A HÖLDER ESTIMATE FOR QUASICONFORMAL MAPS BETWEEN SURFACES IN EUCLIDEAN SPACE

BY

LEON SIMON

Stanford University, Stanford, Calif., USA

In [2] C. B. Morrey proved a Hölder estimate for quasiconformal mappings in the plane. Such a Hölder estimate was a fundamental development in the theory of quasiconformal mappings, and had very important applications to partial differential equations. L. Nirenberg in [3] made significant simplifications and improvements to Morrey's work (in particular, the restriction that the mappings involved be $1-1$ was removed), and he was consequently able to develop a rather complete theory for second order elliptic equation with 2 independent variables.

In Theorem (2.2) of the present paper we obtain a Hölder estimate which is analogous to that obtained by Nirenberg in [3] but which is applicable to quasiconformal mappings between surfaces in Euclidean space. The methods used in the proof are quite analogous to those of [3], although there are of course some technical difficulties to be overcome because of the more general setting adopted here.

In § 3 and $\S 4$ we discuss applications to graphs with quasiconformal Gauss map. In this case Theorem (2.2) gives a Hölder estimate for the unit normal of the graph. One rather striking consequence is given in Theorem (4.1), which establishes the linearity of any $C^{2}\left(\mathbf{R}^{2}\right)$ function having a graph with quasiconformal Gauss map. This result includes as a special case the classical theorem of Bernstein concerning $C^{2}\left(\mathbf{R}^{2}\right)$ solutions of the minimal surface equation, and the analogous theorem of Jenkins [1] for a special class of variational equations. There are also in § 3 and § 4 a number of other results for graphs with quasiconformal Gauss map, including some gradient estimates and a global estimate of Hölder continuity. § 4 concludes with an application to the minimal surface system.

One of the main reasons for studying graphs satisfying the condition that the Gauss map is quasiconformal (or (Λ_{1}, Λ_{2})-quasiconformal in the sense of (1.8) below) is that such

[^0]a condition must automatically be satisfied by the graph of a solution of any equation of mean curvature type (see (1.9) (ii) below). However we here only briefly discuss the application of the results of $\S 3$ and $\S 4$ to such equations; a more complete discussion will appear in [7].

§ 1. Terminology

M, N will denote oriented 2-dimensional C^{2} submanifolds of $\mathbf{R}^{n}, \mathbf{R}^{m}$ respectively, $n, m \geqslant 2$. Given $X \in M\left({ }^{1}\right)$ and $Y \in N$ we let $T_{X}(M), T_{Y}(N)$ denote the tangent spaces (considered as subspaces of \mathbf{R}^{n} and \mathbf{R}^{m}) of M at X and N at Y respectively. δ will denote the gradient operator on M; that is, if $h \in C^{1}(M)$, then

$$
\delta h(X)=\left(\delta_{1} h(X), \ldots, \delta_{n} h(X)\right) \in T_{X}(M)
$$

is defined by

$$
\begin{equation*}
\delta_{i} h(X)=\sum_{j=1}^{n} \tilde{g}^{j j}(X) D_{j} h(X), \tag{1.1}
\end{equation*}
$$

where h is any C^{1} function defined in a neighbourhood of M with $\left.h\right|_{M}=h$, and where ($\tilde{g}^{i j}(X)$) is the matrix of the orthogonal projection of \mathbf{R}^{n} onto $T_{X}(M)$.

We note that of course the definition (1.1) is independent of the particular C^{1} extension \hbar of h that one chooses to use. We note also that in the special case $n=3$ we can represent $\tilde{g}^{\boldsymbol{t}}(X)$ explicitly in terms of the unit normal $v(X)=\left(\nu_{1}(X), v_{2}(X), \nu_{3}(X)\right)$ of M at X according to the formula

$$
\begin{equation*}
\tilde{g}^{i j}(X)=\delta_{i j}-v_{i}(X) v_{j}(X), \quad i, j=1,2,3 . \tag{1.2}
\end{equation*}
$$

η, θ will denote area forms for M, N respectively; that is, η and θ are C^{1} differential 2 -forms on M and N respectively such that

$$
\int_{A} \eta=\operatorname{area}(A), \quad \int_{B} \theta=\operatorname{area}(B)
$$

whenever $A \subset M$ and $B \subset N$ are Borel subsets of finite area.
(1.3) Remark. We can always take a $C^{1} 2$-form ζ on M to be the restriction to M of a C^{1} form $\bar{\zeta}$ defined in a neighbourhood of $M \subset \mathbf{R}^{n}$, so that $\tilde{\zeta}(X) \in \wedge^{2}\left(\mathbf{R}^{n}\right)$ for each $X \in M$. Thus in case $n=3$, we can write

$$
\zeta(\tilde{X})=\zeta_{1}(X) d x_{2} \wedge d x_{3}+\zeta_{2}(X) d x_{1} \wedge d x_{3}+\zeta_{3}(X) d x_{1} \wedge d x_{2}
$$

${ }^{(1)}$ We will use $X=\left(x_{1}, \ldots, x_{n}\right)$ to denote points in M; the symbol x will be reserved to denote points $\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}$.
where $\zeta_{1}, \zeta_{2}, \zeta_{3}$ are C^{1} in some neighbourhood of M. Using the notation $* \tilde{\zeta}(X)=\left(\zeta_{1}(X)\right.$, $\left.-\zeta_{2}(X), \zeta_{3}(X)\right)\left(*\right.$ is the usual linear isometry of $\Lambda^{2}\left(\mathbf{R}^{3}\right)$ onto \mathbf{R}^{3}) we then have

$$
\int_{A} \zeta=\int_{A} v \cdot(* \tilde{\zeta}) d \mathcal{H}^{2}, \quad A \subset M,
$$

where v is the appropriately oriented unit normal for M and \boldsymbol{H}^{2} denotes 2-dimensional Hausdorff measure in \mathbf{R}^{3}. In particular, we see that ζ is an area form for M if and only if $\left(\zeta_{1}(X),-\zeta_{2}(X), \zeta_{3}(X)\right)$ is a unit normal for M at each point $X \in M$. Thus there is no difficulty in recognizing an area form in case $n=3$. (Of course one can give an analogous, but not quite so convenient, characterization of area forms for arbitrary n.)

Our basic assumption concerning N is that there is a 1 -form $\omega(X)=\sum_{i=1}^{m} \omega_{i}(X) d x_{i}$ which is C^{2} in a neighbourhood of N and such that

$$
\begin{equation*}
d \omega_{N}=\theta, \quad \sup _{N}\left\{\sum_{i=1}^{m} \omega_{i}^{2}\right\}^{1 / 2}+\sup _{N}\left\{\sum_{i, j=1}^{m}\left(D_{j} \omega_{i}\right)^{2}\right\}^{1 / 2} \leqslant \Lambda_{0}<\infty . \tag{1.4}
\end{equation*}
$$

Here Λ_{0} is a constant and ω_{N} denotes the restriction of ω to N; henceforth we will not distinguish notationally between ω and ω_{N}.
(1.5) Examples. (i) If N is an open ball of radius R and centre 0 in \mathbf{R}^{2}, we can take $\omega=$ $-\frac{1}{2} x_{2} d x_{1}+\frac{1}{2} x_{1} d x_{2}$ and $\Lambda_{0}=R+1$.
(ii) If N is the upper hemisphere S^{2} of the unit sphere $S^{2} \subset \mathbf{R}^{3}$, we can take $\omega=$ $\left(-x_{2} /\left(1+x_{3}\right)\right) d x_{1}+\left(x_{1} /\left(1+x_{3}\right)\right) d x_{2}+0 d x_{3}$ and $\Lambda_{0}=4$. One can easily check this by directly computing $d \omega$ and using the relation $\sum_{i=1}^{3} x_{i}^{2}=1$ on S^{2}; to check that $d \omega$ is an area form for S_{+}^{2} it is convenient to use the characterization of area forms given in Remark (1.3) above. (Alternatively one obtains $d \omega$ as an area form by using an elementary computation involving example (i) above and stereographic projection of S_{+}^{2} into \mathbf{R}^{2}.)
(iii) More generally, we can let N be the surface obtained from a compact surface $L \subset \mathbf{R}^{m}$ by deleting a compact neighbourhood of an arbitrary chosen point $y_{0} \in L$. There will then always exist ω as in (1.4) because the 2 -dimensional de Rham chomology group $H^{2}\left(L \sim\left\{y_{0}\right\}\right)$ is zero. (And this of course guarantees that any 2 -form ζ on $L \sim\left\{y_{0}\right\}$ can be written in the form $d \omega$ for some 1 -form ω on $L \sim\left\{y_{0}\right\}$.) To check that $H^{2}\left(L \sim\left\{y_{0}\right\}\right)=0$ we first note that de Rahm's theorem gives an isomorphism $H^{2}\left(L \sim\left\{y_{0}\right\} \cong H^{2}\left(L \sim\left\{y_{0}\right\}, \mathbf{R}\right)\right.$, where $H^{2}\left(L \sim\left\{y_{0}\right\}, \mathbf{R}\right)$ denotes the 2-dimensional singular cohomology group with real coefficients. Next we note the duality isomorphism $H^{2}\left(L \sim\left\{y_{0}\right\}, \mathbf{R}\right) \cong \operatorname{Hom}\left(H_{2}\left(L \sim\left\{y_{0}\right\}\right), \mathbf{R}\right)$, where $H_{2}\left(L \sim\left\{y_{0}\right\}\right)$ denotes the 2-dimensional singular homology group with integer coefficients. Finally we note that $H_{2}\left(L \sim\left\{y_{0}\right\}\right)=0$. This follows from the exactness of the homology
sequence for the pair ($L, L \sim\left\{y_{0}\right\}$), together with the fact that the inclusion map $(L, \phi) \subset\left(L, L \sim\left\{y_{0}\right\}\right)$ induces an isomorphism $H_{2}(L) \cong H_{2}\left(L, L \sim\left\{y_{0}\right\}\right)$ (see [9]).

We now consider a C^{1} mapping

$$
\varphi=\left(\varphi_{1}, \ldots, \varphi_{m}\right): M \rightarrow N .
$$

In order to formulate the concept of quasiconformality for φ we need to introduce some terminology. Firstly, for $X \in M$ we let

$$
\delta \varphi(X): T_{X}(M) \rightarrow T_{\varphi(X)}(N)
$$

denote the linear map between tangent spaces induced by φ. We note that the matrix $\left(\delta_{l} \varphi_{j}(X)\right)$ represents $\delta \varphi(X)$ in the sense that if $v=\left(v_{1}, \ldots, v_{n}\right) \in T_{X}(M), w=\left(w_{1}, \ldots, w_{m}\right)$ $\in T_{\varphi(X)}(N)$ and $w=\delta \varphi(X)(v)$, then

$$
w_{j}=\sum_{i=1}^{n} \delta_{i} \varphi_{j}(X) v_{i}, \quad j=1, \ldots, m .
$$

(Here $\delta_{i} \varphi_{j}(X)$ is defined by (1.1)). The adjoint transformation $(\delta \varphi(X))^{*}$ is represented in a similar way by the transposed matrix $\left(\delta_{j} \varphi_{i}(X)\right)$. We define

$$
|\delta \varphi(X)|=\left\{\sum_{i=1}^{n} \sum_{j=1}^{m}\left(\delta_{i} \varphi_{j}(X)\right)^{2}\right\}^{1 / 2} ;
$$

thus $|\delta \varphi(X)|$ is just the inner product norm $\left\{\operatorname{trace}\left((\delta \varphi(X))^{*} \delta \varphi(X)\right)\right\}^{d}$. Next, we let $J \varphi(X)$ denote the signed area magnification factor of φ computed relative to the given area forms η, θ. That is, letting

$$
\wedge^{2}(\delta \varphi(X)): \Lambda^{2}\left(T_{\varphi(X)}(N)\right) \rightarrow \Lambda^{2}\left(T_{X}(M)\right)
$$

be the linear map of 2 -forms induced by $\delta \varphi(X)$, we define the real number $J \varphi(X)$ by

$$
\begin{equation*}
\wedge^{2}(\delta \varphi(X)) d \omega(\varphi(X))=J \varphi(X) \eta(X), \quad X \in M \tag{1.7}
\end{equation*}
$$

Notice that this makes sense as a definition for $J \varphi(X)$ because $\Lambda^{2}\left(T_{X}(M)\right)$ and $\Lambda^{2}\left(T_{\varphi(X)}(N)\right)$ are l-dimensional vector spaces spanned by the unit vectors $\eta(X)$ and $d \omega(\varphi(X))$ respectively. Notice also that $|J \varphi(X)|=\left\|\Lambda^{2}(\delta \varphi(X))\right\|$. In fact,

$$
J \varphi(X)= \pm\left\|\Lambda^{2}(\delta \varphi(X))\right\|
$$

with + or - according as φ preserves or reverses orientation at X.
(1.8) Definition. We say φ is $\left(\Lambda_{1}, \Lambda_{2}\right)$-quasiconformal on M if Λ_{1}, Λ_{2} are constants with $\Lambda_{2} \geqslant 0$, and if

$$
|\delta \varphi(X)|^{2} \leqslant \Lambda_{1} J \varphi(X)+\Lambda_{2}
$$

at each point $X \in M .\left({ }^{2}\right)$
The geometric interpretation of this condition is well known:

$$
\delta \varphi(X): T_{X}(M) \rightarrow T_{\varphi(X)}(N)
$$

maps the unit circle of $T_{X}(M)$ onto an ellipse with semi-axes a and $b, a \geqslant b$, in $T_{\varphi(X)}(N)$, and

$$
|\delta \varphi(X)|^{2}=a^{2}+b^{2}, \quad|J \varphi(X)|=a b .
$$

Thus the definition (1.8), with $\Lambda_{2}=0$, implies

$$
a^{2}+b^{2} \leqslant\left|\Lambda_{1}\right| a b
$$

which implies $\left|\Lambda_{1}\right| \geqslant 2$ and

$$
a \leqslant\left(\frac{\left|\Lambda_{1}\right|}{2}+\sqrt{\frac{\Lambda_{1}^{2}}{4}-1}\right) b .
$$

Furthermore, (1.8) can hold with $\left|\Lambda_{1}\right|=2$ if and only if $a=b$; that is, either $\delta \varphi(X)=0$ or $\delta \varphi(X)$ takes circles into circles. This latter property holds if and only if φ is conformal at X.

