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Abstract

We study the Stochastic Gradient Langevin Dynamics (SGLD) algorithm for non-convex optimiza-

tion. The algorithm performs stochastic gradient descent, where in each step it injects appropriately

scaled Gaussian noise to the update. We analyze the algorithm’s hitting time to an arbitrary sub-

set of the parameter space. Two results follow from our general theory: First, we prove that for

empirical risk minimization, if the empirical risk is pointwise close to the (smooth) population

risk, then the algorithm finds an approximate local minimum of the population risk in polynomial

time, escaping suboptimal local minima that only exist in the empirical risk. Second, we show that

SGLD improves on one of the best known learnability results for learning linear classifiers under

the zero-one loss.

1. Introduction

A central challenge of non-convex optimization is avoiding sub-optimal local minima. Although

escaping all local minima is NP-hard in general (e.g. Blum and Rivest, 1992), one might expect that

it should be possible to escape “appropriately shallow” local minima, whose basins of attraction

have relatively low barriers. As an illustrative example, consider minimizing an empirical risk

function in Figure 1. As the figure shows, although the empirical risk is uniformly close to the

population risk, it contains many poor local minima that don’t exist in the population risk. Gradient

descent is unable to escape such local minima.

A natural workaround is to inject random noise to the gradient. Empirically, adding gradient

noise has been found to improve learning for deep neural networks and other non-convex mod-

els (Neelakantan et al., 2015a,b; Kurach et al., 2015; Kaiser and Sutskever, 2015; Zeyer et al.,

2016). However, theoretical understanding of the value of gradient noise is still incomplete. For

example, Ge et al. (2015) show that by adding isotropic noise w and by choosing a sufficiently small

stepsize η, the iterative update:

x← x− η (∇f(x) + w) (1)

is able to escape strict saddle points. Unfortunately, this approach, as well as the subsequent line of

work on escaping saddle points (Lee et al., 2016; Anandkumar and Ge, 2016; Agarwal et al., 2016),

doesn’t guarantee escaping even shallow local minima.

Another line of work in Bayesian statistics studies the Langevin Monte Carlo (LMC) method

(Roberts and Tweedie, 1996), which employs an alternative noise term. Given a function f , LMC
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Figure 1: Empirical risk (sample size = 5000) versus population risk (sample size → ∞) on one-

dimensional zero-one losses. The two functions are uniformly close, but the empirical risk con-

tains local minima that that are far worse than the population local minima.

performs the iterative update:

x← x− η (∇f(x) +
√

2/(ηξ)w) where w ∼ N(0, I), (2)

where ξ > 0 is a “temperature” hyperparameter. Unlike the bounded noise added in formula (1),

LMC adds a large noise term that scales with
√
1/η. With a small enough η, the noise dominates

the gradient, enabling the algorithm to escape any local minimum. For empirical risk minimization,

one might substitute the exact gradient∇f(x) with a stochastic gradient, which gives the Stochastic

Gradient Langevin Dynamics (SGLD) algorithm (Welling and Teh, 2011). It can be shown that both

LMC and SGLD asymptotically converge to a stationary distribution µ(x) ∝ e−ξf(x) (Roberts and

Tweedie, 1996; Teh et al., 2016). As ξ → ∞, the probability mass of µ concentrates on the global

minimum of the function f , and the algorithm asymptotically converges to a neighborhood of the

global minimum.

Despite asymptotic consistency, there is no theoretical guarantee that LMC is able to find the

global minimum of a general non-convex function, or even a local minimum of it, in polynomial

time. Recent works focus on bounding the mixing time (i.e. the time for converging to µ) of LMC

and SGLD. Bubeck et al. (2015), Dalalyan (2016) and Bonis (2016) prove that on convex func-

tions, LMC converges to the stationary distribution in polynomial time. On non-convex functions,

however, an exponentially long mixing time is unavoidable in general. According to Bovier et al.

(2004), it takes the Langevin diffusion at least eΩ(ξh) time to escape a depth-h basin of attraction.

Thus, if the function contains multiple “deep” basins with h = Ω(1), then the mixing time is lower

bounded by eΩ(ξ).

In parallel work to this paper, Raginsky et al. (2017) upper bound the time of SGLD converging

to an approximate global minimum of non-convex functions. They show that the upper bound is

polynomial in the inverse of a quantity they call the uniform spectral gap. Similar to the mixing

time bound, in the presence of multiple local minima, the convergence time to an approximate

global minimum can be exponential in dimension d and the temperature parameter ξ.
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Contributions In this paper, we present an alternative analysis of SGLD algorithm.1 Instead of

bounding its mixing time, we bound the algorithm’s hitting time to an arbitrary set U on a general

non-convex function. The hitting time captures the algorithm’s optimization efficiency, and more

importantly, it enjoys polynomial rates for hitting appropriately chosen sets regardless of the mixing

time, which could be exponential. We highlight two consequences of the generic bound: First,

under suitable conditions, SGLD hits an approximate local minimum of f , with a hitting time that

is polynomial in dimension d and all hyperparameters; this extends the polynomial-time guarantees

proved for convex functions (Bubeck et al., 2015; Dalalyan, 2016; Bonis, 2016). Second, the time

complexity bound is stable, in the sense that any O(1/ξ) perturbation in ℓ∞-norm of the function f
doesn’t significantly change the hitting time. This second property is the main strength of SGLD:

For any function f , if there exists another function F such that ‖f − F‖∞ = O(1/ξ), then we

define the set U to be the approximate local minima of F . The two properties together imply that

even if we execute SGLD on function f , it hits an approximate local minimum of F in polynomial

time. In other words, SGLD is able to escape “shallow” local minima of f that can be eliminated

by slightly perturbing the function.

This stability property is useful in studying empirical risk minimization (ERM) in situations

where the empirical risk f is pointwise close to the population risk F , but has poor local minima

that don’t exist in the population risk. This phenomenon has been observed in statistical estimation

with non-convex penalty functions (Wang et al., 2014; Loh and Wainwright, 2015), as well as in

minimizing the zero-one loss (see Figure 1). Under this setting, our result implies that SGLD

achieves an approximate local minimum of the (smooth) population risk in polynomial time, ruling

out local minima that only exist in the empirical risk. It improves over recent results on non-convex

optimization (Ge et al., 2015; Lee et al., 2016; Anandkumar and Ge, 2016; Agarwal et al., 2016),

which compute approximate local minima only for the empirical risk.

As a concrete application, we prove a stronger learnability result for the problem of learning

linear classifiers under the zero-one loss (Arora et al., 1993), which involves non-convex and non-

smooth empirical risk minimization. Our result improves over the recent result of Awasthi et al.

(2015): the method of Awasthi et al. (2015) handles noisy data corrupted by a very small Massart

noise (at most 1.8× 10−6), while our algorithm handles Massart noise up to any constant less than

0.5. As a Massart noise of 0.5 represents completely random observations, we see that SGLD is

capable of learning from very noisy data.

Techniques The key step of our analysis is to define a positive quantity called the restricted

Cheeger constant. This quantity connects the hitting time of SGLD, the geometric properties of

the objective function, and the stability of the time complexity bound. For an arbitrary function

f : K → R and an arbitrary set V ⊂ K, the restricted Cheeger constant is defined as the min-

imal ratio between the surface area of a subset A ⊂ V and its volume with respect to a measure

µ(x) ∝ e−f(x). We prove that the hitting time is polynomial in the inverse of the restricted Cheeger

constant (Section 2.3). The stability of the time complexity bound follows as a natural consequence

of the definition of this quantity (Section 2.2). We then develop techniques to lower bound the

restricted Cheeger constant based on geometric properties of the objective function (Section 2.4).

Notation For any positive integer n, we use [n] as a shorthand for the discrete set {1, 2, . . . , n}.
For a rectangular matrix A, let ‖A‖∗ be its nuclear norm (i.e., the sum of singular values), and ‖A‖2

1. The theory holds for the standard LMC algorithm as well.
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Algorithm 1 Stochastic Gradient Langevin Dynamics

Input: Objective function f : K → R; hyperparameters (ξ, η, kmax, D).

1. Initialize x0 ∈ K by uniformly sampling from the parameter space K.

2. For each k ∈ {1, 2, . . . , kmax}: Sample w ∼ N(0, Id×d). Compute a stochastic gradient g(xk−1)
such that E[g(xk−1)|xk−1] = ∇f(xk−1). Then update:

yk = xk−1 − η g(xk−1) +
√
2η/ξ w; (3a)

xk =

{
yk if yk ∈ K ∩ B(xk−1;D),
xk−1 otherwise.

(3b)

Output: x̂ = xk∗ where k∗ := argmink{f(xk)}.

be its spectral norm (i.e., the maximal singular value). For any point x ∈ R
d and an arbitrary set

V ⊂ R
d, we denote their Euclidean distance by d(x, V ) := infy∈V ‖x− y‖2. We use B(x; r) to

denote the Euclidean ball of radius r that centers at point x.

2. Algorithm and main results

In this section, we define the algorithm and the basic concepts, then present the main theoretical

results of this paper.

2.1. The SGLD algorithm

Our goal is to minimize a function f in a compact parameter space K ⊂ R
d. The SGLD algo-

rithm (Welling and Teh, 2011) is summarized in Algorithm 1. In step (3a), the algorithm performs

SGD on the function f , then adds Gaussian noise to the update. Step (3b) ensures that the vector

xk always belong to the parameter space, and is not too far from xk−1 of the previous iteration.2

After kmax iterations, the algorithm returns a vector x̂. Although standard SGLD returns the last

iteration’s output, we study a variant of the algorithm which returns the best vector across all itera-

tions. This choice is important for our analysis of hitting time. We note that evaluating f(xk) can be

computationally more expensive than computing the stochastic gradient gk, because the objective

function is defined on the entire dataset, while the stochastic gradient can be computed via a single

instance. Returning the best xk merely facilitates theoretical analysis and might not be necessary in

practice.

Because of the noisy update, the sequence (x0, x1, x2, . . . ) asymptotically converges to a sta-

tionary distribution rather than a stationary point (Teh et al., 2016). Although this fact introduces

challenges to the analysis, we show that its non-asymptotic efficiency can be characterized by a

positive quantity called the restricted Cheeger constant.

2. The hyperparameter D can be chosen large enough so that the constraint yk ∈ B(xk−1;D) is satisfied with high

probability, see Theorem 1.
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2.2. Restricted Cheeger constant

For any measurable function f , we define a probability measure µf whose density function is:

µf (x) :=
e−f(x)

∫
K e−f(x)dx

∝ e−f(x) for all x ∈ K. (4)

For any function f and any subset V ⊂ K, we define the restricted Cheeger constant as:

Cf (V ) := lim inf
ǫց0

inf
A⊂V

µf (Aǫ)− µf (A)

ǫ µf (A)
, where Aǫ := {x ∈ K : d(x,A) ≤ ǫ}. (5)

The restricted Cheeger constant generalizes the notion of the Cheeger isoperimetric constant (Cheeger,

1969), quantifying how well a subset of V can be made as least connected as possible to the

rest of the parameter space. The connectivity is measured by the ratio of the surface measure

lim infǫց0
µf (Aǫ)−µf (A)

ǫ to the set measure µf (A). Intuitively, this quantifies the chance of escap-

ing the set A under the probability measure µf .

Stability of restricted Cheeger constant A property that will be important in the sequal is that

the restricted Cheeger constant is stable under perturbations: if we perturb f by a small amount,

then the values of µf won’t change much, so that the variation on Cf (V ) will also be small. More

precisely, for functions f1 and f2 satisfying supx∈K |f1(x)− f2(x)| = ν, we have

Cf1(V ) = lim inf
ǫց0

inf
A⊂V

∫
Aǫ\A e−f1(x)dx

ǫ
∫
A e−f1(x)dx

≥ lim inf
ǫց0

inf
A⊂V

∫
Aǫ\A e−f2(x)−νdx

ǫ
∫
A e−f2(x)+νdx

= e−2νCf2(V ), (6)

and similarly Cf2(V ) ≥ e−2νCf1(V ). As a result, if two functions f1 and f2 are uniformly close,

then we have Cf1(V ) ≈ Cf2(V ) for a constant ν. This property enables us to lower bound Cf1(V )
by lower bounding the restricted Cheeger constant of an alternative function f2 ≈ f1, which might

be easier to analyze.

2.3. Generic non-asymptotic bounds

We make several assumptions on the parameter space and on the objective function.

Assumption A (parameter space and objective function)

• The parameter space K satisfies: there exists hmax > 0, such that for any x ∈ K and any

h ≤ hmax, the random variable y ∼ N(x, 2hI) satisfies P (y ∈ K) ≥ 1
3 .

• The function f : K → [0, B] is bounded, differentiable and L-smooth in K, meaning that for

any x, y ∈ K, we have |f(y)− f(x)− 〈y − x, ∇f(x)〉| ≤ L
2 ‖y − x‖22.

• The stochastic gradient vector g(x) has sub-exponential tails: there exists bmax > 0, G > 0,

such that given any x ∈ K and any vector u ∈ R
d satisfying ‖u‖2 ≤ bmax, the vector g(x)

satisfies E
[
e〈u,g(x)〉

2 | x
]
≤ exp(G2‖u‖22).

The first assumption states that the parameter space doesn’t contain sharp corners, so that the

update (3b) won’t be stuck at the same point for too many iterations. It can be satisfied, for ex-

ample, by defining the parameter space to be an Euclidean ball and choosing hmax = o(d−2). The

probability 1/3 is arbitrary and can be replaced by any constant in (0, 1/2). The second assumption
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requires the function f to be smooth. We show how to handle non-smooth functions in Section 3

by appealing to the stability property of the restricted Cheeger constant discussed earlier. The third

assumption requires the stochastic gradient to have sub-exponential tails, which is a standard as-

sumption in stochstic optimization.

Theorem 1 Assume that Assumption A holds. For any subset U ⊂ K and any ξ, ρ, δ > 0, there

exist η0 > 0 and kmax ∈ Z
+, such that if we choose any stepsize η ∈ (0, η0] and hyperparameter

D := 4
√
2ηd/ξ, then with probability at least 1− δ, SGLD after kmax iterations returns a solution

x̂ satisfying:

f(x̂) ≤ sup
x: d(x,U)≤ρ

f(x). (7)

The iteration number kmax is bounded by

kmax ≤
M

(
C(ξf)(K\U)

)4 (8)

where the numerator M is polynomial in (B,L,G, log(1/δ), d, ξ, η0/η, h
−1
max, b

−1
max, ρ

−1). See Ap-

pendix B.2 for the explicit polynomial dependence.

Theorem 1 is a generic result that applies to all optimization problems satisfying Assumption A.

The right-hand side of the bound (7) is determined by the choice of U . If we choose U to be the

set of (approximate) local minima, and let ρ > 0 be sufficiently small, then f(x̂) will roughly be

bounded by the worst local minimum. The theorem permits ξ to be arbitrary provided the stepsize

η is small enough. Choosing a larger ξ means adding less noise to the SLGD update, which means

that the algorithm will be more efficient at finding a stationary point, but less efficient at escaping

local minima. Such a trade-off is captured by the restricted Cheeger constant in inequality (8) and

will be rigorously studied in the next subsection.

The iteration complexity bound is governed by the restricted Cheeger constant. For any func-

tion f and any target set U with a positive Borel measure, the restricted Cheeger constant is strictly

positive (see Appendix A), so that with a small enough η, the algorithm always converges to the

global minimum asymptotically. We remark that the SGD doesn’t enjoy the same asymptotic opti-

mality guarantee, because it uses a O(η) gradient noise in contrast to SGLD’s O(
√
η) one. Since

the convergence theory requires a small enough η, we often have η ≪ √η. the SGD noise is too

conservative to allow the algorithm to escape local minima.

