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Abstract

Modelling and analyzing noise in images is a funda-

mental task in many computer vision systems. Tradition-

ally, noise has been modelled per color channel assum-

ing that the color channels are independent. Although the

color channels can be considered as mutually independent

in camera RAW images, signals from different color chan-

nels get mixed during the imaging process inside the cam-

era due to gamut mapping, tone-mapping, and compression.

We show the influence of the in-camera imaging pipeline on

noise and propose a new noise model in the 3D RGB space

to accounts for the color channel mix-ups. A data-driven

approach for determining the parameters of the new noise

model is introduced as well as its application to image de-

noising. The experiments show that our noise model rep-

resents the noise in regular JPEG images more accurately

compared to the previous models and is advantageous in

image denoising.

1. Introduction

Noise is one of the most fundamental problems in com-

puter vision and image processing. In computer vision liter-

ature, many works mention noise as one of the main sources

that explain the error of their systems and emphasize the ne-

cessity of establishing robustness against noise. But what

really is image noise and how can we explain it?

Informally, noise explains the uncertainty of the light

measurement in an image. A low noise value would indi-

cate that the observed intensity value is highly likely to be

the ground truth intensity and vice versa. Since many com-

puter vision algorithms rely on accurate light measurement,

it is important to have a noise model that explains the prop-

erties of image noise accurately.

What is interesting is that all of the existing image noise

models fall short of explaining what is really happening

to noise in the images that most people (both regular con-

sumers and vision researchers) use today - JPEG images

*Authors contributed equally to this work.

in the sRGB color space. A key assumption used in exist-

ing noise models is that the noise is independent between

different color channels. While this channel independency

is valid for linear vision cameras or RAW images, which

are unprocessed sensor-level measurements, the assumption

breaks down as the R,G,B values are heavily mixed dur-

ing the in-camera image processing [3, 15]. Furthermore,

image compression, typically in JPEG format, significantly

affects the noise characteristics; however, the effect of the

compression noise has not been explicitly considered in the

past1.

This work attempts to seek deeper understanding about

image noise and to come up with a better explanation about

the noise compared to the previous noise models. Previous

noise models either only fit to a limited number of cases,

or they were only validated with synthetic images created

with their own models. Even in the image denoising works,

the quantitative performance of denoising is evaluated with

synthetic images created with a per channel independent

Gaussian model [5], which does not describe the noise in

real photographs as we will see later in this paper. There-

fore, we argue for a new image noise model that better ex-

plains the properties of noise in images that most people use

today.

The contributions of this paper are as follows:

• We provide observations and analysis on the effect of

the in-camera imaging process on noise and introduce

a new cross-channel noise model. We develop a color-

depenent noise model in the 3D RGB space that can

simultaneously take into account the correlation be-

tween the color channels and the JPEG compression

effect.

• We further propose a data-driven approach for auto-

matically determining the noise in the 3D RGB space

from observed color images. Specifically, we use a

simple multi-layer perceptron (MLP) to infer the pa-

rameters of the noise model. Note that we use the neu-

1Note that our problem is to analyze the effect of compression on the

noise level, which is different from dealing with the blocky JPEG noise or

artifacts[18].
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ral network (NN) to compute the noise model, which

is fundamentally different from using NNs for image

denoising [25, 2].

• We validate our model and the parameter estimation

method using real images instead of synthetic images

and show that applying our new noise model can im-

prove the image denoising performance.

2. Related Work

The most common noise model used in computer vision

is the channel-independent Gaussian model [21, 22, 24] be-

cause of its simplicity. However, the Gaussian noise model

is found inflexible to describe the actual noise in real im-

ages, and therefore, several more sophisticated noise mod-

els have been recently proposed. In [6], Foi et al. proposed

a Poissonian-Gaussian noise model for single-image raw

data to consider signal-dependent and signal-independent

noise components separately. Granados et al. [8] presented

a noise model that takes into account both temporal and the

spatial noise for reconstructing high-dynamic range (HDR)

images. Their weighting function produces statistically op-

timal estimates under the assumption of compound Gaus-

sian noise. Hwang et al. [12] presented a difference based

noise model using the Skellam distribution to represent the

distribution of intensity differences. They showed that the

difference-based modeling has a more significant linear re-

lationship between the intensity and the noise parameters.

