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Abstract—Wireless sensor networks (WSNs) have become an
increasingly compelling platform for Structural Health Monitor-
ing (SHM) applications, since they can be installed relatively
inexpensively onto existing infrastructure. Existing approaches
to SHM in WSNs typically address computing system issues or

structural engineering techniques, but not both in conjunction.
In this paper, we propose a holistic approach to SHM that
integrates a decentralized computing architecture with the Dam-
age Localization Assurance Criterion algorithm. In contrast to
centralized approaches that require transporting large amounts
of sensor data to a base station, our system pushes the execution
of portions of the damage localization algorithm onto the sensor
nodes, reducing communication costs by two orders of magnitude
in exchange for moderate additional processing on each sensor.
We present a prototype implementation of this system built
using the TinyOS operating system running on the Intel Imote2
sensor network platform. Experiments conducted using two
different physical structures demonstrate our system’s ability
to accurately localize structural damage. We also demonstrate
that our decentralized approach reduces latency by 65.5% and
energy consumption by 70.4% compared to a typical centralized
solution, achieving a projected lifetime of 193 days using three
standard AAA batteries. Our work demonstrates the advantages
of a holistic approach to cyber-physical systems that closely inte-
grates the design of computing systems and physical engineering
techniques.

I. INTRODUCTION

Structural Health Monitoring (SHM) is a promising tech-

nique to determine the condition of a civil structure, pro-

vide spatial and quantitative information regarding structural

damage, or predict the performance of the structure during

its lifecycle. Recent years have seen growing interest in

SHM based on wireless sensor networks (WSNs) due to their

potential to monitor a structure at unprecedented temporal and

spatial granularity. However, there remain significant research

challenges in SHM. Specifically, a SHM system must (1)

detect and localize damages in complex structures; (2) provide

both long-term monitoring and rapid analysis in response to

severe events (e.g., earthquakes and hurricanes); and (3) meet

the stringent resource and energy constraints of WSNs.

SHM applications are characteristic examples of complex

cyber-physical systems where neither the “cyber” aspects

nor the “physical” aspects can adequately be considered in

isolation. Previous work in the WSN field primarily addresses

system issues like data acquisition and communication, while

previous work in the structural engineering field has primarily

focused on developing algorithms for damage detection and

localization. The separation of computing system design and

SHM techniques may result in suboptimal system solutions.

For example, existing systems developed in the WSN field

usually assume a centralized approach that transports large

amounts of data from sensors to a base station. Despite con-

siderable research on network protocols optimized for SHM

applications, centralized architectures inherently entail signif-

icant communication and energy overhead for data collection.

For example, a state-of-art system deployed at the Golden

Gate Bridge required 9 hours to collect a single round of data

from 64 sensors, resulting in a system lifetime of 10 weeks

when using four 6V lantern batteries as a power source [1].

On the other hand, while the structural engineering field has

proposed damage detection and localization algorithms that are

potentially suitable for decentralized processing, prior research

in the field usually does not focus on the design of computing

system architectures for implementing such algorithms on

WSNs.

We therefore propose a holistic approach to SHM system

design based on WSNs. Specifically, we make the following

contributions in this paper. (1) We present the design of a

damage localization system that integrates a decentralized

computing architecture optimized for the Damage Localization

Assurance Criterion (DLAC) algorithm [2], [3]. In contrast to

centralized approaches that require transporting large amounts

of sensor data to a base station, our decentralized architecture

pushes the execution of portions of the damage localization

algorithm onto each sensor. This in-situ processing results

in significant reductions in communication overhead and en-

ergy consumption. (2) We also present a proof-of-concept

implementation of this design using the TinyOS operating

system [4]. In contrast to earlier WSN systems that focus on

data collection, our system can detect and localize damages

while consuming only a small faction of resources available on

the Intel Imote2 [5], an off-the-shelf sensor platform. (3) We

provide empirical results and analysis that demonstrate that

DLAC can accurately detect and localize damage on a simple

beam structure and on a complex truss structure, and that our

decentralized approach significantly outperforms a centralized

approach in terms of latency, energy efficiency, and system



lifetime. Our work provides an example of the key advantages

of a holistic approach to cyber-physical systems.

We begin by discussing related SHM and WSN systems in

Section II. Section III presents the design and implementation

of our damage localization system. In Section IV, we demon-

strate that this system can effectively locate damage to two

different physical structures. Section V provides an empirical

analysis of the advantages and efficiency of our system on the

Imote2 platform. Finally, we conclude in Section VI.