Proof sketch The proof of Theorem 1 is fairly technical. We defer the full proof to Appendix B,

only sketching the basic proof ideas here. At a high level, we establish the theorem by bounding the

hitting time of the Markov chain (x0, x1, x2, . . . ) to the set Uρ := {x : d(x, U) ≤ ρ}. Indeed, if

some xk hits the set, then:

f(x̂) ≤ f(xk) ≤ sup
x∈Uρ

f(x),

which establishes the risk bound (7).

In order to bound the hitting time, we construct a time-reversible Markov chain, and prove that

its hitting time to Uρ is on a par with the original hitting time. To analyze this second Markov chain,

we define a notion called the restricted conductance, which measures how easily the Markov chain

can transition between states within K\Uρ. This quantity is related to the notion of conductance

in the analysis of time-reversible Markov processes (Lovász and Simonovits, 1993), but the ratio
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between these two quantities can be exponentially large for non-convex f . We prove that the hit-

ting time of the second Markov chain depends inversely on the restricted conductance, so that the

problem reduces to lower bounding the restricted conductance.

Finally, we lower bound the restricted conductance by the restricted Cheeger constant. The

former quantity characterizes the Markov chain, while the later captures the geometric properties

of the function f . Thus, we must analyze the SGLD algorithm in depth to establish a connection

between them. Once we prove this lower bound, putting all pieces together completes the proof. �

2.4. Lower bounding the restricted Cheeger constant

In this subsection, we prove lower bounds on the restricted Cheeger constant C(ξf)(K\U) in order

to flesh out the iteration complexity bound of Theorem 1. We start with a lower bound for the class

of convex functions:

Proposition 2 Let K be a d-dimensional unit ball. For any convex G-Lipschitz continuous function

f and any ǫ > 0, let the set of ǫ-optimal solutions be defined by:

U := {x ∈ K : f(x) ≤ inf
y∈K

f(y) + ǫ}.

Then for any ξ ≥ 2d log(4G/ǫ)
ǫ , we have C(ξf)(K\U) ≥ 1.

The proposition shows that if we choose a big enough ξ, then C(ξf)(K\U) will be lower bounded

by a universal constant. The lower bound is proved based on an isoperimetric inequality for log-

concave distributions. See Appendix C for the proof.

For non-convex functions, directly proving the lower bound is difficult, because the definition

of C(ξf)(K\U) involves verifying the properties of all subsets A ⊂ K\U . We start with a generic

lemma that reduces the problem to checking properties of all points in K\U .

Lemma 3 Consider an arbitrary continuously differentiable vector field φ : K → R
d and a

positive number ǫ0 > 0 such that:

‖φ(x)‖2 ≤ 1 and x− ǫ φ(x) ∈ K for any ǫ ∈ [0, ǫ0], x ∈ K. (9)

For any continuously differentiable function f : K → R and any subset V ⊂ K, the restricted

Cheeger constant Cf (V ) is lower bounded by

Cf (V ) ≥ inf
x∈V

{
〈φ(x), ∇f(x)〉 − divφ(x)

}
where divφ(x) :=

d∑

i=1

∂φi(x)

∂xi
.

Lemma 3 reduces the problem of lower bounding Cf (V ) to the problem of finding a proper

vector field φ and verifying its properties for all points x ∈ V . Informally, the quantity Cf (V )
measures the chance of escaping the set V . The lemma shows that if we can construct an “oracle”

vector field φ, such that at every point x ∈ V it gives the correct direction (i.e. −φ(x)) to escape V ,

but always stay in K, then we obtain a strong lower bound on Cf (V ). This construction is merely

for the theoretical analysis and doesn’t affect the execution of the algorithm.
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Figure 2: Consider a mapping π : x 7→ x − ǫφ(x). If the conditions of Lemma 3 hold, then we have

π(A) ⊂ Aǫ and consequentely µf (π(A)) ≤ µf (Aǫ). We use inequality (10) to lower bound the

restricted Cheeger constant.

Proof sketch The proof idea is illustrated in Figure 2: by constructing a mapping π : x 7→
x − ǫφ(x) that satisfies the conditions of the lemma, we obtain π(A) ⊂ Aǫ for all A ⊂ V , and

consequently µf (π(A)) ≤ µf (Aǫ). Then we are able to lower bound the restricted Cheeger constant

by:

Cf (V ) ≥ lim inf
ǫց0

inf
A⊂V

µf (π(A))− µf (A)

ǫ µf (A)
= lim inf

ǫց0
inf

dA⊂V

1

ǫ

(µf (π(dA))

µf (dA)
− 1

)
, (10)

where dA is an infinitesimal of the set V . It can be shown that the right-hand side of inequality (10)

is equal to infx∈V {〈φ(x), ∇f(x)〉 − divφ(x)}, which establishes the lemma. See Appendix D for

a rigorous proof. �

Before demonstrating the applications of Lemma 3, we make several additional mild assump-

tions on the parameter space and on the function f .

Assumption B (boundary condition and smoothness)

• The parameter space K is a d-dimensional ball of radius r > 0 centered at the origin. There

exists r0 > 0 such that for every point x satisfying ‖x‖2 ∈ [r− r0, r], we have 〈x, ∇f(x)〉 ≥
‖x‖2.

• For some G,L,H > 0, the function f is third-order differentiable with ‖∇f(x)‖2 ≤ G,

‖∇2f(x)‖∗ ≤ L and ‖∇2f(x)−∇2f(y)‖∗ ≤ H‖x− y‖2 for any x, y ∈ K.

The first assumption requires the parameter space to be an Euclidean ball and imposes a gradient

condition on its boundary. This is made mainly for the convenience of theoretical analysis. We

remark that for any function f , the condition on the boundary can be satisfied by adding a smooth

barrier function ρ(‖x‖2) to it, where the function ρ(t) = 0 for any t < r−2r0, but sharply increases

on the interval [r − r0, r] to produce large enough gradients. The second assumption requires the

function f to be third-order differentiable. We shall relax the second assumption in Section 3.

The following proposition describes a lower bound on C(ξf)(K\U) when f is a smooth function

and the set U consists of approximate stationary points. Although we shall prove a stronger result,

the proof of this proposition is a good example for demonstrating the power of Lemma 3.
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Proposition 4 Assume that Assumption B holds. For any ǫ > 0, define the set of ǫ-approximate

stationary points U := {x ∈ K : ‖∇f(x)‖2 < ǫ}. For any ξ ≥ 2L/ǫ2, we have C(ξf)(K\U) ≥ ξǫ2

2G .

Proof Recall that G is the Lipschitz constant of function f . Let the vector field be defined by

φ(x) := 1
G∇f(x), then we have ‖φ(x)‖2 ≤ 1. By Assumption B, it is easy to verify that the

conditions of Lemma 3 hold. For any x ∈ K\U , the fact that ‖∇f(x)‖2 ≥ ǫ implies:

〈φ(x), ξ∇f(x)〉 = ξ

G
‖∇f(x)‖22 ≥

ξǫ2

G
.

Recall that L is the smoothness parameter. By Assumption B, the divergence of φ(x) is upper

bounded by divφ(x) = 1
G tr(∇2f(x)) ≤ 1

G‖∇2f(x)‖∗ ≤ L
G . Consequently, if we choose ξ ≥

2L/ǫ2 as assumed, then we have:

〈φ(x), ξ∇f(x)〉 − divφ(x) ≥ ξǫ2

G
− L

G
≥ ξǫ2

2G
.

Lemma 3 then establishes the claimed lower bound.

Next, we consider approximate local minima (Nesterov and Polyak, 2006; Agarwal et al.,

2016), which rules out local maxima and strict saddle points. For an arbitrary ǫ > 0, the set of

ǫ-approximate local minima is defined by:

U := {x ∈ K : ‖∇f(x)‖2 < ǫ and ∇2f(x) � −
√
ǫI}. (11)

We note that an approximate local minimum is not necessarily close to any local minimum of f .

However, if we assume in addition the the function satisfies the (robust) strict-saddle property (Ge

et al., 2015; Lee et al., 2016), then any point x ∈ U is guaranteed to be close to a local minimum.

Based on definition (11), we prove a lower bound for the set of approximate local minima.

Proposition 5 Assume that Assumption B holds. For any ǫ > 0, let U be the set of ǫ-approximate

local minima. For any ξ satisfying

ξ ≥ Õ(1) · max{1, G5/2L5, H5/2}
ǫ2G1/2

, (12)

we have C(ξf)(K\U) ≥
√
ǫ

8(2G+1)G . The notation Õ(1) hides a poly-logarithmic function of (L, 1/ǫ).

Proof sketch Proving Proposition 5 is significantly more challenging than proving Proposition 4.

From a high-level point of view, we still construct a vector field φ, then lower bound the expression

〈φ(x), ξ∇f(x)〉 − divφ(x) for every point x ∈ K\U in order to apply Lemma 3. However, there

exist saddle points in the set K\U , such that the inner product 〈φ(x), ξ∇f(x)〉 can be very close

to zero. For these points, we need to carefully design the vector field so that the term divφ(x) is

strictly negative and bounded away from zero. To this end, we define φ(x) to be the sum of two

components. The first component aligns with the gradient ∇f(x). The second component aligns

with a projected vector Πx(∇f(x)), which projects ∇f(x) to the linear subspace spanned by the

eigenvectors of ∇2f(x) with negative eigenvalues. It can be shown that the second component

produces a strictly negative divergence in the neighborhood of strict saddle points. See Appendix E

for the complete proof. �

9



ZHANG LIANG CHARIKAR

2.5. Polynomial-time bound for finding an approximate local minimum

Combining Proposition 5 with Theorem 1, we conclude that SGLD finds an approximate local

minimum of the function f in polynomial time, assuming that f is smooth enough to satisfy As-

sumption B.

Corollary 6 Assume that Assumptions A,B hold. For an arbitrary ǫ > 0, let U be the set of ǫ-
approximate local minima. For any ρ, δ > 0, there exists a large enough ξ and hyperparameters

(η, kmax, D) such that with probability at least 1− δ, SGLD returns a solution x̂ satisfying

f(x̂) ≤ sup
x: d(x,U)≤ρ

f(x).

The iteration number kmax is bounded by a polynomial function of all hyperparameters in the as-

sumptions as well as (ǫ−1, ρ−1, log(1/δ)).

Similarly, we can combine Proposition 2 or Proposition 4 with Theorem 1, to obtain complexity

bounds for finding the global minimum of a convex function, or finding an approximate stationary

point of a smooth function.

Corollary 6 doesn’t specify any upper limit on the temperature parameter ξ. As a result, SGLD

can be stuck at the worst approximate local minima. It is important to note that the algorithm’s

capability of escaping certain local minima relies on a more delicate choice of ξ. Given objective

function f , we consider an arbitrary smooth function F such that ‖f − F‖∞ ≤ 1/ξ. By The-

orem 1, for any target subset U , the hitting time of SGLD can be controlled by lower bounding

the restricted Cheeger constant Cξf (K\U). By the stability property (6), it is equivalent to lower

bounding CξF (K\U) because f and F are uniformly close. If ξ > 0 is chosen large enough

(w.r.t. smoothness parameters of F ), then the lower bound established by Proposition 5 guarantees

a polynomial hitting time to the set UF of approximate local minima of F . Thus, SGLD can effi-

ciently escape all local minimum of f that lie outside of UF . Since the function F is arbitrary, it can

be thought as a favorable perturbation of f such that the set UF eliminates as many local minima

of f as possible. The power of such perturbations are determined by their maximum scale, namely

the quantity 1/ξ. Therefore, it motivates choosing the smallest possible ξ whenever it satisfies the

lower bound in Proposition 5.

The above analysis doesn’t specify any concrete form of the function F . In Section 3, we

present a concrete analysis where the function F is assumed to be the population risk of empirical

risk minimization (ERM). We establish sufficient conditions under which SGLD efficiently finds an

approximate local minima of the population risk.

3. Applications to empirical risk minimization

In this section, we apply SGLD to a specific family of functions, taking the form:

f(x) :=
1

n

n∑

i=1

ℓ(x; ai) for x ∈ K.

These functions are generally referred as the empirical risk in the statistical learning literature. Here,

every instance ai ∈ A is i.i.d. sampled from a distribution P , and the function ℓ : Rd × A → R

measures the loss on individual samples. We define population risk to be the function F (x) :=
Ex∼P [ℓ(x, a)].

10
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We shall prove that under certain conditions, SGLD finds an approximate local minimum of the

(presumably smooth) population risk in polynomial time, even if it is executed on a non-smooth

empirical risk. More concretely, we run SGLD on a smoothed approximation of the empirical risk

that satisfies Assumption A. With large enough sample size, the empirical risk f and its smoothed

approximation will be close enough to the population risk F , so that combining the stability property

with Theorem 1 and Proposition 5 establishes the hitting time bound. First, let’s formalize the

assumptions.

Assumption C (parameter space, loss function and population risk)

• The parameter space K satisfies: there exists hmax > 0, such that for any x ∈ K and any

h ≤ hmax, the random variable y ∼ N(x, 2hI) satisfies P (y ∈ K) ≥ 1
3 .

• There exist ρK, ν > 0 such that in the set K := {x : d(x,K) ≤ ρK}, the population risk F is

G-Lipschitz continuous, and supx∈K |f(x)− F (x)| ≤ ν.

• For some B > 0, the loss ℓ(x; a) is uniformly bounded in [0, B] for any (x, a) ∈ R
d ×A.

The first assumption is identical to that of Assumption A. The second assumption requires the

population risk to be Lipschitz continuous, and it bounds the ℓ∞-norm distance between f and F .

The third assumption requires the loss to be uniformly bounded. Note that Assumption C allows the

empirical risk to be non-smooth or even discontinuous.

Since the function f can be non-differentiable, the stochastic gradient may not be well defined.

We consider a smooth approximation of it following the idea of Duchi et al. (2015):

f̃σ(x) := Ez[f(x+ z)] where z ∼ N(0, σ2Id×d), (13)

where σ > 0 is a smoothing parameter. We can easily compute a stochastic gradient g of f̃σ as

follows:

∇f̃σ(x) = E[g(x) | x] where g(x) :=
z

σ2
(ℓ(x+ z; a)− ℓ(x; a)), (14)

Here, z is sampled from N(0, σ2Id×d) and a is uniformly sampled from {a1, . . . , an}. This stochas-

tic gradient formulation is useful when the loss function ℓ is non-differentiable, or when its gradient

norms are unbounded. The former happens for minimizing the zero-one loss, and the later can arise

in training deep neural networks (Pascanu et al., 2013; Bengio et al., 2013). Since the loss function

is uniformly bounded, formula (14) guarantees that the squared-norm ‖g(x)‖22 is sub-exponential.

We run SGLD on the function f̃σ. Theorem 1 implies that the time complexity inversely de-

pends on the restricted Cheeger constant C(ξf̃σ)(K\U). We can lower bound this quantity using

C(ξF )(K\U) — the restricted Cheeger constant of the population risk. Indeed, by choosing a small

enough σ, it can be shown that supx∈K |f̃σ(x)−F (x)| ≤ 2ν. The stability property (6) then implies

C(ξf̃σ)(K\U) ≥ e−4ξν C(ξF )(K\U). (15)

For any ξ ∈ (0, 1/ν], we have e−4ξν ≥ e−4, thus the term C(ξf̃σ)(K\U) is lower bounded by

e−4 C(ξF )(K\U). As a consequence, we obtain the following special case of Theorem 1.