In case $\Lambda_{2} \neq 0$ a similiar interpretation holds if $a^{2}+b^{2}$ is sufficiently large relative to Λ_{2}; an important point however is that in this case condition (1.8) imposes no restriction on the mapping φ at points X where $|\delta \varphi(X)|$ is sufficiently small relative to $\Lambda_{\mathbf{2}}$.
(1.9) Examples. (i) A classical example considered by Morrey [2] and Nirenberg [3] involves equations

$$
\sum_{t . j=1}^{2} a_{i j}(x) D_{i j} u=b(x)
$$

on a domain $\Omega \subset \mathbf{R}^{2}$, with conditions

$$
\begin{gathered}
|\xi|^{2} \leqslant \sum_{i, j=1}^{2} a_{t j}(x) \xi_{1} \xi_{1} \leqslant \lambda_{1}|\xi|^{2}, \quad x \in \Omega, \quad \xi \in \mathbf{R}^{2} \\
|b(x)| \leqslant \lambda_{2}, \quad x \in \Omega .
\end{gathered}
$$

Provided that sup ${ }_{\Omega}|D u|<\infty$, we can define M, N, φ by $M=\Omega, N=\left\{x \in \mathbf{R}^{\mathbf{2}}:|x|<\sup _{\Omega}|D u|\right\}$ (see example (1.5)(i)) and

$$
\varphi=D u: M \rightarrow N
$$

${ }^{(2)}$ Notice that we do not require φ to be 1-1.

In this case we have $J(\varphi)=\left(D_{11} u\right)\left(D_{22} u\right)-\left(D_{12} u\right)^{2},|\delta \varphi|^{2} \equiv|D \varphi|^{2}=\sum_{i, j=1}^{2}\left(D_{i j} u\right)^{2}$, and φ is (Λ_{1}, Λ_{2})-quasiconformal with $\Lambda_{1}=-2 \lambda_{1}, \Lambda_{2}=\lambda_{1} \lambda_{2}^{2}$. To prove this last assertion we choose coordinates which diagonalize $\left(D_{i j} u(x)\right)$ at a given point $x=x_{0}$; in these coordinates the equation takes the form

$$
\alpha_{1} D_{11} \tilde{u}+\alpha_{2} D_{22} \tilde{u}=\beta
$$

where

$$
1 \leqslant \alpha_{i} \leqslant \lambda_{1}, \quad i=1,2, \quad|\beta| \leqslant \lambda_{2}
$$

Squaring and dividing by $\alpha_{1} \alpha_{2}$ then gives

$$
\frac{1}{\lambda_{1}}\left(\left(D_{11} \tilde{u}\right)^{2}+\left(D_{22} \tilde{u}^{2}\right)\right) \leqslant-2\left(D_{11} \tilde{u}\right)\left(D_{22} \tilde{u}\right)+\lambda_{2}^{2}
$$

In the original coordinates, this gives

$$
\sum_{i, j=1}^{2}\left(D_{i j} u\right)^{2} \leqslant-2 \lambda_{1}\left(\left(D_{11} u\right)\left(D_{22} u\right)-\left(D_{12} u\right)^{2}\right)+\lambda_{1} \lambda_{2}^{2}
$$

as asserted.
(ii) Another important example of a quasiconformal map arises by considering the equations of mean curvature type; that is, any equation of the form

$$
\sum_{i, j=1}^{2} a_{i j}(x, u, D u) D_{i j} u=b(x, u, D u), \quad x \in \Omega
$$

where the following conditions (see [7] for a discussion) are satisfied:
(a)

$$
\sum_{i, j=1}^{2} g^{4} \xi_{i} \xi_{j} \leqslant \sum_{t . j=1}^{2} a_{i j}(x, u, D u) \xi_{i} \xi_{j} \leqslant \lambda_{1} \sum_{i, j=1}^{2} g^{t j} \xi_{i} \xi_{j}
$$

where
(b)

$$
\begin{gathered}
g^{i j}=\delta_{i j}-v_{i} v_{j}, \quad v_{i}=-D_{i} u / \sqrt{1+|D u|^{2}} \\
|b(x, u, D u)| \leqslant \lambda_{2} \sqrt{1+|\overline{D u}|^{2}}
\end{gathered}
$$

It is shown in [7] that (a), (b) imply that the graph $M=\left\{X=\left(x_{1}, x_{2}, x_{3}\right): x_{3}=u\left(x_{1}, x_{2}\right)\right\}$ has principal curvatures x_{1}, x_{2} which satisfy, at each point of M, an equation of the form

$$
\alpha_{1} x_{1}+\alpha_{2} x_{2}=\beta
$$

where

$$
1 \leqslant \alpha_{i} \leqslant \lambda_{1}, \quad i=1,2, \quad|\beta| \leqslant \lambda_{2}
$$

Squaring, we obtain

$$
\frac{\alpha_{1}}{\alpha_{2}} \varkappa_{1}^{2}+\frac{\alpha_{2}}{\alpha_{1}} x_{2}^{2}=-2 \varkappa_{1} \varkappa_{2}+\frac{\beta}{\alpha_{1} \alpha_{2}}
$$

so that

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2} \leqslant \Lambda_{1} x_{1} x_{2}+\Lambda_{2}, \tag{1.10}
\end{equation*}
$$

where

$$
\Lambda_{1}=-2 \lambda_{1}, \quad \Lambda_{2}=\lambda_{1} \lambda
$$

We now let $N=S_{+}^{2}$ (see example (1.5) (ii)) and we let $\varphi: M \rightarrow N$ be the Gauss map ν, defined by setting $\nu(X)$ equal to the upward unit normal of M at X; that is,

$$
v(X)=(-D u(x), 1) \sqrt{1+|\overline{D u(x)}|^{2}}, \quad X=(x, u(x)), \quad x \in \Omega
$$

Then, as is well known,

$$
J v=K \equiv \varkappa_{1} \varkappa_{2}(=\text { Gauss curvature of } M)
$$

(This is easily checked by working with a "principal coordinate system at X "; that is, a coordinate system with origin at X and with coordinate axes in the directions $e_{1}(X)$, $e_{2}(X), \nu(X)$, where $e_{1}(X), e_{2}(X)$ are principal directions of M at X.)

Furthermore (and again one can easily check this by working with a principal coordinate system at X)

$$
|\delta v|^{2}=x_{1}^{2}+x_{2}^{2}
$$

Thus the inequality (1.10) above asserts that the Gauss map v is $\left(\Lambda_{1}, \Lambda_{2}\right)$-quasiconformal with $\Lambda_{1}=-2 \lambda_{1}, \Lambda_{2}=\lambda_{1} \lambda_{2}^{2}$.

Thus the main Hölder continuity result we are to obtain below (Theorem (2.2)) will apply to the gradient map $x \rightarrow D u(x), x \in \Omega$, in the case of uniformly elliptic equations (as in (i)) and to the Gauss map $X \rightarrow \nu(X), X \in \operatorname{graph}(u)$, in the case of equations of mean curvature type. In the former case one obtains the classical estimate of Morrey-Nirenberg concerning Hölder continuity of first derivatives for uniformly elliptic equations; in the latter case we obtain a new Hölder continuity result for the unit normal of the graph of the solution of an equation of mean curvature type. (See the remarks at the beginning of $\S 4$ below and the reference [7] for further discussion and applications.)

We conclude this section with some notations concerning the subsets obtained by intersecting the surface M with an n-dimensional ball. We write

$$
S_{\varrho}\left(X_{1}\right)=\left\{X \in M:\left|X-X_{1}\right|<\varrho\right\}
$$

whenever $X_{1} \in M$ and $\varrho>0 . X_{0} \in M$ and $R>0$ will be such that

$$
(\bar{M} \sim M) \cap\left\{X \in \mathbf{R}^{n}:\left|X-X_{0}\right| \leqslant R\right\}=\varnothing
$$

(here \bar{M} denotes the closure of M taken in \mathbf{R}^{n}), so that $\bar{S}_{R}\left(X_{0}\right)$ is a compact subset of M. Λ_{3} will denote a constant such that

$$
\begin{equation*}
(3 R / 4)^{-2}\left|S_{3 R / 4}\left(X_{0}\right)\right| \leqslant \Lambda_{3} . \tag{1.11}
\end{equation*}
$$

Here and subsequently we let $\left|S_{Q}\left(X_{1}\right)\right|$ denote the 2-dimensional Hausdorff measure of $S_{\rho}\left(X_{1}\right)$.

In the important special case when M is a graph with (Λ_{1}, Λ_{2})-quasiconformal Gauss map, we will show in $\S 3$ that Λ_{3} can be chosen to depend only on Λ_{1} and $\Lambda_{2} R^{2}$.

It will be proved in the appendix that

$$
\begin{equation*}
\sigma^{-2}\left|S_{\sigma}\left(X_{1}\right)\right| \leqslant 40\left\{\varrho^{-2}\left|S_{Q}\left(X_{1}\right)\right|+\int_{S_{\varrho}\left(X_{1}\right)} H^{2} d A\right\} \tag{1.12}
\end{equation*}
$$

for any $X_{1} \in S_{R}\left(X_{0}\right)$ and any σ, ϱ with $0<\sigma \leqslant \varrho<R-\left|X_{1}-X_{0}\right|$. (Here H denotes the mean curvature vector of M.)

§ 2. The Hölder estimate

The main Hölder continuity result (Theorem (2.2) below) will be obtained as a consequence of estimates for the Dirichlet integral corresponding to the map $\varphi: M \rightarrow N$ (cf. the original method of Morrey [2].) For a given $X_{1} \in S_{R / 2}\left(X_{0}\right)$ and $\varrho \in(0, R / 2)$, the Dirichlet integral is denoted $\mathcal{D}\left(X_{1}, \varrho\right)$, and is defined by

$$
D\left(X_{1}, \varrho\right)=\int_{S_{Q_{\ell}\left(X_{1}\right)}}|\delta \varphi|^{2} d A
$$

Before deriving the estimates for these integrals, some preliminary remarks are needed. We are going to adopt the standard terminology that if ζ is a k-form on $N(k=1,2)$ then $\varphi^{\#} \zeta$ denotes the "pulled-back" k-form on M, defined by

$$
\left(\varphi^{\#} \zeta\right)(X)=\Lambda^{k}(\delta \varphi(X)) \zeta(\varphi(X)), \quad X \in M .
$$

Thus, letting h be an arbitrary C^{1} function on M, and using the definition (1.7) together with the relation
we have

$$
\begin{equation*}
d\left(h \varphi^{\#} N\right)=d h \wedge \varphi^{\#} \omega+h J \varphi d A \tag{2.1}
\end{equation*}
$$

where $d A$ denotes the area form η for M. We also need to note that if $X_{1} \in S_{R}\left(X_{0}\right)$ and if $r_{X_{1}}$ is the Euclidean distance function defined by

$$
\begin{equation*}
r_{X_{1}}(X)=\left|X-X_{1}\right|, \quad X \in \mathbf{R}^{n}, \tag{2.2}
\end{equation*}
$$

then, by Sard's theorem, we have that, for almost all $\varrho \in\left(0, R-\left|X_{1}-X_{0}\right|\right), \delta r_{X_{1}}$ vanishes at no point of $\partial S_{\varrho}\left(X_{1}\right)$. For such values of ϱ we can write

$$
\begin{equation*}
\partial S_{\varrho}\left(X_{1}\right)=\bigcup_{j=1}^{N(\varrho)} \Gamma_{\varrho}^{(j)}, \tag{2.3}
\end{equation*}
$$

where $N(\varrho)$ is a positive integer and $\Gamma_{\varrho}^{(j)}, j=1, \ldots, N(\varrho)$, are C^{2} Jordan curves in M. Thus, by Stoke's theorem, for almost all $\varrho \in\left(0, R-\left|X_{1}-X_{0}\right|\right)$ (2.1) will imply

$$
\begin{equation*}
\int_{S_{\varrho}\left(X_{1}\right)} h J \varphi d A=-\int_{S_{\varrho}\left(X_{1}\right)} d h \wedge \varphi^{\#} \omega+\sum_{j=1}^{N(Q)} \int_{\Gamma_{e}^{(j)}} h \varphi^{\#} \omega . \tag{2.4}
\end{equation*}
$$

(We are assuming that the $\Gamma_{\rho}^{(j)}$ are appropriated oriented.) In case h has compact support in $S_{e}\left(X_{1}\right)$ we can write

$$
\begin{equation*}
\int_{S_{\varrho}\left(X_{1}\right)} h J \varphi d A=-\int_{S_{\varrho}\left(X_{1}\right)} d h \wedge \varphi^{\#} \omega, \tag{2.5}
\end{equation*}
$$

and of course this holds for all $\varrho \in\left(0, R-\left|X_{1}-X_{0}\right|\right)$.
The following lemma gives a preliminary bound for $\mathcal{D}\left(X_{0}, R / 2\right)$.
Lemma (2.1). If φ is $\left(\Lambda_{1}, \Lambda_{2}\right)$-quasiconformal, then

$$
\mathcal{D}\left(X_{0}, R / 2\right) \leqslant c
$$

where c depends only on $\Lambda_{0}, \Lambda_{1}, \Lambda_{2} R^{2}$ and Λ_{3}.
Proof. We let ψ be a C^{1} "cut-off function" satisfying $0 \leqslant \psi \leqslant 1$ on $M, \psi \equiv 1$ on $S_{R / 2}\left(X_{0}\right)$, $\psi \equiv 0$ outside $S_{3 R / 4}\left(X_{0}\right)$ and $\sup _{M}|\delta \psi| \leqslant 5 / R$. (Such a function is obtained by defining $\psi(X)=\gamma\left(\left|X-X_{1}\right|\right)$, where γ is a suitably chosen $C^{1}(\mathbf{R})$ function.)

Since

$$
\begin{equation*}
\varphi^{\#} \omega=\sum_{i=1}^{m} \omega_{i} \circ \varphi d \varphi_{i}, \tag{2.6}
\end{equation*}
$$

we can easily check, by using (1.4), that

$$
\left|\left(d \psi \wedge \varphi^{\#} \omega\right)(X)\right| \leqslant \Lambda_{0}|\delta \psi(X)||\delta \varphi(X)| \leqslant 5 R^{-1} \Lambda_{0}|\delta \varphi(X)|, \quad X \in M .
$$

(Here, on the left, $\left|\mid\right.$ denotes the usual inner product norm for forms on $T_{x}(M)$.) Then by using (2.5) with $X_{1}=X_{0}, \varrho=R$ and $h=\psi^{2}$, we easily obtain

$$
\left|\int_{S_{R^{(}\left(X_{0}\right)}} \psi^{2} J \varphi d A\right| \leqslant 10 R^{-1} \Lambda_{0} \int_{S_{R^{(}\left(X_{0}\right)}} \psi|\delta \varphi| d A
$$

The quasiconformal condition (1.8) then implies

$$
\int_{S_{R}\left(X_{0}\right)} \psi^{2}|\delta \varphi|^{2} d A \leqslant 10 R^{-1} \Lambda_{0}\left|\Lambda_{1}\right| \int_{S_{R}\left(X_{0}\right)} \psi|\delta \varphi| d A+\Lambda_{2} \int_{S_{R}\left(X_{0}\right)} \psi^{2} d A
$$

Using the Cauchy inequality $a b \leqslant \frac{1}{2} a^{2}+\frac{1}{2} b^{2}$ and the definition of Λ_{3}, we then obtain

$$
\int_{S_{R^{(}\left(X_{0}\right)}} \psi^{2}|\delta \varphi|^{2} d A \leqslant \frac{1}{2} \int_{S_{R^{R}\left(X_{0}\right)}} \psi^{2}|\delta \varphi|^{2} d A+\left(50 \Lambda_{0}^{2} \Lambda_{1}^{2}+\Lambda_{2} R^{2}\right) \Lambda_{3}
$$

Since $\psi \equiv 1$ on $S_{R / 2}\left(X_{0}\right)$, the required inequality then follows (with $\left.c=\left(100 \Lambda_{0}^{2} \Lambda_{1}^{2}+2 \Lambda_{2} R^{2}\right) \Lambda_{3}\right)$.
The next theorem contains the main estimate for $\mathcal{D}\left(X_{1}, \varrho\right)$. In the statement of the theorem, and subsequently, Λ_{4} denotes a constant such that

$$
\int_{S_{R / 2}\left(X_{0}\right)} H^{2} d A \leqslant \Lambda_{4},
$$

where H is the mean-curvature vector of M. (See [4].)
Theorem (2.1). If φ is $\left(\Lambda_{1}, \Lambda_{2}\right)$-quasiconformal, then

$$
\mathcal{D}\left(X_{1}, \varrho\right) \leqslant c(\varrho / R)^{\alpha}
$$

for all $X_{1} \in S_{R / 4}\left(x_{0}\right)$ and all $\varrho \in(0, R / 4)$, where $c>0$ and $\alpha \in(0,1)$ are constants depending only on $\Lambda_{0}, \Lambda_{1}, \Lambda_{2} R^{2}, \Lambda_{3}$ and Λ_{4}.

