhibitory cells to help confer relevance to extracted 
features. This specialization of processing components within the Neocognitron represented a major 
departure from previous neural-inspired algorithms which relied on large numbers of identical 
processors in massively parallelized structures to garner computational advantages. It also served as 
an example of the shift away from simple structural replication to a focus on the operational 
functionality of neural systems. Later, a digital VLSI hardware implementation of the Neocognitron 
algorithm was demonstrated on a character recognition problem with an improved and more noise-
robust recognition rate (White and Elmasry, 1992).  Although the Neocognitron contains both 
excitatory and inhibitory connections within its hierarchical network structure, the lack of recurrent 
connections limits its use on time-series data. Eventually, the blossoming electronics industry led to 
the development of very large scale integrated (VLSI) circuit hardware systems for emulating the 
retina portion of the visual system (Mead and Mahowald, 1988). In this system, complementary 
metal oxide semiconductor (CMOS) transistors were operated in the analog regime to create a 48x48 
pixel artificial retina with biologically-relevant properties such as edge sensitivity and spatio-
temporal filtering. The VLSI silicon retina developed by Delbruck (1993) used correlation-based 
computation to produce 2D “direction selective” outputs for detecting motion in video while 
consuming only 5 μW per pixel. The neuromorphic retina fabricated by Kameda and Yagi (2003) 
improved upon the design and imaging capabilities of such systems by mimicking both the sustained 
and transient responses of ganglion cells in the vertebrate retina. This provided the system with the 
capability to “perceive” both static and dynamic images whereas previous artificial retinas only 
replicated one of those functionalities. The system also incorporated compensating circuitry to reduce 
noise in captured image frames caused by voltage mismatches in subcomponents. Okuno et al. (2015) 
recently developed an emulator for replicating the imaging capabilities of a biological visual system. 
Using a VLSI silicon retina and additional hardware, a complex assortment of cell types such as 
amacrine cells and bipolar cells were incorporated into the emulator to generate graded potentials and 
perform visual system computations for detecting static and dynamic objects. 

In addition to the visual system, the auditory system of biological organisms has also been a 
subject of interest for the neuromorphic computing community. Lyon & Mead (1988) developed an 
analog microelectronic cochlea by modeling the ear as a multi-stage frequency filter with active gain 
for rapid adaptation. The cochlea chip contained transconductance amplifiers used in subthreshold 
mode as active switching devices and in threshold mode as capacitors. An important demonstration 
from this system was the property of “scale invariance,” a phenomenon that has been measured in 
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biological cochleas wherein the output signal remains unchanged at different points throughout the 
cascaded structure of the system (Talmadge et al., 1998).  However, the original silicon cochlea 
system was sensitive to many design parameters such as mismatches in transistor characteristics, and 
a new system designed to address these issues resulted in a larger and more complex circuit (Watts et 
al., 1992; Douglas et al., 1995). Although balancing power efficiency, functionality, and design 
complexity within these systems is difficult, Chicca et al. (2014) recently highlighted approaches to 
mitigate the circuit complexity of neuromorphic systems while maintaining computational 
functionality. 

Resurgence in artificial neural network and neuromorphic computing research 

As mentioned previously, the limitations of Perceptron and related algorithmic approaches led 
to a decline in the neural-inspired computing field for many years, but over time, researchers 
developed new neural-inspired and neuromorphic algorithms. J.J. Hopfield (1982, 1984) introduced a 
single-layer neural network for recognizing patterns that had distinct differences from earlier 
Perceptron-based networks. In contrast, to feed-forward Perceptron networks where all connections 
are directed from input neurons to output neurons, Hopfield Networks contain cyclic recurrent 
couplings that provide feedback from output neurons back to input neurons. This type of recurrent 
neural network (RNN) architecture is observed in biological neural systems such as the hippocampus, 
and Hopfield networks have been used for data clustering (Maetschke and Ragan, 2014) and data 
restoration (Paik and Katsaggelos, 1992). Fusi et al. (2000) developed a RNN in VLSI hardware 
containing excitatory and inhibitory neurons with memory storage in plastic synapses, and 
subsequently this technology was matured to demonstrate Hebbian-based learning with 56 plastic 
synapses on a 0.6 μm CMOS chip (Chicca et al., 2003). One of the main limitations of Hopfield-type 
networks is the limited storage capacity of memorized patterns, calculated by Amit et al. (1987) for a 
Hopfield network of N neurons to be 0.138N. However, the ability of Hopfield nets to store 
memories garnered interest for their use in associative memory applications where a memory bank is 
addressed via its contents. Atencia et al. (2007) implemented a Hopfield network on a Xilinx FPGA 
and demonstrated that the hardware was capable of representing parameters in a differential equation 
model at 24 bits of precision while saving significant computation/power compared to a floating 
point representation. 