The methods described above all operate with RAW im-

ages or images from a linear vision camera [12]. While

noise modeling of RAW image data is useful for some spe-

cific tasks, most of the images used in computer vision go

through an in-camera imaging pipeline. In a seminal work

by Healey and Kondepudy [10], five main sources for im-

age noise in the camera imaging process were identified as

photon shot, fixed pattern, dark current, readout, and quanti-

zation noise, and they presented a statistical model in which

the variance of noise is linearly proportional to the observed

intensity.

In [19], Liu et al. presented a more general noise model

that fits the in-camera imaging pipeline, which includes pro-

cesses such as white balancing and camera response func-

tions (gamma correction). They used the in-camera imaging

model from [23] and defined the noise level function (NLF)

as the variation of standard deviation of the noise distri-

bution according to image brightness. Using the space of

camera response functions [9], they used a Bayesian MAP

estimation to infer the NLF from a single image. In spite

of insufficient information to estimate image noise, their

method showed good performance when applied to noise

removal [19] and image deblurring [13].

While the methods described above are effective, each

color channel is still treated independently in these works.

In [15], Kim et al. described a new in-camera imaging

model that well fits modern cameras by showing the effect

of the gamut mapping step, which is a 3D nonlinear map-

ping (RGB to RGB). Their work intrinsically indicates the

limitation of channel-independent noise modeling because

of the mixture of color channels due to the gamut mapping

and color space transformations. In addition to such mix-

tures, JPEG compression process [4, 18] adds further mix-

ing of color channels. Our goal is to accurately model and

determine such cross-channel image noise.

3. Noise Model in the 3D RGB Space

This section analyzes the effects of the in-camera imag-

ing process and JPEG compression on noise and propose a

noise model that can accurately represent them.

3.1. Noise through the In­camera Imaging Process

Figure 1 shows the influence of each procedure in the in-

camera imaging pipeline on noise. The top row of the fig-

ure lists the imaging steps described in [15]. To verify how

the noise characteristics are altered through the procedures,

we first took a RAW image with many homogeneous color

patches with a Canon EOS-5D Mark III camera. We then

simulated the imaging pipeline using the calibrated cam-

era parameters from [15] and observed the changes of the

noise distributions. As shown in the first plots in Fig. 1

(b) and (c), both the Skellam parameter [12] and the vari-

ance [19] linearly increase with the intensity value in the

RAW image. While this linear relationship is still largely

maintained after going through the demosaicing and white

balancing/linear color transformations, the linear relation-

ship drastically breaks down with the gamut mapping and

tone mapping processes.

We ran another experiment to see how the mix-up of

R,G,B channel values (mainly due to 3D gamut mapping)

influence the image noise. We took images as shown in

Fig. 2 (a) with a Nikon D800 camera, which records images

in three different formats: RAW, uncompressed TIFF, and

JPEG. The uncompressed TIFF image allows us to analyze

the effect of the whole imaging pipeline without the com-

pression effect. With these different formats of images, we

computed the covariance matrices for each pixel from 1,000

temporal images of a static scene, some of which are shown

in Fig. 2 (b-d). They show the magnitude of elements in

the covariance matrix; from the variances of R,G,B to the

covariance R/G, R/B, and G/B. At the RAW level, the noise

in different channels are indeed independent. However, we

can observe that the covariance scores significantly increase

as the image goes through the imaging pipeline, and reach

the point where we cannot simply ignore the cross-channel

noise.
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(a) In-camera imaging pipeline
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(b) Changes in the Skellam distribution of noise through the pipeline
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(c) Changes in the noise variance distribution through the pipeline

Figure 1. In-camera imaging pipeline and changes in noise distribution through the pipeline. (a) shows block diagram sequences of in-

camera imaging pipeline. (b) and (c) show the changes in the Skellam and the variance distribution through the pipeline, respectively.

Noise chracteristic drastically changes with the gamut mapping and the tone mapping processes.
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(b) Covariance changes of pixel 1
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(c) Covariance changes of pixel 2
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(d) Covariance changes of pixel 3

Figure 2. Covariance magnitude changes of some pixels after in-

camera imaging pipeline and JPEG compression. (a) is the test

image scene which was captured in a RAW, an uncompressed TIFF

and a JPEG format by Nikon D800. (b)-(d) shows the changes in

the covariance terms during the imaging pipeline.