Proof. Since the curves $\Gamma_{\varrho}^{(f)}$ of (2.3) are closed we have $\int \Gamma_{\varrho}^{(j)} d \varphi_{i}=\int \Gamma_{\varrho}^{(j)} d \varphi_{i} / d s=0$. (Here $d s$ denotes integration with respect to arc-length and $d \varphi_{i} / d s$ denotes directional differentation in the direction of the appropriate unit tangent T of $\Gamma_{e}^{(j)}$; that is $d \varphi_{i} / d s=$ $T \cdot \delta \varphi_{i}$.) Then by (2.6) we have

$$
\int_{\mathrm{r}_{\boldsymbol{\ell}}^{(j)}} \varphi^{\#} \omega \sum_{i=1}^{m} \int_{\Gamma_{\ell}^{(j)}}\left(\omega_{i} \circ \varphi-\omega_{i} \circ \varphi\left(X^{(j)}\right)\right) \frac{d \varphi_{i}}{d s} d s
$$

where $X^{(j)}$ denotes an initial point (corresponding to arc-length $=0$) of $\Gamma_{e}^{(j)}$. Then using (2.4) with $h \equiv 1$, we obtain

$$
\begin{align*}
\left|\int_{S_{Q^{(}\left(X_{1}\right)}} J \varphi d A\right| & =\left|\sum_{j=1}^{N(Q)} \int_{\Gamma_{\ell}^{(j)}} \sum_{i=1}^{m}\left(\omega_{i} \circ \varphi-\omega_{i} \circ \varphi\left(X^{(j)}\right)\right) \frac{d \varphi_{i}}{d s} d s\right| \tag{2.7}\\
& \leqslant \sum_{j=1}^{N(Q)}\left\{\sup _{\Gamma_{e}^{(j)}}\left|\omega \circ \varphi-\omega \circ \varphi\left(X^{(j)}\right)\right| \int_{\Gamma_{Q}^{(j)}}|\delta \varphi| d s\right\} .
\end{align*}
$$

But clearly

$$
\begin{equation*}
\sup _{\Gamma_{e}^{(j)}}\left|\omega \circ \varphi-\omega \circ \varphi\left(X^{(j)}\right)\right| \leqslant \int_{\Gamma_{e}^{(j)}}\left|\frac{d \omega \circ \varphi}{d s}\right| d s \leqslant \int_{\Gamma_{e}^{(j)}}|\delta \omega \circ \varphi| d s \tag{2.8}
\end{equation*}
$$

Since

$$
|\delta \omega \circ \varphi| \leqslant \sup _{N}|D \omega||\delta \varphi| \leqslant \Lambda_{0}|\delta \varphi|
$$

(2.7) and (2.8) clearly imply

$$
\begin{align*}
& \left|\int_{S_{e^{\prime}\left(X_{1}\right)}} J \varphi d A\right| \leqslant \Lambda_{0} \sum_{j=1}^{N(\rho)}\left\{\int_{\mathrm{r}_{e}^{(j)}}|\delta \varphi| d s\right\}^{2} \tag{2.9}\\
& \leqslant \Lambda_{0}\left(\sum_{j=1}^{N\left(Q_{0}\right)} \int_{\Gamma_{e}^{(j)}}|\delta \varphi| d s\right\}^{2}=\Lambda_{0}\left(\int_{\partial s_{\ell}\left(X_{1}\right)}|\delta \varphi| d s\right)^{2} \\
& =\Lambda_{0}\left(\int_{\partial s_{e^{\prime}\left(X_{1}\right)}}\left(|\delta \varphi|\left|\delta r_{x_{1}}\right|^{-1 / 2}\right)\left(\left|\delta r_{X_{1}}\right|^{1 / 2}\right) d s\right)^{2} \\
& \leqslant \Lambda_{0}\left\{\int_{\partial s_{e}\left(X_{1}\right)}|\delta \varphi|^{2}\left|\delta r_{X_{1}}\right|^{-1} d s\right\}\left\{\int_{\left.\partial s_{\left.e^{(X}\right)}\right)}\left|\delta r_{X_{1}}\right| d s\right\} \\
& =\Lambda_{0}\left(\frac{d}{d \varrho} \int_{S_{\varrho}\left(X_{1}\right)}|\delta \varphi|^{2} d A\right)\left(\frac{d}{d \varrho} \int_{S_{\varrho}\left(X_{1}\right)}\left|\delta r_{X_{X}}\right|^{2} d A\right) .
\end{align*}
$$

Here $r_{X_{1}}$ is as in (2.2) and in the last equality we have used the differentiated version of the co-area formula:

$$
\frac{d}{d \varrho} \int_{S_{\varrho}\left(X_{1}\right)} h d A=\int_{\partial S_{\varrho}\left(X_{1}\right)} h\left|\delta r_{X_{1}}\right| d s
$$

whenever h is a continuous function on M.
Now by using (1.12) and the identity (A.2) with $h \equiv 1$, it is easily seen that

$$
\begin{equation*}
\frac{d}{d \varrho} \int_{S_{\varrho}\left(X_{1}\right)}\left|\delta r_{X_{1}}\right|^{2} d A \leqslant c_{1} \varrho \tag{2.10}
\end{equation*}
$$

where c_{1} depends only on Λ_{3} and Λ_{4}. Hence, by combining (2.9) and (2.10) we have

$$
\left|\int_{S_{Q}\left(X_{1}\right)} J \varphi d A\right| \leqslant c_{1} \Lambda_{0} \varrho \frac{d}{d \varrho} \mathcal{D}\left(X_{1}, \varrho\right) .
$$

The condition (1.8) then implies (after using (1.11), (1.12))

$$
\mathcal{D}\left(X_{1}, \varrho\right) \leqslant c_{1}^{\prime}\left(\left|\Lambda_{1}\right| \Lambda_{0} \varrho \frac{d}{d \varrho} \mathcal{D}\left(X_{1}, \varrho\right)+\Lambda_{2} \varrho^{2}\right)
$$

for almost all $\varrho \in(0, R / 4)$. If we now define

$$
\mathcal{E}(\varrho)=\mathcal{D}\left(X_{1}, \varrho\right)+\Lambda_{2} \varrho^{2}
$$

we see that this last inequality implies

$$
\mathcal{E}(\varrho) \leqslant c_{2} \varrho \mathcal{E}^{\prime}(\varrho), \quad \text { a.e. } \varrho \in(0, R / 4)
$$

where c_{2} depends only on $\Lambda_{0}, \Lambda_{1}, \Lambda_{3}$ and Λ_{4}. This can be written

$$
\frac{d}{d \varrho} \log \mathcal{E}(\varrho) \geqslant c_{2}^{-1} \varrho^{-1}, \quad \text { a.e. } \varrho \in(0, R / 4)
$$

Since $\mathcal{E}(\varrho)$ is increasing in ϱ, we can integrate to obtain

$$
\log (\mathcal{E}(\varrho) / \mathcal{E}(R / 4)) \leqslant c_{2}^{-1} \log (4 \varrho / R), \quad \varrho \leqslant R / 4 ;
$$

that is

$$
\begin{equation*}
\mathcal{E}(\varrho) \leqslant 4^{\alpha} \mathcal{E}(R / 4)(\varrho / R)^{\alpha}, \quad \alpha=c_{2}^{-1}, \varrho \in(0, R / 4) \tag{2.11}
\end{equation*}
$$

Since $S_{R / 4}\left(X_{1}\right) \subset S_{R / 2}\left(X_{0}\right)$, we must have

$$
\begin{equation*}
\mathcal{E}(R / 4) \leqslant \mathcal{D}\left(X_{0}, R / 2\right)+\Lambda_{2}(R / 4)^{2} \tag{2.12}
\end{equation*}
$$

The required estimate for $\mathcal{D}\left(X_{1}, \varrho\right)$ now follows from (2.11), (2.12) and Lemma (2.1); note that the exponent α is actually independent of Λ_{2}.

We next need an analogue of the Morrey lemma ([2], Lemma 1) for surfaces; this will enable us to deduce a Hölder estimate for φ from Theorem (2.1) (cf. the orginal method of Morrey [2].)

Lemma (2.2). Suppose h is C^{1} on M and suppose $K>0, \beta \in(0,1)$ are such that

$$
\int_{s_{\varrho}\left(X_{1}\right)}|\delta h| d A \leqslant K \varrho(\varrho / R)^{\beta}
$$

for all $X_{1} \in S_{R / 4}\left(X_{0}\right)$ and all $\varrho \in(0, R / 4)$. Then

$$
\sup _{X \in s_{\ell}^{*}\left(X_{0}\right)}\left|h(X)--h\left(X_{0}\right)\right| \leqslant c K(\varrho / R)^{\beta}, \quad \varrho \in(0, R / 4)
$$

where c depends on Λ_{3} and Λ_{4}, and where $S_{Q}^{*}\left(X_{0}\right)$ denotes the component of $S_{Q}\left(X_{0}\right)$ which contains X_{0}.

This lemma is proven in the appendix.
We can now finally deduce the Hölder estimate for quasiconformal maps.

Theorem (2.2). If φ is $\left(\Lambda_{1}, \Lambda_{2}\right)$-quasiconformal, then

$$
\sup _{X_{\in \in s_{\rho}^{*}\left(X_{0}\right)}}\left|\varphi(X)-\varphi\left(X_{0}\right)\right| \leqslant c(\varrho / R)^{\alpha / 2}, \quad \varrho \in(0, R / 4)
$$

where $c>0$ depends only on $\Lambda_{0}, \Lambda_{1}, \Lambda_{2} R^{2}, \Lambda_{3}$ and Λ_{4} and where $\alpha \in(0,1)$ is as in Theorem (2.1); $S_{Q}^{*}\left(X_{0}\right)$ is as in Lemma (2.2).

Proof. Let X_{1} be an arbitrary point of $S_{R / 4}\left(X_{0}\right)$. By the Hölder inequality, (1.12) and Theorem (2.1) we have

$$
\int_{\mathcal{S}_{\varrho}\left(X_{2}\right)}\left|\delta p_{i}\right| d A \leqslant c^{\prime}(c)^{1 / 2} \varrho(\varrho / R)^{\alpha / 2}, \quad \varrho \in(0, R / 4), \quad i=1, \ldots, m
$$

where c, α are as in Theorem (2.1) and c^{\prime} depends on Λ_{3}, Λ_{4}. Hence the hypotheses of Lemma (2.2) are satisfied, with $\beta=\alpha / 2$ and $K=c^{\prime} c^{1 / 2}$.

§ 3. Graphs with ($\Lambda_{1}, \boldsymbol{\Lambda}_{\mathbf{2}}$)-quasiconformal Gauss map

In this section M will denote the graph $\{X=(x, z): x \in \Omega, z=u(x)\}$ of a $C^{2}(\Omega)$ function u, where $\Omega \subset \mathbf{R}^{2}$ is an arbitrary open set. x_{0} will denote a fixed point of Ω, and it will be assumed that Ω contains the disc $D_{R}\left(x_{0}\right)=\left\{x \in \mathbf{R}^{2}:\left|x-x_{0}\right|<R\right\}$. X_{0} will denote the point ($x_{0}, u\left(x_{0}\right)$) of M and v will denote the Gauss map of M into S_{+}^{2} defined (as in (1.9) (ii)) by setting $\nu(X)$ equal to the upward unit normal at X; that is,

$$
\begin{equation*}
v(X) \equiv v(x)=\left(1+|D u(x)|^{2}\right)^{-\frac{1}{t}}(-D u(x), 1), \quad X=(x, u(x)), x \in \Omega \tag{3.1}
\end{equation*}
$$

We already mentioned in (1.9) (ii) that $J v=K=x_{1} \varkappa_{2}$ and $|\delta v|^{2}=x_{1}^{2}+x_{2}^{2}$, where x_{1}, x_{2} are the principal curvatures of M. Hence the Gauss map v is $\left(\Lambda_{1}, \Lambda_{2}\right)$-quasiconformal if and only if

$$
\begin{equation*}
x_{1}^{2}+\chi_{2}^{2} \leqslant \Lambda_{1} K+\Lambda_{2} \tag{3.2}
\end{equation*}
$$

this inequality will be assumed throughout this section. The remaining notation and terminology will be as in $\S 1$ and $\S 2$.

In order to effectively apply Theorem (2.2) to the Gauss map, we first need to discuss appropriate choices for the constants Λ_{0}, Λ_{3} and Λ_{4}.

To begin with, we have already seen in (1.5) (ii) that in case $N=S_{+}^{2}$ we can take $\Lambda_{0}=4$. Next we notice that, since $|\delta v|^{2}=x_{1}^{2}+x_{2}^{2}$, Lemma (2.1) with $\varphi=\nu$ gives $\int_{S_{R / 2}\left(X_{0}\right)}\left(x_{1}^{2}+x_{2}^{2}\right) d A$ $\leqslant c$, where c depends only on $\Lambda_{1}, \Lambda_{2} R^{2}$ and Λ_{3}. Thus since $x_{1}^{2}+x_{2}^{2} \geqslant \frac{1}{2}\left(x_{1}+x_{2}\right)^{2}=\frac{1}{2} H^{2}$ we can in this case make the choice $\Lambda_{4}=2 c$. The next lemma shows that we can choose Λ_{3} to depend only on $\Lambda_{1}, \Lambda_{2} R^{2}$.