In addition to the development of new ANN algorithms that were more neural-inspired (e.g. 
Hopfield networks), another major breakthrough helped lead to a resurgence in neural network 
research with the rediscovery and use of the backpropagation technique (LeCun, 1985; Rumelhart et 
al., 1986, Werbos, 1990). Backpropagation is a principled way to formulate weight training as a 
gradient descent problem. Such approaches have been explored since the 1960s and allow for the 
error between a network’s output values and the supervised ground truth to be propagated back 
through the entire network (Kelley, 1960; Bryson and Denham, 1962). This translates the error into a 
gradient distributed to each weight in the network via application of the chain rule, thus enabling the 
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efficient use of multi-layered neural networks on pattern recognition problems. Backpropagation 
enabled the training of hidden layers in neural networks, thus beginning the progression toward 
modern multi-layered neural network techniques. A neuromorphic hardware system that used 
backpropagation was fabricated by Jackel et al. (1990) for handwritten digit classification in 0.9 μm 
CMOS, producing a chip with 32,000 reconfigurable synapses that could be evaluated in parallel at a 
rate of 3x1011 connections/s. The algorithm relied on hand-selected kernels to extract features and 
different techniques such as windowing and backpropagation for digit classification. 

With the development of new algorithms, specialized hardware, and techniques for training 
neural networks, new types of problems other than static classification of objects became of interest. 
Dynamic problems such as tracking objects in video feeds and parsing speech have become the 
dominant focus of much of the research in the field. Atlas et al. (1988) implemented an early 
application of neural networks in the time domain in order to extract and classify phonemes from 
speech data. To apply neural networks to such time-varying data, the mathematics of the system were 
altered to have multiplication steps converted to convolutions and weights converted to transfer 
functions. Another type of neural networks that have been used in applications wherein the data 
varies in the spatial and time domains are Convolutional Neural Networks (CNNs) (LeCun et al., 
1989; 1998; Serrano-Gotarredona et al, 2015). The NeuFlow system was developed for hierarchical 
visual data processing and relies on CNNs implemented on an FPGA board (Farabet et al., 2011). 
The system was used to label objects within outdoor street images at a rate of 12 frames/s and 
operating with a performance-power metric of approximately 14.7x109 operations/s/W (as compared 
to 0.04x109 operations/s/W using a CPU).  A challenge with the NeuFlow system is the use of look-
up tables which have limited accuracy for calculations but are useful for rapid reprogramming of the 
system when new functionality is required.  

Continued interest in handling time-domain data eventually lead to new neural-inspired 
algorithms such as reservoir computing (Jaeger, 2001). In reservoir computing, the reservoir consists 
of a random recurrent network of neurons that perform nonlinear computations on input data that 
converts data into a set of complex states. The reservoir maps the input data from a low dimensional 
data space into a higher dimensional feature space where separability of the data is improved 
(Verstraeten et al., 2007). This approach is helpful in simulating complex nonlinear processes for 
which closed-form analytical models are not available. Two independently-developed examples of 
reservoir computing are echo state networks (Jaeger and Haas, 2004) and liquid state machines 
(Maass et al., 2002). Echo state networks are machine-learning-centric systems based on analog 
sigmoidal non-spiking neurons, whereas liquid state machines are more neurobiology-centric systems 
with leaky integrate-and-fire spiking neurons (Verstraeten et al., 2007). The reliance of liquid state 
machines on RNN architectures as “basic computational units” (Maass et al., 2002) indicates some 
degree of influence by the neuroscience concept of temporal coding (Figure 1).  Reservoir computing 
approaches have been used in pattern classification, speech recognition, and control systems. 
Recently, specialized hardware has been developed to implement reservoir computing using opto-
electronic systems to generate the reservoirs (Schürmann et al., 2004; Paquot et al., 2012; Vandoorne 
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et al., 2014). In the system described by Vandoorne et al., the photonics-based reservoir is comprised 
of a set of optical components (e.g. waveguides) that fit within a 16 mm2 chip that could perform 
digital operations such as Boolean logic and analog operations such as speech recognition. In 
addition, the flexible time-scale architecture and the use of coherent light increased the number of 
possible states that were represented in the reservoir, while the elimination of amplifiers from the 
system design prevented power consumption from occurring within the reservoir. 

