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Abstract 
We prove a new version of the Holevo bound employing the Hilbert-Schmidt norm instead of the 
Kullback-Leibler divergence. Suppose Alice is sending classical information to Bob by using a 
quantum channel while Bob is performing some projective measurements. We bound the classical 
mutual information in terms of the Hilbert-Schmidt norm by its quantum Hilbert-Schmidt coun-
terpart. This constitutes a Holevo-type upper bound on the classical information transmission rate 
via a quantum channel. The resulting inequality is rather natural and intuitive relating classical 
and quantum expressions using the same measure. 
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1. Introduction 
Holevo’s theorem [1] is one of the pillars of quantum information theory. It can be informally summarized as 
follows: “It is not possible to communicate more than n classical bits of information by the transmission of n 
qubits alone”. It therefore sets a useful upper bound on the classical information rate using quantum channel. 

Suppose Alice prepares a state xρ  in some systems Q, where { }0, ,x X n∈ =   with probabilities ( )p x . 
Bob performs a measurement described by the POVM elements 0 , ,Y mE E E=   on that state, with measure-
ment outcome Y. Let 

( ) .Q
x

x
p xρ ρ ρ= = ∑                                   (1) 

The Holevo bound states that [2] 
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( ) ( ) ( ) ( ): ,x
x

H X Y S p x Sρ ρ≤ −∑                              (2) 

where S is the von Neumann entropy and ( ):H X Y  is the Shannon mutual information of X and Y. Recent 
proofs of the Holevo bound can be found in [3] [4].  

Consider the following trace distance between two probability distributions ( )p x  and ( )q x  on X (note 
that the trace distance here is different than the one used in [2], chapter 9, by a square) 

( ) ( ) ( )( )21|| .
2 x

d p q p x q x= −∑                               (3) 

We can extend the definition to density matrices ρ  and σ  

( ) ( )21|| ,
2

d trρ σ ρ σ= −                                  (4) 

where we use 2A  for †A A . This is known as the Hilbert-Schmidt (HS) norm [5]-[7] (in fact this is one half of 
the HS norm). Recently, the above distance measure was coined the “logical divergence” of two densities [8]. 

We prove a Holevo-type upper bound on the mutual information of X and Y, where the mutual information is 
written this time in terms of the HS norm instead of the Kullback-Leibler divergence. It is recently suggested by 
Ellerman [8] that employing the HS norm in the formulation of classical mutual information is natural. This is 
consistent with the identification of information as a measure of distinction [8]. Note that employing the Kull-
back-Leibler divergence in the standard form of the Holevo bound gives an expression which can be identified 
with quantum mutual information, however, the “coherent information” is considered as a more appropriate ex-
pression (see also [2] chapter 12). In view of the above we hereby take Ellerman’s idea a step further and write a 
Holevo-type bound based on the HS norm. 

The question whether ( )||d ρ σ  was the right measure of quantum mutual information was discussed in [9], 
within the context of area laws. It was used there to provide an upper bound on the correlations between two 
distant operators AM  and BM , where A is a region inside a spin grid and B is its complement: 

( ) ( )2
,

2 2

,
|| ,

2
A BA B A B

A B

C M M
d

M M
ρ ρ ρ⊗ ≥                             (5) 

where ( ),A B A B A BC M M M M M M= ⊗ −  is the correlation function of AM  and BM . 
In addition, the HS norm was suggested as an entanglement measure [6] [10], however, this was criticized in 

[11], claiming it did not fulfill the so called CP non-expansive property (i.e. non-increasing under every com-
pletely-positive trace-preserving map). 