Theorem 7 Assume that Assumptions C holds. For any subset U ⊂ K, any δ > 0 and any

ξ ∈ (0, 1/ν], there exist hyperparameters (η, σ, kmax, D) such that with probability at least 1 − δ,

11
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running SGLD on f̃σ returns a solution x̂ satisfying:

F (x̂) ≤ sup
x∈U

F (x) + 5ν. (16)

The iteration number kmax is polynomial in (B, log(1/δ), d, h−1
max, ν

−1, ρ−1
K

, C−1
(ξF )(K\U)).

See Appendix F for the proof.

In order to lower bound the restricted Cheeger constant C(ξF )(K\U), we resort to the general

lower bounds in Section 2.4. Consider population risks that satisfy the conditions of Assumption B.

By combining Theorem 7 with Proposition 5, we conclude that SGLD finds an approximate local

minimum of the population risk in polynomial time.

Corollary 8 Assume that Assumption C holds. Also assume that Assumption B holds for the

population risk F with smoothness parameters (G,L,H). For any ǫ > 0, let U be the set of

ǫ-approximate local minima of F . If

sup
x∈K
|f(x)− F (x)| ≤ Õ(1) · ǫ2G1/2

max{1, G5/2L5, H5/2} , (17)

then there exist hyperparameters (ξ, η, σ, kmax, D) such that with probability at least 1− δ, running

SGLD on f̃σ returns a solution x̂ satisfying F (x̂) ≤ supx∈U F (x) + 5ν. The time complexity

will be bounded by a polynomial function of all hyperparameters in the assumptions as well as

(ǫ−1, log(1/δ)). The notation Õ(1) hides a poly-logarithmic function of (L, 1/ǫ).

Assumption B requires the population risk to be sufficiently smooth. Nonetheless, assuming

smoothness of the population risk is relatively mild, because even if the loss function is discontin-

uous, the population risk can be smooth given that the data is drawn from a smooth density. The

generalization bound (17) is a necessary condition, because the constraint ξ ≤ 1/ν for Theorem 7

and the constraint (12) for Proposition 5 must simultaneously hold. With a large sample size n,

the empirical risk can usually be made sufficiently close to the population risk. There are multi-

ple ways to bound the ℓ∞-distance between the empirical risk and the population risk, either by

bounding the VC-dimension (Vapnik, 1999), or by bounding the metric entropy (Haussler, 1992) or

the Rademacher complexity (Bartlett and Mendelson, 2003) of the function class. We note that for

many problems, the function gap uniformly converges to zero in a rate O(n−c) for some constant

c > 0. For such problems, the condition (17) can be satisfied with a polynomial sample complexity.

4. Learning linear classifiers with zero-one loss

As a concrete application, we study the problem of learning linear classifiers with zero-one loss.

The learner observes i.i.d. training instances (a, b) where (a, b) ∈ R
d × {−1, 1} are feature-label

pairs. The goal is to learn a linear classifier a 7→ 〈x, a〉 in order to minimize the zero-one loss:

F (x) := E(a,b)∼P [ℓ(x; (a, b))] where ℓ(x; (a, b)) :=





0 if b× 〈x, a〉 > 0,
1 if b× 〈x, a〉 < 0,
1/2 if 〈x, a〉 = 0,

For a finite dataset {(ai, bi)}ni=1, the empirical risk is f(x) := 1
n

∑n
i=1 ℓ(x; (ai, bi)). Clearly, the

function f is non-convex and discontinous, and has zero gradients almost everywhere. Thus the

optimization cannot be accomplished by gradient descent.

12
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For a general data distribution, finding a global minimizer of the population risk is NP-hard (Arora

et al., 1993). We follow Awasthi et al. (2015) to assume that the feature vectors are drawn uniformly

from the unit sphere, and the observed labels b are corrupted by the Massart noise. More precisely,

we assume that there is an unknown unit vector x∗ such that for every feature a ∈ R
d, the observed

label b satisfies:

b =

{
sign(〈x∗, a〉) with probability

1+q(a)
2 ;

−sign(〈x∗, a〉) with probability
1−q(a)

2 ;
(18)

where
1−q(a)

2 ∈ [0, 0.5] is the Massart noise level. We assume that the noise level is strictly smaller

than 0.5 when the feature vector a is separated apart from the decision boundary. Formally, there is

a constant 0 < q0 ≤ 1 such that

q(a) ≥ q0 |〈x∗, a〉|. (19)

The value of q(a) can be adversarially perturbed as long as it satisfies the constraint (19). Awasthi

et al. (2015) studied the same Massart noise model, but they impose a stronger constraint q(a) ≥
1 − 3.6 × 10−6 for all a ∈ R

d, so that almost all observed labels are accurate. In contrast, our

model (19) captures arbitrary Massart noises (because q0 can be arbitrarily small), and allows for

completely random observations at the decision boundary. Our model is thus more general than that

of Awasthi et al. (2015).

Given function f , we use SGLD to optimize its smoothed approximation (13) in a compact

parameter space K := {x ∈ R
d : 1/2 ≤ ‖x‖2 ≤ 1}. The following theorem shows that the

algorithm finds an approximate global optimum in polynomial time, with a polynomial sample

complexity.

Theorem 9 Assume that d ≥ 2. For any q0 ∈ (0, 1] and ǫ, δ > 0, if the sample size n satisfies:

n ≥ Õ(1) · d4

q20ǫ
4
,

then there exist hyperparameters (ξ, η, σ, kmax, D) such that SGLD on the smoothed function (13)

returns a solution x̂ satisfying F (x̂) ≤ F (x∗) + ǫ with probability at least 1 − δ. The notation

Õ(1) hides a poly-logarithmic function of (d, 1/q0, 1/ǫ, 1/δ). The time complexity of the algorithm

is polynomial in (d, 1/q0, 1/ǫ, log(1/δ)).

Proof sketch The proof consists of two parts. For the first part, we prove that the population

risk is Lipschitz continuous and the empirical risk uniformly converges to the population risk, so

that Assumption C hold. For the second part, we lower bound the restricted Cheeger constant by

Lemma 3. The proof is spiritually similar to that of Proposition 4 or Proposition 5. We define U to

be the set of approximately optimal solutions, and construct a vector field φ such that:

φ(x) ∝ 〈x, x∗〉x− ‖x‖22 x∗.
By lower bounding the expression 〈φ(x), ∇f(x)〉−divφ(x) for all x ∈ K\U , Lemma 3 establishes

a lower bound on the restricted Cheeger constant. The theorem is established by combining the two

parts together and by Theorem 7. We defer the full proof to Appendix G. �
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5. Conclusion

In this paper, we analyzed the hitting time of the SGLD algorithm on non-convex functions. Our

approach is different from existing analyses on Langevin dynamics (Bubeck et al., 2015; Dalalyan,

2016; Bonis, 2016; Teh et al., 2016; Raginsky et al., 2017), which connect LMC to a continuous-

time Langevin diffusion process, then study the mixing time of the latter process. In contrast, we

are able to establish polynomial-time guarantees for achieving certain optimality sets, regardless of

the exponential mixing time.

For future work, we hope to establish stronger results on non-convex optimization using the

techniques developed in this paper. Our current analysis doesn’t apply to training over-specified

models. For these models, the empirical risk can be minimized far below the population risk (Safran

and Shamir, 2015), thus the assumption of Corollary 8 is violated. In practice, over-specification

often makes the optimization easier, thus it could be interesting to show that this heuristic actually

improves the restricted Cheeger constant. Another open problem is avoiding poor population local

minima. Jin et al. (2016) proved that there are many poor population local minima in training

Gaussian mixture models. It would be interesting to investigate whether a careful initialization

could prevent SGLD from hitting such bad solutions.
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Appendix A. Restricted Cheeger constant is strictly positive

In this appendix, we prove that under mild conditions, the restricted Cheeger constant for a convex

parameter space is always strictly positive. Let K be an arbitrary convex parameter space with di-

ameter D < +∞. Lovász and Simonovits (1993, Theorem 2.6) proved the following isoperimetric

inequality: for any subset A ⊂ K and any ǫ > 0, the following lower bound holds:

vol(Aǫ)− vol(A)

ǫ min{vol(A), vol(K\Aǫ)}
≥ 2

D
, (20)

where vol(A) represents the Borel measure of set A. Let f0(x) := 0 be a constant zero function.

By the definition of the function-induced probability measure, we have

µf0(A) =
vol(A)

vol(K)
for all A ⊂ K. (21)
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Combining the inequality (20) with equation (21), we obtain:

µf0(Aǫ)− µf0(A)

ǫ µf0(A) (1− µf0(Aǫ))
≥ µf0(Aǫ)− µf0(A)

ǫ min{µf0(A), 1− µf0(Aǫ)}
≥ 2

D
.

If the set A satisfies A ⊂ V ⊂ K, then 1 − µf0(Aǫ) ≥ 1 − µf0(Vǫ). Combining it with the above

inequality, we obtain:

µf0(Aǫ)− µf0(A)

ǫ µf0(A)
≥ 2(1− µf0(Vǫ))

D
=

2(vol(K)− vol(Vǫ))

D vol(K)
.

According to the definition of the restricted Cheeger constant, the above lower bound implies:

Cf0(V ) ≥ 2(vol(K)− limǫ→0 vol(Vǫ))

D vol(K)
. (22)

Consider an arbitrary bounded function f satisfying supx∈K |f(x)| ≤ B < +∞, combining the

stability property (6) and inequality (22), we obtain:

Cf (V ) ≥ e−2B × 2(vol(K)− limǫ→0 vol(Vǫ))

D vol(K)
.

We summarize the result as the following proposition.

Proposition 10 Assume that K is a convex parameter space with finite diameter. Also assume

that V ⊂ K is a measurable set satisfying limǫ→0 vol(Vǫ) < vol(K). For any bounded function

f : K → R, the restricted Cheeger constant Cf (V ) is strictly positive.

Appendix B. Proof of Theorem 1

The proof consists of two parts. We first establish a general bound on the hitting time of Markov

chains to a certain subset U ⊂ K, based on the notion of restricted conductance. Then we prove

that the hitting time of SGLD can be bounded by the hitting time of a carefully constructed time-

reversible Markov chain. This Markov chain runs a Metropolis-Hastings algorithm that converges

to the stationary distribution µξf . We prove that this Markov chain has a bounded restricted con-

ductance, whose value is characterized by the restricted Cheeger constant that we introduced in

Section 2.2. Combining the two parts establishes the general theorem.

B.1. Hitting time of Markov chains

For an arbitrary Markov chain defined on the parameter space K, we represent the Markov chain

by its transition kernel π(x,A), which gives the conditional probability that the next state satisfies

xk+1 ∈ A given the current state xk = x. Similarly, we use π(x, x′) to represent the conditional

probability P (xk+1 = x′|xk = x). If π has a stationary distribution, then we denote it by Qπ.

A Markov chain is call lazy if π(x, x) ≥ 1/2 for every x ∈ K, and is called time-reversible if it

satisfies ∫

A
π(x,B)Qπ(x) =

∫

B
π(x,A)Qπ(x) for any A,B ⊂ K.

If (x0, x1, x2, . . . ) is a realization of the Markov chain π, then the hitting time to some set U ⊂ K
is denoted by:

τπ(U) := min{k : xk ∈ U}.
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For arbitrary subset V ⊂ K, we define the restricted conductance, denoted by Φπ(V ), to be the

following infinimum ratio:

Φπ(V ) := inf
A⊂V

∫
A π(x,K\A)Qπ(x)dx

Qπ(A)
. (23)

Based on the notion of restricted conductance, we present a general upper bound on the hitting

time. For arbitrary subset U ⊂ K, suppose that π̃ is an arbitrary Markov chain whose transition

kernel is stationary inside U , namely it satisfies π̃(x, x) = 1 for any x ∈ U . Let (x̃0, x̃1, x̃2, . . . ) be

a realization of the Markov chain π̃. We denote by Qk the probability distribution of x̃k at iteration

k. In addition, we define a measure of closeness between any two Markov chains.

Definition For two Markov chains π and π̃, we say that π̃ is ǫ-close to π w.r.t. a set U if the

following condition holds for any x ∈ K\U and any A ⊂ K\{x}:
π(x,A) ≤ π̃(x,A) ≤ (1 + ǫ)π(x,A). (24)

Then we are able to prove the following lemma.

Lemma 11 Let π be a time-reversible lazy Markov chain with atom-free stationary distribution

Qπ. Assume that π̃ is ǫ-close to π w.r.t. U where ǫ ≤ 1
4Φπ(K\U). If there is a constant M such

that the distribution Q0 satisfies Q0(A) ≤ M Qπ(A) for any A ⊂ K\U , then for any δ > 0, the

hitting time of the Markov chain is bounded by:

τπ̃(U) ≤ 4 log(M/δ)

Φ2
π(K\U)

, (25)

with probability at least 1− δ.

See Appendix B.3.1 for the proof of Lemma 11. The lemma shows that if the two chains π and

π̃ are sufficiently close, then the hitting time of the Markov chain π̃ will be inversely proportional to

the square of the restricted conductance of the Markov chain π, namely Φπ(K\U). Note that if the

density function of distribution Qπ is bounded, then by choosing Q0 to be the uniform distribution

over K, there exists a finite constant M such that Q0(A) ≤ MQπ(A), satisfying the last condition

of Lemma 11.

B.2. Proof of the theorem

The SGLD algorithm initializes x0 by the uniform distribution µf0 (with f0(x) ≡ 0). Then at

iteration k ≥ 1, it performs the following update:

yk = xk−1 − η · g(xk−1) +
√

2η/ξ · w; xk =

{
yk if yk ∈ K ∩ B(xk−1; 4

√
2ηd/ξ),

xk−1 otherwise.

(26)

We refer the particular setting ξ = 1 as the “standard setting”. For the “non-standard” setting of

ξ 6= 1, we rewrite the first equation as:

yk = xk−1 − (η/ξ) · (ξg(xk−1)) +
√

2(η/ξ) · w.
This re-formulation reduces to the problem to the standard setting, with stepsize η/ξ and objective

function ξf . Thus it suffices to prove the theorem in the standard setting, then plug in the stepsize
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η/ξ and the objective function ξf to obtain the general theorem. Therefore, we assume ξ = 1 and

consider the sequence of points (x0, x1, . . . ) generated by:

yk = xk−1 − η · g(xk−1) +
√

2η · w; xk =

{
yk if yk ∈ K ∩ B(xk−1; 4

√
2ηd),

xk−1 otherwise.
(27)

We introduce two additional notations: for arbitrary functions f1, f2, we denote the maximal

gap supx∈K |f1(x) − f2(x)| by the shorthand ‖f1 − f2‖∞. For arbitrary set V ⊂ K and ρ > 0,

we denote the super-set {x ∈ K : d(x, V ) ≤ ρ} by the shorthand Vρ. Then we prove the following

theorem for the standard setting.

Theorem 12 Assume that Assumption A holds. Let x0 be sampled from µf0 and let the Markov

chain (x0, x1, x2, · · · ) be generated by update (27). Let U ⊂ K be an arbitrary subset and let

ρ > 0 be an arbitrary positive number. Let C := Cf (K\U) be a shorthand notation. Then for any

δ > 0 and any stepsize η satisfying

η ≤ c min
{
dρ2, hmax,

b2max

d
,

C2
d3(G2 + L)2

}
, (28)

the hitting time to set Uρ is bounded by

min{k : xk ∈ Uρ} ≤
c′ d

(
‖f − f0‖∞ + log(1/δ)

)

η C2 , (29)

with probability at least 1− δ. Here, c, c′ > 0 are universal constants.