Lemma (3.1). If $X_{1} \in S_{R}\left(X_{0}\right)$ and $\varrho \in\left(0, \frac{1}{2}\left(R-\left|X_{1}-X_{0}\right|\right)\right)$, then

$$
\left|S_{Q}\left(X_{1}\right)\right| \leqslant c \underline{\varrho}^{2},
$$

where c is a constant depending only on Λ_{1} and $\Lambda_{2} R^{2}$.
Proof. We will use the well-known identities

$$
\begin{equation*}
\Delta v_{l}+v_{l}\left(\varkappa_{1}^{2}+\varkappa_{2}^{2}\right)=\delta_{l} H, \quad l=1,2,3 \tag{3.3}
\end{equation*}
$$

where $H=\varkappa_{1}+\varkappa_{2}$ is the mean curvature of M and $\Delta=\sum_{i=1}^{3} \delta_{i} \delta_{i}$ is the Laplace-Beltrami operator on M. We will also need the first variation formula:

$$
\begin{equation*}
\int_{M} \delta_{i} h d A=\int_{M} v_{i} H h d A, \quad i=1,2,3, \tag{3.4}
\end{equation*}
$$

which is valid whenever h is a C^{1} function with compact support on M. Finally, we will need to use the fact that if $\zeta \in C^{2}(\Omega \times \mathbf{R})$, then

$$
\begin{equation*}
\Delta(\zeta \mid M)=\sum_{i, j=1}^{3}\left(\delta_{i j}-v_{i} v_{j}\right) D_{i j} \zeta+H \sum_{i=1}^{3} v_{i} D_{i} \zeta \tag{3.5}
\end{equation*}
$$

on M; one easily checks this by direct computation together with (1.2).
We now let $h \geqslant 0$ be a $C^{2}(M)$ function with compact support in M. Multiplying by h in (3.3), with $i=3$, and integrating by parts with the aid of (3.4), we obtain

$$
\int_{M}\left\{\left(\varkappa_{1}^{2}+\varkappa_{2}^{2}\right) h+\Delta h\right\} v_{3} d A=\int_{M}\left\{v_{3}\left(\varkappa_{1}+\varkappa_{2}\right)^{2} h-\left(\varkappa_{1}+x_{2}\right) \delta_{3} h\right\} d A
$$

that is, since $x_{1}^{2}+x_{2}^{2}-\left(x_{1}+x_{2}\right)^{2}=-2 \varkappa_{1} x_{2}=-2 K$,

$$
-2 \int_{M} K h v_{3} d A=\int_{M}\left(-v_{3} \Delta h-\left(\varkappa_{1}+\varkappa_{2}\right) \delta_{3} h\right) d A
$$

Choosing h of the form $h(X) \equiv \zeta(x), X=(x, u(x)), x \in \Omega$, where $\zeta \in C^{2}(\Omega)$ has compact support we then deduce, with the aid of (3.5) and (1.1)-(1.2),

$$
\begin{equation*}
2 \int_{M} K \zeta(x) v_{3} d A=\int_{M} v_{3}\left\{\sum_{1, j=1}^{2}\left(\delta_{i j}-v_{i} v_{j}\right) D_{i j} \zeta(x)+2\left(\varkappa_{1}+\varkappa_{2}\right) \sum_{i=1}^{2} v_{j} D_{j} \zeta(x)\right\} d A \tag{3.6}
\end{equation*}
$$

Replacing ζ by ζ^{2} and using (3.2), it is easily seen that this implies

$$
\begin{aligned}
& \int_{M}\left(x_{1}^{2}+x_{2}^{2}\right) \zeta^{2}(x) v_{3} d A \\
& \quad \leqslant \int_{M} 2\left|\Lambda_{1}\right|\left\{|D \zeta(x)|^{2}+\zeta(x) \sum_{i, j=1}^{2}\left|D_{i} \zeta(x)\right|+\left|\varkappa_{1}+x_{2}\right| \zeta(x)|D \zeta(x)|\right\} v_{3} d A+\Lambda_{2} \int_{M} \zeta^{2}(x) v_{3} d A
\end{aligned}
$$

Since we have

$$
2\left|\Lambda_{1}\right|\left|x_{1}+x_{2}\right| \zeta|D \zeta| \leqslant \frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) \zeta^{2}+\frac{1}{2}\left(2 \Lambda_{1}|D \zeta|\right)^{2}
$$

this gives
(3.7) $\frac{1}{2} \int_{M}\left(\varkappa_{1}^{2}+x_{2}^{2}\right) \zeta^{2}(x) v_{3} d A \leqslant \int_{M}\left\{c_{1}\left(|D \zeta(x)|^{2}+\zeta(x) \sum_{i_{i, j=1}^{2}}^{2}\left|D_{i j} \zeta(x)\right|\right)+\Lambda_{2} \zeta^{2}(x)\right\} v_{3} d A$,
where c_{1} depends only on Λ_{1}.
Now let $x^{(1)} \in \Omega$ be such that $X_{1}=\left(x^{(1)}, u\left(x^{(1)}\right)\right)$, note that $D_{2 \varrho}\left(x^{(1)}\right) \subset \Omega$ and choose ζ such that

$$
\begin{gathered}
0 \leqslant \zeta \leqslant 1 \text { on } \Omega, \zeta \equiv 1 \text { on } D_{e}\left(x^{(1)}\right), \zeta \equiv 0 \text { on } \mathbf{R}^{3}-D_{2 \varrho}\left(x^{(1)}\right), \\
\sup _{\Omega}|D \zeta| \leqslant c_{2} / \varrho, \quad \sup _{\Omega} \sum_{i, j=1}^{2}\left|D_{i j} \zeta\right| \leqslant c_{2} / \varrho^{2},
\end{gathered}
$$

where c_{2} is an absolute constant. Then, since $\Lambda_{2} \leqslant\left(\Lambda_{2} R^{2}\right) / \varrho^{2}$, (3.7) implies

$$
\begin{equation*}
\int_{M}\left(\varkappa_{1}^{2}+x_{2}^{2}\right) \zeta^{2}(x) v_{3} d A \leqslant c_{3} \varrho^{-2} \int_{M \cap\left(D_{2 Q}\left(x x^{(1)}\right) \times \mathbf{R}\right)} \nu_{3} d A \tag{3.8}
\end{equation*}
$$

where c_{3} depends only on Λ_{1} and $\Lambda_{2} R^{2}$.
Next we notice that, since M is the graph of u, if f is any given continuous function on M then

$$
\int_{M} f d A=\int_{\Omega} f(x) \sqrt{1+|D u(x)|^{2}} d x
$$

where f is defined on Ω by $f(x)=f(x, u(x))$. In particular since $\sqrt{1+|D u(x)|^{2}}=\left(v_{3}(x)\right)^{-1}$, we have

$$
\begin{equation*}
\int_{M} f v_{8} d A=\int_{\Omega} f(x) d x \tag{3.9}
\end{equation*}
$$

Hence (3.8) can be written

$$
\begin{equation*}
\int_{\Omega}\left(\tilde{\chi}_{1}^{2}+\tilde{x}_{2}^{2}\right) \zeta^{2} d x \leqslant c_{3} \varrho^{-2} \int_{D_{2 \varrho\left(x\left(x^{2}\right)\right)}} d x=4 c_{3} \varrho^{-2} \pi \varrho^{2}=4 c_{3} \pi \tag{3.8}
\end{equation*}
$$

where

$$
\tilde{x}_{1}(x)=x_{1}(x, u(x)), \quad x \in \Omega, \quad i=1,2 .
$$

Writing $\tilde{H}=\tilde{x}_{1}+\dot{x}_{2}$, noting that $\tilde{H}^{2} \leqslant 2\left(\bar{x}_{1}^{2}+\tilde{x}_{2}^{2}\right)$ and using Hölder's inequality, we then have

$$
\begin{equation*}
\int_{\Omega}|\tilde{H}| \zeta d x \leqslant\left\{\int_{\Omega} \tilde{H}^{2} \zeta^{2} d x\right\}^{1 / 2}\left|D_{2 \varrho}\left(x^{(1)}\right)\right|^{1 / 2} \leqslant\left(8 c_{3} \pi\right)^{1 / 2}\left(4 \pi \varrho^{2}\right)^{1 / 2}<8 \sqrt{c_{3}} \pi \varrho \tag{3.10}
\end{equation*}
$$

3-772904 Acta mathematica 139. Imprimé le 14 Octobre 1977

We now let M_{-}denote the region below the graph of u; that is,

$$
M_{-}=\{X=(x, z): x \in \Omega, z<u(x)\}
$$

Also, letting $B_{\sigma}=\left\{X \in \mathbf{R}^{3}:\left|X-X_{1}\right|<\sigma\right\}$, we take γ to be a C^{1} function on \mathbf{R}^{3} such that

$$
0 \leqslant \gamma \leqslant 1 \text { on } \mathbf{R}^{3}, \gamma \equiv 1 \text { on } B_{Q}, \gamma \equiv 0 \text { on } \mathbf{R}^{3}-B_{2_{Q}}, \sup _{\Omega}\left|D_{\gamma}\right| \leqslant c_{2} / \varrho
$$

Applying the divergence theorem on M_{-}we have

$$
\int_{M} \gamma \zeta(x) v \cdot v d A=\int_{M_{-}} \operatorname{div}(\gamma \zeta(x) v) d x d z
$$

Here we take ν to be a $C^{1}(\Omega \times \mathbf{R})$ function defined by

$$
\nu(x, z) \equiv v(x)=\left(1+|D u(x)|^{2}\right)^{-1 / 2}(-D u(x), 1), \quad x \in \Omega, z \in \mathbf{R}
$$

Hence we obtain

$$
\begin{equation*}
\left|S_{e}\left(X_{1}\right)\right| \leqslant\left|\int_{M_{-}}\{\gamma \zeta(x) \operatorname{div} \nu+\nu \cdot D(\gamma \zeta(x))\} d x d z\right| \tag{3.11}
\end{equation*}
$$

Finally, noting that

$$
\begin{equation*}
\operatorname{div} \nu(X)=\sum_{i=1}^{2} D_{i} v_{i}(X)=\sum_{i=1}^{2} D_{i} v_{i}(x)=\tilde{H}(x), \quad X=(x, z) \in \Omega \times \mathbf{R}, \tag{3.12}
\end{equation*}
$$

and using (3.11) together with the fact that $|D(\gamma \zeta(x))| \leqslant 2 c_{2} \varrho^{-1}$, we easily deduce the required area bound from (3.10).

Thus we have shown that Λ_{3}, Λ_{4} can both be chosen to depend only on $\Lambda_{1}, \Lambda_{2} R^{2}$. Hence Theorem (2.2) gives the Hölder estimate

$$
\begin{equation*}
\sup _{X \in S_{e}^{*}\left(X_{0}\right)}\left|\nu(X)-\nu\left(X_{0}\right)\right| \leqslant c(\varrho / R)^{\alpha}, \quad \varrho \in(0, R), \tag{3.13}
\end{equation*}
$$

where $c>0$ and $\alpha \in(0,1)$ depend only on $\Lambda_{1}, \Lambda_{2} R^{2}$. Notice that we assert (3.13) for all $\varrho \in(0, R)$ rather than $\varrho \in(0, R / 4)$ as in Theorem (2.2). We can do this because $|\nu|=1$ (which means an inequality of the form (3.13) trivially holds for $\varrho \in(R / 4, R)$).

We now wish to show that an inequality of the form (3.13) holds with $S_{\varrho}\left(X_{0}\right)$ in place of $S_{Q}^{*}\left(X_{0}\right)$; we will in fact prove that there is a constant $\theta \in(0,1)$, depending only on $\Lambda_{1}, \Lambda_{2} R^{2}$ such that $S_{Q}^{*}\left(X_{0}\right)=S_{\ell}\left(X_{0}\right)$ for all $\varrho \leqslant \theta R$.

We first use (3.13) to deduce some facts about local non-parametric representations for M. Let

$$
\begin{gathered}
S=S_{\theta R}^{*}\left(X_{0}\right) \\
\tilde{S}=\left\{(\xi, \zeta):(\xi, \zeta)=\left(x-x_{0}, z-z_{0}\right) Q, \quad(x, z) \in S\right\}
\end{gathered}
$$

where $\theta \in(0,1), z_{0}=u\left(x_{0}\right)$ and Q is the 3×3 orthogonal matrix with rows $e_{1}, e_{2}, v\left(X_{0}\right)$, where e_{1}, e_{2} are principal directions of M at X_{0}. Since M is a C^{2} surface we of course know that for small enough θ there is a neighbourhood U of $0 \in \mathbf{R}^{2}$ and a $C^{2}(U)$ function \tilde{u} with $D \tilde{u}(0)=0$ and

$$
\begin{equation*}
\tilde{S}=\operatorname{graph} \tilde{u}=\{(\xi, \zeta): \xi \in U, \zeta=\tilde{u}(\xi)\} . \tag{3.14}
\end{equation*}
$$

Furthermore, letting

$$
\begin{equation*}
\tilde{v}(\xi)=\left(1+|D \tilde{u}(\xi)|^{2}\right)^{-\frac{1}{2}}(-D \tilde{u}(\xi), 1), \quad \xi \in U, \tag{3.15}
\end{equation*}
$$

we have by (3.13) that

$$
|\tilde{v}(\xi)-\tilde{\nu}(0)| \leqslant c \theta^{\alpha}, \quad \xi \in U,
$$

where c, α are as in (3.13). That is, by (3.15),

$$
\left(1+|D \tilde{u}(\xi)|^{2}\right)^{-1}|D \tilde{u}(\xi)|^{2}+\left(\left(1+|D \tilde{u}(\xi)|^{2}\right)^{-\frac{1}{2}}-1\right)^{2} \leqslant\left(c \theta^{\alpha}\right)^{2}, \quad \xi \in U
$$

which implies

$$
\begin{equation*}
|D \tilde{u}(\xi)| \leqslant\left(1-\left(c \theta^{\alpha}\right)^{2}\right)^{-\frac{1}{2}} c \theta^{\alpha}<\frac{1}{2}, \quad \xi \in U, \tag{3.16}
\end{equation*}
$$

provided θ is such that

$$
\begin{equation*}
c \theta^{\alpha} \leqslant 1 / 4 \tag{3.17}
\end{equation*}
$$

Because of (3.16), we can infer that a representation of the form (3.14) holds for any 0 satisfying (3.17).

For later reference we also note that (3.16) implies

$$
\begin{equation*}
D_{\theta R / \mathbf{2}}(0) \subset U \tag{3.18}
\end{equation*}
$$

The next lemma contains the connectivity result referred to above.
Lemma (3.2). There is a constant $\theta \in(0,1)$, depending only on $\Lambda_{1}, \Lambda_{2} R^{2}$, such that $S_{\varrho}\left(X_{0}\right)$ is connected for each $\varrho \leqslant \theta R$.

Proof. In the proof we will let $c_{1}, c_{2} \ldots$ denote constants depending only on $\Lambda_{1}, \Lambda_{2} R^{2}$. B_{σ}, for $\sigma>0$, will denote the open ball $\left\{X \in \mathbf{R}^{3}:\left|X-X_{0}\right|<\sigma\right\}$.