Modern developments in neuromorphic computing algorithms and hardware 

Neuromorphic computing research eventually matured beyond sensory systems such as vision 
and hearing and into simulating and leveraging concepts from cognitive brain regions such as the 
cortex. This required a more substantive examination of the microarchitecture of neural tissue and of 
modern microelectronics in order to understand the differences in information processing between 
the systems. An important element of neuromorphic systems is the distinction between traditional 
von Neumann architectures used in modern computers (separated memory, computation, and control) 
and biological neural network architectures where these three components are integrated together. 
The energy efficiency observed in neural systems can be attributed to this component-level 
integration, but also to the massive parallelism and hierarchical structure of neural tissue. Non-von 
Neumann hardware has been developed to improve the energy efficiency of neuromorphic systems. 
Neftci et al. (2013) developed a system to simulate the visual tracking of objects. This work relied on 
a finite state machine approach to map a behavioral model of this task (including contextual cues) 
onto a spiking integrate-and-fire network. Another example of a non-von Neumann architecture is the 
Neurogrid, a specialized hardware platform developed at Stanford University to simulate large 
networks of biological neurons (Boahen, 2006; Benjamin et al., 2014). Inspired by the 
microarchitecture of the cerebral cortex, the Neurogrid was an analog system of transistors operated 
at a subthreshold state and configured into silicon-based neurons, axons, dendrites, and synapses to 
simulate neural systems in real time with dramatically reduced power consumption as compared to 
conventional digital hardware. Another effort, the European Union Human Brain Project (HBP), was 
also initiated with a focus on brain simulation and specialized hardware fabrication (Markram, 2012). 
One of the hardware development components of the project, named the SpiNNaker project, used a 
parallelized communications architecture for high-volume transmission of small data packets for 
fixed-point-based computations (Furber et al., 2014). The system was comprised of processing nodes, 
each of which contained 18 ARM968 processor cores with local and shared memory. An individual 
core was capable of simulating hundreds of neurons each with thousands of synaptic connections and 
this system has been used to characterize learning algorithms and to process sensor data in robotic 
systems. The strength of the SpiNNaker project is that the architecture provides a platform wherein 
proposed neural algorithms can be explored with parametric studies, thus enabling such 
neuromorphic hardware to be used to test and eventually influence our understanding of how 
biological networks function. Recently, the SpiNNaker hardware was coupled with a silicon retina to 
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demonstrate a neuromorphic vision system that used high temporal precision graded potential and 
spike-based signaling and also contained circuitry for cortex-to-retina feedback (Kawasetsu et al., 
2014). Another neuromorphic simulation effort connected to the HBP was the FACETS (Fast Analog 
Computing with Emergent Transient States) project led by Heidelberg University (Schemmel et al., 
2010). This project focused on performing in vitro and in vivo studies in animal models to generate 
single cell and network data to improve computational neuroscience models and facilitate new 
neuromorphic chip designs (http://facets.kip.uni-heidelberg.de/). Hardware was implemented in 
180nm CMOS VLSI technology, and the team developed the software language PyNN to simplify 
the user interface. As shown in the FACETS program, the standardization of the interface to 
neuromorphic systems and between computational neural models is crucial to promoting the use of 
neuromorphic hardware, algorithms, and models throughout the broader research community and to 
generating useful comparisons between different platforms. Additional neural model interchange 
standards and tools that provide capabilities such as file read-in and translation include NeuroML 
(Gleeson et al., 2010), Nengo (Bekolay et al., 2014), PyNCS (Stefanini et al., 2014), and N2A 
(Rothganger et al. 2014). A follow-up project to FACETS was the BrainScaleS program started in 
2011 (https://brainscales.kip.uni-heidelberg.de). Subsequent to the FACETS program, the 
BrainScaleS effort focused on leveraging biological data that spanned multiple spatial and temporal 
scales from individual synapses to macroscopic networks of neurons in order to produce neural 
models and hardware with improved functionality. This program has also worked to develop novel 
algorithm ideas to address conventional numerical computing problems such as solving differential 
equations. 

Industry has also developed an interest in non-von Neumann architectures for computing 
applications. The CM1K chip from CogniMem (Cognimem Technologies, Inc. 2013) was related to 
the IBM ZISC036 technology (Eide et al., 1994) and Intel Corporation’s radial basis function (RBF) 
effort (Holler et al., 1992). The CM1K chip was a fully parallel chip with 1024 silicon neurons that 
used either a RBF or K-nearest neighbor non-linear classifier to learn patterns up to 256 bytes. This 
chip has been used in several pattern recognition applications such as target tracking in unmanned 
aerial vehicle videos (Yang et al., 2014) and network intrusion detection (Payer et al., 2014). A 
neural-inspired architecture called the Golden Gate chip was developed by IBM under the DARPA 
Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program (Merolla et al., 
2011). This chip employed a non-von Neumann architecture with a clock-less digital design to couple 
computation and memory to achieve low operational power consumption (~45 pJ per spike). 
Fabricated in IBM’s 45nm process, the chip consisted of 256 digital neurons and over 260,000 binary 
synapses and was demonstrated with a probabilistic restricted Boltzmann machine (RBM)-based 
neural network algorithm to process image data for digit recognition. An important finding from this 
effort was that the use of binary values for weights did not significantly reduce the system’s digit 
classification performance. TrueNorth is the most recent version of this IBM chip architecture, and it 
consists of 4 Golden Gate core chips to yield 1 million neurons and over 250 million programmable 
synapses (Merolla et al., 2014). In this study, the TrueNorth chip was used to recognize disparate 
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objects in video feeds in real-time, with a large reduction in power consumption over traditional 
hardware under ideal conditions (400x109 synaptic operations/watt for TrueNorth compared to 
4.5x109 floating-point operations/watt for a supercomputer). The absence of on-chip learning in the 
TrueNorth platform is a limitation, however, a similar effort from the SyNAPSE program that 
included on-chip learning was the microelectronic neuron and synapse architecture developed by 
HRL Laboratories (Cruz-Albrecht et al., 2012). This system used a low-power architecture in 90 nm 
CMOS technology for a phenomenological representation of synaptic plasticity-based learning and 
demonstrated an energy/spike power budget of 0.4 pJ. One of the major debates within the 
neuromorphic computing community is the degree of biological fidelity that should be replicated in 
hardware given the tradeoffs between biological accuracy and application performance (Krichmar et 
al., 2015). Phenomenological models of plasticity have been developed including a model that used a 
combination of spike-timing and spike-rate-based learning mechanisms in VLSI hardware (Rahimi 
Azghadi et al., 2013). Mitra et al. (2009) demonstrated the use of a similar model on a pattern 
matching application. On the other side of the modeling spectrum, Rachmuth et al. (2011) developed 
a detailed biophysical model of spike-based plasticity in VLSI, emulating down to the level of ion 
channels and membrane receptors. Qiao et al. (2015) recently developed the Reconfigurable On-line 
Learning Spiking (ROLLS) neuromorphic architecture for biophysical emulations of neural systems 
and used the platform to classify objects from the Caltech 101 database. This system indicated that 
the design criteria for neural simulation-focused hardware does not preclude the use of such a system 
for practical applications. 