II. RELATED WORK

During the last several years, the structural engineering

community has pursued the development of analytical methods

to detect and quantify structural damage as well as reliable

sensing technologies [6]–[9]. WSNs are gaining the attention

of structural engineers as an attractive tool due to their on-

board processing and relatively low capital and maintenance

costs [10]–[12]. A survey of academic and commercial wire-

less sensor platforms can be found in [13].

Extensive research in the structural engineering field has

focused on developing sophisticated and fault tolerant algo-

rithms for damage detection [13], [14]. These techniques are

generally centralized, requiring computations involving global

information (usually acceleration data) collected at a single

location, e.g., at the base station. With potentially hundreds

of nodes and sampling frequencies of hundreds of Hz, these

centralized approaches exhibit high energy costs and long

delays due to communication overhead.

A schematic paradigm for distributed wireless monitoring

system is discussed in [15], [16]. SHM approaches using a

distributed computing strategy have been validated on a scale

three-dimensional truss model [15], [17] using algorithms de-

scribed in [18], [19]. These works address the problem primar-

ily from a structural engineering and algorithmic perspective.

In contrast, we propose a holistic approach to designing and

optimizing a decentralized computing architecture based on

the characteristics of a practical damage localization algorithm.

Moreover, our paper presents an in-depth analysis of the

feasibility and advantages of our decentralized computing

architecture in terms of latency, energy consumption, and

system lifetime.

In the area of sensor networks, Wisden [20], [21] provides

services for reliable multi-hop transmission of raw sensor data,

using run-length encoding to compress the data before trans-

mission. A UC Berkeley project to monitor the Golden Gate

Bridge [22]–[24] is considered to be the largest deployment of

wireless sensor networks for SHM purposes. Vibration data is

collected and aggregated at a base station under a centralized

network architecture, where frequency domain analysis is used

to perform modal content extraction. It takes nearly a full

day to transmit sufficient data for such computations, creating

latencies that would be inadequate for damage detection after

extreme events (e.g., an earthquake). BriMon [25] partially

addresses the communication bottleneck by sampling data at

400 Hz and averaging this data over 40 Hz windows. The

data resolution and network size (a maximum of 12 nodes per

span) supported by BriMon may not be fine-grained enough

for damage detection and localization on complex structures.

All three of these projects focus primarily on data collection

and networking challenges, and rely on a central base station

to perform actual damage detection. In contrast, our system

features a decentralized architecture that exploits processing

on each sensor, achieving significant improvements over a

centralized approach in terms of latency, energy efficiency,

and lifetime. Moreover, we provide empirical results that

demonstrate that our system can effectively localize damages

on physical structures, while none of the above papers present

results on damage detection or localization.

III. DESIGN AND IMPLEMENTATION

In this section, we describe our SHM system designed based

on a holistic approach. We first present a damage localization

algorithm that is particularly suitable for decentralized pro-

cessing on wireless sensors. We then describe a decentralized

architecture specifically optimized for this damage localization

algorithm. A salient feature of our architecture is the partition-

ing of the damage localization algorithm between the wireless

sensors and the base station, which significantly reduces

the sensors’ communication load and energy consumption in

exchange for moderate processing costs on each sensor. We

also discuss an implementation of our system and the system

challenges that we have overcome during this implementation

effort.
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Fig. 1. The online phase of damage localization

A. Damage Localization Algorithm

Our system is based on the Damage Localization Assurance

Criterion (DLAC) technique [2], [3], which analyzes data col-

lected at each sensor to detect and localize structural damage.

The DLAC algorithm is especially well-suited for a decen-

tralized WSN system [26], [27], because it performs damage

localization based on post-processed natural frequency data

rather than raw vibration data. As discussed below, this natural

frequency data is computed from each node’s raw vibration

data (i.e., accelerometer readings). In Section III-B, we discuss

how this computation can be appropriately partitioned between



the base station and sensor nodes, significantly reducing the

communication and energy burden in exchange for moderate

in-situ processing. Moreover, nodes do not need to correlate

individual sensor readings to compute this natural frequency

data. Existing systems based on time-domain analysis require

precise time synchronization across nodes, incurring additional

communication and energy overhead [20], [24].

In the rest of this subsection, we will summarize the dam-

age localization procedure. The damage localization process

includes an offline phase and an online phase. In the offline

phase, the system identifies the natural frequencies of the

healthy structure, using observed vibration (acceleration) data

and a series of transformations described below. Because these

natural frequencies change in response to structural damage,

they are an effective “signature” of the structure’s health. (We

note that the natural frequencies are uniform throughout the

entire structure, and so even localized damage will produce

a global change in the frequency content.) Additionally, as

required by the DLAC technique, an analytical model of the

structure and the estimation of its natural frequencies using

purely numerical techniques are performed1.
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hammer

In the system’s online phase, we periodically sample new

vibration data. An example of a raw sensor reading, taken

during the experiment described in Section IV-A, is shown in

Figure 2. We then repeat the natural frequency identification

techniques on this newly-collected data. In the final stage of

the algorithm, this new frequency data and the structure’s

analytical model enable the DLAC algorithm to localize the

damage to discrete locations on the structure.