3.2. Effect of the JPEG Compression on Noise

Figures 1 and 2 show that JPEG compression has a sig-

nificant effect on the noise characteristics. With a typical

JPEG compression, an image is compressed by dividing the

image region into 8×8 patches and processing those patches

separately. Therefore, the level of compression may dif-

fer patch by patch, and the influence of the compression to

noise would also depend on the patch content. The noise

characteristics depend not only on a single pixel RGB value

but also on other pixels in the patch. Therefore, even for a

particular RGB value, the noise characteristics would vary

according to the other pixels in the patch.

The examples of the effect of the JPEG compression on

noise are visualized in Fig. 3. After recording 1,000 JPEG

images of a static scene, we fit covariance matrices to dif-

ferent pixels. Figure 3 shows the covariance matrices of

several pixels that have the same RGB value in the form of

ellipsoids. As expected, the pixels (having the same RGB

value) that are located in similar patches show the simi-

lar covariance structures (Fig. 3 (a)), while pixels in visu-

ally different patches exhibit diverse covariance structures

(Fig. 3 (b)). These examples indicate that a good noise

model should be able to explain noise’s dependence on both

the scene and the pixel color.
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Figure 3. JPEG compression effect on 8×8 patch. (a) shows the ellipsoids of covariance matrices of the same RGB value in similar patches

have similar shapes. (b) shows the ellipsoids vary according to the patch the color is in. The ellipsoids represent 95% confidence interval

of distribution.
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(b) Q-Q plot of pixel 1
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(c) Q-Q plot of pixel 2
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(d) Q-Q plot of pixel 3
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(e) Q-Q plot of pixel 4
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(f) Univariate and bivariate Gaussian distributions of pixel 4

Figure 4. Multivariate Gaussian fitting test on real data. (a) A test image captured 10, 000 times using a Samsung Galaxy S6 smartphone

camera (ISO 800, 80% compression). (b)-(e) Multivariate Q-Q plot of four selected pixels. The linear relationships indicate that the

samples follow multivariate Gaussian distribution [11]. (f) Shows the color distribtion of pixel 4. It empirically shows that the noise should

be modelled as a multivariate (3D) Gaussian distribution.

3.3. Noise Model in the 3D RGB Space

To properly account for the image noise discussed in pre-

vious subsections, we propose a noise model that is char-

acterized by a covariance matrix in the RGB color space.

Based on the observations as shown in Fig. 4, we model the

noise as the signal-dependent multivariate Gaussian distri-

bution. In Fig. 4 (b)-(e), the Q-Q plots show the ordered

squared Mahalanobis distance of samples versus the esti-

mated quantiles from a chi-square distribution with 3 de-

grees of freedom. The linear relationships as shown on the

plots mean that the samples follow a multivariate Gaussian

distribution [11]. The empirical example in Fig. 4 (f) also

supports for the multivariate (3D) Gaussian model.

In addition to the multivariate Gaussian model, we also

consider the local patch contents in our model to deal with

the content dependency due to the JPEG compression. With

this consideration, the noise of an image pixel (x, y) is de-

termined by the (R,G,B) values of the pixel I(x, y) as well

as the 8 × 8 patch in which the pixel (x, y) is located. We

ignore the pixel position in the patch for simplicity.

Putting it altogether, our noise model in the 3D RGB

space is written mathematically as:

I(x, y) = I(x, y)+N
(

0,Σ(I(x, y),pxy)
)

,

Σ(I(x, y),pxy) =





σ2
r σrg σrb

σrg σ2
g σgb

σrb σgb σ2
b



 ,
(1)

where I(x, y) is the true intensity of I(x, y), and pxy is the

8 × 8 color patch value. N (0,Σ(I(x, y),pxy)) is the zero

mean multivariate Gaussian distribution of noise with the

covariance matrix Σ(I(x, y),pxy) that is the function of the

true intensity I(x, y) and its corresponding patch pxy .

4. Data-driven Noise Estimation Algorithm

In theory, the proposed model in Eq. (1) should be de-

fined for every possible patch with each pixel value in the

1686



3D RGB space, which is computed as 256(8×8×3). It is un-

realistic to compute and store the noise model parameters

for all those colors and patch values. Therefore, we employ

a data-driven approach based on a multi layer perceptron

(MLP) for determining the noise parameters of pixels in a

given image.