In the following, we will prove a Holevo-type bound on the above HS distance between the probability 
( ),p x y  on the product space ( ),X Y  and the product of its marginal probabilities ( ) ( )p x p y⋅ : 

( ) ( ),1 , || || ,P Q P Qd X Y X Y d
q

ρ ρ ρ⊗ ≤ ⊗                            (6) 

where  

( ), ,P Q
x

x
p x x xρ ρ= ⊗∑                                 (7) 

and where 

( ) ,Q
x

x
p xρ ρ= ∑                                       (8) 

( )P

x
p x x xρ = ∑                                    (9) 

are the partial traces of ,P Qρ , and q is the dimension of the space Q. Note that both sides of Inequality (6) are 
measures of mutual information. Therefore, our claim is that the classical HS mutual information is bounded by 
the corresponding quantum one multiplied by the dimension of the quantum density matrices used in the channel. 
We will also show that 

( ) ( ) ( )1 1, || ,
2

P Qd X Y X Y L L
q

ρ ρ⊗ ≤                            (10) 
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where ( )QL ρ  and ( )PL ρ  are the Tsallis entropies [12] 

( ) ( )( )1 ,L trρ ρ ρ= −                                  (11) 

also known as the linear entropy, purity [13] or logical entropy of ρ  [8]. 
All the above is proved for the case of projective measurements. However, we expect similar results in the 

general case of POVM, in light of Naimark’s dilation theorem (see [14] or [15] for instance). 
In the next section we review some basic properties of quantum logical divergence and then use these proper-

ties to demonstrate the new Holevo-type bound. 

2. The HS Norm and the Holevo-Type Bound  
Let 

( ) ( )21|| .
2

d trρ σ ρ σ= −                                 (12) 

In what follows we recall some basic properties of the HS distance measure, then we state and prove the main 
result of this paper. 

Theorem 2.1. Contractivity of the HS norm with respect to projective measurements 
Let ρ  and σ  be two density matrices of a system S. Let ( )ρ  be the trace preserving operator  

( ) ,i i
i

P Pρ ρ= ∑                                    (13) 

where the projections iP  satisfy iiP I=∑ , †
i iP P=  and 2

i iP P=  for every i, then 

( ) ( )( ) ( )|| || .d dρ σ ρ σ≤                                (14) 

Proof: We now write X ρ σ= − . Then X is Hermitian with bounded spectrum, and using Lemma 2 in [16] 
we conclude that 

( ) ( )2 2 .tr trρ σ ρ σ− < −                                (15) 
Theorem 2.2. The joint convexity of the HS norm 
The logical divergence ( )||d ρ σ  is jointly convex. 
Proof: First observe that ( )2tr ρ  is convex from the convexity of 2x  and the linearity of the trace. Next we 

can write  

( ) ( )( )

( )( ) ( )( )( )

( ) ( )( )( )

( ) ( )

( ) ( ) ( )

1 2 1 2

2

1 2 1 2

2
1 1 2 2

2 2
1 1 2 2

1 1 2 2

1 || 1

1 1 1
2
1 1
2

1
2 2

|| 1 || ,

d

tr

tr

tr tr

d d

λρ λ ρ λσ λ σ

λρ λ ρ λσ λ σ

λ ρ σ λ ρ σ

λ λρ σ ρ σ

λ ρ σ λ ρ σ

+ − + −

= + − − + −

= − + − −

−
≤ − + −

= + −

                       (16) 

where the inequality is due to the convexity of ( )2tr ρ . This constitutes the joint convexity.  

Theorem 2.3. The monotonicity of the HS norm with respect to partial trace 
Let ,A Bρ  and ,A Bσ  be two density matrices, then 

( ) ( ), ,|| || ,A A A B A Bd I b I b dρ σ ρ σ⊗ ⊗ ≤                          (17) 

where b is the dimension of B. 
Proof: One can find a set of unitary matrices jU  over B and a probability distribution jp  such that  

,A A B
j j

j
I b p Uρ ρ⊗ = ∑ †

jU                               (18) 
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,A A B
j j

j
I b p Uσ σ⊗ = ∑ † ,jU                                (19) 

(see [2] chapter 11). Now since ( )||d ρ σ  is jointly convex on both densities, we can write 

( ) ( ,||A A A B
j j

j
d I b I b p d Uρ σ ρ⊗ ⊗ ≤ ⋅∑ †

jU ,|| A B
jU σ )† .jU                    (20) 

Observe now that the divergence is invariant under unitary conjugation, and therefore the sum in the right 
hand side of the above inequality is ( ), ,||A B A Bd ρ σ .  