Let $\theta \in(0,1)$ satisfy (3.17), let $\varrho=\theta R / 2$, let $\beta \in\left(0, \frac{1}{4}\right)$ and define S_{β} to be the collection of those components of $S_{Q^{/ 2}}\left(X_{0}\right)$ which intersect the ball $B_{\beta_{0}}$. For each $S \in S_{\beta}$ we can find $X_{1} \in S \cap B_{Q^{\prime} / 4}$ such that

$$
\begin{equation*}
S \subset S_{Q}^{*}\left(X_{1}\right) \tag{3.19}
\end{equation*}
$$

and hence, replacing X_{0} by X_{1} and R by $R / 2$ in the discussion preceding the lemma, we see that S can be represented in the form (3.14), (3.16). Using such a non-parametric representation for each $S \in \Im_{\beta}$ and also using the fact that no two elements of S_{β} can intersect, it follows that the union of all the components $S \in S_{\beta}$ is contained in a region bounded between two parallel planes π_{1}, π_{2} with

$$
\begin{equation*}
d\left(\pi_{1}, \pi_{2}\right) \leqslant c_{1}\left(\beta+\theta^{\alpha}\right) \varrho . \tag{3.20}
\end{equation*}
$$

Here $d\left(\pi_{1} \pi_{2}\right)$ denotes the distance between π_{1} and π_{2} and α is as in (3.17).
Our aim now is to show that, for suitable choices of β and θ depending only on Λ_{1} and $\Lambda_{2} R^{2}$, there is only one element (viz. $S_{0 / 2}^{*}\left(X_{0}\right)$) in S_{β}. Suppose that in fact there are two distinct elements $S_{1}, S_{2} \in S_{\beta}$. We can clearly choose S_{1}, S_{2} to be adjacent in the sense that the volume V enclosed by S_{1}, S_{2} and $\partial B_{\rho / 2}$ intersects no other elements $S \in S_{\beta}$. Thus $\nabla \cap B_{\beta Q}$ consists either entirely of points above the graph M or entirely of points below M; it is then evident that if the unit normal ν points out of (into) V on S_{1}, then it also points out of (into) V on S_{2}. Furthermore by (3.20) we have

$$
\begin{equation*}
\text { volume }(V) \leqslant c_{2}\left(\beta+\theta^{\alpha}\right) \varrho^{2} \tag{3.21}
\end{equation*}
$$

$$
\operatorname{area}\left(V \cap \partial B_{\ell / 2}\right) \leqslant c_{3}\left(\beta+\theta^{\alpha}\right) \varrho^{2}
$$

An application of the divergence theorem over V then gives

$$
\int_{S_{1}} \nu \cdot \nu d A+\int_{S_{\mathrm{z}}} \nu \cdot v d A= \pm\left\{\int_{V} \operatorname{div} v d x d z-\int_{\partial B_{\mathrm{Q} / 2} \cap v} \eta \cdot v d A\right\},
$$

where η is the outward unit normal of $\partial B_{Q_{2} .}$. By (3.22) and (3.12) this gives

$$
\begin{equation*}
\text { area }\left(S_{1}\right)+\operatorname{area}\left(S_{2}\right) \leqslant \int_{V}|f(x)| d x d z+c_{3}\left(\beta+\theta^{\alpha}\right) \varrho^{2} \tag{3.23}
\end{equation*}
$$

Also, by (3.8)' and (3.21),

$$
\begin{aligned}
\int_{V}|\tilde{H}(x)| d x d z & \leqslant\left(\int_{V} A^{2}(x) d x d z\right)^{1 / 2}\{\text { volume }(V)\}^{1 / 2} \\
& \leqslant\left(\int_{B_{\varrho} / 2} A^{2}(x) d x d z\right)^{1 / 2}\left\{c_{2}\left(\beta+\theta^{\alpha}\right) \varrho^{8}\right\}^{1 / 2} \\
& \left.\leqslant\left(c_{4} \varrho\right)^{1 / 2}\left\{c_{2}\left(\beta+\theta^{\alpha}\right) \varrho^{\mathrm{s}}\right\}^{1 / 2}=\sqrt{c_{4}} \overline{c_{2}\left(\beta+\theta^{\alpha}\right.}\right) \varrho^{2}
\end{aligned}
$$

Hence (3.23 gives

$$
\begin{equation*}
\operatorname{area}\left(S_{1}\right)+\operatorname{area}\left(S_{2}\right) \leqslant c_{5} \sqrt{\beta+\theta^{\alpha}} \varrho^{2} \tag{3.24}
\end{equation*}
$$

On the other hand by using a non-parametric representation as in (3.14), (3.16) we infer that

$$
\begin{equation*}
\text { area }(S) \geqslant c_{6} \varrho^{2} \tag{3.25}
\end{equation*}
$$

for each $S \in S_{\beta}$, where $c_{6}>0$ is an absolute constant.
(3.24) and (3.25) are clearly contradictory if we choose β, θ small enough (but depending only on Λ_{1} and $\Lambda_{2} R^{2}$. For such a choice of β, θ we thus have

$$
S_{\beta \varrho}\left(X_{0}\right)=M \cap B_{\beta_{Q}}=S_{\varrho / 2}\left(X_{0}\right) \cap B_{\beta_{Q}}=S_{\varrho / 2}^{*}\left(X_{0}\right) \cap B_{\beta_{\ell}}
$$

But by using a representation of the form (3.14), (3.16) for $S_{\phi / 2}^{*}\left(X_{0}\right)$, we clearly have $S_{\ell / 2}^{*}\left(X_{0}\right) \cap B_{\beta_{\ell}}$ connected. Thus $S_{\beta_{Q}}\left(X_{0}\right)=S_{\beta \theta R / 2}\left(X_{0}\right)$ is connected. The lemma follows because the choice of β, θ depended only on $\Lambda_{1}, \Lambda_{2} R^{2}$.

Because of the above connectivity result we can replace $S_{\ell}^{*}\left(X_{0}\right)$ in (3.13) by $S_{\ell}\left(X_{0}\right)$ for $\varrho \leqslant \theta R$. However since $|\nu|=1$, an inequality of the form (3.13) is trivial for $\varrho>\theta R$. Hence we have the result of the following theorem.

Theorem (3.1). For each $\varrho \in(0, R)$ we have

$$
\sup _{X \in S_{\rho}\left(X_{0}\right)}\left|v(X)-v\left(X_{0}\right)\right| \leqslant c(\varrho / R)^{\alpha}
$$

where $c>0$ and $\alpha \in(0,1)$ depend only on $\Lambda_{1}, \Lambda_{2} R^{2}$.
Remark. The above inequality implies

$$
\begin{equation*}
|\nu(X)-v(\bar{X})| \leqslant c^{\prime}(|X-\bar{X}| / R)^{\alpha}, \quad X, \bar{X} \in S_{R / 2}\left(X_{0}\right) \tag{3.26}
\end{equation*}
$$

$\left(c^{\prime}=4^{\alpha} c\right)$. This is seen by using X in place of X_{0} and $R / 4$ in place of R.

§ 4. Graphs with ($\Lambda_{1}, \mathbf{0}$)-quasiconformal Gauss map

Here the notation will be as in §3, except that we take $\Lambda_{2}=0$ always; that is, we assume that the graph M of u has ($\Lambda_{1}, 0$)-quasiconformal Gauss map. It will be shown that there are a number of special results which can be established in this case.

We note that, in particular, the graph of a solution of any homogeneous equation of mean curvature type (i.e. an equation as in (1.9) (ii) with $b \equiv 0$) is ($\Lambda_{1}, 0$)-quasiconformal.

Hence the results of this section apply in particular to these equations. (See [7] for further discussion.)

Our first observation is that if $\Omega=\mathbf{R}^{2}$, then we can let $R \rightarrow \infty$ in (3.26) to obtain $v \equiv$ const.; that is, u is linear. Thus we have

Theorem (4.1). Suppose $\Omega=\mathbf{R}^{2}$ and v is $\left(\Lambda_{1}, 0\right)$-quasiconformal. Then u is a linear function.

Remark. Actually this theorem can be deduced directly from Theorem (2.1) (by letting $R \rightarrow \infty$) without first proving (3.26) (or even (3.13)). However note that Lemma (3.1) is still needed to show that Λ_{3} can be chosen to depend only on Λ_{1}.

Before proceeding further, we want to establish an interesting integral identity (equation (4.5) below) involving the Gauss curvature K of the graph M.

Recall first that K is the area magnification factor for the Gauss map; hence since the area form for S_{+}^{2} is $d \omega$, where $\omega(X)=\left(1+x_{3}\right)^{-1}\left(-x_{2} d x_{1}+x_{1} d x_{2}\right)$ (see (1.5) (ii)), we have the identity

$$
\begin{equation*}
K d A=d \omega^{*}, \quad \omega^{*}=\nu^{\#} \omega=\left(1+\nu_{3}\right)^{-1}\left(-\nu_{2} d \nu_{1}+\nu_{1} d \nu_{2}\right), \tag{4.1}
\end{equation*}
$$

where $d A$ is the area form for M. Since $\sum_{i=1}^{3} \nu_{i}^{2}=|v|^{2}=1$, we have

$$
\begin{equation*}
d v_{3}=-\nu_{3}^{-1}\left(\nu_{1} d \nu_{1}+\nu_{2} d v_{2}\right) \tag{4.2}
\end{equation*}
$$

and using this in (4.1) yields the identity

$$
\begin{equation*}
K d A=v_{3}^{-1} d v_{1} \wedge d \nu_{2} \tag{4.3}
\end{equation*}
$$

Now, by using (4.1) together with Stoke's theorem, we deduce

$$
\begin{equation*}
\int_{M} \zeta K d A=-\int_{M} d \zeta \wedge \omega^{*} \tag{4.4}
\end{equation*}
$$

for any $\zeta \in C^{1}(M)$ with compact support in M. In particular, choosing ζ of the form $\zeta=$ $\gamma\left(\nu_{3}\right) \zeta_{1}$, where γ is a $C^{1}(\mathbf{R})$ function and $\zeta_{1} \in C^{1}(M)$ has compact support in M, it can be checked, by using (4.2) and (4.3), that (4.4) implies

$$
\int_{M} \zeta_{1}\left(\gamma\left(v_{3}\right)-\left(1-v_{3}\right) \gamma^{\prime}\left(v_{3}\right)\right) K d A=-\int_{M} \gamma\left(v_{3}\right) d \zeta_{1} \wedge \omega^{*}
$$

which can be written

$$
\begin{equation*}
\int_{M} \zeta_{1}\left(\left(1-\nu_{\mathrm{s}}\right) \gamma\left(\nu_{\mathrm{s}}\right)\right)^{\prime} K d A=\int_{M} \gamma\left(v_{\mathrm{s}}\right) d \zeta_{1} \wedge \omega^{*} . \tag{4.5}
\end{equation*}
$$

We will subsequently need the following inequalities for the principal curvatures x_{1}, \varkappa_{2} of M :

$$
\begin{equation*}
\left(1-v_{3}^{2}\right) \min \left\{\chi_{1}^{2}, \varkappa_{2}^{2}\right\} \leqslant\left|\delta v_{3}\right|^{2} \leqslant\left(1-v_{3}^{2}\right) \max \left\{\varkappa_{1}^{2}, \varkappa_{2}^{2}\right\} \tag{4.6}
\end{equation*}
$$

To prove this, first recall that the 3×3 matrix $\left(\delta_{i} v_{j}\right)$ is the second fundamental form for M in the sense that there are orthogonal tangent vectors (principal directions) $e^{(i)}=\left(e_{1}^{(i)}, e_{2}^{(i)}, e_{3}^{(i)}\right), i=1,2$, such that

$$
\sum_{j=1}^{3}\left(\delta_{j} v_{k}\right) e_{j}^{(i)}=\varkappa_{i} e_{k}^{(i)}, \quad i=1,2, \quad k=1,2,3
$$

Since $\sum_{j=1}^{3}\left(\delta_{j} v_{k}\right) \nu_{j}=0, k=1,2,3$, we can set $k=3$ in these identities to give

$$
\left(\delta v_{3}\right)=\left(\varkappa_{1} e_{3}^{(1)}, \varkappa_{2} e_{3}^{(2)}, 0\right) Q
$$

where Q is the orthogonal matrix with rows $e^{(1)}, e^{(2)}, \nu$. Thus

$$
\left|\delta v_{3}\right|^{2}=\varkappa_{1}^{2}\left(e_{3}^{(1)}\right)^{2}+\varkappa_{2}^{2}\left(e_{3}^{(2)}\right)^{2}
$$

(4.6) now easily follows by noting that $\left(e_{3}^{(1)}\right)^{2}+\left(e_{3}^{(2)}\right)^{2}=1-\nu_{3}^{2}$, because $\left(e_{3}^{(1)}, e_{3}^{(2)}, \nu_{3}\right)$ is the third column of the orthogonal matrix Q.

Now we are assuming the Gauss map of M is $\left(\Lambda_{1}, 0\right)$ quasiconformal; that is

$$
\begin{equation*}
|\delta v|^{2}=\varkappa_{1}^{2}+\varkappa_{2}^{2} \leqslant \Lambda_{1} \varkappa_{1} \varkappa_{2}=\Lambda_{1} K . \tag{4.7}
\end{equation*}
$$

This implies

$$
\max \left\{\varkappa_{1}^{2}, \varkappa_{2}^{2}\right\} \leqslant \Lambda_{1}^{2} \min \left\{\varkappa_{1}^{2}, \varkappa_{2}^{2}\right\}
$$

and hence, since $|\delta \nu|^{2}=\varkappa_{1}^{2}+\varkappa_{2}^{2}$, (4.6) implies

$$
\begin{equation*}
\frac{1}{2}\left(1-\nu_{3}^{2}\right) \Lambda_{1}^{-2}|\delta v|^{2} \leqslant\left|\delta v_{3}\right|^{2} \leqslant\left(1-\nu_{3}^{2}\right)|\delta v|^{2} . \tag{4.8}
\end{equation*}
$$

This inequality will be needed in the proof of the following theorem, which gives an interesting Harnack inequality for the quantity $v(X)$, defined by

$$
v(X)=\sqrt{1+|D u(x)|^{2}}, \quad X=(x, u(x)), \quad x \in \Omega
$$

(Note that $v=\nu_{3}^{-1}$ on M.)
Theorem (4.2). If v is ($\Lambda_{1}, 0$)-quasiconformal, then

$$
\sup _{s_{\ddagger} R^{\left(X_{0}\right)}} v \leqslant c \inf _{s_{\ddagger} \mathbb{R}^{\left(X_{0}\right)}} v
$$

where v is as defined above and c is a constant depending only on Λ_{1}.