4.1. Data Collection

For the MLP to perform well, collecting a large number

of quality data is essential. We captured training images for

11 static scenes, 500 JPEG images per scene, and computed

the mean image of each scene to generate the ground truth

noise-free images.2 Some of the captured scenes are shown

in Fig. 5. For each dataset, the covariance for each pixel,

which is computed using the temporal stack of images, is

fed into the system for training along with its (R,G,B) values

and the 8 × 8 × 3 patch information. The training is done

per camera model and settings such as ISO, and the total

amount of data per set is about 13 million patches for an

image with resolution 7360×4912 (98% of the data is used

for the training and 2% for the validation).

4.2. MLP based Noise Estimation Method

A multi-layer perceptron (MLP) is a feed-forward neu-

ral network that trains a nonlinear transformation of vector-

valued input layer. The input layer is mapped to the output

layer via several hidden layers. Formally, MLPs are defined

as

x(n+1) = g(b(n) +W(n)x(n)), (2)

where x(n+1) is the value of (n + 1)-th layer (x(1) is the

input layer). W(n) and b(n) are trainable weights and a

bias. For the nonlinear activation function g, a sigmoid, a

tanh, or ReLU [16] is used. When n is more than 2, the

MLPs can be used as a universal approximator, which is

able to learn any nonlinear mapping. Therefore, we use an

MLP with our training data to find the complex nonlinear

mapping from the RGB value of a pixel and its surrounding

patch to its corresponding covariance matrix.

At first, we had expected that the MLP for our problem

would require a large number of layers and units. However,

we have found that a single hidden layer MLP is enough

to learn the nonlinear correlation of our data. Specifically,

the structure of our MLP is (195, 200, 6), which are the

number of units in each layer3. Note that the number of

parameters of the MLP is considerably small compared to

the original problem space where we need a covariance ma-

trix per combination of color and patch (256(8×8×3)). With

the small number of parameters and its regression power,

2Using the mean of temporal images has been used as noise-free im-

age [19, 20].
3The input layer is the concatenation of RGB color (3) and vectorized

8× 8 color patch (192).

Figure 5. Some samples of the scenes in our dataset.

MLP serves as an efficient and accurate modeling tool for

our noise modelling problem.

The trained MLP can be seen as a regressor, which can

predict the covariance matrix for any given (R,G,B) value

and its patch. We can formally express the MLP-based

noise estimation method as

Σ(I(x, y),pxy) = h(f(I(x, y),pxy))), (3)

where the input I(x, y) and pxy are the same as those

in Eq. (1). Because the output covariance matrix is symmet-

ric, we only use the half of the matrix. h is a function that

converts the 6 dimensional output to the 3 × 3 covariance

matrix. To ensure that the covariance matrix is positive-

definite, we replace zero or negative eigenvalues of the ma-

trix with a small positive value. Our MLP f is trained by

minimizing the following cost function:

L =
1

N

∑

i

‖h−1(Σ(Ii(x, y),pxy,i))

− f(Ii(x, y),pxy,i)‖2,
(4)

where h−1 is the inverse function of h. In our imple-

mentation, we use the ReLU as the activation function and

stochastic gradient descent [17] as the optmization method.

Also, the learning rate was set to 0.0001 and the training

iteration was set to a million with 64 batch size. On av-

erage, the learning took 20 minutes with the machine with

NVIDIA GTX Titan X GPU.

5. Experiments

5.1. Experimental Results

To verify the accuracy of our noise estimation, we com-

pare the estimated noise covariance with the ground truth

covariance computed from training set. We used the fol-

lowing distance measure introduced in [7] as the similarity

between covariance matrices:

d(A,B) =

√

√

√

√

n
∑

i=1

ln2λi(A,B), (5)
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Image #
Camera Settings NLF [19] from GT Ours

Camera ISO JPEG Mean Median Mean Median

1

Nikon D800 1600 Normal

4.86 4.88 1.82 1.76

2 4.60 4.49 1.71 1.58

3 5.61 5.41 3.16 2.43

Average 5.02 4.93 2.23 1.92

4

Nikon D800 3200 Normal

5.32 5.19 2.39 1.89

5 5.60 5.46 2.03 1.89

6 5.50 5.50 2.31 1.92

Average 5.47 5.38 2.24 1.90

7

Nikon D800 6400 Normal

5.80 5.72 1.99 1.80

8 6.05 6.16 2.28 2.20

9 6.04 6.04 2.06 1.97

Average 5.96 5.97 2.11 1.99

10

Nikon D600 3200 Normal

5.99 6.05 1.68 1.63

11 5.60 5.66 1.83 1.70

12 5.07 4.98 1.59 1.44

Average 5.55 5.56 1.70 1.59

13

Canon 5D Mark III 3200 Fine

3.72 3.39 2.36 2.24

14 4.75 4.65 2.75 2.55

15 4.80 4.81 2.66 2.53

Average 4.42 4.28 2.59 2.44

Table 1. Noise model evaluations for test images shown in Fig. 6. The values are the median and the mean value of covariance matrix

errors in Eq. 5. Small value means better performance. Regardless of the scene, ISO and the camera, our model represent the noise more

accurately.