Theorem 12 shows that if we choose η ∈ (0, η0], where η0 is the right-hand side of inequality (28),

then with probability at least 1− δ, the hitting time to the set Uρ is bounded by

min{k : xk ∈ Uρ} ≤
c′ d

(
B + log(1/δ)

)

η C2 =
c′ d

(
B + log(1/δ)

)

(η/η0) η0C2
.

Combining it with the definition of η0, we conclude that min{k : xk ∈ Uρ} ≤ M
C4 where M is poly-

nomial in (B,L,G, log(1/δ), d, η0/η, h
−1
max, b

−1
max, ρ

−1). This establishes the iteration complexity

bound. Whenever xk hits Uρ, we have

f(x̂) ≤ f(xk) ≤ sup
x: d(x,U)≤ρ

f(x),

which establishes the risk bound. Thus, Theorem 12 establishes Theorem 1 for the special case of

ξ = 1.

In the non-standard setting (ξ 6= 1), we follow the reduction described above to substitute

(η, f) in Theorem 12 with the pair (η/ξ, ξf). As a consequence, the quantity C is substituted

with C(ξf)(K\U), and (B,L,G, η0, bmax) are substituted with (ξB, ξL, ξG, η0/ξ, bmax/ξ). Both

the iteration complexity bound and the risk bound hold as in the standard setting, except that after

the substitution, the numerator M in the iteration complexity bound has an additional polynomial

dependence on ξ. Thus we have proved the general conclusion of Theorem 1.

Proof of Theorem 12 For the function f : K → R
d satisfying Assumption A, we define a time-

reversible Markov chain represented by the following transition kernel πf . Given any current state

xk = x ∈ K, the Markov chain draws a “candidate state” y ∈ R
d from the following the density
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function:

qx(y) :=
1

2
δx(y) +

1

2
· 1

(4πη)d/2
E

[
e
− ‖y−x+η·g(x)‖22

4η | x
]

(30)

where δx is the Dirac delta function at point x. The expectation is taken over the stochastic gradient

g defined in equation (27), conditioning on the current state x. Then for any candidate state y ∈
K ∩ B(x; 4

√
2ηd), we accept the candidate state (i.e., xk+1 = y) with probability:

αx(y) := min
{
1,

qy(x)

qx(y)
ef(x)−f(y)

}
, (31)

or reject the candidate state (i.e., xk+1 = x) with probability 1 − αx(y). All candidate states

y /∈ K ∩ B(x; 4
√
2ηd) are rejected (i.e., xk+1 = x). It is easy to verify that πf executes a

Metropolis-Hastings algorithm. Therefore, it induces a time-reversible Markov chain, and its sta-

tionary distribution is equal to µf (x) ∝ e−f(x).

Given the subset Uρ ⊂ K, we define an auxiliary Markov chain and its transition kernel π̃f as

follow. Given any current state x̃k = x ∈ K, the Markov chain proposes a candidate state y ∈ R
d

through the density function qx(y) defined by equation (30), then accepts the candidate state if and

only if x /∈ Uρ and y ∈ K ∩ B(x; 4
√
2ηd). Upon acceptance, the next state of π̃f is defined to

be x̃k+1 = y, otherwise x̃x+1 = x. The Markov chains π̃f differs from πf only in their different

probabilities for acccepting the candidate state y. If x ∈ Uρ, then πf may accept y with probability

αx(y), but π̃f always rejects y. If x /∈ Uρ and y ∈ K ∩ B(x; 4
√
2ηd), then πf accepts y with

probability αx(y), while π̃f accepts with probability 1.

Despite the difference in their definitions, we are able to show that the two Markov chains are

ǫ-close, where ǫ depends on the stepsize η and the properties of the objective function.

Lemma 13 Assume that 0 < η ≤ b2max

8d and Assumption A hold. Then the Markov chain π̃f is

ǫ-close to πf w.r.t. Uρ with ǫ = e16ηd(G
2+L) − 1.

See Appendix B.3.2 for the proof.

Lemma 13 shows that if we choose η small enough, then ǫ will be sufficiently small. Recall

from Lemma 11 that we need ǫ ≤ 1
4Φπf

(K\Uρ) to bound the Markov chain πf ’s hitting time to

the set Uρ. It means that η has to be chosen based on the restricted conductance of the Markov

chain πf . Although calculating the restricted conductance of a Markov chain might be difficult,

the following lemma shows that the restricted conductance can be lower bounded by the restricted

Cheeger constant.

Lemma 14 Assume that η ≤ min{hmax, 16dρ
2, b

2
max

8d , 1
100d(G2+L)

} and Assumption A hold. Then

for any V ⊂ K, we have:

Φπf
(V ) ≥ 1

192
(1− e−

1
4

√
η/d Cf (Vρ)).

See Appendix B.3.3 for the proof.

By Lemma 13 and Lemma 14, we are able to choose a sufficiently small η such that the Markov

chains πf and π̃f are close enough to satisfy the conditions of Lemma 11. Formally, the following

condition on η is sufficient.
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Lemma 15 There exists a universal constant c > 0 such that for any stepsize η satisfying:

η ≤ c min
{
hmax, dρ

2,
b2max

d
,

C2
d3(G2 + L)2

}
, (32)

the Markov chains πf and π̃f are ǫ-close with ǫ ≤ 1
4Φπf

(K\Uρ). In addition, the restricted con-

ductance satisfies the lower bound Φπf
(K\Uρ) ≥ 1

1536

√
η/d C.

See Appendix B.3.4 for the proof.

Under condition (32), the Markov chains πf and π̃f are ǫ-close with ǫ ≤ 1
4Φπf

(K\Uρ). Recall

that the Markov chain πf is time-reversible and lazy. Since f is bounded, the stationary distribution

Qπf
= µf is atom-free, and sampling x0 from Q0 := µf0 implies:

Q0(A) =

∫
A e−f0(x)dx∫
K e−f0(x)dx

≤ esupx∈K f(x)−f0(x)
∫
A e−f(x)dx

einfx∈K f(x)−f0(x)
∫
K e−f(x)dx

≤ e2‖f−f0‖∞Qπf
(A). (33)

Thus the last condition of Lemma 11 is satisfied. Combining Lemma 11 with the lower bound

Φπf
(K\Uρ) ≥ 1

1536

√
η/d C in Lemma 15, it implies that with probability at least 1 − δ > 0, we

have

τπ̃f
(U) ≤ c′ d (‖f − f0‖∞ + log(1/δ))

η C2 , (34)

where c′ > 0 is a universal constant.

Finally, we upper bound the hitting time of SGLD (i.e., the Markov chain induced by for-

mula (27)) using the hitting time upper bound (34). We denote by πsgld the transition kernel

of SGLD, and claim that the Markov chain induced by it can be generated as a sub-sequence

of the Markov chain induced by π̃f . To see why the claim holds, we consider a Markov chain

(x̃0, x̃1, x̃2, . . . ) generated by π̃f , and construct a sub-sequence (x′0, x
′
1, x

′
2, . . . ) of this Markov

chain as follows:

1. Assign x′0 = x̃0 and initialize an index variable ℓ← 0.

2. Examine the states x̃k in the order k = 1, 2, . . . , τ , where τ = min{k : x̃k ∈ U}:

• For any state x̃k, in order to sample its next state x̃k+1, the candidate state y is either

drawn from a delta distribution δx̃k
, or drawn from a normal distribution with stochastic

mean vector x − ηg(x). The probability of these two cases are equal, according to

equation (30).

• If y is drawn from the normal distribution, then generate a state x′ℓ+1 = x̃k+1 and add it

to the sub-sequence (x′0, x
′
1, x

′
2, . . . ). Update the index variable ℓ← ℓ+ 1.

By this construction, it is easy to verify that (x′0, x
′
1, x

′
2, . . . ) is a Markov chain and its transition

kernel exactly matches formula (27). Since the sub-sequence (x′0, x
′
1, x

′
2, . . . ) hits U in at most τ

steps, we have

τπsgld
(U) ≤ τ = τπ̃f

(U).

Combining this upper bound with (34) completes the proof of Theorem 12.
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B.3. Proof of technical lemmas

B.3.1. PROOF OF LEMMA 11

Let q := Qπ(K\U) be a shorthand notation. Let Gp be the class of functions g : K\U → [0, 1] such

that
∫
K\U g(x)Qπ(x)dx = p. We define a sequence of functions hk : [0, q] → R (k = 1, 2, . . . )

such that

hk(p) := sup
g∈Gp

∫

K\U
g(x)Qk(x)dx. (35)

By its definition, the function hk is a concave function on [0, q]. In addition, (Lovász and Si-

monovits, 1993, Lemma 1.2) proved the following properties for the function hk: if Qπ is atom-

free, then for any p ∈ [0, q] there exists a function g(x) := I(x ∈ A) that attains the supremum in

the definition of hk. We claim the following property of the function hk.

Claim 1 If there is a constant C such that the inequality h0(p) ≤ C
√
p holds for any p ∈ [0, q],

then the inequality

hk(p) ≤ C
√
p(1− 1

4
Φ2
π(K\U))k (36)

holds for any k ∈ N and any p ∈ [0, q].

According to the claim, it suffices to upper bound h0(p) for p ∈ [0, q]. Indeed, since Q0(A) ≤
M Qπ(A) for any A ⊂ K\U , we immediately have:

h0(p) = sup
A⊂K\U : Qπ(A)=p

Q0(A) ≤Mp ≤M
√
p.

Thus, we have

Qk(K\U) ≤ hk(q) ≤M(1− 1

4
Φ2
π(K\U))k.

Choosing k := 4 log(M/δ)
Φ2

π(K\U)
implies Qk(K\U) ≤ δ. As a consequence, the hitting time is bounded

by k with probability at least 1− δ.

Proof of Claim 1 Recall the properties of the function hk. For any p ∈ [0, q], we can find a set

A ⊂ K\U such that Qπ(A) = p and hk(p) = Qk(A). Define, for x ∈ K, two functions:

g1(x) =

{
2π̃(x,A)− 1 if x ∈ A
0 if x /∈ A

,

g2(x) =

{
1 if x ∈ A
2π̃(x,A) if x /∈ A

. ,

By the laziness of the Markov chain π̃, we obtain 0 ≤ gi ≤ 1, so that they are functions mapping

from K\U to [0, 1]. Using the relation 2π̃(x,A)−1 = 1−2π̃(x,K\A), the definition of g1 implies

that:∫

K\U
g1(x)Qπ(x)dx = Qπ(A)− 2

∫

A
π̃(x,K\A)Qπ(x)dx = p− 2

∫

A
π̃(x,K\A)Qπ(x)dx

≤ p− 2

∫

A
π(x,K\A)Qπ(x)dx. (37)
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where the last inequality follows since the δ-closeness ensures π(x,K\A) ≤ π̃(x,K\A). Similarly,

using the definition of g2 and the relation π̃(x,A) ≤ (1 + ǫ)π(x,A), we obtain:
∫

K\U
g2(x)Qπ(x)dx = Qπ(A) + 2

∫

K\(U∪A)
π̃(x,A)Qπ(x)dx

≤ p+ 2

∫

K\A
π̃(x,A)Qπ(x)dx

≤ p+ 2

∫

K\A
(1 + ǫ)π(x,A)Qπ(x)dx (38)

Since Qπ is the stationary distribution of the time-reversible Markov chain π, the right-hand side

of (38) is equal to:

p+ 2

∫

K\A
(1 + ǫ)π(x,A)Qπ(x)dx = p+ 2(1 + ǫ)

∫

A
π(x,K\A)Qπ(x)dx (39)

Let p1 and p2 be the left-hand side of inequality (37) and (38) respectively, and define a short-

hand notation:

r :=
1

p

∫

A
π(x,K\A)Qπ(x)dx.

Then by definition of restricted conductance and the laziness of π, we have Φπ(K\U) ≤ r ≤ 1/2.

Combining inequalities (37), (38) and (39) and by simple algebra, we obtain:

√
p1 +

√
p2 ≤

√
p
(√

1− 2r +
√
1 + 2ǫr + 2r

)
.

By the condition ǫ ≤ 1
4Φπ(K\U) ≤ r

4 , the above inequality implies

√
p1 +

√
p2 ≤

√
p
(√

1− 2r +
√

1 + 2r + r2/2
)

It is straightforward to verify that for any 0 ≤ r ≤ 1, the right-hand side is upper bounded by

2(1− r2/4)
√
p. Thus we obtain:

√
p1 +

√
p2 ≤ 2(1− r2/4)

√
p. (40)

On the other hand, the definition of g1 and g2 implies that π̃(x,A) = g1(x)+g2(x)
2 for any x ∈

K\U . For all x ∈ U , the transition kernel π̃ is stationary, so that we have π̃(x,A) = 0. Combining

these two facts implies

hk(p) = Qk(A) =

∫

K\U
π̃(x,A)Qk−1(x)dx

=
1

2

(∫

K\U
g1(x)Qk−1(x)dx+

∫

K\U
g2(x)Qk−1(x)dx

)
≤ 1

2
(hk−1(p1) + hk−1(p2)). (41)

The last inequality uses the definition of function hk−1.

Finally, we prove inequality (36) by induction. The inequality holds for k = 0 by the assump-

tion. We assume by induction that it holds for an aribtrary integer k − 1, and prove that it holds for

k. Combining the inductive hypothesis with inequalities (40) and (41), we have

hk(p) ≤
C

2
(
√
p1 +

√
p2)(1−

1

4
Φ2
π(K\U))k−1 ≤ C

√
p(1− r2/4)(1− 1

4
Φ2
π(K\U))k−1

≤ C
√
p(1− 1

4
Φ2
π(K\U))k,
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Thus, inequality (36) holds for k, which completes the proof.

B.3.2. PROOF OF LEMMA 13

By the definition of the ǫ-closeness, it suffices to consider an arbitrary x /∈ Uρ and verify the

inequality (24). We focus on cases when the acceptance ratio of πf and π̃f are different, that is,

when the candidate state y satisfies y 6= x and y ∈ K ∩B(x; 4
√
2ηd). We make the following claim

on the acceptance ratio.

Claim 2 For any 0 < η ≤ b2max

8d , if we assume x /∈ Uρ, y /∈ x, and y ∈ K ∩ B(x; 4
√
2ηd), then the

acceptance ratio is lower bounded by αx(y) ≥ e−16ηd(G2+L).

Consider an arbitrary point x ∈ K\Uρ and an arbitrary subset A ⊂ K\{x}. The definitions of

πf and π̃f imply that πf (x,A) ≤ π̃f (x,A) always hold. In order to prove the opposite, we notice

that:

π̃f (x,A) =

∫

A∩B(x;4
√
2ηd)

qx(y)dy. (42)

The definition of πf and Claim 2 implies
∫

A∩B(x;4
√
2ηd)

qx(y)dy ≤ e16ηd(G
2+L)

∫

A∩B(x;4
√
2ηd)

qx(y)αx(y)dy

= e16ηd(G
2+L) π(x,A),

which completes the proof.