A major theme in modern approaches towards neuromorphic computing is the development of 
hierarchical representations of data. The concept is to generate low-level features (such as phonemes 
in speech or edges in images) that can be combined and transformed mathematically to reconstruct 
more complex features such as phrases or objects of interest, respectively. The structural hierarchy 
observed in biological neural circuitry provides a degree of flexibility to these tissues in that 
information is processed sequentially by different populations of neurons, allowing increasingly 
complex features and other salient components of information to build-up and aggregate into 
comprehensive representations (Felleman and Van Essen, 1991). This structure also potentially 
allows for different combinations of information to be pooled and thus new representations of data 
can be constructed and anticipated. The previously discussed Neocognitron represents an algorithm 
that leverages hierarchy to pool low-level features of visual objects from separate fields of view into 
fully-assembled representations of objects that can then be classified. The Hierarchical Temporal 
Memory (HTM) algorithm was a learning model developed by Jeff Hawkins at Numenta Inc. which 
was intended to model the physical functionality of the neocortex using a uniform neural structure 
composed in layers (Hawkins, et al. 2010).  HTM is at the core of Numenta’ s Grok cyber analytics 
tool, and the algorithm is typically used for unsupervised learning with sparse cell activation and 
inhibitory connections to efficiently learn correlations and make temporal predictions based on 
incoming data. A major challenge to developing layered hierarchical algorithmic approaches is the 
difficulty in training such algorithms within a reasonable length of time relevant to the problem of 
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interest. Deep Learning (DL) is a modern approach towards neural networks that enables the 
unsupervised learning of hierarchical representations of data using multi-layered architectures in 
contrast to shallow networks (Hinton and Salakhutdinov, 2006). When combined with the increased 
speed of modern computers, DL has achieved considerable success in addressing pattern recognition 
problems and has attracted wide-spread attention by outperforming alternative machine learning 
methods. Algorithms theory has been developed around deep neural networks (DNNs), including 
training optimization techniques for RBMs (Hinton 2012) and methods for displaying data 
representations throughout networks (Bengio, 2007; 2009). Supervised DNNs have won numerous 
recent international pattern recognition competitions, achieving the first visual pattern recognition 
results that surpass human performance in limited domains such as traffic sign recognition 
(Schmidhuber, 2015). In 2012, a deep CNN won the ImageNet competition (Krizhevsky et al., 2012) 
and since then, every entry now leverages CNNs to some degree. DL has been applied to a host of 
problems including object recognition in images and video, speech recognition, particle searches in 
collider data, and predictive analytics of protein-nucleic acid interactions (Jones, 2014; Baldi et al., 
2014; Alipanahi et al., 2015). Recently, companies such as Samsung and Panasonic have sought to 
leverage DL for smartphone applications such as facial expression recognition (Song et al., 2014) and 
for classification of data in noisy environments (Gu and Rigazio, 2014). 

As mentioned previously, the training of DNNs presents a significant hindrance for the use of 
such networks, especially for problem spaces that require large amounts of unlabeled data. Training 
of deep architectures is also difficult due to the increasingly small adjustments made to weights when 
applying the chain rule during backpropagation calculations (vanishing gradient problem) 
(Hochreiter et al., 2001). Faster computers and improvements in algorithm techniques have helped 
with these training challenges (Schmidhuber, 2015), and numerous efforts to assemble specialized 
hardware for training deep networks have been initiated, including a 16,000 CPU core system 
developed by Google, Inc. for use with video data (Le, 2013). In this work, the individual frames of 
the data were unlabeled and after 3 days of training on randomly-sampled frames from 10 million 
YouTube videos, the algorithm learned to recognize human faces and bodies in addition to cat faces. 
The Google system outperformed competitor systems that relied on manually-crafted features to 
process images from the standardized database ImageNet, achieving a 15.8% classification accuracy. 
Schroff et al. (2015) recently demonstrated a 30% reduction in facial recognition error rates using the 
Labeled Faces in the Wild and Youtube Faces datasets. The FaceNet system used a deep CNN trained 
using gradient descent with backpropagation to achieve high accuracy in facial recognition under the 
additional challenge of having images with changes in pose and illumination. Recent work from 
Google DeepMind has focused on leveraging reinforcement learning and deep CNNs for complex 
tasks such as video game play (Mnih et al., 2015). 

Project Adam was a DL effort from Microsoft Research Corporation that used a cluster of 120 
server machines to train and operate a 2x109 connection DNN for image classification (Chilimbi et 
al., 2014). The system was demonstrated on MNIST digit data (99.63% accuracy) and ImageNet 
picture data, the latter of which displayed an accuracy of 29.8%, an improvement of ~2x over the 
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previous best from Google, Inc.’s multicore CPU-based deep learning system. The performance 
improvement is largely attributed to running the system with asynchronous batch processing of the 
weights, a process that injects noise into the training and assists the system in escaping local minima. 
Other laboratories have focused on incorporating GPUs into specialized hardware for DL 
applications. Coates et al. (2013) assembled a system with GPU servers and Infiniband interconnects 
to rapidly communicate gradient calculations for large network training. This system was capable of 
training a network with ~1010 connections in 3 days of processing time. Dean et al. (2012) showed 
that with a “distributed optimization” approach wherein the DNN training is performed in parallel 
across several model replicas, the combination of model parallelism and data parallelism in a CPU 
cluster can produce a significant performance advantage in classification accuracy (object and speech 
recognition) over GPU-based deep learning systems. 