Before giving the proof of this theorem we note the following corollary.
Corollary. If $u \geqslant 0$ on the disc $D_{R}\left(x_{0}\right)$, then

$$
\left|D u\left(x_{0}\right)\right| \leqslant c_{1} \exp \left\{c_{2} u\left(x_{0}\right) / R\right\}
$$

where c_{1} and c_{2} depend only on Λ_{1}.
Proof of Corollary. Let

$$
G=\left\{x \in \bar{D}_{R / \mathbf{2}}\left(x_{0}\right)=u(x) \leqslant u\left(x_{0}\right)\right\}
$$

and let $y \in G$ be such that

$$
|D u(y)|=\inf _{G}|D u|
$$

Now take a sequence $X_{0}, X_{1}, \ldots, X_{N}$ of points in $M \cap(G \times \mathbf{R})$ with $\left|X_{i}-X_{i-1}\right| \leqslant \frac{1}{4} R$, $i=1, \ldots, N$, and with $X_{N}=(y, u(y))$. Clearly, repeated applications of Theorem (4.2) imply

$$
\begin{equation*}
\sqrt{1+\left|D u\left(x_{0}\right)\right|^{2}} \leqslant c^{N} \sqrt{1+|D u(y)|^{2}} \tag{4.9}
\end{equation*}
$$

Also, it is not difficult to see that it is possible to choose N such that

$$
\begin{equation*}
N \leqslant c_{1}\left(\mathbf{l}+u\left(x_{0}\right) / R\right) \tag{4.10}
\end{equation*}
$$

where c_{1} is an absolute constant. The required result now follows from (4.9) and (4.10), because $|D u(y)| \leqslant 2 u\left(x_{0}\right) / R$. (To see this, we note that either $D u(y)=0$, or else one can apply the mean value theorem to the function $\varphi(s)=u(x(s)), s \in[0, R / 2]$, where $x(s)$ is the solution of the ordinary differential equation $d x(s) / d s=-D u(x(s)) /|D u(x(s))|, s \in[0, R / 2]$, with $x(0)=x_{0}$.)

Proof of Theorem (4.2). Since we can vary X_{0}, it suffices to prove the lemma with θR in place of R, where $\theta \in(0,1)$, provided the eventual choice of θ depends only on Λ_{1}.

We first consider the case when $v_{3}(X)>\frac{1}{2}$ at some point of $S_{\theta R}\left(X_{0}\right)$. Then provided θ is small enough to ensure $c \theta^{\alpha}<\frac{1}{2}$, where c and α are as in Theorem (3.1), we can use Theorem (3.1) to deduce $\nu_{3}(X) \geqslant c_{1}>0$ at each point X of $S_{\theta R}\left(X_{0}\right)$, where c_{1} depends only on Λ_{1}. Then, since $v=\nu_{3}^{-1}$, the required result is established in this case. Hence we can assume $\nu_{3}(X)<\frac{1}{2}$ at each point of $S_{\theta R}\left(X_{0}\right)$. In this case we can replace $\gamma\left(\nu_{3}\right)$ in (4.3) by $\gamma\left(v_{8}\right) /\left(1-v_{3}\right)$, provided $\gamma\left(\nu_{3}\right) \zeta_{1}$ has support contained in $S_{\theta R}\left(X_{0}\right)$. This gives

$$
\begin{equation*}
\int_{M} \zeta_{1} \gamma^{\prime}\left(v_{3}\right) K d A=\int_{M} \frac{\gamma\left(v_{3}\right)}{1-v_{3}} d \zeta_{1} \wedge \omega^{*} \tag{4.11}
\end{equation*}
$$

Now one easily checks that

$$
\begin{equation*}
\left|d \zeta_{1} \wedge \omega^{*}\right| \leqslant\left|\delta \zeta_{1}\right||\delta \nu| \tag{4.12}
\end{equation*}
$$

and, by the quasiconformal condition (4.7) we can use (4.8) to deduce

$$
\begin{equation*}
\int_{M} \zeta_{1} \gamma^{\prime}\left(v_{3}\right)\left|\delta v_{3}\right|^{2} d A \leqslant c \int_{M} \gamma\left(v_{3}\right)\left|\delta \zeta_{1}\right|\left|\delta v_{3}\right| d A \tag{4.13}
\end{equation*}
$$

whenever $\zeta_{1} \gamma\left(v_{3}\right)$ has support contained in $S_{\theta R}\left(X_{0}\right)$, where c depends only on Λ_{1}.
Now if we also take θ small enough (depending on Λ_{1}) to ensure that (3.17) and the conclusion of Lemma (3.2) both hold, then $S_{\theta R}\left(X_{0}\right)$ is topologically a disc, and one can easily check that (4.13) implies that ν_{3} satisfies a maximum and a minimum principle on each open subset of $S_{\theta R}\left(X_{0}\right)$. (If, for example, $\nu_{3}\left(X_{1}\right)>\sup _{\partial U} v_{3}$ for some $X_{1} \in U \subset S_{\theta R}\left(X_{0}\right)$, U open, then we choose γ such that $\gamma(t) \equiv 0$ for $t<\frac{1}{2}\left\{v_{3}\left(X_{1}\right)+\sup _{\partial U} \nu_{3}\right\}, \gamma^{\prime}(t)>0$ for $t>\frac{1}{2}\left\{v_{3}\left(X_{1}\right)+\sup _{\partial U} v_{3}\right\}$ (so that $\gamma\left(v_{3}\left(X_{1}\right)\right)>0$) and choose $\zeta_{1} \equiv 0$ on $S_{\theta R}\left(X_{0}\right) \sim U$ and $\zeta_{1} \equiv 1$ on $\left\{X \in U: \nu_{3}(X)>\frac{1}{2}\left(\nu_{3}\left(X_{1}\right)+\sup _{\partial U} \nu_{3}\right)\right\}$. Then $\delta \zeta_{1} \equiv 0$ when $\gamma\left(\nu_{3}\right) \neq 0$, and hence (4.13) gives

$$
\int_{U} \gamma^{\prime}\left(v_{3}\right)\left|\delta v_{3}\right|^{2} d A=0
$$

that is, $\nu_{3} \equiv$ const. on each component of $\left\{X: \nu_{3}(X)>\frac{1}{2}\left(\nu_{3}\left(X_{1}\right)+\sup _{\partial U} \nu_{3}\right)\right\}$, which is clearly absurd. Similarly one proves that ν_{3} satisfies a minimum principle on U.)

We now choose ζ_{1} in (4.13) such that $\zeta_{1} \equiv 1$ on $S_{3 \theta R / 4}\left(X_{0}\right), \zeta_{1} \equiv 0$ outside $S_{\theta R}\left(X_{0}\right)$ and $\sup _{M}\left|\delta \zeta_{1}\right| \leqslant 5 /(\theta R)$. Also we choose $\gamma\left(\nu_{3}\right) \equiv \nu_{3}^{-1}$. Then using the Cauchy inequality, Lemma (3.1) and (4.13) we can prove

$$
\int_{s_{3 \theta R / 4}\left(X_{0}\right)}|\delta w|^{2} d A \leqslant c
$$

where $w=\log \nu_{3}^{-1}$ (so that $\delta w=-v_{3}^{-1} \delta \nu_{3}$) and where c depends only on Λ_{1}. Thus, again using Cauchy's inequality and Lemma (3.1), we have

$$
\begin{equation*}
\int_{S_{3 \theta R / 4}\left(X_{0}\right)}|\delta w| d A \leqslant c^{\prime} R \tag{4.14}
\end{equation*}
$$

with c^{\prime} depending only on Λ_{1}.
Now let

$$
\bar{w}=\sup _{S_{\theta R / 2}\left(X_{0}\right)} w, \quad \underline{w}=\inf _{s_{\theta R / 2}\left(X_{0}\right)} w,
$$

and, for $\lambda \in(\underline{w}, \bar{w})$, define

$$
\begin{aligned}
& E_{\lambda}=\left\{X \in S_{3 \theta R / 4}\left(X_{0}\right): w(X)>\lambda\right\}, \\
& C_{\lambda}=\left\{X \in S_{3 \theta R / 4}\left(X_{0}\right): w(X)=\lambda\right\} .
\end{aligned}
$$

By the co-area formula

$$
\begin{equation*}
\int_{\underline{w}}^{\bar{w}} \mathcal{H}^{1}\left(C_{\lambda}\right) d \lambda=\int_{E_{\bar{w}} \sim E_{\underline{w}}}|\delta w| d A \leqslant \int_{S_{3 \theta R / 4}\left(X_{0}\right)}|\delta w| d A . \tag{4.15}
\end{equation*}
$$

However we note that

$$
C_{\lambda} \cap \partial S_{\varrho}\left(X_{0}\right) \neq \varnothing
$$

for each $\varrho \in\left(\frac{1}{2} \theta R, \frac{3}{4} \theta R\right), \lambda \in(w, \bar{w})$. (Otherwise either E_{λ} or $\sim \bar{E}_{\lambda}$ has a component contained in $S_{Q}\left(X_{0}\right)$, which contradicts the maximum/minimum principle for ν_{3} on open subsets of $\left.S_{\theta R}\left(X_{0}\right).\right)$ Hence

$$
\begin{equation*}
\mathcal{H}^{1}\left(C_{\lambda}\right) \geqslant \frac{\theta R}{4}, \quad \lambda \in(w, \bar{w}) \tag{4.16}
\end{equation*}
$$

Combining (4.14), (4.15) and (4.16) we then have
i.e.

$$
\bar{w}-\underline{w} \leqslant \bar{c},
$$

$$
\sup _{s_{\partial R / 2}\left(X_{0}\right)} v_{3} \leqslant e^{\bar{c}} \inf _{S_{S / 2}\left(X_{0}\right)} v_{3}
$$

where \bar{c} depends only on Λ_{1}. This is the required result because $v=\nu_{3}^{-1}$.
We can use the Harnack inequality of Theorem (4.2) to prove the following strengthened version of (3.26)

Theorem (4.3). Suppose v is ($\left.\Lambda_{1}, 0\right)$-quasiconformal. Then

$$
|v(X)-v(\bar{X})| \leqslant c\left\{\inf _{s_{R / 2}\left(X_{0}\right)} v_{3}\right\}\left\{\frac{|X-\bar{X}|}{R}\right\}^{\alpha}, \quad X, \bar{X} \in S_{R / 2}\left(X_{0}\right),
$$

where $c>0$ and $\alpha \in(0,1)$ depend only on Λ_{1}.
Proof. Supposing that $\nu_{3}>\frac{1}{2}$ at some point of $S_{R / 2}\left(X_{0}\right)$, the theorem is a trivial consequence of Theorem (4.2) and (3.26). Hence we assume that $\nu_{3} \leqslant \frac{1}{2}$ at each point of $S_{R / 2}\left(X_{0}\right)$. We can then use (4.5) with $\gamma\left(v_{3}\right) \equiv \nu_{3} /\left(1-\nu_{3}\right)$, thus giving (by (4.12))

$$
\left|\int_{M} \zeta_{1} K d A\right| \leqslant c \int_{M} \nu_{3}\left|\delta \zeta_{1}\right||\delta v| d A
$$

where c depends only on Λ_{1} and ζ_{1} has support in $S_{R / 2}\left(X_{0}\right)$. Then by Theorem (4.2) we obtain

$$
\begin{equation*}
\left|\int_{M} \zeta_{1} K d A\right| \leqslant c^{\prime}\left\{\inf _{S_{R / 2}\left(X_{0}\right)} v_{3}\right\} \int_{M}\left|\delta \zeta_{1}\right||\delta v| d A \tag{4.17}
\end{equation*}
$$

where c^{\prime} depends only on Λ_{1}. Then by an argument almost identical to that used in the proof of Lemma (2.1), we see that (4.17) implies

$$
\int_{S_{R / 4}\left(X_{0}\right)}|\delta v|^{2} d A \leqslant c^{\prime \prime}\left\{\inf _{S_{R / 2}\left(X_{0}\right)} v_{3}\right\}^{2}
$$

where $c^{\prime \prime}$ depends only on Λ_{1}. Thus in the case $\varphi=\nu$, with $\nu\left(\Lambda_{1}, 0\right)$-quasiconformal, we see that the inequality (2.12) can be improved by the addition of the factor $\left\{\inf _{S_{R / 2}\left(X_{0}\right)} v_{3}\right\}^{2}$ on the right. (Note however that we must now use $R / 2$ in place of R in (2.12).) Then Theorem (2.1) gives in this case

$$
\int_{S_{R / 8}\left(X_{1}\right)}|\delta v|^{2} d A \leqslant c\left\{\inf _{S_{R / 2}\left(X_{0}\right)} v_{3}\right\}^{2}(\rho / R)^{\alpha}
$$

whenever $X_{1} \in S_{R / 8}\left(X_{0}\right)$ and $\varrho \in(0, R / 8)$, where $c>0$ and $\alpha \in(0,1)$ depend only on Λ_{1}. Then applying Lemma (2.2) as before, we obtain an inequality of the required form.

Next we wish to point out the following global Hölder continuity result for graphs with ($\Lambda_{1}, 0$)-quasiconformal Gauss map.

Theorem (4.4). Suppose u is continuous on $\bar{\Omega}$, graph $(u \mid \Omega)$ has $\left(\Lambda_{1}, 0\right)$-quasiconformal Gauss map \boldsymbol{v}, and let φ be a Lipschitz function on \mathbf{R}^{2} with $|D \varphi(x)| \leqslant L, x \in \mathbf{R}^{2}$. Then, if $u \equiv \varphi$ on $\partial \Omega$, we have

$$
|u(\bar{x})-u(x)| \leqslant c\left\{M^{1-\alpha}+|x-\bar{x}|^{1-\alpha}\right\}|x-\bar{x}|^{\alpha}, x, \bar{x} \in \bar{\Omega},
$$

where $M=\sup _{\Omega}|u-\varphi|$ and where $c>0$ and $\alpha \in(0,1)$ are constants depending only on L.
Remarks. 1. Note that there is no dependence in this estimate on Ω.
2. Using the above estimate as a starting point, various local estimates for the modulus of continuity of u can be obtained near boundary points at which u is continuous. (See Theorems 3 and 4 of [8].)