Proof of Claim 2 By plugging in the definition of αx(y) and αy(x) and the fact that x 6= y, we

obtain

qy(x)

qx(y)
ef(x)−f(y) =

E[e
− ‖x−y+η·g(y)‖22

4η | y]

E[e
− ‖y−x+η·g(x)‖22

4η | x]
· ef(x)−f(y). (43)

In order to prove the claim, we need to lower bound the numerator and upper bound the denominator

of equation (43). For the numerator, Jensen’s inequality implies:

E

[
e
− ‖x−y+η·g(y)‖22

4η | y
]
≥ e

−E[
‖x−y+η·g(y)‖22

4η
|y]

= e
− ‖x−y‖22

4η
−E[

〈x−y, g(y)〉
2

+
η‖g(y)‖22

4
|y]

≥ e
− ‖x−y‖22

4η
− 〈x−y,∇f(y)〉

2
− ηdG2

4 (44)

where the last inequality uses the upper bound

E[‖g(y)‖22|y] =
1

b2max

d∑

i=1

E[(bmaxgi(y))
2|y] ≤ 1

b2max

d∑

i=1

log
(
E[e(bmaxgi(y))

2 |y]
)

≤ 1

b2max

d∑

i=1

log
(
eG

2b2max

)
= dG2. (45)

For the above deduction, we have used the Jensen’s inequality as well as Assumption A.

For the denominator, we notice that the term inside the expectation satisfies:

e
− ‖y−x+η·g(x)‖22

4η ≤ e
− ‖x−y‖22

4η
− 〈y−x, g(x)〉

2
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Using the relation that ea ≤ a+ ea
2

for any a ∈ R, we have

e
− ‖y−x+η·g(x)‖22

4η ≤ e
− ‖x−y‖22

4η

(
− 〈y − x, g(x)〉

2
+ e(〈

x−y
2

, g(x)〉)2
)
. (46)

Since ‖x−y
2 ‖2 ≤ 2

√
2ηd ≤ bmax, Assumption A implies

E[e(〈
x−y
2

, g(x)〉)2 ] ≤ eG
2‖x−y

2
‖22 ≤ e8ηdG

2
.

Thus, by taking expectation on both sides of inequality (46) (conditional on x) and using the relation

that a+ eb ≤ ea+b for any a ∈ R, b ≥ 0, we obtain

E

[
e
− ‖y−x+η·g(x)‖22

4η | x
]
≤ e

− ‖x−y‖22
4η

(
− 〈y − x, ∇f(x)〉

2
+ e8ηdG

2
)

≤ e
− ‖x−y‖22

4η
− 〈y−x,∇f(x)〉

2
+8ηdG2

. (47)

Combining equation (43) with inequalities (44), (47), we obtain

qy(x)

qx(y)
ef(x)−f(y) ≥ ef(x)−f(y)−〈x−y,

∇f(x)+∇f(y)
2

〉− 33ηdG2

4 . (48)

The L-smoothness of function f implies that

f(x)− f(y)− 〈x− y,
∇f(x) +∇f(y)

2
〉 ≥ −L‖x− y‖22

2
≥ −16ηdL.

Combining this inequality with the lower bound (48) completes the proof.

B.3.3. PROOF OF LEMMA 14

Recall that µf is the stationary distribution of the Markov chain πf . We consider an arbitrary subset

A ⊂ V , and define B := K\A. Let A1 and B1 be defined as

A1 := {x ∈ A : πf (x,B) < 1/96} and B1 := {x ∈ B : πf (x,A) < 1/96},
In other words, the points in A1 and B1 have low probability to move across the broader between

A and B. We claim that the distance between points in A1 and B1 must be bounded away from a

positive number.

Claim 3 Assume that η ≤ min{hmax,
b2max

8d , 1
100d(G2+L)

}. If x ∈ A1 and y ∈ B1, then ‖x− y‖2 >
1
4

√
η/d.

For any point x ∈ K\(A1 ∪ B1), we either have x ∈ A and πf (x,B) ≥ 1/96, or we have

x ∈ B and πf (x,A) ≥ 1/96. It implies:

µf (K\(A1 ∪B1)) ≥
∫

A
µf (x)dx+

∫

B
µf (x)dx

≥
∫

A
96πf (x,B)µf (x)dx+

∫

B
96πf (x,A)µf (x)dx (49)
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Since µf is the stationary distribution of the time-reversible Markov chain πf , inequality (49) im-

plies:
∫

A
πf (x,B)µf (x)dx =

1

2

∫

A
πf (x,B)µf (x)dx+

1

2

∫

B
πf (x,A)µf (x)dx

≥ 1

192
µf (K\(A1 ∪B1)) =

1

192

(
µf (K\B1)− µf (A1)

)
. (50)

Notice that A ⊂ K\B1, so that µf (K\B1) ≥ µf (A). According to Claim 3, by defining an

auxiliary quantity:

ρη :=
1

4

√
η/d,

we find that the set (A1)ρη belongs to K\B1, so that µf (K\B1) ≥ µf ((A1)ρη). The following

property is a direct consequence of the definition of restricted Cheeger constant.

Claim 4 For any A ⊂ V and any ν > 0, we have µf (Aν) ≥ eν·Cf (Vν)µf (A).

Letting A := A1 and ν := ρη in Claim 4, we have µf ((A1)ρη) ≥ eρη ·Cf (Vρη )µf (A1). Combining

these inequalities, we obtain

µf (K\B1)− µf (A1) ≥ max
{
µf (A)− µf (A1),

(
eρη ·Cf (Vρη ) − 1

)
µf (A1)

}

≥
(
1− e−ρη ·Cf (Vρη )

)
µf (A),

where the last inequality uses the relation max{a−b, (α−1)b} ≥ α−1
α (a−b)+ 1

α(α−1)b = α−1
α a

with α := eρη ·Cf (Vρη ). Combining it with inequality (50), we obtain

Φπf
(V ) ≥ 1

192
(1− e−ρη ·Cf (Vρη )).

The lemma’s assumption gives ρη = 1
4

√
η/d ≤ ρ. Plugging in this relation completes the proof.

Proof of Claim 3 Consider any two points x ∈ A and y ∈ B. Let s be a number such that

2s
√
2ηd = ‖x− y‖2. If s > 1, then the claim already holds for the pair (x, y). Otherwise, we

assume that s ≤ 1, and as a consequence assume ‖x− y‖2 ≤ 2
√
2ηd.

We consider the set of points

Z :=
{
z ∈ R

d\{x, y} : ‖z − x+ y

2
‖2 ≤ 3

√
2ηd

}
.

Denote by q(z) the density function of distribution N(x+y
2 ; 2ηI). The integral

∫
Z q(z)dz is equal

to P (X ≤ 9d), where X is a random variable satisfying the chi-square distribution with d degrees

of freedom. The following tail bound for the chi-square distribution was proved by Laurent and

Massart (2000).

Lemma 16 If X is a random variable satisfying the Chi-square distribution with d degrees of

freedom, then for any x > 0,

P (X ≥ d(1 + 2
√
x+ 2x)) ≤ e−xd and P (X ≤ d(1− 2

√
x)) ≤ e−xd.

By choosing x = 9/5 in Lemma 16, the probability P (X ≤ 9d) is lower bounded by 1−e−(9/5)d >
5/6. Since η ≤ hmax, the first assumption of Assumption A implies

∫
K q(z)dz ≥ 1/3. Combining
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these two bounds, we obtain∫

K∩Z
q(z)dz ≥

∫

K
q(z)dz −

∫

Zc

q(z)dz > 1/6. (51)

For any point z ∈ Z, the distances ‖z − x‖2 and ‖z − y‖2 are bounded by 4
√
2ηd. It implies

Z ⊂ B(x; 4
√

2ηd) ∩ B(y; 4
√

2ηd). (52)

Claim 2 in the proof of Lemma 13 demonstrates that the acceptance ratio αx(z) and αy(z) for any

z ∈ K ∩ Z are both lower bounded by e−16ηd(G2+L) given the assumption 0 < η ≤ b2max

8d . This

lower bound is at least equal to 1/2 because of the assumption η ≤ 1
100d(G2+L)

, so that we have

αx(z) ≥
1

2
and αy(z) ≥

1

2
for all z ∈ K ∩ Z. (53)

Next, we lower bound the ratio qx(z)/q(z) and qy(z)/q(z). For z ∈ Z but z 6= x, the function

qx(z) is defined by

qx(z) =
1

2
· 1

(4πη)d/2
E

[
e
− ‖z−x+η·g(x)‖22

4η | x
]
,

so that we have

qx(z)

q(z)
=

1

2
E

[
exp

(
− ‖z − x+ η · g(x)‖22 − ‖z − x+y

2 ‖22
4η

)
|x
]

=
1

2
E

[
exp

(
− 〈

y−x
2 + η · g(x), 2(z − x+y

2 )− x−y
2 + η · g(x)〉

4η

)
|x
]
.

=
(1
2
e
− 1

4η
〈 y−x

2
, 2(z−x+y

2
)+ y−x

2
〉
)
E[e−

1
4
〈y−x+2(z−x+y

2
), g(x)〉− η

4
‖g(x)‖22 |x]

≥
(1
2
e−

s(6+s)d
2

)
e−E[ 1

4
〈y−x+2(z−x+y

2
), g(x)〉+ η

4
‖g(x)‖22|x], (54)

where the last inequality uses Jensen’s inequality; It also uses the fact ‖y−x
2 ‖2 = s

√
2ηd and

‖z − x+y
2 ‖2 ≤ 3

√
2ηd.

For any unit vector u ∈ R
d, Jensen’s inequality and Assumption A imply:

E[(〈u, g(x)〉)2|x] ≤ 1

b2max

log
(
E[e(〈bmaxu, g(x)〉)2 |x]

)
≤ 1

b2max

log(eb
2
maxG

2
) = G2.

As a consequence of this upper bound and using Jensen’s inequality, we have:

E[〈y − x+ 2(z − x+ y

2
), g(x)〉|x] ≤ ‖y − x+ 2(z − x+ y

2
)‖2G ≤ (2s+ 6)

√
2ηdG. (55)

Combining inequalities (45), (54) and (55), we obtain:

qx(z)

q(z)
≥ 1

2
e−

s(6+s)d
2

− (3+s)
√
2ηdG

2
− ηdG2

4 . (56)

The assumption η ≤ 1
100d(G2+L)

implies G ≤ 1
10

√
ηd

. Plugging in this inequality to (56), a sufficient

condition for qx(z)/q(z) > 1/4 is

s ≤ 1

10d
. (57)

Following identical steps, we can prove that inequality (57) is a sufficient condition for qy(z)/q(z) >
1/4 as well.
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Assume that condition (57) holds. Combining inequalities (51), (53) with the fact qx(z) >
q(z)/4 and qy(z) > q(z)/4, we obtain:

∫

K∩Z
min{qx(z)αx(z), qy(z)αy(z)}dz ≥

1

8

∫

K∩Z
q(z)dz ≥ 1

48
. (58)

Notice that the set Z satisfies Z ⊂ B(x; 4
√
2ηd) ∩ B(y; 4

√
2ηd), thus the following lower bound

holds:

πf (x,B) + πf (y,A) =

∫

B∩B(x;4
√
2ηd)

qx(z)αz(z)dz +

∫

A∩B(y;4
√
2ηd)

qy(z)αy(z)dz

≥
∫

K∩Z
min{qx(z)αx(z), qy(z)αy(z)}dz ≥

1

48
.

It implies that either πf (x,B) ≥ 1
96 or πf (y,A) ≥ 1

96 . In other words, if x ∈ A1 and y ∈ B1, then

inequality (57) must not hold. As a consequence, we obtain the lower bound:

‖x− y‖2 = 2s
√

2ηd ≥
√
2

5

√
η/d >

1

4

√
η/d.

Proof of Claim 4 Let n be an arbitrary integer and let i ∈ {1, . . . , n}. By the definition of the

restricted Cheeger constant (see equation (5)), we have

log(µf (Aiν/n))− log(µf (A(i−1)ν/n)) ≥ (ν/n)(Cf (Vν)− ǫn) for i = 1, . . . , n

where ǫn is an indexed variable satisfying limn→∞ ǫn = 0. Suming over i = 1, . . . , n, we obtain

log(µf (Aν)− log(µf (A)) ≥ ν · (Cf (Vν)− ǫn).

Taking the limit n→∞ on both sides of the inequality completes the proof.

B.3.4. PROOF OF LEMMA 15

First, we impose the following constraints on the choice of η:

η ≤ min
{
hmax, 16dρ

2,
b2max

8d
,

1

100d(G2 + L)

}
, (59)

so that the preconditions of both Lemma 13 and Lemma 14 are satisfied. By plugging V := K\Uρ

to Lemma 14, the restricted conductance is lower bounded by:

Φπf
(K\Uρ) ≥

1

192
(1− e−

1
4

√
η/d·Cf ((K\Uρ)ρ)) ≥ 1

1536

√
η/d Cf ((K\Uρ)ρ). (60)

The last inequality holds because 1 − e−t ≥ t/2 for any t ∈ [0, 1], and on the other hand, we have√
η/d Cf ((K\Uρ)ρ) ∈ [0, 1]. It is easy to verify that (K\Uρ)ρ ⊂ K\U , so that we have the lower

bound Cf ((K\Uρ)ρ) ≥ Cf (K\U) = C. Plugging this lower bound to inequality (60), we obtain

Φπf
(K\Uρ) ≥

1

1536

√
η/d C. (61)

Inequality (61) establishes the restricted conductance lower bound for the lemma.

Combining inequality (61) with Lemma 13, it remains to choose a small enough η such that π̃f
is ǫ-close to πf with ǫ ≤ 1

4Φπ(K\Uρ). More precisely, it suffices to make the following inequality

hold:

e16ηd(G
2+L) − 1 ≤ 1

4
· 1

1536

√
η/d C.
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In order to satisfy this inequality, it suffices to choose η . C2

d3(G2+L)2
. Combining this result

with (59) completes the proof.

Appendix C. Proof of Proposition 2

Lovász and Simonovits (1993, Theorem 2.6) proved the following isoperimetric inequality: Let K
be an arbitrary convex set with diameter 2. For any convex function f and any subset V ⊂ K
satisfying µf (V ) ≤ 1/2, the following lower bound holds:

µf (Aǫ)− µf (A)

ǫ µf (A)
≥ 1 for all A ⊂ V, ǫ > 0. (62)

The lower bound (62) implies Cf (V ) ≥ 1. In order to establish the proposition, it suffices to choose

V := K\U and f := ξf , then prove the pre-condition µξf (K\U) ≤ 1/2.

Let x∗ be one of the global minimum of function f and let B(x∗; r) be the ball of radius r
centering at point x∗. If we choose r = ǫ

2G , then for any point x ∈ B(x∗; r) ∩K, we have

f(x) ≤ f(x∗) +G‖x− x∗‖2 ≤ f(x∗) + ǫ/2.

Moreover, for any y ∈ K\U we have:

f(y) ≥ f(x∗) + ǫ.

It means for the probability measure µξf , the density function inside B(x∗; r) ∩K is at least eξǫ/2

times greater than the density inside K\U . It implies

µξf (U)

µξf (K\U)
≥ eξǫ/2

vol(B(x∗; r) ∩K)

vol(K\U)
≥ eξǫ/2

vol(B(x∗; r) ∩K)

vol(K)
. (63)

Without loss of generality, we assume that K is the unit ball centered at the origin. Consider

the Euclidean ball B(x′; r/2) where x′ = max{0, 1 − r/(2‖x∗‖2)}x∗. It is easy to verify that

‖x′‖2 ≤ 1 − r/2 and ‖x′ − x∗‖2 ≤ r/2, which implies B(x′; r/2) ⊂ B(x∗; r) ∩ K. Combining

this relation with inequality (63), we have

µξf (U)

µξf (K\U)
≥ eξǫ/2

vol(B(x′; r/2))
vol(K)

= eξǫ/2−d log(2/r) = eξǫ/2−d log(4G/ǫ).

The right-hand side is greater than or equal to 1, because we have assumed ξ ≥ 2d log(4G/ǫ)
ǫ . As a

consequence, we have µξf (K\U) ≤ 1/2.