Another DL hardware effort was the Deep Speech system from Baidu Inc. (Hannun et al., 
2014). This speech recognition system implemented a RNN on a multi-GPU hardware platform and 
displayed a record low word error rate on a standardized telephone speech dataset compared to other 
DNN/hidden Markov model-based methods. Branching off from the speech recognition work, Baidu 
Inc. recently described an image recognition system named Deep Image (Wu et al., 2015). The 
Minwa hybrid supercomputer developed for this effort was a combination of CPU and GPU cores 
with high-speed Infiniband connections for processing the ImageNet Large-Scale Visual 
Recognitions Challenge dataset. Crucial to improving the classification performance was a series of 
data pre-processing steps such as vignetting that were used to increase the amount of training data 
available for the algorithm. 

Statistical and dynamical machine learning algorithms and hardware 

In addition to algorithms such as the Perceptron that directly emerged from biophysical 
concepts in neuroscience, other techniques with less of a connection to neuroscience and more 
directly tied to psychology also developed (Figure 1). One example is statistical learning theory, an 
approach originating from the psychology field that used statistics to map behaviors onto complex 
stimuli (Estes and Suppes, 1959). Although the neural-inspired work by Hebb, Rosenthal, and others 
provided some degree of mathematical formalism, the use of statistical analyses in neuromorphic and 
neural-inspired algorithms was mostly lacking. Statistical learning theory was a sharp departure from 
convention given its reliance on statistics, and this formalism was eventually incorporated into 
concepts of learning network theory (Barron and Barron, 1988; Vapnik, 2000; Bousquet et al., 2004). 
Later, support vector machines (SVMs) were developed to use statistics to maximize the separation 
between data classes while minimizing classification error (Cortes and Vapnik, 1995). The strength of 
SVMs is the use of kernels to map data that in its raw form is not linearly separable into higher 
dimensions where the data is linearly separable. Once mapped, the margin between the classification 
decision boundaries and the training data is maximized in this feature-based solution space. As a 
result, a single unique solution is provided, and thus SVM algorithms are not susceptible to becoming 
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trapped in local minima or producing different solutions based on initial conditions. Drawbacks to the 
use of SVMs include the training cost scalability (in general, a problem with n data points would 
require n2 optimization steps) and the difficulty in parallelizing the algorithm for implementation 
onto hardware accelerators. SVMs have been used in many applications such as chemistry, 
bioinformatics, face detection, and character recognition (Bennett and Campbell, 2000; Ivanciuc, 
2007). Hardware implementations of SVMs such as the Kerneltron have been developed for 
applications in object recognition in video data (Genov and Cauwenberghs, 2003). The Kerneltron 
was a VLSI chip capable of high-throughput parallel matrix-vector multiplication with a 100-10,000x 
improvement in performance-power efficiency as compared to a 32bit floating point digital signal 
processor. In this system, wavelet decomposition was used to extract feature vectors from training 
data and then a SVM was trained on these vectors to generate accurate classifications. The 
classification procedure relied on computing inner-products with matrix-vector multiplication, 
followed by a thresholding procedure to make final object classifications. Proposed applications for 
the 9 mm2 Kerneltron chip included use in applications where power and weight are major concerns 
such as navigational systems. Other laboratories have demonstrated the capabilities of VLSI-based 
SVM systems for real-time simultaneous tracking of multiple objects within high-definition video 
data (Takagi et al., 2014). In this work, a modified histogram of oriented gradients algorithm was 
implemented in VLSI (65 nm CMOS), including an SVM module with dedicated SRAM for storing 
classification coefficients of detected objects.  

Another algorithm in the statistical machine learning lineage is the decision tree. Decision 
trees largely emerged from concept learning theory, a psychology framework that relied on the use of 
induction and assignment of attributes to separate data into distinct classes (Bruner et al., 1956; Hunt 
et al., 1966). In Hunt et al.’s original formulation, the set of attributes needed to classify a set of data 
was assembled into a decision tree, and the cost of classification was assessed in regard to the cost of 
assigning value to attributes as well as the cost of misclassifying data. Later developments in 
induction-based decision trees include the ID3 algorithm, a method that focused on minimizing 
entropy (and thus maximizing information) during classification procedures (Quinlan, 1986). 
Decision trees have been used for data mining applications where a large number of related variables 
are used to classify data based on examples (Quinlan, 1990). The random forest implementation of 
decision trees incorporated the use of ensemble learning by randomly generating multiple decision 
trees in order to optimize data classification and reduce the likelihood of overfitting (Ho, 1998; 
Breiman, 2001; Banfield et al., 2007). Recently, several labs have focused on hardware acceleration 
of random forest algorithms using graphical processing units (GPUs) and CPUs (Osman, 2009; Van 
Essen et al., 2012; Liao et al., 2013), with Sharp et al. (2008) demonstrating a 100x speed-up (GPU 
compared to a CPU) of the evaluation of a decision tree forest designed to recognize objects. 