We can now state the main result: 
Theorem 2.4. A Holevo-type bound for the HS trace distance between ( ),p x y  and ( ) ( )p x p y⋅  
Suppose Alice is using a distribution ( )p x , where x is in { }1, ,X n=  , to pick one of n densities xρ  in Q. 

She then sends the signal in a quantum physical channel to Bob. We can add an artificial quantum system P and 
write ( ),P Q  for Alice as:  

( ), ,P Q
xp x x xρ ρ= ⊗∑                                (21) 

where the vectors x  are orthogonal. Let Pρ  and Qρ  be the partial traces of ,P Qρ . Suppose Bob is mea-
suring the system using a projective measurement as in Theorem 2.1, then  

( ) ( ),1 , || || ,P Q P Qd X Y X Y d
q

ρ ρ ρ⊗ ≤ ⊗                           (22) 

where q is the dimension of the space Q. 
Proof: First we consider one more auxiliary quantum system, namely M for the measurement outcome for 

Bob. Initially the system M is in the state 0 0 0M = . Let   be the operator defined by Bob’s measurement  
as in Theorem 2.1 above: let { }y y

P  on Q be defined such that yyP I=∑  and 

( ) .x y x y
y

P Pρ ρ= ∑                                   (23) 

One can easily extend   to the space ( ),Q M  by  

( )0 0 .y y
y

P P y yρ ρ⊗ = ⊗∑                             (24) 

This can be done by choosing a set of operators, conjugating 0 0  to y y . It amounts to writing the 
measurement result in the space M (see also Ch. 12.1.1 in [2]). If we now trace out Q we find  

( ) ( )0 0 .Q
y

tr p y y yρ ⊗ = ∑                             (25) 

Moreover,   can be extended to ( ), ,P Q Mρ  by  

( ) ( )0 0 .x y x y
x x y

p x x x p x x x P P y yρ ρ ⊗ ⊗ = ⊗ ⊗ 
 
∑ ∑∑              (26) 

If we trace out Q we arrive at  
( )( ) ( ) ( ) ( )0, ,

, ,
, .P Q M

Q
x y x y

tr p y x p x x x y y p x y x x y yρ = ⊗ = ⊗∑ ∑            (27) 

Finally, we can extend   to ( ),Q MPρ ρ⊗  by  

( ) ( )0 0 .y y
x x y

p x x x p x x x P P y yρ ρ ⊗ ⊗ = ⊗ ⊗ 
 
∑ ∑∑               (28) 

If we trace out Q we get  

( )( ) ( )0, .Q MP
Q x x y

x y x y
tr p x x p y y y p x x p y yρ ρ

  ⊗ = ⊗ = ⊗  
   

∑∑ ∑ ∑        (29) 
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We can now use the properties stated in the above theorems, Equation (27) and Equation (29) to deduce  

( ) ( ) ( ) ( )( )
( ) ( )( )( ) ( )

0 0 0 0

00

, , , , , ,,

,, ,

|| || ||

1|| , || ,

P Q M Q M P Q M Q MP Q P Q P P

Q MP Q M P
Q q Q q

d d d

d tr I tr I d X Y X Y
q

ρ ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ

⊗ = ⊗ ≥ ⊗

≥ ⊗ ⊗ ⊗ = ⊗

 

 
      (30) 

where in the first inequality we have used Theorem 2.1 and in the second inequality Theorem 2.3. The final 
equality is an easy consequence of the definition of the HS norm.  

Corollary: Suppose Alice is sending classical information to Bob using a quantum channel Q, Bob measures 
the quantum state using a projective measurement defined above (having results in space Y). Under all the above 
assumptions  

( ) ( ) ( )1 1, || ,
2

P Qd X Y X Y L L
q

ρ ρ⊗ ≤                            (31) 

where ( )QL ρ  and ( )PL ρ  are Tsallis entropies of the second type (the quantum logical entropies) of Qρ  
and Pρ . 