Appendix D. Proof of Lemma 3

Consider a sufficiently small ǫ and a continuous mapping π(x) := x − ǫφ(x). Since φ is contin-

uously differentiable in the compact set K, there exists a constant G such that ‖φ(x)− φ(y)‖2 ≤
G‖x− y‖2 for any x, y ∈ K. Assuming ǫ < 1/G, it implies

‖π(x)− π(y)‖2 ≥ ‖x− y‖2 − ǫ ‖φ(x)− φ(y)‖2 > 0 for any x 6= y.

Thus, the mapping π is a continuous one-to-one mapping. For any set A ⊂ K, we define π(A) :=
{π(s) : x ∈ A}.

Since the parameter set K is compact, we can partition K into a finite number of small compact

subsets, such that each subset has diameter at most δ := ǫ2. Let S be the collection of these subsets
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that intersect with A. The definition implies A ⊂ ∪B∈SB ⊂ Aδ. The fact that ‖φ(x)‖2 ≤ 1 implies

µf (π(∪B∈SB)) ≤ µf (π(Aδ)) ≤ µf (Aδ+ǫ).

As a consequence, we have:

µ(Aδ+ǫ)

µ(A)
≥ µf (π(∪B∈SB))

µf (∪B∈SB)
=

∑
B∈S µf (π(B))∑
B∈S µf (B)

≥ min
B∈S

µf (π(B))

µf (B)
. (64)

For arbitrary B ∈ S, we consider a point x ∈ B ∩A, and remark that every point in B is δ-close to

the point x. Since φ is continuously differentiable, the Jacobian matrix of the transformation π has

the following expansion:

J(y) = I − ǫH(x) + r1(x, y) where Jij(x) =
∂πi(x)
∂xj

, (65)

where H is the Jacobian matrix of φ satisfying Hij(x) =
∂φi(x)
∂xj

. The remainder term r1(x, y), as

a consequence of the continuous differentiability of φ and the fact ‖y − x‖2 ≤ δ = ǫ2, satisfies

‖r1(x, y)‖2 ≤ C1ǫ
2 for some constant C1.

On the other hand, using the relation ∇µf (y) = −µf (y)∇f(y) and the continuous differentia-

bility of µf , the density function at π(y) can be approximated by

µf (π(y)) = µf (y) +∇µf (y)(π(y)− y) + r2(y) =
(
1 + ǫ 〈φ(y), ∇f(y)〉

)
µf (y) + r2(y),

where the remainder term r2(y) satisfies |r2(y)| ≤ C2ǫ
2 for some constant C2. Further using the

continuity of φ, ∇f and the fact ‖y − x‖2 ≤ ǫ2, we obtain:

µf (π(y)) =
(
1 + ǫ 〈φ(x), ∇f(x)〉

)
µf (y) + r3(x, y), (66)

where the remainder term r3(x, y) satisfies |r3(x, y)| ≤ C3ǫ
2 for some constant C3.

Combining equation (65) and equation (66), we can quantify the measure of the set π(B) using

that of the set B. In particular, we have

µf (π(B)) =

∫

B
µf (π(y))dπ(y) =

∫

B
µf (π(y)) det(J(y))dy

=

∫

B

{(
1 + ǫ 〈φ(x), ∇f(x)〉

)
µf (y) + r3(x, y)

}
det(I − ǫH(x) + r1(x, y))dy

=
(
1 + ǫ 〈φ(x), ∇f(x)〉 − ǫ tr(H(x))

)∫

B
µf (y)dy +O(ǫ2).

=
(
1 + ǫ 〈φ(x), ∇f(x)〉 − ǫ tr(H(x))

)
µf (B) +O(ǫ2). (67)

Plugging equation (67) to the lower bound (64) and using the relation tr(H(x)) = divφ(x), implies

µ(Aδ+ǫ)

µ(A)
− 1 ≥ min

B∈S

(
〈φ(x), ∇f(x)〉 − divφ(x)

)
ǫ+O(ǫ2)

≥ inf
x∈A

(
〈φ(x), ∇f(x)〉 − divφ(x)

)
ǫ+O(ǫ2),

Finally, plugging in the definition of the restricted Cheeger constant and taking the limit ǫ → 0
completes the proof.
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Appendix E. Proof of Proposition 5

Notations Let Φ denote the CDF of the standard normal distribution. The function Φ satisfies the

following tail bounds:

0 ≤ Φ(t) ≤ e−t2/2 for any t ≤ 0. (68)

We define an auxiliary variable σ based on the value of ǫ:

σ :=
1

2
√
log(4L/

√
ǫ)
. (69)

Since e−1/(2σ2) =
√
ǫ

4L , the tail bound (68) implies Φ(t) ≤
√
ǫ

4L for all t ≤ − 1
σ .

Define a vector field Let g(x) := ‖∇f(x)‖2 be a shorthand notation. We define a vector field:

φ(x) :=
1

(2G+ 1)G

(
2
√
Gg(x) I +Φ

(−√ǫI −∇2f(x)

σ
√
ǫ

)

︸ ︷︷ ︸
:=A(x)

)
∇f(x) (70)

Note that the function Φ admits a polynomial expansion:

Φ(x) =
1

2
+

1√
π

∞∑

j=0

(−1)jx2j+1

j!(2j + 1)

Therefore, for any symmetric matrix A ∈ R
d×d, the matrix Φ(A) is well-defined by:

Φ(A) :=
I

2
+

1√
π

∞∑

j=0

(−1)jA2j+1

j!(2j + 1)
, (71)

We remark that the matrix definition (71) implies Φ(A+ dA) = Φ(A) + Φ′(A)dA where Φ′ is the

derivative of function Φ.

Verify the condition of Lemma 3 The matrix A(x) satisfies 0 � A(x) � (2G + 1)I , so that

‖φ(x)‖2 ≤ 1 holds. For points that are r0-close to the boundary, we have 〈x, ∇f(x)〉 ≥ ‖x‖2. By

these lower bounds and definition (70), we obtain:

‖x− ǫ φ(x)‖22 ≤ ‖x‖22 + ǫ2 − ǫ

(2G+ 1)G

(
2
√
Gg(x)〈x, ∇f(x)〉 − ‖x‖2 · ‖∇f(x)‖2

)

≤ ‖x‖22 + ǫ2 − ǫ‖x‖2
(2G+ 1)G

(
2
√
Gg(x)− g(x)

)
.

≤ ‖x‖22 + ǫ2 − ǫ‖x‖2
√
Gg(x)

(2G+ 1)G
≤ ‖x‖22 + ǫ2 − ǫ‖x‖2

(2G+ 1)
√
G
, (72)

where the last inequality holds because g(x) ≥ 〈x, ∇f(x)〉/‖x‖2 ≥ 1. For any ǫ < r−r0
(2G+1)

√
G

, the

right-hand side is smaller than ‖x‖22, so that x− ǫ φ(x) ∈ K. For points that are not r0-close to the

boundary, we have x− ǫ φ(x) ∈ K given ǫ < r0. Combining results for the two cases, we conclude

that φ satisfies the conditions of Lemma 3

Prove the Lower bound By applying Lemma 3, we obtain the following lower bound:

C(ξf)(K\U) ≥ 1

(2G+ 1)G
inf

x∈K\U

{
ξ (∇f(x))⊤A(x)∇f(x)− divA(x)∇f(x)

}
. (73)
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Since A(x) � 2
√

Gg(x)I , the term (∇f(x))⊤A(x)∇f(x) is lower bounded by 2
√
G(g(x))5/2.

For the second term, we claim the following bound:

divA(x)∇f(x) ≤ 3
√
Gg(x)L+

g(x)H

σ
√
ǫ

+

√
ǫ

4
− I[g(x) < ǫ]

√
ǫ

2
(74)

We defer the proof to Appendix E.1 and focus on its consequence. Combining inequalities (73)

and (74), we obtain

C(ξf)(K\U) ≥ 1

(2G+ 1)G
inf

x∈K\U
{
2
√
Gξ(g(x))5/2 + I[g(x) < ǫ]

√
ǫ

2
− 3

√
Gg(x)L− g(x)H

σ
√
ǫ
−
√
ǫ

4

}
. (75)

The right-hand side of inequality (75) can be made strictly positive if we choose a large enough ξ.

In particular, we choose:

ξ ≥ 1

ǫ2G1/2
·max

{6G1/2L

h2
,

2H

σh3/2
,

1

2h5/2

}
where h := min

{
1,

1

G(48L)2
,

σ

16H

}
. (76)

To proceed, we do a case study based on the value of g(x). For all x satisfying g(x) < hǫ, we plug

in the upper bound g(x) < hǫ for g(x), then plug in the definition of h. It implies:

I[g(x) < ǫ]

√
ǫ

2
− 3

√
Gg(x)L− g(x)H

σ
√
ǫ
−
√
ǫ

4

≥
√
ǫ

4
− 3
√
GL ·

√
ǫ

G(48L)2
− H

σ
√
ǫ
· ǫσ

16H
=

√
ǫ

8
. (77)

For all x satisfying g(x) ≥ hǫ, we ignore the non-negative term I[g(x) < ǫ]
√
ǫ
2 on the right-hand

side of (75), then re-arrange the remaining terms. It gives:

2
√
Gξ(g(x))5/2 − 3

√
Gg(x)L− g(x)H

σ
√
ǫ
−
√
ǫ

4
≥ ξ
√
G(g(x))5/2

2
+
√
Gg(x)

(ξ(g(x))2
2

− 3L
)

+ g(x)
(ξ
√
G(g(x))3/2

2
− H

σ
√
ǫ

)
+
(ξ
√
G(g(x))5/2

2
−
√
ǫ

4

)
.

Using lower bound (76) for ξ and the lower bound g(x) ≥ hǫ for g(x), it is easy to verify that the

last three terms on the right-hand side are non-negative. Furthermore, plugging in the lower bound

ξ ≥ 1
ǫ2G1/2 · 1

2h5/2 from (76), it implies:

2
√
Gξ(g(x))5/2 − 3

√
g(x)L− g(x)H

σ
√
ǫ
−
√
ǫ

4
≥
√
Gξ · (hǫ)

5/2

2
≥ 1

2ǫ2h5/2
· (hǫ)

5/2

2
=

√
ǫ

4
(78)

Combining inequalities (75), (77), (78) proves that the restricted Cheeger constant is lower bounded

by
√
ǫ

8(2G+1)G . Since 1/σ = Õ(1), it is easy to verify that the constraint (76) can be satisfied if we

choose:

ξ ≥ Õ(1) · max{1, G5/2L5, H5/2}
ǫ2G1/2

,

which completes the proof.

32



A HITTING TIME ANALYSIS OF STOCHASTIC GRADIENT LANGEVIN DYNAMICS

E.1. Proof of inequality (74)

Let T (x) be the third order tensor such that Tijk(x) =
∂3f(x)

∂xi∂xj∂xk
. Consider an arbitrary unit vector

u ∈ R
d. By the definition of A(x)∇f(x), we have:

lim
t→0

A(x+ ut)∇f(x+ ut)−A(x)∇f(x)
t

= A(x)∇2f(x)u

+

√
G∇f(x)(∇g(x))⊤√

g(x)
u− 1

σ
√
ǫ
Φ′
(−√ǫI −∇2f(x)

σ
√
ǫ

)
T (x)[u]∇f(x),

where the matrix T (x)[u] ∈ R
d×d is defined by (T (x)[u])ij =

∑d
k=1 Tijk(x)uk. By simple algebra,

we obtain T (x)[u]∇f(x) = T (x)[∇f(x)]u. Thus, the derivative of the vector field A(x)∇f(x) can

be represented by Dij =
∂(A(x)∇f(x))i

∂xj
where D is the following d-by-d matrix:

D := A(x)∇2f(x) +

√
G∇f(x)(∇g(x))⊤√

g(x)
− 1

σ
√
ǫ
Φ′
(−√ǫI −∇2f(x)

σ
√
ǫ

)
T (x)[∇f(x)]. (79)

Note that div (A(x)∇f(x)) is equal to the trace of matrix D. In order to proceed, we perform a case

study on the value of g(x).

Case g(x) < ǫ: We first upper bound the trace of A(x)∇f2(x), which can be written as:

A(x)∇f2(x) = 2
√

Gg(x)∇f2(x) + Φ
(−√ǫI −∇2f(x)

σ
√
ǫ

)
∇f2(x). (80)

The trace of the first term on the right-hand side is bounded by 2
√
Gg(x)L. For the second term,

we assume that the matrix ∇2f(x) has eigenvalues λ1 ≤ λ2 ≤ . . . λd with associated eigenvectors

u1, . . . , ud. As a consequence, the matrix Φ(−
√
ǫI−∇2f(x)
σ
√
ǫ

) has the same set of eigenvectors, but

with eigenvalues Φ(−λ1/
√
ǫ−1

σ ), . . . ,Φ(−λd/
√
ǫ−1

σ ). Thus, the trace of this term is equal to

tr
(
Φ
(−√ǫI −∇2f(x)

σ
√
ǫ

)
∇f2(x)

)
=

d∑

i=1

λiΦ
(−λi/

√
ǫ− 1

σ

)
.

By the assumptions x ∈ K\U and g(x) < ǫ, and using the definition of ǫ-approximate local

minima, we obtain λ1 ≤ −
√
ǫ. As a consequence

λ1Φ
(−λ1/

√
ǫ− 1

σ

)
≤ λ1Φ(0) ≤ −

√
ǫ/2.

For other eigenvalues, if λi is negative, then we use the upper bound λiΦ(
−λi/

√
ǫ−i

σ ) < 0; If λi is

positive, then we have λiΦ(
−λi/

√
ǫ−1

σ ) ≤ λiΦ(− 1
σ ) ≤ λi

√
ǫ

4L . Combining these relations, we have

tr
(
Φ
(−√ǫI −∇2f(x)

σ
√
ǫ

)
∇f2(x)

)
≤ −
√
ǫ

2
+

√
ǫ

4L

d∑

i=1

[λi]+ ≤ −
√
ǫ

2
+

√
ǫ

4L
‖∇2f(x)‖∗ ≤ −

√
ǫ

4
.

Combining this inquality with the upper bound on the first term of (80), we obtain

tr(A(x)∇f2(x)) ≤ 2
√

Gg(x)L−
√
ǫ/4. (81)

Thus, we have upper bounded the trace of first term on the right-hand side of (79).
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For the second term on the right-hand side of (79) , we have

tr
(√G∇f(x)(∇g(x))⊤√

g(x)

)
=

√
G〈∇f(x), ∇g(x)〉√

g(x)
≤

√
Gg(x) ‖∇g(x)‖2 ≤

√
Gg(x)L, (82)

where the last inequality uses the relation∇g(x) = (∇2f(x))∇f(x)
g(x) , so that ‖∇g(x)‖2 ≤ ‖∇2f(x)‖2 ≤

‖∇2f(x)‖∗ ≤ L.

For the third term on the right-hand side of (79), since 0 � Φ′(−
√
ǫI−∇2f(x)
σ
√
ǫ

) � I , we have

tr(the third term) ≤ ‖the third term‖∗ ≤
1

σ
√
ǫ
‖T (x)[∇f(x)]‖∗.