(a) (b) (c) (d) (e)

Figure 6. Test images used in Table 1. From left to right, 1, 4, 7, 10, and 13 (bold).
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Figure 7. The NLF computed from our ground truth. The points

are minimum variances of each intensity. We obtain the NLF by

fitting the intensity-variance pairs of each channel.

where λi(A,B) is the i-th generalized eigenvalue of Ax =
λBx.

Since no previous noise model can be fit to real data

as ours, direct comparisons with previous models are dif-

ficult. The closest model that can be used is the noise level

function (NLF) in [19], so we compared our model to NLF

as shown in Table 1. For NLF, we computed NLFs sepa-

rately for each color channel by obtaining the lower bound

of intensity-variance pairs from 500 static images, which

is the upper bound of noise as shown in Fig. 7. From the

variances of three channels, we generated the covariance

matrix with zero off-diagonal terms. The table validates our

model esstimation process and also shows that it represents

the noise in real images better than the NLF.

Figure 8 shows a qualitative analysis of our new noise

model and its parameter estimation. It verifies that our mul-

tivariate Gaussian model which is an ellipsoid fits well with

the observed data samples.

5.2. Image Denoising Application

To study the effectiveness of our model and its estimation

method, we apply our method to image denoising, which

is a process of estimating the true intensity corresponding

to the scene radiance from the noisy observations. For

image denoising, we adopt the Bayesian non-local means

(BNLM) method in [14], which is an extension of the non-

local means denoising algorithm [1] with more robust sim-

ilarity measures. Non-local means algorithms denoise the

1688



RGB=(106, 130, 90)

R G

B

65
80 90 100 110 120 130 100

120
140

160

70

75

80

85

90

95

100

105

110

115

RGB=(166, 62, 33)

R

G

B

0
31 0 140 150 160 170 180 190 200 0

50

10010

20

30

40

50

60

70

RGB=(134, 147, 123)

R G

B

100
110 120 130 140 150 160 120

140
160

180
105

110

115

120

125

130

135

140

145

150

R
G

B

40
50

100

150 80 90 100 110 120 130 140

50

60

70

80

90

100

110

RGB=(117, 108, 76)

Figure 8. Some noise estimation results of our model. Each shows two covariance ellipsoids which are our estimation (red) and the ground-

truth (white). Also, black dots are actual color points from 500 temporal images. Our estimation is quite accurate compared with the

ground truth and fits well with the noise distribution of real JPEG image.

images based on the nature of self-similarity in natural im-

ages.

Let I be the noisy observation of a pixel (r, g, b) and I be

the denoised color. We can apply the BNLM to compute I,

which is expressed as

Ii =

∑

j∈Ni
e
− 1

2

(√
d2(i,j)−

√
2M−1

)

2

Ij

∑

j∈Ni
e
− 1

2

(√
d2(i,j)−

√
2M−1

)

2
, (6)

where i and j are pixel positions, Ni is the set of neighbor-

ing pixels of i, and M is the number of pixels in patch times

the number of channels. The squared dissimilarity measure

d2(i, j) is originally the squared Euclidean distance normal-

ized by σ2. But, in our problem it is changed to the squared

Mahalanobis distance, which is expressed as

d2(i, j) = (IPi
− IPj

)TΣ−1
Pi

(IPi
− IPj

)

=
∑

d∈P

(Ii+d − Ij+d)
TΣ−1

i+d(Ii+d − Ij+d),
(7)

where IPi
and IPj

are M dimensional vectorized patches

whose center pixel is i and j, respectively and ΣPi
is the

covariance matrix of IPi
. d2(i, j) can be rewritten as the

sum of each pixel distance, where P is the set of disparities

d from center pixel within patch. For each pixel i+d, Σi+d

is the 3× 3 covariance matrix of the pixel.

Table 2 and Figure 9 show the experimental results

of image denoising both quantitatively and qualitatively.