Proof: Clearly (see also [17])  

( ) ( )( ) ( ) ( ), , ,1 1|| 1 .
2 2

P Q P Q P Q P Q P Q P Qd tr L Lρ ρ ρ ρ ρ ρ ρ ρ ρ⊗ = − ⊗ − ⊗ −             (32) 

It is easy to see (by a matrix representation) that for ,P Qρ  as in Equation (21)  

( )( ) ( ), ,1 ,P Q P Q P Qtr Lρ ρ ρ ρ− ⊗ =                             (33) 

therefore  

( ) ( ) ( ), ,1 1|| .
2 2

P Q P Q P Q P Qd L Lρ ρ ρ ρ ρ ρ⊗ = − ⊗                       (34) 

However, ( ) ( ) ( ),P Q P QL L Lρ ρ ρ≤ + , and ( ) ( ) ( ) ( ) ( )P Q P Q P QL L L L Lρ ρ ρ ρ ρ ρ⊗ = + − ⋅  (see [17] 
Theorem II.2.4 and Theorem II.3), therefore  

( ) ( ) ( ), 1|| .
2

P Q P Q P Qd L Lρ ρ ρ ρ ρ⊗ ≤ ⋅                           (35) 

Combining this with Theorem 2.4 we find 

( ) ( ) ( )1 1, || .
2

P Qd X Y X Y L L
q

ρ ρ⊗ ≤                            (36) 

Example: Suppose Alice sends the state 0  with probability 1/2 and the state cos 0 sin 1ψ θ θ= +  
with probability 1/2, then 

,
0 1

1 10 0 1 1 ,
2 2

P Qρ ρ ρ= ⊗ + ⊗                            (37) 

where 0 0 0ρ =  and 1ρ ψ ψ= . By partial tracing we get 
2

2

1 0 cos cos sin1 1 ,
0 02 2 cos sin sin

Q θ θ θ
ρ

θ θ θ
  

= +   
   

                       (38) 

and Pρ  is a balanced coin. The eigenvalues of Qρ  are ( )1 cos 2θ±  and therefore  

( ) ( ) ( )2 2 211 1 cos 4 1 cos 4 sin .
2

QL ρ θ θ θ = − + + − =                      (39) 

Also ( ) 1 2PL ρ =  and 2q = , hence  

( ) 21, || sin 1 4.
4

d X Y X Y θ⊗ ≤ ≤                            (40) 



B. Tamir, E. Cohen 
 

 
132 

The left hand side of the above inequality is a measure of the classical mutual information according to the 
HS norm between X and Y. The very fact that it is smaller than the Tsallis information measure of X (which is 
1/2) means that the quantum channel restricts the rate of classical information transfer, where the mutual infor-
mation is measured by the HS norm and the source of information X is measured by Tsallis entropy. This is 
analogous to Holevo’s upper bound in the framework of Tsalis/linear entropy. We find this result similar in spi-
rit to the well-known limitation on the rate of classical information transmission via a quantum channel (without 
utilizing entanglement): one cannot send more than one bit for each use of the channel using a one qubit chan-
nel. 

In the above example, if 0ρ  and 1ρ  are mixed states, then by the same argument we can show that: 

( ) ( )1, ||
2

Qd X Y X Y L ρ⊗ ≤                                (41) 

This gives a bound on the classical mutual information using the quantum “logical entropy” (the Tsallis en-
tropy). 

3. Discussion 
We proved a Holevo-type bound employing the Hilbert-Schmidt distance between the density matrices on the 
product space ( ),X Y  and the tensor of the two marginal density matrices on X Y⊗ . Using a different meas-
ure of mutual information, we showed that this Holevo-type upper bound on classical information transmission 
could be written as an inequality between the classical mutual information expression and its quantum counter-
part. 

It seems that by utilizing Naimark’s dilation [14] [15], the above result can be generalized to any POVM if 
one is willing to employ the suitable channel in a higher dimensional Hilbert space. 

As was claimed in [17], the divergence distance used above is the natural one in the context of quantum logi-
cal entropy [8]. Being the “right” measure of mutual information in quantum channels passing classical informa-
tion, we expect that this formalism would be helpful in further studies of various problems such as channel ca-
pacity theory, entanglement detection and area laws. 
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