By Assumption B, the function f satisfies
‖∇2f(x)−∇2f(y)‖∗

‖x−y‖2 ≤ H , which implies ‖T (x)[u]‖∗ ≤
H‖u‖2 for any x ∈ K and u ∈ R

d. As a consequence, the term ‖T (x)[∇f(x)]‖∗ is bounded by

‖T (x)[∇f(x)]‖∗ ≤ H‖∇f(x)‖2 = g(x)H,

which further implies

tr(the third term) ≤ g(x)H

σ
√
ǫ
. (83)

Combining upper bounds (81), (82), (83) implies

divA(x)∇f(x) ≤ 3
√
Gg(x)L+

g(x)H

σ
√
ǫ
−
√
ǫ/4.

Case g(x) ≥ ǫ: The proof is similar to the previous case. For the first term on the right-hand side

of equation (79), we follow the same arguments for establishing the upper bound (81), but without

using the relation λ1 ≤ −
√
ǫ (because conditioning on g(x) ≥ ǫ, the definition of approximate

local minima won’t give λ1 ≤ −
√
ǫ). Then the trace of A(x)∇f2(x) is bounded by:

tr(A(x)∇f2(x)) ≤ 2
√
Gg(x)L+

√
ǫ

4L
‖∇2f(x)‖∗ ≤ 2

√
g(x)L+

√
ǫ/4. (84)

For the second and the third term, the upper bounds (82) and (83) still hold, so that

divA(x)∇f(x) ≤ 3
√
Gg(x)L+

g(x)H

σ
√
ǫ

+
√
ǫ/4.

Combining the two cases completes the proof.

Appendix F. Proof of Theorem 7

We apply the general Theorem 1 to prove this theorem. In order to apply Theorem 1, the first step

is to show that the function f̃σ satisfies Assumption A. Recall that the function is defined by:

f̃σ(x) = E[f(x+ z)] where z ∼ N(0, σ2I), (85)

and its stochastic gradient is computed by:

g(x) :=
z

σ2
(ℓ(x+ z; a)− ℓ(x; a)).

By Assumption C, the function f̃σ is uniformly bounded in [0, B]. The following lemma captures

additional properties of functions f̃σ and g. See Appendix F.1 for the proof.
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Lemma 17 The following properties hold:

1. For any x ∈ K, the stochastic function g satisfies E[g(x)|x] = ∇f̃σ(x). For any vector

u ∈ R
d with ‖u‖2 ≤ σ

2B , it satisfies

E[e〈u, g(x)〉
2 |x] ≤ e‖u‖

2
2(2B/σ)2 .

2. The function f̃σ is (2B/σ2)-smooth.

Lemma 17 shows that f̃σ is an L-smooth function, with L = (2B/σ2). In addition, the stochas-

tic gradient g satisfies the third condition of Assumption A with bmax = σ
2B and G = 2B

σ . As a

consequence, Theorem 1 implies the risk bound:

f̃σ(x̂) ≤ sup
x: d(x,U)≤ρ

f̃σ(x), (86)

We claim the following inequality:

If σ =
ν

max{G,B/ρK}
then sup

x∈K
|f̃σ(x)− F (x)| ≤ 2ν. (87)

We defer the proof of claim (87) to the end of this section, focusing on its consequence. Let σ take

the value in claim (87). The conseuqence of (87) and the G-Lipschitz continuity of the function F
imply:

F (x̂) ≤ f̃σ(x̂) + 2ν ≤ sup
x: d(x,U)≤ρ

f̃σ(x) + 2ν ≤ sup
x: d(x,U)≤ρ

F (x) + 4ν ≤ sup
x∈U

F (x) + 4ν +Gρ,

By choosing ρ := ν/G, we establish the risk bound F (x̂) ≤ supx∈U F (x) + 5ν. It remains to

establish the iteration complexity bound.

According to Theorem 1, by choosing stepsize η := η0, SGLD achieves the risk bound (86)

with iteration number polynomial in (B,L,G, log(1/δ), d, ξ, h−1
max, b

−1
max, ρ

−1C−1

(ξf̃σ)
(K\U)), where

(L,G, bmax) depend on σ. Therefore, it remains to lower bound the restricted Cheeger constant

Cξf̃σ(K\U). By combining the claim (87) with inequality (6), we obtain

C(ξf̃σ)(K\U) ≥ e−4ξνC(ξF )(K\U) ≥ e−4C(ξF )(K\U).

It means that C(ξf̃σ)(K\U) and C(ξF )(K\U) differs by a constant multiplicative factor. Finally,

plugging in the values of ρ and σ completes the proof.

Proof of Claim (87) We define an auxiliary function F̃σ as follow:

F̃σ(x) = Ez[F (x+ z)] where z ∼ N(0, σ2I), (88)

Since f(x) ∈ [F (x)−ν, F (x)+ν], the definitions (85) and (88) imply f̃σ(x) ∈ [F̃σ(x)−ν, F̃σ(x)+
ν]. The G-Lipschitz continuity of function F implies that for any x ∈ K and y ∈ K, there is

|F (y) − F (x)| ≤ G‖y − x‖2. For any x ∈ K and y /∈ K, we have F (x), F (y) ∈ [0, B] and that

the distance between x and y is at least ρK, thus |F (y) − F (x)| ≤ B ≤ (B/ρK)‖y − x‖2. As a

consequence, for any x ∈ K we have:

|F (x+ z)− F (x)| ≤ I[x+ z ∈ K]G‖z‖2 + I[x+ z /∈ K] (B/ρK)‖z‖2 ≤ max{G,B/ρK} ‖z‖2.
Taking expectation over z on both sides and using Jensen’s inequality, we obtain

|F̃σ(x)− F (x)| ≤ E[|F (x+ z)− F (x)|] ≤ max{G,B/ρK}E[‖z‖2] ≤ max{G,B/ρK}σ.
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Thus, by choosing σ := ν
max{G,B/ρK} , it ensures that for any x ∈ K:

|f̃σ(x)− F (x)| ≤ |f̃σ(x)− F̃σ(x)|+ |F̃σ(x)− F (x)| ≤ 2ν.

F.1. Proof of Lemma 17

(1) The function f̃σ is a differentiable function, because it is the convolution of a bounded function

f and a Gaussian density function (which is infinite-order differentiable). We can write the gradient

vector ∇f̃σ(x) as:

∇f̃σ(x) =
1

(2π)d/2
∂

∂x

∫
e−

‖z‖22
2σ2 f(x+ z)dz.

Let z′ := x+ z. By change of variables, the above equation implies:

∇f̃σ(x) =
1

(2π)d/2
∂

∂x

∫
e−

‖z′−x‖22
2σ2 f(z′)dz′ =

1

(2π)d/2

∫ ( ∂

∂x
e−

‖z′−x‖22
2σ2

)
f(z′)dz′.

=
1

(2π)d/2

∫
z′ − x

σ2
e−

‖x−z′‖22
2σ2 f(z′)dz′ =

1

(2π)d/2

∫
z

σ2
e−

‖z‖22
2σ2 f(x+ z)dz

= E

[ z

σ2
f(x+ z)

]
(i)
= E

[ z

σ2
(f(x+ z)− f(x))

]
(ii)
= E

[ z

σ2
(ℓ(x+ z; a)− ℓ(x; a))

]
. (89)

For the above deduction, equation (i) holds because E[zf(x)] = E[z]E[f(x)] = 0; equation (ii)

holds because E[ℓ(y; a)|y] = f(y) for any y ∈ K. It shows that g(x) is an unbiased estimate of

∇f̃σ(x). Since ℓ(·; a) ∈ [0, B], any vector u ∈ R
d satisfies

(〈u, g(x)〉)2 = (ℓ(x+ z; a)− ℓ(x; a))2
(
〈u, z

σ2
〉
)2 ≤ B2

(
〈u, z

σ2
〉
)2

=
B2‖u‖22

σ2

(
〈 u

‖u‖2
,
z

σ
〉
)2

Thus the following bound holds:

E[e(〈u, g(x)〉)
2 |x] ≤ E[e

B2‖u‖22
σ2 (〈u/‖u‖2, z/σ〉)2 ].

Notice that 〈u/‖u‖2, z/σ〉 satisfies the standard normal distribution. Thus the right-hand side of

the above inequality is bounded by

E[e
B2‖u‖22

σ2 (〈u/‖u‖2, z/σ〉)2 ] =
1√

1− 2B2‖u‖22/σ2
≤ eB

2‖u‖22(2/σ)2 if ‖u‖2 ≤
σ

2B
.

Combining the two inequalities above completes the proof.

(2) In order to bound the smoothness of the function f̃σ(x), we derive the second derivative of f̃σ(x)
using equation (89):

∇2f̃σ(x) =
∂

∂x
(∇f̃σ(x)) =

1

(2π)d/2
∂

∂x

∫
z

σ2
e−

‖z‖22
2σ2 f(x+ z)dz

=
1

(2π)d/2
∂

∂x

∫
z′ − x

σ2
e−

‖z′−x‖22
2σ2 f(z′)dz′ =

1

(2π)d/2

∫ ( ∂

∂x

z′ − x

σ2
e−

‖z′−x‖22
2σ2

)
f(z′)dz′

=
1

(2π)d/2

∫ ((z′ − x)(z′ − x)⊤

σ4
− I

σ2

)
e−

‖z′−x‖22
2σ2 f(z′)dz′ = E

[zz⊤ − σ2I

σ4
f(x+ z)

]
.

(90)
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Using the fact f(x+ z) ∈ [0, B], equation (90) implies:

‖∇2f̃σ(x)‖2 ≤
1

σ4
‖E[zz⊤f(x+ z)]‖2 +

1

σ2
‖E[f(x+ z)I]‖2 ≤

B

σ4
‖E[zz⊤]‖2 +

B

σ2
=

2B

σ2
,

which establishes that the function f̃σ is (2B/σ2)-smooth.

Appendix G. Proof of Theorem 9

We use Theorem 7 to upper bound the population risk as well as the time complexity. To apply the

theorem, we need to verify Assumption C. Recall that the parameter space is defined by K := {x ∈
R
d : 1/2 ≤ ‖x‖2 ≤ 1}. Let K := {x ∈ R

d : 1/4 ≤ ‖x‖2 ≤ 5/4} be an auxiliary super-set. The

following lemma shows that these assumptions hold under our problem set-up.

Lemma 18 The following properties hold:

(1) There exists hmax = Ω(d−2) such that for any x ∈ K, h ≤ hmax and y ∼ N(x, 2hI), we have

P (y ∈ K) ≥ 1/3.

(2) The function F is 3-Lipschitz continuous in K.

(3) For any ν, δ > 0, if the sample size n satisfies n & d
ν2

, then with probability at least 1 − δ
we have supx∈K |f(x) − F (x)| ≤ ν. The notation “.” hides a poly-logarithmic function of

(d, 1/ν, 1/δ).

See Appendix G.1 for the proof.

Let α0 ∈ (0, π/4] be an arbitrary angle. We define U ⊂ K to be the set of points such that the

angle between the point and x∗ is bounded by α0, or equivalently:

U := {x ∈ K : 〈x/‖x‖2, x∗〉 ≥ cos(α0)}.
For any x ∈ K, the 3-Lipschitz continuity of function F implies:

F (x) = F (x/‖x‖2) ≤ F (x∗) + 3

∥∥∥∥
x

‖x‖2
− x∗

∥∥∥∥
2

.

By simple geometry, it is easy to see that
∥∥∥∥

x

‖x‖2
− x∗

∥∥∥∥
2

= 2 sin(α/2) ≤ 2 sin(α0/2) ≤ 2 sin(α0).

Thus, we have

F (x) ≤ F (x∗) + 6 sin(α0). (91)

Inequality (91) implies that for small enough α0, any point in U is a nearly optimal solutions.

Thus we can use U as a target optimality set. The following lemma lower bounds the restricted

Cheeger constant for the set U .

Lemma 19 Assume that d ≥ 2. For any α0 ∈ (0, π/4], there are universal constant c1, c2 > 0

such that if we choose ξ ≥ c1d3/2

q0 sin
2(α0)

, then the restricted Cheeger constant is lower bounded by

C(ξF )(K\U) ≥ c2d.
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See Appendix G.2 for the proof.

Given a target optimality ǫ > 0, we choose α0 := arcsin(ǫ/12). The risk bound (91) implies

F (x) ≤ F (x∗) + ǫ/2 for all x ∈ U. (92)

Lemma 18 ensures that the pre-conditions of Theorem 7 hold with a small enough quantity ν.

Combining Theorem 7 with inequality (92), with probability at least 1− δ, SGLD achieves the risk

bound:

F (x̂) ≤ sup
x∈U

F (x) + 5ν ≤ F (x∗) + ǫ/2 + 5ν. (93)

In order to have a small enough ν, we want the functions f and F to be uniformly close. More

precisely, we want the gap between them to satisfy:

sup
x∈K
|f(x)− F (x)| ≤ ν := min

{q0 sin
2(α0)

c1d3/2
, ǫ/10

}
, (94)

By Lemma 18, this can be achieved by assuming a large enough sample size n. In particular, if the

sample size satisfies n & d4

q20ǫ
4 , then inequality (94) is guaranteed to be true. The notation “&” hides

a poly-logarithmic function.

If inequity (94) holds, then ν ≤ ǫ/10 holds, so that we can rewrite the risk bound (93) as

F (x̂) ≤ F (x∗) + ǫ. By combining the choice of ν in (94) with the choice of ξ := c1d3/2

q0 sin
2(α0)

in

Lemma 19, we find that the relation ξ ∈ (0, 1/ν] hold, satisfying Theorem 7’s condition on (ν, ξ).
As a result, Theorem 7 implies that the iteration complexity of SGLD is bounded by the restricted

Cheeger constant C(ξF )(K\U). By Lemma 19, the restricted Cheeger constant is lower bounded by

Ω(d), so that the iteration complexity is polynomial in (d, 1/q0, 1/ǫ, log(1/δ)).

G.1. Proof of Lemma 18

(1) Let x ∈ K be an arbitrary point and let z ∼ N(0, 2hI). An equivalent way to express the

relation x+ z ∈ K is the following sandwich inequality:

1/4− ‖x‖22 − ‖z‖22 ≤ 2〈x, z〉 ≤ 1− ‖x‖22 − ‖z‖22. (95)

For any t > 0, we consider a sufficient condition for inequality (95):

‖z‖22 ≤ 2thd and 2〈x, z〉 ∈ Ix := [1/4− ‖x‖22, 1− ‖x‖22 − 2thd].

The random variable
‖z‖22
2h satisfies a chi-square distribution with d degrees of freedom. By Lemma 16,

for any t ≥ 5, the condition ‖z‖22 ≤ 2thd holds with probability at least 1− e−Ω(td).

Suppose that t is a fixed constant, and h is chosen to be h := c2

2td2
for a constant c > 0. Then the

random variable wx := 2〈x, z〉 satisfies a normal distribution N(0;
4‖x‖22(c/d)2

t ). The interval Ix, no

matter how x ∈ K is chosen, covers either [−1/4,−(c/d)2] or [(c/d)2, 1/4]. For c → 0, we have

(c/d)2 ≪ 2‖x‖2
t (c/d) ≪ 1/4, so that the probability of wx ∈ Ix is asymptotically lower bounded

by 0.5. It implies that there is a strictly positive constant c (depending on the value of t) such that

P (wx ∈ Ix) ≥ 0.4 for all x ∈ K. With this choice of c, we apply the union bound:

P (x+ z ∈ K) ≥ P (wx ∈ Ix)− P (‖z‖22 > 2thd) ≥ 0.4− e−Ω(td).

By choosing t to be a large enough constant, the above probability is lower bounded by 1/3.