While statistical machine learning approaches brought a degree of mathematical rigor to data-
driven computing, these methods struggle to handle dynamical problems where the data and 
conditions are changing over the course of time. Recent work combined SVMs with game theory in 
order to accommodate dynamical distributions of data (Vineyard et al., 2015; 2015). However, 



 17

another branch of algorithms referred to here as dynamical machine learning were developed 
specifically to handle these types of problems. The previously discussed SNARC system was 
influenced by the work of early psychologists and physiologists in the area of reinforcement as a 
method of learning, a temporal process in which an agent is rewarded (or not rewarded) for particular 
behaviors through a “cost” function that has to be optimized over the course of time (Pavlov and 
Gantt, 1928; Skinner, 1933). A differentiating aspect of reinforcement learning is the need to balance 
exploration (examining new solutions with potential for greater reward) with exploitation (using 
already known solutions with known rewards) to minimize the overall system cost function. 
Reinforcement learning and similar algorithms have been used in numerous applications including 
pattern recognition, robotics control, and game theory (Minsky, 1961; Kaelbling et al., 1996; Kober 
and Peters, 2012). Another example of a dynamic algorithm is the Markov Decision Process 
(Bellman, 1957; Szepesvari, 2010). In this algorithm, sequential decision-making operates in a loop 
with an agent observing and planning actions to drive the system to the next “state” under the 
influence of a quantifiable reward (Sutton and Barto, 1998; Faust, 2014). A similar state-transition 
algorithm is a Bayesian network. Originally designed as a “model for humans’ inferential reasoning” 
and used for static problems with conditional probabilistic state transitions (Pearl, 1986), the 
subsequent development of Hidden Markov Models (Baum and Petrie 1966, Rabiner 1989) and 
Dynamic Bayesian Networks (Murphy, 2002) brought these techniques into the time domain and 
enabled new applications in speech recognition and navigation. Hardware implementations of state-
transition-based algorithms have been developed, including the automata processor from Micron 
Technology (Dlugosch et al., 2014). This work demonstrated a hardware system configured to 
process Perl Compatible Regular Expression (PCRE) syntax as well as XML-based language for 
network data applications. The design was implemented in DRAM process technology and consisted 
of several elements for symbol processing, a parallelized routing matrix for distributing signals, and 
components for counters and Boolean logic functions. The Micron Automata design compared 
favorably to nondeterministic finite automata implemented in field programmable gate array (FPGA) 
technology (Kaneta et al., 2011; Yang and Prasanna, 2012). Recently, the simulator for Micron’s 
Automata Processor chip was used to demonstrate its potential use in part-of-speech tagging (Zhou et 
al., 2015).  

Device technologies for neural-inspired and neuromorphic computing 

The neuromorphic and neural-inspired hardware systems discussed thus far have relied on 
existing microelectronic device technology and have developed new designs to combine those 
devices into different architectures. Conventional devices can also be operated in different modes in 
order to achieve better neuromorphic and neural-inspired characteristics, e.g. CMOS devices 
operated in subthreshold mode. New designs for conventional CMOS hardware such as switched 
capacitor circuits have also been developed to avoid the use of electrical currents for computation, 
thus reducing the negative impact of leakage currents (Mayr et al., 2015). And to improve the ability 
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to model synaptic learning rules, CMOS transistors have been modified with a floating gate design 
(Ramakrishnan et al., 2011). 

Researchers have also investigated the design of fundamentally novel microsystem device 
technologies to achieve neuromorphic and neural-inspired computation with improved performance 
characteristics such as lower energy consumption, reduced areal footprint, and wider dynamic range 
(Kuzum et al., 2013). For example, the size of a static random access memory (SRAM) cell limits the 
amount of SRAM that can be placed on chip; thus, conventional microelectronic systems rely on 
energy-intensive off-chip memory storage which is a severe limitation for data-driven computing 
approaches that require significant training. In addition, an SRAM cell can only hold one bit of 
information. These limitations have led to the development of dense, non-volatile alternative memory 
technologies to serve as biologically-inspired microelectronic hardware synapses for low-power 
mobile computing applications (Wong and Salahuddin, 2015). Candidate technologies typically store 
device state with a property other than charge given the difficulty in maintaining charge absent a 
continuous supply voltage. Technologies capable of back-end processing for high-density 3D 
layering are also viewed as advantageous. Panasonic Inc. has undertaken investments in three-
terminal lead-zirconium-titanate ferroelectric devices to construct electronic synapses (Kaneko et al., 
2014). However, like SRAM and dynamic random access memory (DRAM), ferroelectric RAM is 
also a front-end device technology incompatible with 3D layering. Other technologies currently being 
investigated include resistance-based memory which relies on controlled switching between low and 
high conductance states. Different resistive switching materials technologies include metallic oxides 
(Strukov et al., 2008; Wei et al., 2008; Lee et al., 2011; Mickel et al., 2014; Prezioso et al., 2015), 
oxides with metallic carriers (Kozicki et al., 2004; Mai et al., 2015), and non-oxide semiconductors 
with metallic carriers (Jo et al., 2010).  Advantages to using these resistive and memristive (when the 
resistance is a function of the historical current) technologies include that the conductance state of the 
device is retained without any sustaining current and the inherent noise in these devices can be 
leveraged for probabilistic computing (Al-Shedivat et al., 2015). Potential advantages to using 
resistive memory devices are the low write energy, high scalability with potential for 3D layering, 
and the analog-like state-transition behavior (Indiveri et al., 2013; Mandal et al., 2014; Saighi et al., 
2015). Phase change memory (PCM) is a similar technology wherein the conductance of a 
semiconductor layer is reversibly switched with Joule heating between a low conductivity amorphous 
phase to a high conductivity crystalline phase (Raoux et al., 2008; Wong et al., 2010). Points of 
interest for PCM devices are the relatively high level of development of this technology by industry 
and the high retention times (Jackson et al., 2013; Shelby et al., 2015). Spin transfer torque magnetic 
random access memory (STT-RAM) devices rely on the use of an electrical current to change the 
polarization direction of a ferromagnet and the corresponding change in conductivity between 
parallel and anti-parallel spins in thin films (Kishi et al., 2008; Kent and Worledge, 2015). 
Information is stored magnetically, which provides superior long-term retention, and state changes 
are written and read electrically in these devices. Challenges with this technology include difficulty 
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in scaling due to the use of nanoscale magnetic structures and the limited dynamic range between the 
on and off states. 