BNLM denoising with our noise model is compared with

BM3D [5], original BNLM [14], and BNLM with NLF

noise model [19]. For BM3D and original BNLM, σ is com-

puted by averaging the ground truth (GT) σ of every pixels

in the whole image. For all noise models applied to BNLM,

5× 5 patch and 35× 35 search window are used, which are

sufficient for both the quality and the time complexity.

For vast majority of cases, denoising using our noise

model outperformed other models quantitatively. The qual-

ity of denoising using our noise model is more apparent in

the qualitative examples shown in Figure 9. These exper-

iments support the need for a new image noise model that

are both color and content dependent. We would also like

to point out that the experiments in Table 2 and Figure 9 are

meaningful as the first noise evaluation on real image data

(to the best of our knowledge) as most previous noise eval-

uations were done on either RAW images or on simulated

data.

6. Conclusion

In this paper, we presented a new noise model in the

3D RGB space considering both the cross-channel depen-

dency and the scene dependency of the noise in consumer

camera images. We empirically showed that the noise char-

acteristics change through the in-camera imaging process

and the JPEG compression. The observations showed that

a new noise model and the estimation method are neces-

sary as previous noise models cannot explain those factors.

To estimate the noise, we collected training image sets for

various scenes and proposed a data-driven noise estimation

algorithm using a multi layer perceptron. We validated our

method using real images and applied it to image denoising,

which showed large improvement over the previous work.

In the future, we are interested in applying our work to other

computer vision applications including radiometric calibra-

tion and HDR imaging.
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Image #
Camera Settings Noisy Image

BM3D [5] BNLM [14]

σ from GT σ from GT NLF [19] from GT Ours

Camera ISO PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1

Nikon D800 1600

35.47 0.957 36.15 0.964 37.59 0.980 36.61 0.972 37.99 0.982

2 35.71 0.954 36.57 0.964 39.42 0.990 37.61 0.981 40.36 0.992

3 34.81 0.989 35.47 0.991 37.40 0.995 35.91 0.993 38.30 0.996

Average 35.33 0.967 36.06 0.973 38.14 0.988 36.71 0.982 38.89 0.990

4

Nikon D800 3200

33.26 0.978 34.00 0.982 38.10 0.992 35.99 0.988 39.01 0.993

5 32.89 0.988 33.43 0.989 35.17 0.995 33.84 0.991 36.75 0.996

6 32.91 0.951 33.53 0.957 38.33 0.987 35.92 0.976 39.06 0.990

Average 33.02 0.972 33.65 0.976 37.20 0.991 35.25 0.985 38.27 0.993

7

Nikon D800 6400

29.63 0.862 29.97 0.872 33.35 0.954 31.91 0.933 34.61 0.963

8 29.97 0.921 30.33 0.928 32.25 0.967 30.94 0.950 33.21 0.970

9 29.87 0.914 30.21 0.921 32.67 0.962 31.13 0.940 33.22 0.970

Average 29.82 0.899 30.17 0.907 32.76 0.961 31.33 0.941 33.68 0.968

10

Nikon D600 3200

33.28 0.968 33.70 0.972 34.74 0.978 34.27 0.975 34.98 0.979

11 33.77 0.990 34.33 0.992 36.20 0.995 35.54 0.995 35.95 0.995

12 35.21 0.939 35.75 0.954 40.57 0.987 38.42 0.979 41.15 0.989

Average 34.09 0.966 34.59 0.973 37.17 0.987 36.08 0.983 37.36 0.988

13

Canon 5D Mark III 3200

37.00 0.976 37.79 0.984 38.44 0.986 37.97 0.987 38.37 0.988

14 33.88 0.983 34.34 0.986 35.27 0.988 34.39 0.986 35.37 0.990

15 33.83 0.977 34.27 0.979 34.78 0.982 34.13 0.979 34.91 0.983

Average 34.90 0.979 35.47 0.983 36.16 0.985 35.50 0.984 36.22 0.987

Table 2. Denoising performance comparisons. In vast majority of cases, our noise model outperforms other models for denoising in both

the PSNR and the SSIM.

Noisy Image BM3D + σ

BNLM + σ BNLM + NLF

BNLM + Ours Mean Image

(a)

Noisy Image BM3D + σ

BNLM + σ BNLM + NLF

BNLM + Ours Mean Image

(b)

Figure 9. Qualitative denoising performance comparisons. (a) and (b) are data 7 and 8 in Table 2, respectively. In addition to the quantitative

values, we can observe that denoising with our noise model outperform others in this example.
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