38



A HITTING TIME ANALYSIS OF STOCHASTIC GRADIENT LANGEVIN DYNAMICS

(2) For two vectors x, y ∈ K, the loss values ℓ(x; a) and ℓ(y; a) are non-equal only when sign(〈x, a〉) 6=
sign(〈y, a〉). Thus, we have the upper bound

|F (x)− F (y)| ≤ P
(

sign(〈x, a〉) 6= sign(〈y, a〉)
)
. (96)

If we change the distribution of a from uniform distribution to a normal distribution N(0, Id×d),
the right-hand side of inequality (96) won’t change. Both 〈x, a〉 and 〈x, b〉 become normal random

variables with correlation coefficient
〈x, y〉

‖x‖2‖y‖2 . Under this setting, Tong (2012) proved that the

right-side is equal to

P
(

sign(〈x, a〉) 6= sign(〈y, a〉)
)
=

1

π
arccos

( 〈x, y〉
‖x‖2‖y‖2

)

By simple algebra and using the fact that ‖x‖2, ‖y‖2 ≥ 1/4, we have

〈x, y〉
‖x‖2‖y‖2

=
1

2

(‖x‖2
‖y‖2

+
‖y‖2
‖x‖2

− ‖x− y‖22
‖x‖2‖y‖2

)
≥ 1− 8‖x− y‖22,

Combining the above relations, and using the fact that arccos(t) ≤ 3
√
1− t for any t ∈ [−1, 1], we

obtain

|F (x)− F (y)| = 1

π
arccos

( 〈x, y〉
‖x‖2‖y‖2

)
≤ 3
√
8

π
‖x− y‖2 ≤ 3 ‖x− y‖2,

which shows that the function F is 3-Lipschitz continuous in K.

(3) Since function f is the empirical risk of a linear classifier, its uniform convergence rate can

be characterized by the VC-dimension. The VC-dimension of linear classifiers in a d-dimensional

space is equal to d + 1. Thus, the concentration inequality of Vapnik (1999) implies that with

probability at least 1− δ, we have

sup
x∈Rd

|f(x)− F (x)| ≤ U(n) := c

√
d(log(n/d) + 1) + log(1/δ)

n
,

where c > 0 is a universal constant. When n ≥ d, the upper bound U(n) is a monotonically

decreasing function of n. In order to guarantee U(n) ≤ ν, it suffices to choose n ≥ n0 where the

number n0 satisfies:

n0 = max{n ∈ R : U(n) = ν}. (97)

It is easy to see that n0 is polynomial in (d, 1/ν, 1/δ). Thus, by the definition of U(n), we have

ν = c

√
d(log(n0/d) + 1) + log(1/δ)

n0
≤ c

√
d · polylog(d, 1/ν, 1/δ)

n0
.

It implies n0 .
d
ν2

, thus completes the proof.

G.2. Proof of Lemma 19

Note that the population risk F can be non-differentiable. In order to apply Lemma 3 to lower bound

the restricted Cheeger constant, we define a smoothed approximation of F , and apply Lemma 3 on

the smoothed approximation. For an arbitrary σ > 0, we define F̃σ to be a smoothed approximation
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of the population risk:

F̃σ(x) := E[F (x+ z)] where z ∼ N(0, σ2Id×d).

By Lemma 18, the function F is 3-Lipschitz continuous, so that F̃σ uniformly converges to F as

σ → 0. It means that

lim
σ→0
C(ξF̃σ)

(K\U) = C(ξF )(K\U).

It suffices to lower bound C(ξF̃σ)
(K\U) and then take the limit σ → 0. The function F̃σ is continu-

ously differentiable, so that we can use Lemma 3 to lower bound C(ξF̃σ)
(K\U).

Consider an arbitrary constant 0 < t ≤ 1/6. We choose a small enough σ > 0 such that

for z ∼ (0, σ2I), the inequality E[‖z‖2] ≤ t holds, and the event Et := {‖z‖2 ≤ t} holds with

probability at least 1/2. It is clear that the choice of σ depends on that of t, and as t → 0, we must

have σ → 0.

The first step is to define a vector field that satisfies the conditions of Lemma 3. For arbitrary

δ ∈ [0, 1], we define a vector field φδ such that:

φδ(x) :=
1

3
(〈x, x∗〉x− ‖x‖22 x∗) +

δ

3
(‖x‖22 − 5/8)x, (98)

and make the following claim.

Claim 5 For any δ ∈ (0, 1], we can find a constant ǫ0 > 0 such that ‖φδ(x)‖2 ≤ 1 and x −
ǫφδ(x) ∈ K holds for arbitrary x ∈ K and ǫ ∈ (0, ǫ0].

The claim shows that φδ satisfies the conditions of Lemma 3 for any δ ∈ (0, 1], so that given a

scalar ξ > 0, the lemma implies

CξF̃σ(x)
(K\U) ≥ inf

x∈K\U

{
ξ 〈φδ(x), ∇F̃σ(x)〉 − divφδ(x)

}
.

The right-hand side is uniformly continuous in δ, so that if we take the limit δ → 0, we obtain the

lower bound:

CξF̃σ(x)
(K\U) ≥ inf

x∈K\U

{
ξ 〈φ0(x), ∇F̃σ(x)〉 − divφ0(x)

}
. (99)

It remains to lower bound the right-hand side of inequality (99). Recall that F̃σ(x) = E[F (x+
z)]. The definition of the gradient of F̃σ implies

〈φ0(x), ∇F̃σ(x)〉 = lim
ǫ→0

F̃σ(x+ ǫφ0(x))− F̃σ(x)

ǫ
= lim

ǫ→0
E

[F (x+ z + ǫφ0(x))− F (x+ z)

ǫ

]

For the right-hand side, we prove lower bound for it using the Massart noise model. We start

by simplifying the fraction term inside the expectation. Without loss of generality, assume that

ǫ ∈ (0, 0.2], then the definition of φ0 implies:

F (x+ z + ǫφ0(x)) = F
(
(1 +

ǫ

3
〈x, x∗〉)x+ z − ǫ

3
‖x‖22 x∗

)

(i)
= F

(
x+

z

1 + ǫ
3〈x, x∗〉

−
ǫ
3‖x‖22x∗

1 + ǫ
3〈x, x∗〉

)

(ii)

≥ F (x+ z − ǫ‖x‖22
3

x∗)− 2ǫ‖z‖2 −
2ǫ2

3
,
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where equation (i) uses F (x) = F (αx) for any α > 0. To derive inequality (ii), we used the fact

that 1/(1 + ǫ
3〈x, x∗〉) ∈ [1 − 2ǫ

3 , 1 + 2ǫ
3 ] for any x ∈ K, ǫ ∈ (0, 0.2], and the property that F is

3-Lipschitz continuous. Combining the two equations above, and using the fact E[‖z‖2] ≤ t, we

obtain:

〈φ0(x), ∇F̃σ(x)〉 ≥ lim
ǫ→0

E

[F (x+ z − ǫ‖x‖22
3 x∗)− F (x+ z)

ǫ

]
− 2t

= lim
ǫ→0

E

[F (3(x+z)
‖x‖22

− ǫx∗)− F (3(x+z)
‖x‖22

)

ǫ

]
− 2t. (100)

We further simplify the lower bound (100) by the following claim, which is proved using properties

of the Massart noise.

Claim 6 For any x ∈ R
d and any ǫ > 0, we have F (x − ǫx∗) − F (x) ≥ 0. Moreover, for any

x ∈ R
d : ‖x‖2 ≥ 1, let α be the angle between x and x∗, then we have:

F (x− ǫx∗)− F (x)

ǫ
≥ 3q0| sin(α)|

5π‖x‖2

( | sin(α)|
√
1− ǫ2

2
√
d

− ǫ
)
.

When the event Et holds, we have ‖z‖2 ≤ t ≤ 1/6 ≤ ‖x‖2/3, so that ‖3(x+z)
‖x‖22

‖2 ∈ [2, 4].

Combining with inequality (100) and Claim 6, we have

〈φ0(x), ∇F̃σ(x)〉 ≥ P (Et) lim
ǫ→0

E

[F (3(x+z)
‖x‖22

− ǫx∗)− F (3(x+z)
‖x‖22

)

ǫ
| Et

]
− 2t

≥ 1

2
× lim

ǫ→0
E

[3q0| sin(αx+z)|
5π × 4

( | sin(αx+z)|
√
1− ǫ2

2
√
d

− ǫ
)
| Et

]
− 2t

=
3q0E[sin

2(αx+z) | Et]
80π
√
d

, (101)

where αx+z represents the angle between x+ z and x∗.

In order to lower bound the divergence term divφ0(x), let H(x) ∈ R
d×d be the Jacobian matrix

of φ0 at point x (i.e. Hij :=
∂(φ0(x))i

∂xj
), then we have

H(x) =
1

3

(
〈x, x∗〉I + x(x∗)⊤ − 2x∗x⊤

)
.

It means that divφ0(x) = tr(H(x)) = d−1
3 〈x, x∗〉 =

(d−1)‖x‖2
3 cos(αx). Combining this equation

with inequalities (99), (101), and taking the limits t→ 0, σ → 0, we obtain:

CξF (x)(K\U) ≥ inf
x∈K\U

{ 3ξq0 sin
2(αx)

80π
√
d

− (d− 1)‖x‖2
3

cos(αx)

︸ ︷︷ ︸
:=L(x)

}
. (102)

where αx represents the angle between x and x∗.

According to inequality (102), for any αx ∈ (π − α0, π], we have

L(x) ≥ −(d− 1)‖x‖2
3

cos(αx) ≥
(d− 1)‖x‖2

3
cos(α0) ≥

(d− 1)

6
√
2

,
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where the last inequality follows since ‖x‖2 ≥ 1/2 and α0 ∈ (0, π/4]. Otherwise, if αx ∈ [α0, π −
α0], then we have

L(x) ≥ 3ξq0 sin
2(α0)

80π
√
d

− d− 1

3
.

Once we choose ξ ≥ 160π
3

d3/2

q0 sin
2(α0)

, the above expression will be lower bounded by d/3, which

completes the proof.

Proof of Claim 5 Since ‖x‖2 ≤ 1 for any x ∈ K, it is easy to verify that ‖φδ(x)‖2 ≤ 1. In order

to verify x− ǫφδ(x) ∈ K, we notice that

‖x− ǫφδ(x)‖22 = ‖x‖22 + ǫ2‖φδ(x)‖22 −
2ǫδ

3
(‖x‖22 − 5/8)‖x‖22.

As a consequence, we have
∣∣∣‖x− ǫφδ(x)‖22 − 5/8

∣∣∣ ≤
∣∣∣‖x‖22 − 5/8

∣∣∣
(
1− 2ǫδ

3
‖x‖22

)
+ ǫ2

The right-hand side will be maximized if ‖x‖22 = 1/4. Thus, if we assume δ > 0, then for any

ǫ < δ/16, it is easy to verify that the right-hand side is bounded by 3/8. As a consequence, we have

‖x− ǫφδ(x)‖22 ∈ [1/4, 1], which verifies that x− ǫφδ(x) ∈ K.

Proof of Claim 6 When x = 0 or x − ǫx∗ = 0, it is easy to verify that F (x − ǫx∗) − F (x) ≥ 0
by the definition of the loss function. Otherwise, we assume that x 6= 0 and x − ǫx∗ 6= 0. In these

cases, the events 〈x, a〉 6= 0 and 〈x − ǫx∗, a〉 6= 0 hold almost surely, so that we can assume that

the loss function always takes zero-one values.

When the parameter changes from x to x − ǫx∗, the value of ℓ(x; a) and ℓ(x − ǫx∗; a) are

non-equal if and only if sign(〈x, a〉) 6= sign(〈x− ǫx∗, a〉). This condition is equivalent of

sign(〈x, a〉) = sign(〈x∗, a〉) and |〈x, a〉| < ǫ|〈x∗, a〉|. (103)

Let E be the event that condition (103) holds. Under this event, when the parameter changes from

x to x − ǫx∗, the loss changes from
1−q(a)

2 to
1+q(a)

2 . It means that the loss is non-decreasing with

respect to the change x→ x− ǫx∗, and as a consequence, we have F (x− ǫx∗)− F (x) ≥ 0.

In order to establish the lower bound in Claim 6, we first lower bound the probability of event

E . In the proof of Lemma 18. we have shown that this probability is equal to:

P (E) = 1

π
arccos

( 〈x, x− ǫx∗〉
‖x‖2‖x+ ǫx∗‖2

)

Let β be the angle between x and x − ǫx∗, then the right-hand side is equal to β/π. Using the

geometric property that
‖x‖2

| sin(α)| =
ǫ‖x∗‖2
| sin(β)| , we have

P (E) = β

π
≥ | sinβ|

π
=

ǫ| sin(α)|
‖x‖2π

≥ ǫ| sin(α)|
‖x‖2π

. (104)

Conditioning on the event E , when the parameter moves x→ x− ǫx∗, the loss ℓ(x; a) changes

by amount q(a). Since the Massart noise forces q(a) ≥ q0|〈x∗, a〉|, we can lower bound the gap

F (x− ǫx∗)−F (x) by lower bounding the expectation E[|〈x∗, a〉|
∣∣ E ]. We decompose the vector a

into two components: the component a1 that is parallel to x and the component a2 that is orthogonal

to x. Similarly, we can decompose the vector x∗ into two components x∗1 and x∗2, parallel to and
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orthogonal to the vector x respectively. The decomposition implies

〈x∗, a〉 = 〈x∗1, a1〉+ 〈x∗2, a2〉.
For the first term on the right-hand side, we have |〈x∗1, a1〉| ≤ ‖a1‖2 = |〈x, a〉|

‖x‖2 ≤
ǫ

‖x‖2 ≤ ǫ

by condition (103) and the assumption that ‖x‖2 ≥ 1. For the second term, if we condition on a1,

then the vector a2 is uniformly sampled from a (d − 1)-dimensional sphere of radius
√
1− ‖a1‖22

that centers at the origin. The vector x∗2, constructed to be orthogonal to x, also belongs to the same

(d− 1)-dimensional subspace. Under this setting, Awasthi et al. (2015, Lemma 4) proved that

P
(
|〈x∗2, a2〉| >

‖x∗2‖2
√
1− ‖a1‖22

2
√
d

| E , a1
)
≥ 1−

√
1

2π
≥ 3/5.

Using the bound ‖a1‖2 = |〈x, a〉|
‖x‖2 ≤

ǫ
‖x‖2 ≤ ǫ, we marginalize a1 to obtain

P
(
|〈x∗2, a2〉| >

‖x∗2‖2
√
1− ǫ2

2
√
d

| E
)
≥ 3/5.

Recall that 〈x∗, a〉 = 〈x∗1, a1〉+〈x∗2, a2〉 and |〈x∗1, a1〉| ≤ ǫ. These two relations imply |〈x∗, a〉| ≥
|〈x∗2, a2〉|−|〈x∗1, a1〉| ≥ |〈x∗2, a2〉|−ǫ. Combining it with the relation ‖x∗2‖2 = | sin(α)|, we obtain

P
(
|〈x∗, a〉| ≥ | sin(α)|

√
1− ǫ2

2
√
d

− ǫ | E
)
≥ 3/5.

As a consequence, we have

E[|〈x∗, a〉|
∣∣ E ] ≥ 3

5

( | sin(α)|
√
1− ǫ2

2
√
d

− ǫ
)
. (105)

Combining inequalities (104), (105) with the relation that q(a) ≥ q0|〈x∗, a〉|, we obtain

F (x− ǫx∗)− F (x) ≥ P (E)× q0 E[|〈x∗, a〉|
∣∣ E ] ≥ ǫ| sin(α)|

‖x‖2π
× q0

3

5

( | sin(α)|
√
1− ǫ2

2
√
d

− ǫ
)
.

which completes the proof.
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