Conclusions 
Over the last century, researchers have recognized the distinct advantages that neuromorphic and 

neural-inspired algorithms and hardware can provide to address challenging, data-intensive classes of 
problems. The first wave of neural-inspired computing research sought to develop phenomenological 
model systems of how organisms perform certain complex tasks such as maze-navigation. Additional 
efforts that were more closely coupled to mathematical formulations of algorithms theory helped 
move the field past trial-and-error niche demonstrations and into more generalizable applications 
such as object and speech recognition. The theoretical limitations and practicality of neural-inspired 
approaches have always been a source of concern within the research community, and new 
developments in algorithms theory and improvements in hardware have provided new opportunities 
for addressing some of those concerns. The most recent wave of neural-inspired computing has 
produced a significant amount of math theory around algorithm development, addressing important 
practical issues such as training techniques, visualization of data representations, and learning 
strategies. In addition, hardware has been fabricated to instantiate algorithms with improved 
computational efficiency in speed and/or power consumption. Much of this work has been supported 
by the steady advances made by the microelectronics industry via Moore’s law. Smaller and faster 
microprocessors and advanced architectures such as GPUs have driven the neuromorphic and neural-
inspired computing field through previous computational hurdles and have also led to a proliferation 
of data at unmanageable volumes. Still, neuromorphic systems face challenges in regard to 
incorporating learning circuitry with adaptable timescales capable of rapid low-power updating of 
synaptic weights (Hasler and Marr, 2013).  The reputed end of Moore’s law presents an opportunity 
for researchers to leverage modern advances in neuroscience to spur the next wave of algorithm and 
hardware advancements. For instance, modern neuroscience research is using new technologies such 
as optogenetics to improve our understanding of how the brain processes, transforms, and calculates 
information (Boyden et al., 2005; Deisseroth, 2015). Developments in this technology have enabled 
closed-loop experiments where an initial probing of a set of neurons can then be modified based on 
recorded responses (Sohal et al., 2009). This is a crucial advance necessary to improve the specificity 
of connections between neurons and to improve our understanding of the signaling dynamics within 
networks of neurons. Another issue that needs to be resolved includes identifying the time-evolving 
neural circuits (“chronnectome”) involved in complex sensory, motor, and cognitive activities 
(Churchland et al. 2012; Calhoun et al., 2014), and then performing such population-level 
measurements with single cell resolution (Packer et al., 2015). 

In order to maintain progress in this field, the research community must navigate several difficult 
questions in regard to the next generation of neuromorphic and neural-inspired algorithms and 
hardware systems: 
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1. How connected should the development of neuromorphic hardware be to the neuroscience 
field? This question was raised earlier in regard to the level of mimicry of neural tissue that 
should be pursued. The purpose of the hardware obviously is a factor in that neuromorphic 
hardware designed for applications should be driven to the optimum point where functionality 
is achieved while minimizing size, weight, power, etc. Application-focused neuromorphic 
hardware should focus on replicating function (e.g. coincidence detection) instead of 
replicating biology (e.g. the binding kinetics of molecules involved in biological coincidence 
detection). The more difficult challenge is to determine the degree to which hardware used to 
model and simulate neural systems as a research tool be driven to biological fidelity. 
Traditional high-performance computing (HPC) resources have been used for large-scale 
computational models (e.g. the neurogenesis model in Aimone et al. 2009) that have then 
inspired in vivo neuroscience experiments (multi-electrode field recordings described in 
Rangel et al., 2014). The neuromorphic hardware described earlier in this manuscript for use 
in neural system modeling have been useful tools, yet we are unaware of any cases where 
these systems have performed simulations not capable of being performed on traditional HPC 
hardware and subsequently being used to guide novel in vivo or in vitro neuroscience 
research. We expect more differentiating neural simulations to be performed on neuromorphic 
hardware as the systems become more widely distributed. 