Proof of Theorem (4.4). As described in § 1 of [8], it suffices to establish the gradient bound

$$
\sup _{\Omega_{x_{0}, \ell / 2}}\left|D(u-\varphi)^{x+1}\right| \leqslant\left\{c_{1}(1+L)^{1+1 / n} M\right\}^{x}, \quad \varkappa=c_{2}(1+L+M / \varrho),
$$

where

$$
\Omega_{x_{0}, \sigma}=\left\{x \in \Omega:\left|x-x_{0}\right|<\sigma\right\}\left(x_{0} \in \bar{\Omega}\right), \quad M=\sup _{\Omega_{x_{0}}}|u-\varphi|
$$

and where c_{1}, c_{2} depend only on Λ_{1}. This can be proved by a method similar to the method used in the proof of Theorem 1 of [8]. Two main modifications are necessary to adapt the proof to the present setting:
(i) In the proof of Lemmas 1 and 2 of [8] we need an inequality of the form [8], (3.12). Such an inequality can be obtained in the present setting by choosing $\gamma\left(\nu_{3}\right)=\nu_{3}^{-1} \chi(w)$ (where $w=\log \nu_{3}^{-1}$ and χ is non-decreasing on $(0, \infty)$) in (4.5). By (4.7) and the righthand inequality in (4.8) this gives (since $\chi(w)$ is a decreasing function of ν_{3})

$$
\begin{align*}
& \int_{M} \chi(w)\left(v_{3}^{-1}|\delta v|^{2}+\left(1-v_{3}\right)|\delta w|^{2}\right) \zeta_{1} d A \tag{4.18}\\
& \quad \leqslant-\left|\Lambda_{1}\right| \int_{M} \chi(w) v_{3}^{-1} d \zeta_{1} \wedge \omega^{*} \leqslant\left|\Lambda_{1}\right| \int_{M} \chi(w) v_{3}^{-1}\left|\delta \zeta_{1}\right||\delta v| d A
\end{align*}
$$

by (4.12). Now for $\nu_{3}>\frac{1}{2}$ we have $|\delta w|^{2}=\nu_{3}^{-2}\left|\delta v_{3}\right|^{2} \leqslant 4|\delta v|^{2}$, while for $\nu_{3}<\frac{1}{2}$ we have by (4.8) that $|\delta \nu|^{2} \leqslant 3 \Lambda_{1}^{2}\left|\delta \nu_{3}\right|^{2}$. One easily sees that then (4.18) implies

$$
\begin{equation*}
\int_{M} \chi(w)\left(v_{3}^{-1}|\delta v|^{2}+|d w|^{2}\right) \zeta_{1} d A \leqslant c \int_{M} \chi(w)\left|\delta \zeta_{1}\right|(|\delta v|+|\delta w|) d A \tag{4.19}
\end{equation*}
$$

where c depends only on Λ_{1}. Replacing ζ by ζ_{1}^{2} and using Cauchy's inequality on the right, we then deduce

$$
\begin{equation*}
\int_{M} \chi(w)\left(v_{3}^{-1}|\delta \nu|^{2}+|\delta w|^{2}\right) \zeta_{1}^{2} d A \leqslant c^{\prime} \int_{M} \chi(w)\left|\delta \zeta_{1}\right|^{2} d A \tag{4.20}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\int_{M} \chi(w)\left(|\delta v|^{2}+|\delta w|^{2}\right) \zeta_{1}^{2} d A \leqslant c^{\prime} \int_{M} \chi(w)\left|\delta \zeta_{1}\right|^{2} d A \tag{4.21}
\end{equation*}
$$

where c^{\prime} depends only on Λ_{1}. This is precisely an inequality of the form [8], (3.12).
(ii) The only other essential modification required is in the proof of Lemma 2 of [8]. In this proof equation (0.1) of [8] was used. In place of this equation we can in the present setting use the mean curvature equation (3.12). It is necessary to note however the bound

$$
\int_{M} \nu_{3}^{-1}|\delta \nu|^{2} \zeta_{1}^{2} d A \leqslant c^{\prime} \int_{M}\left|\delta \zeta_{1}\right|^{2} d A
$$

(which is true by (4.20)). Using this bound we can easily see that

$$
\int_{\Omega}\left(1+|D u|^{2}\right) \hat{H}^{2} \zeta_{1}^{2} d x \leqslant c^{\prime} \int_{M}\left|\delta \zeta_{1}\right|^{2} d A
$$

where \tilde{H} is as in (3.12) and $\tilde{\zeta}_{1}$ is defined by $\tilde{\zeta}_{1}(x)=\zeta_{1}(x, u(x)), x \in \Omega$. This is sufficient to
ensure that the argument of Lemma 2 of [8] can be successfully modified (in such a way that (3.12) can be used in place of equation (0.1) of [8].).

It should be pointed out that there is an error in equality (3.3) of [8]; the correct inequality has $\sup _{\Omega}(u-\varphi)$ in place of Δ^{*} on the right. (This is obtained by making the choice $\varrho=\infty$ in (3.2).) This causes no essential change in the proof of Theorem 1 on pp. 270-271 of [8].

We have already pointed out that the above theory applies to any solution u of a homogeneous equation of mean curvature type; we wish to conclude this section with an application to the minimal surface system with 2 independent variables.

We suppose that $u=\left(u^{3}, \ldots, u^{n}\right)(n \geqslant 3)$ is a C^{2} solution of the minimal surface system

$$
\begin{equation*}
\sum_{i, j=1}^{2} b^{i j} D_{i j} u^{\alpha}=0, \quad \alpha=3, \ldots, n \tag{4.22}
\end{equation*}
$$

on $\Omega \supset D_{R}(0)=\left\{x \in \mathbf{R}^{2}:|x|<R\right\}$, where

$$
\begin{equation*}
b^{i j}=\delta_{i ;}-\frac{D_{i} u \cdot D_{j} u}{1+|D u|^{2}}, \quad i, j=1,2 . \tag{4.23}
\end{equation*}
$$

Suppose also that we have an a-priori bound for the gradient of each component u^{α} of u, except possibly for u^{3}; thus

$$
\begin{equation*}
\sup _{\Omega}\left|D u^{\alpha}\right| \leqslant \Gamma_{1}, \quad \alpha=4, \ldots, n, \tag{4.24}
\end{equation*}
$$

where Γ, is some given constant.
We claim that, because of (4.24), setting $\alpha=3$ in (4.22) gives (after multiplication by a suitable constant) a homogeneous equation of mean curvature type for u^{3}, with λ_{1} in (1.9) (ii) (a) depending only on Γ_{1} (and with (1.9) (ii) (b) holding with $\lambda_{2}=0$). This clearly follows from the fact that

$$
\begin{equation*}
c_{0} \sum_{i, j=1}^{2} g^{i j} \xi_{i} \xi_{j} \leqslant \sum_{i, j=1}^{2} b^{i j} \xi_{i} \xi_{j} \leqslant c_{1} \sum_{i, j=1}^{2} g^{i j} \xi_{i} \xi_{j}, \quad \xi \in \mathbf{R}^{2} \tag{4.25}
\end{equation*}
$$

where $\left(b^{i j}\right)$ is as in (4.23) and ($\left.g^{i j}\right)$ is given by

$$
g^{i j}=\delta_{i j}-\frac{D_{i} u^{3} D_{j} u^{3}}{1+\left|D u^{3}\right|^{2}}, \quad i, j=1,2
$$

and where c_{0}, c_{1} are positive constants determined by Γ_{1}. The inequality (4.25) is proved by first noting that

$$
\left|b^{i j}-g^{i j}\right| \leqslant c\left(1+\left|D u^{3}\right|^{2}\right)^{-1}, \quad i, j=1,2
$$

with c depending only on Γ_{1}, and then using the facts that $\left(b^{i j}\right),\left(g^{i j}\right)$ are both positive definite, with $\left(g^{i j}\right)$ having eigenvalues $1,\left(1+\left|D u^{3}\right|^{2}\right)^{-1}$.

We thus have the following theorem.
Theorem (4.5). The results of Theorem (4.2), and its corollary, and Theorem (4.4) are applicable to the component u^{3} of the vector solution u of (4.22), (4.24), with constants c, α, c_{1}, c_{2} depending only on Γ_{1}.

One can of course also prove that the graph of u^{3} satisfies an estimate like that in Theorem (4.3). It then follows that each of the components $u^{\alpha}, \alpha=3, \ldots, n$, of the vector solution u of (4.22), (4.24) satisfies the estimate of the following theorem.

Theorem (4.6). Let M_{α} denote the graph $\left\{X=\left(x_{1}, x_{2} x_{3}\right): x_{3}=u^{\alpha}\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right) \in D_{R}(0)\right\}$ and let $\left.\nu^{\alpha}=1+\left|D u^{\alpha}\right|^{2}\right)^{-\frac{1}{2}}\left(-D u^{\alpha}, 1\right)$ denote the upward unit normal. Then, writing $S_{R / \mathbf{2}}=$ $\left\{X \in M_{\dot{\alpha}}:\left|X-\left(0, u^{\alpha}(0)\right)\right|<R / 2\right\}$, we have

$$
\left|\nu^{\alpha}(X)-\nu^{\alpha}(\bar{X})\right| \leqslant c\left\{\frac{|X-\bar{X}|}{R}\right\}^{\beta}, \quad X, \bar{X} \in S_{R i 2}
$$

where $c>0, \beta \in(0,1)$ depend only on Γ_{1}.
If (4.22), (4.24) hold over the whole of \mathbf{R}^{2}, then we can let $R \rightarrow \infty$ in the above, thus giving the following corollary.

Corollary. Suppose (4.22), (4.24) hold over the whole of \mathbf{R}^{2}. Then u is linear.
It is appropriate here to point out a result of R. Osserman [6] concerning removability of isolated singularities of solutions of (4.22). As we have done above, Osserman also considers the case when all but one component of u satisfies an a-priori restriction (in [6] continuity is the restriction imposed).

§ 5. Concluding Remarks

We wish to conclude this paper with some remarks about the extension of the results of $\S 3$ and $\S 4$ to parametric surfaces M. This can be partly achieved provided there is a constant $\gamma>-1$ such that the Gauss map ν of M maps into $S_{\gamma}^{2}=\left\{X=\left(x_{1}, x_{2}, x_{3}\right) \in\right.$ $\left.S^{2}: x_{3}>\gamma\right\}$; that is, provided $v_{3}(X)>\gamma>-1$ for each $X \in M$. If this is assumed then the proof of the main Hölder estimate carries over in a straightforward manner, giving

$$
\begin{equation*}
\sup _{X \in s_{\rho}^{*}\left(X_{0}\right)}\left|v(X)-\nu\left(X_{0}\right)\right| \leqslant c\{\varrho / R\}^{\alpha}, \tag{5.1}
\end{equation*}
$$

where $c>0$ and $\alpha \in(0,1)$ depend on $\gamma, \Lambda_{1}, \Lambda_{2} R^{2}$ and $R^{-2}\left|S_{R}\left(X_{0}\right)\right|$. However no appropriate
analogues of Lemmas (3.1), (3.2) are known, even if M is assumed to be simply connected. Hence $S_{\varrho}^{*}\left(X_{0}\right)$ cannot be replaced by $S_{\varrho}\left(X_{0}\right)$ in (5.1), and the constants c, α depend on $R^{-2}\left|S_{R}(X)\right|$. In case $\Lambda_{2}=0$ Theorem (4.3) also has an analogue for the parametric surface M. In fact one can prove, by a straightforward modification of the method of §4, that

$$
\begin{equation*}
\sup _{X \in S_{\varrho}^{*}\left(X_{0}\right)}\left|v(X)-v\left(X_{0}\right)\right| \leqslant c \inf _{S_{R / 2}^{*}\left(X_{0}\right)}\left(v_{3}-\gamma\right)\{\varrho / R\}^{\alpha} \tag{5.2}
\end{equation*}
$$

for $\varrho \in(0, R / 2)$. However the constants c, α again depend on $R^{-2}\left|S_{R}\left(X_{0}\right)\right|$.
In the case when the principal curvatures $\varkappa_{1}, \varkappa_{2}$ of the surface M satisfy a relation

$$
\begin{equation*}
\alpha_{1}(X, v(X)) \varkappa_{1}+\alpha_{2}(X, v(X)) \varkappa_{2}=\beta(X, v(X)) \tag{5.3}
\end{equation*}
$$

at each point $X \in M$ (cf. (1.9) (ii)), where $\alpha_{1}, \alpha_{2}, \beta$ are Hölder continuous functions on $M \times S^{2}$ with

$$
1 \leqslant \alpha_{i}(X, v) \leqslant \lambda_{1}, \quad i=1,2,|\beta(X, v)| \leqslant \lambda_{2},(X, v) \in M \times S^{2}
$$

one can easily show (by using a non-parametric representation near X_{0}, cf. the argument of [1]) that (5.1) implies

$$
\left(x_{1}^{2}+\chi_{2}^{2}\right)\left(X_{0}\right) \leqslant c / R^{2},
$$

where c depends on $\gamma, R^{-2}\left|S_{R}\left(X_{0}\right)\right|, \lambda_{1}$ and $\lambda_{2} R$. As far as the author is aware, the only other result of this type previously obtained, in case $\lambda_{2} \neq 0$, was the result of Spruck [10] for the case $\alpha_{1}=\alpha_{2} \equiv 1, \beta \equiv$ constant. In the case $\beta \equiv 0$ we can use (5.2) instead of (5.1) to obtain the stronger inequality

$$
\left(\varkappa_{1}^{2}+\varkappa_{2}^{2}\right)\left(X_{0}\right) \leqslant c\left(v_{3}\left(X_{0}\right)-\gamma\right)^{2} / R^{2}
$$

Such an inequality was proved by Osserman [5] in the minimal case ($\alpha_{1}=\alpha_{2} \equiv 1, \beta \equiv 0$) and by Jenkins [l] for the case when the surface M is stationary with respect to a "constant coefficient" parametric elliptic functional (such surfaces always satisfy an equation of the form (5.3) with $\alpha_{l}(X, \nu) \equiv \alpha_{l}(\nu)$ and $\beta \equiv 0$; see [1] and [7] for further details). The results in [5] and [7] are obtained with constant c independent of $R^{-2}\left|S_{R}\left(X_{0}\right)\right|$, unlike the inequality above. (We should mention that of course one can obtain a bound for $R^{-2}\left|S_{R}\left(X_{0}\right)\right|$ if M globally minimizes a suitable elliptic parametric functional.)