2. What level of neural-inspiration should be pursued for algorithms? Traditional machine 
learning methods such as Markov models and neural-inspired methods such as DL and CNNs 
have been successful in speech recognition and image recognition applications. But besides 
the hierarchical structure and the input integration and thresholding functionality, there are 
few neuroscience principles embedded within ANN algorithms. For instance, DL algorithms 
require extensive training with large volumes of data whereas biological neural systems don’t 
have such stringent requirements for complex representations to be learned. Lake et al. (2015) 
recently demonstrated Bayesian Program Learning (BPL) wherein data is represented with 
probabilistic generative models. With this framework, complex concepts are partitioned into 
subpart “primitives” that can be sampled and recombined in different ways to create highly 
complex representations. On a one-shot classification task (learning from only one example 
data-point), BPL showed a superior error rate (3.3%) compared to humans (4.5%) and deep 
convolutional nets (13.5%). Approaches such as these which seek to replicate biological 
network functionality such as one-shot learning hold great promise for the future of neural-
inspired algorithms. To realize this potential, formal mathematical theories by which to 
translate such functionality into new algorithms are needed. The progression of retina-
inspired neuromorphic hardware from the phenomenological and generalized concepts of the 
Neocognitron (e.g. “S” and “C” cells) to the biologically-accurate concepts of Okuno et al.’s 
(2015) VLSI retina-based emulator (e.g. photoreceptors and ganglion cells) shows how new 
scientific developments should encourage technology to not only mature in complexity but to 
also improve application-driven functionality. 
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3. Should the community focus on developing specialized hardware or adapting commercial-off-
the-shelf (COTS) hardware? The community is split between these two options and 
impressive systems in both realms have been demonstrated. While specialized hardware 
typically requires higher cost and results in less generalizability, we believe this approach 
presents the most promising path forward given the improved ability to tailor such systems 
for specific application needs. This will also require the incorporation of standardized 
interfaces to improve ease-of-use and the technical maturation of such technologies to 
eliminate performance problems. Specialized hardware such as the Neurogrid system, 
SpiNNaker, and TrueNorth hold promise not only as research tools, but as solutions for 
commercial applications. As the connections between such hardware platforms and 
algorithms strengthen (e.g. convolutional neural networks on SpiNNaker in Serrano-
Gotarredona et al., 2015), the positive impact of specialized hardware on the research 
community will increase. 

4. How will the practical limitations of existing microelectronics technologies be handled in 
order to build next generation neuromorphic and neural-inspired hardware? A major challenge 
for neuromorphic and neural-inspired hardware is the limited fan-in/fan-out connectivity and 
its negative impact on system performance. Biological neural systems have massive 
parallelism (upwards of 10,000 connections on individual neurons), thus new architectures 
and microelectronic devices capable of such connectivity may or may not need to be 
developed (see question #1 above). If this level of parallelism is to be pursued, then in 
addition to improving connectivity technologies in hardware, this issue can also be address 
algorithmically. For instance, an algorithm that requires thousands of interconnects may 
possibly be transformed into a lower connectivity version for hardware implementation, with 
perhaps a trade-off in sparsity or network size.  This would require a more thorough 
understanding of biological neural circuit behavior, however, such hardware-guided algorithm 
development may be essential for implementing algorithms extracted from three-dimensional 
biological neural systems and projected onto two-dimensional semiconductor platforms. 

5. Will conventional CMOS microelectronics be supplanted by novel devices for use in 
neuromorphic systems? The operating principles of conventional CMOS devices are well 
understood and strategies have been implemented to adapt these devices for neuromorphic 
applications. However, translating biological systems consisting of ion channels and 
membrane receptors into transistors and other microelectronic components is difficult and at 
times can be forced. Novel devices with properties that more readily comport to 
neurobiological functions should continue to be pursued in order to improve the functionality 
of hardware implementations. As an example, resistive memory devices are more similar to 
biological synapses than other microelectronic devices given their operational reliance on 
changes in conductance. The two-terminal architecture of resistive memory devices also lends 
itself to the high density networks necessary for difficult pattern recognition applications such 
as object classification in video feeds. However, these devices obviously lack some of the 
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characteristics of biological synapses such as gain and other modulatory features that make 
biological systems computationally powerful. Future work in novel devices needs to balance 
the pursuit of biological computation features with the biological fidelity concern discussed 
previously in question #1 above. Finally, new devices should also be developed in regard to 
their ability to perform particular mathematical functions more rapidly and/or more 
efficiently. A considerable amount of neural network hardware is focused on the multiply-
and-accumulate calculations needed for matrix operations. Hardware researchers need to 
continue to collaborate with math theory and algorithm researchers to identify additional 
mathematical functions that may be useful for neural network-based hardware systems, and 
then develop new microsystem devices capable of those calculations with fewer or less 
energy-intensive steps. 

Several of the challenges enumerated here involve the use of neuroscience research, thus strong 
collaborations between neuroscientists, hardware designers, and math theoreticians will help to 
facilitate the cross-disciplinary dialogue to identify and decipher important computational 
functionality in biological systems. The challenge will be to leverage such advances into the 
development of new algorithms and to implement hardware-based solutions where necessary and 
practical. 
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Figure Captions 

 

Figure 1 (color): Historical timeline of neuroscience and psychology and the influence of the fields 
on neuromorphic and neural-inspired algorithms and hardware research.