Appendix. Area bounds and a proof of the Morrey-type lemma for 2 dimensional surfaces

The first variation formula for M (cf. (3.4)) is

$$
\int_{M} \delta \cdot f d A=\int_{M} f \cdot H d A
$$

valid for any C^{1} vector function $f=\left(f_{1}, \ldots, f_{n}\right)$ with compact support in M, where H is the mean curvature vector (see [4]) of M and $\delta \cdot f=\sum_{i=1}^{n} \delta_{i} f_{i}$ (=divergence of f on M). We begin by replacing f by $\varphi(r)\left(X-X_{1}\right) h$, where φ, h are non-negative functions, where $X_{1}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \in S_{R}\left(X_{0}\right)$, and where $r(X) \equiv r_{X_{1}}(X)=\left|X-X_{1}\right|$. Since, by (1.1),

$$
\delta \cdot X=\operatorname{trace}\left(\tilde{g}^{i j}(X)\right)=2
$$

and

$$
\left(X-X_{1}\right) \cdot \delta \varphi(r)=r^{-1} \varphi^{\prime}(r) \sum_{i, j=1}^{n}\left(x_{i}-x_{i}^{\prime}\right) \tilde{g}^{\prime j}(X)\left(x,-x_{j}^{\prime}\right)=r \varphi^{\prime}(r)|\delta r|^{2},
$$

this gives

$$
\begin{equation*}
2 \int_{M} \varphi(r) h d A+\int_{M} r \varphi^{\prime}(r) h|\delta r|^{2} d A=\int_{M} \varphi(r)\left(X-X_{1}\right) \cdot(-\delta h+H h) d A \tag{A.1}
\end{equation*}
$$

Now one easily checks that this holds if φ is merely continuous and piecewise C^{1} (rather than C^{1}) on R, provided we define $\varphi^{\prime}(r(X))$ is some arbitrary way (e.g. $\varphi^{\prime}(r(X))=0$) for those X such that φ is not differentiable at $r(X)$. (The proof of this is easily based on the fact that the set $\{X \in M: r(X)=\varrho$ and $\delta r(X) \neq 0\}$ has zero \mathcal{H}^{2}-measure for each $\varrho \in\left(0, R-\left|X_{1}-X_{0}\right|\right)$. Hence we can replace φ by the function φ_{ε}, defined by $\varphi_{\varepsilon}(t)=1$ for $t<\varrho-\varepsilon, \varphi_{\varepsilon}(t)=0$ for $t<\varrho$, and $\varphi_{\varepsilon}(t)=\varepsilon^{-1}(\varrho-t)$ for $\varrho-\varepsilon \leqslant t \leqslant \varrho$. Substituting this in (A.l) and letting $\varepsilon \rightarrow 0_{+}$, we obtain

$$
\begin{equation*}
2 \int_{S_{\varrho}} h d A-\varrho \frac{d}{d \varrho} \int_{s_{e}}|\delta r|^{2} d A=\int_{s_{e}}\left(X-X_{1}\right) \cdot\{-\delta h+h H\} d A \tag{A.2}
\end{equation*}
$$

Here and subsequently $S_{\varrho}=S_{\varrho}\left(X_{1}\right)$ and $\varrho \in\left(0, R-\left|X_{1}-X_{0}\right|\right)$.
Noting that $H \cdot \delta=0$ (since H is normal to M), we have from Cauchy's inequality that

$$
\begin{aligned}
\left(X-X_{1}\right) \cdot H=r\left(\frac{X-X_{1}}{r}-\delta r\right) \cdot H & \leqslant 2\left|\frac{X-X_{1}}{r}-\delta r\right|^{2}+\frac{1}{8} r^{2} H^{2} \\
& =2\left(1-|\delta r|^{2}\right)+\frac{1}{8} r^{2} H^{2} .
\end{aligned}
$$

(The work of Trudinger [11] suggests handling the term $\left(X-X_{1}\right) \cdot H$ in this manner.) Hence we deduce from (A.2) that

$$
2 \int_{S_{\varrho}}|\delta r|^{2} h d A-\varrho \frac{d}{d \varrho} \int_{S_{\mathrm{e}}}|\delta r|^{2} h d A \leqslant \int_{S_{\mathrm{e}}}\left(\frac{1}{8} r^{2} H^{2} h+r|\delta h|\right) d A
$$

This last inequality can be written

$$
-\frac{d}{d \varrho}\left\{\varrho^{-2} \int_{s_{\varrho}}|\delta r|^{2} h d A\right\} \leqslant \varrho^{-3} \int_{s_{\varrho}}\left(\frac{1}{8} r^{2} H^{2} h+r|\delta h|\right) d A,
$$

and hence, integrating from σ to ϱ. we have

$$
\begin{equation*}
\sigma^{-2} \int_{S_{\sigma}} h|\delta r|^{2} d A \leqslant \varrho^{-2} \int_{S_{\varrho}} h|\delta r|^{2} d A+\int_{0}^{\varrho}\left\{\tau^{-3} \int_{S_{\tau}}\left(\frac{1}{8} r^{2} H^{2} h+r|\delta h|\right) d A\right\} d \tau \tag{A.3}
\end{equation*}
$$

But

$$
\int_{0}^{e} \tau^{-3}\left(\int_{S_{\pi}} r^{2} H^{2} h d A\right) d \tau=\frac{1}{2} \int_{S_{\varrho}}\left(1-r^{2} / \varrho^{2}\right) H^{2} h d A \leqslant \frac{1}{2} \int_{S_{\varrho}} H^{2} h d A
$$

and hence (A.3) implies

$$
\begin{align*}
\sigma^{-2} \int_{S_{\sigma}} h|\delta r|^{2} d A & \leqslant \varrho^{-2} \int_{S_{Q}} h|\delta r|^{2} d A+2^{-4} \int_{S_{\varrho}} H^{2} h d A+\int_{0}^{\varrho} \tau^{-3}\left(\int_{S_{\tau}} r|\delta h| d A\right) d \tau \tag{A.4}\\
& \leqslant \varrho^{-2} \int_{S_{Q}} h d A+2^{-4} \int_{S_{Q}} H^{2} h d A+\int_{0}^{\varrho} \tau^{-2}\left(\int_{S_{\tau}}|\delta \hbar| d A\right) d \tau
\end{align*}
$$

We can also see from (A.2), by again using Cauchy's inequality,

$$
\begin{aligned}
2 \int_{S_{\varrho}} h d A-\varrho \frac{d}{d \varrho} \int_{S_{\varrho}} h|\delta r|^{2} d A & \leqslant \int_{S_{\varrho}}(r|H| h+r|\delta h|) d A \\
& \left.\leqslant \int_{S_{\varrho}}\left(1+\frac{1}{4} r^{2} H^{2}\right) h+r|\delta h|\right) d A
\end{aligned}
$$

so that

$$
\int_{S_{\varrho}} h d A \leqslant \varrho \frac{d}{d \varrho} \int_{S_{\varrho}} h|\delta r|^{2} d A+\int_{S_{e}}\left(\frac{1}{4} r^{2} H^{2} h+r|\delta h|\right) d A .
$$

Integrating this over $\varrho \in(\sigma / 2, \sigma)$, we deduce that

$$
\begin{aligned}
\int_{\sigma, 2}^{\sigma}\left(\int_{S_{\ell}} h d A\right) d \varrho & \leqslant \int_{\sigma / 2}^{\sigma}\left(\varrho \frac{d}{d \varrho} \int_{S_{\ell}} h|\delta r|^{2} d A\right) d \varrho+\int_{\sigma / 2}^{\sigma}\left(\int_{S_{\ell}}\left(\frac{1}{4} r^{2} H^{2} h+r|\delta h|\right) d A\right) d \varrho \\
& \leqslant \sigma \int_{0}^{\sigma}\left(\frac{d}{d \varrho} \int_{S_{\varrho}} h|\delta r|^{2} d A\right) d \varrho+\frac{\sigma}{2} \int_{S_{\sigma}} \frac{1}{4} r^{2} H^{2} h d A+\sigma \int_{\sigma / 2}^{\sigma}\left(\int_{S_{\varrho}}|\delta h| d A\right) d \varrho \\
& \leqslant \sigma \int_{S_{\ell}} h|\delta r|^{2} d A+\frac{\sigma^{3}}{8} \int_{S_{\sigma}} H^{2} d A+4 \sigma^{8} \int_{0}^{\sigma}\left(\varrho^{-2} \int_{S_{\ell}}|\delta h| d A\right) d \varrho
\end{aligned}
$$

In obtaining the last term on the right here, we have used the inequality $\sigma^{-2} \leqslant 4 \varrho^{-2}$ for $\varrho \in(\sigma / 2, \sigma)$. Multiplication by $8 \sigma^{-3}$ now yields

$$
\begin{equation*}
(\sigma \mid 2)^{-2} \int_{S_{\sigma / 2}} h d A \leqslant 8 \sigma^{-2} \int_{S_{\sigma}} h|\delta r|^{2} d A+\int_{S_{\sigma}} H^{2} d A+32 \int_{0}^{\sigma}\left(\varrho^{-2} \int_{S_{\varrho}}|\delta \hbar| d A\right) d \varrho . \tag{A.5}
\end{equation*}
$$

Combining this with (A.4) gives

$$
\begin{equation*}
\sigma^{-2} \int_{S_{0}} h d A \leqslant 40\left\{\int_{S_{l}}\left(\varrho^{-2}+H^{2}\right) h d A+\int_{0}^{e}\left(\tau^{-2} \int_{S_{\tau}}|\delta h| d A\right) d \tau\right\} \tag{A.6}
\end{equation*}
$$

for each σ, ϱ with $0<\sigma \leqslant \varrho<R-\left|X_{1}-X_{0}\right|$. Notice that (A.4) and (A.5) initially only yield (A.6) for $\sigma \leqslant \varrho / 2$; however (A.6) holds trivially for $\sigma \in(\varrho / 2, \varrho)$ because of the term $40 \varrho^{-2} \int_{S_{Q}} h d A$ on the right.

It clearly follows from this (by setting $h=1$) that (1.12) holds, as claimed in $\S 1$.
If we let $\sigma \rightarrow 0$ in (A.6), then we have

$$
\begin{equation*}
\left.h\left(X_{1}\right) \leqslant \frac{40}{\pi}\left\{\int_{S_{Q}}\left(\varrho^{-2}+H^{2}\right) h d A+\int_{0}^{\varrho}\left(\tau^{-2} \int_{S_{\tau}}|\delta h| d A\right) d \tau\right)\right\} . \tag{A.7}
\end{equation*}
$$

Next we note that if h is of arbitrary sign and if we apply (A.7) with $\psi \circ h$ in place of h (where ψ is a non-negative C^{1} function on \mathbf{R}), then we obtain

$$
\begin{equation*}
\psi\left(h\left(X_{1}\right)\right) \leqslant \frac{40}{\pi}\left\{\int_{S_{\varrho}}\left(\varrho^{-2}+H^{2}\right) \psi(h) d A+\sup _{\mathbf{R}}\left|\psi^{\prime}\right| \int_{0}^{\varrho}\left(\tau^{-2} \int_{S_{\tau}}|\delta \hbar| d A\right) d \tau\right\} . \tag{A.8}
\end{equation*}
$$

Using this inequality we can prove the Morrey-type lemma, Lemma (2.2), for the surface M. In fact, if h is as in Lemma (2.2), then (A.8) implies

$$
\begin{equation*}
\psi\left(h\left(X_{1}\right)\right) \leqslant \frac{40}{\pi} \int_{s_{\varrho}}\left(\varrho^{-2}+H^{2}\right) \psi(h) d A+\frac{40}{\pi} \sup _{\mathbf{R}}\left|\psi^{\prime}\right| K \beta^{-1}(\varrho / R)^{\beta} . \tag{A.9}
\end{equation*}
$$

We now suppose $\varrho \in(0, R / 4)$ and $X_{1} \in S \varrho\left(X_{0}\right)$, and we define

$$
\bar{h}=\sup _{s_{\rho}^{*}\left(x_{0}\right)} h, \quad h=\inf _{s_{\rho}^{*}\left(X_{0}\right)} h,
$$

and

$$
\gamma=\frac{1}{2}\left\{40 K \beta^{-1}(\varrho / R)^{\beta}\right\}^{-1}
$$

If $\bar{h}-\underline{h}<2 \gamma^{-1}$, then Lemma (2.2) is established with $c=160$. If on the other hand $\bar{\hbar}-\underline{h} \geqslant 2 \gamma^{-1}$, then we let N be the largest integer less than $(\bar{\hbar}-\underline{h}) \gamma$. Thus we have

$$
\begin{equation*}
N \geqslant \frac{1}{2}(\bar{h}-\underline{h}) \gamma, \tag{A.10}
\end{equation*}
$$

and, furthermore, we can subdivide the interval $[\underline{h}, \hbar]$ into N pairwise disjoint intervals $I_{1}, I_{2}, \ldots, I_{N}$, each of length $\geqslant \gamma^{-1}$. For each $j=1, \ldots, N$ we then let ψ_{j} be a non-negative $C^{1}(\mathbf{R})$ function with support contained in $I_{f}, \max _{\mathbf{R}} \psi_{j}=1$ and $\max _{\mathbf{R}}\left|\psi_{j}^{\prime}\right| \leqslant 3 \gamma$. (It is clear
that such a function ψ_{j}, exists because length $I_{j} \geqslant \gamma^{-1}$.) Since $S_{p}^{*}\left(X_{0}\right)$ is connected, we know that for each $j=1, \ldots, N$ we can find a point $X^{(j)} \in S_{\rho}^{*}\left(X_{0}\right)$ such that $\psi_{j}\left(h\left(X^{(j)}\right)\right)=1$. Then, assuming $\varrho<R / 4$, we can use (A.9) with $X^{(j)}$ in place of X_{1} and with ψ_{j} in place of ψ, thu giving

$$
\begin{aligned}
1 & \leqslant \frac{40}{\pi} \int_{S_{\varrho}\left(X^{(j)}\right)}\left(\varrho^{-2}+H^{2}\right) \psi_{j}(h) d A+\pi^{-1} \gamma^{-1} 3 \gamma / 2 \\
& \leqslant \frac{40}{\pi} \int_{S_{2 \varrho}\left(X_{0}\right)}\left(\varrho^{-2}+H^{2}\right) \psi_{j}(h) d A+\frac{1}{2}
\end{aligned}
$$

that is,

$$
1 \leqslant \frac{80}{\pi} \int_{S_{S_{2}}\left(X_{0}\right)}\left(\varrho^{-2}+H^{2}\right) \psi_{j}(h) d A .
$$

Summing over $j=1, \ldots, N$, noting that $\sum_{j=1}^{N} \psi_{j}(t) \leqslant 1$ for each $t \in \mathbf{R}$, we then deduce

$$
N \leqslant \frac{80}{\pi} \int_{s_{2_{e}\left(X_{0}\right)}}\left(\varrho^{-2}+H^{2}\right) d A \leqslant c\left(\Lambda_{3}+\Lambda_{4}\right) .
$$

Lemma (2.2) now follows from (A.10).

References

[1]. Jeneins, H., On 2-dimensional variational problems in parametric form. Arch. Rat. Mech. Anal., 8 (1961), 181-206.
[2]. Morrey, C. B., On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc., 43 (1938), 126-166.
[3]. Nrrenberg, L., On nonlinear elliptic partial differential equations and Hölder continuity. Comm. Pure Appl. Math., 6 (1953), 103-156.
[4]. Osserman, R., Minimal varieties. Bull. Amer. Math. Soc., 75 (1969), 1092-1120.
[5]. - On the Gauss curvature of minimal surfaces. Trans. Amer. Math. Soc., 96 (1960), 115-128.
[6]. - On Bers' theorem on isolated singularities. Indiana Univ. Math. J., 23 (1973), 337-342.
[7]. Simon, L., Equations of mean curvature type in 2 independent variables. Pacific J. Math. (1977).
[8]. - Global Hölder estimates for a class of divergent-form elliptic equation. Arch. Rat. Mech. Anal., 56 (1974), 253-272.
[9]. Spanier, E., Algebraic Topology. McGraw-Hill.
[10]. Spruck, J., Gauss curvature estimates for surfaces of constant mean curvature. Comm. Pure Appl. Math., 27 (1974), 547-557.
[11]. Trudinaer, N., A sharp inequality for subharmonic functions on two dimensional manifolds.

[^0]: Research supported by N.S.F grant MPS 72-04967A02 an a Sloan Fellow ship.