The online phase of our system can be decomposed into four

stages, which are summarized in Figure 1. Steps (1)-(3) are

used to compute the current natural frequencies of the structure

based on collected vibration data, which are then input into

the DLAC algorithm in Step (4).

1The details of the model’s creation, as well as these numerical techniques,
are well-established in the structural engineering field and are beyond the
scope of this paper.

(1) The raw sensor readings are converted from time domain

data to frequency domain data using a Fast Fourier Trans-

form (FFT). This produces a series of complex numbers as

output, represented as an array of floating point numbers twice

the length of the original input (one real and one imaginary

part per input). A property of the FFT output data is that its

magnitudes are symmetric. To save memory and computation

in later stages, we discard the redundant half of this frequency

domain data, resuting in a final output the same length as the

input.
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Fig. 3. Power spectrum analysis results of raw vibration data, with the
redundant upper half already removed

(2) The FFT’s output is fed into a power spectrum anal-

ysis routine, which calculates the squared magnitude of each

complex value in the FFT output data. Figure 3 demonstrates

the output of power spectrum analysis over the previous raw

sensor data trace.
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Fig. 4. Polynomial curve fit to the power spectrum analysis data

(3) We can then identify the natural frequencies in this

power spectrum data by performing polynomial curve fitting.

The goal of this process is to identify the frequencie values

associated with the peaks in the power spectrum curve for



each mode. Empirical study has shown that the Fractional

Polynomial Curve-Fitting (FPCF) technique is reliable for

identifying a structure’s modal frequencies in an automated

manner. FPCF fits the power spectrum data to a polynomial

function in the form of Equation 1, with the order of its

denominator proportional to the number of frequencies we

wish to locate. This function was identified in [28] to extract

features from system transfer functions, and represents both

a smoothing and an interpolation of the raw power spectrum

data.

H(s) =
B(s)

A(s)
=

b1s
m + b2s

m−1 + . . . + bm+1

a1sn + a2sn−1 + . . . + an+1

(1)

Figure 4 illustrates the results of fitting a 2nd-order curve

near each seperate peak in the power spectrum data discussed

above. We note that, as in Figure 4, the fitted curve does

not necessarily match the amplitude (Y-axis) of the power

spectrum data at all of the peaks. The goal of this step

is to obtain the imaginary parts of the roots of Equation

1’s denominator, which correspond to the frequencies of the

structure; the amplitude of the fit is therefore irrelevant.

For the purposes of implementation and analysis, we sub-

divide the identification of natural frequencies into two steps:

(3a) coefficient extraction, which represents the curve-fitting

problem as a series of matrices; and (3b) equation solving,

which applies the matrix operations necessary to determine

the roots of the denominator polynomial.
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Fig. 5. DLAC results representing the correlation of damage to 20 discrete
locations along a steel beam; higher numbers represent a greater likelihood
of damage

(4) Finally, once the structure’s natural frequencies have

been identified, they are used as input into the DLAC algo-

rithm, which ultimately detects and localizes damage to the

structure. Based on these inputs, DLAC yields a vector of

numbers in the range [0, 1], representing the correlation factors

to damage at various discrete locations along the structure.

A concentration of relatively high values indicates strong

correlation and therefore a potential damage location.

The DLAC algorithm is performed as follows. Offline, steps

(1) through (4) are executed when the structure is known

to be healthy. Using the coefficients of A(s) in Equation 1,

we identify the vector ωhealthy that represents the structure’s

natural frequencies in its healthy state. Using the structure’s

numerical model, we also estimate the structure’s natural

frequency vector ω′

healthy using purely numerical techniques.

This numerical model is also used offline to simulate

damage at discrete locations along the structure, providing

an estimate of what the natural frequencies would be if the

structure were damaged at each of these locations. We say that

the vector ωj predicts the structure’s natural frequencies when

damage is simulated at location j. For each ωj , we calculate

a frequency change vector δωj , where

δωj =
ω′

healthy − ωj

ω′

healthy

(2)

We note that δωj is normalized with respect to ω′

healthy; this

normalization gives equal weight to all vectors and reduces

any bias induced by higher modes. It is also worth empha-

sizing that, because δωj is calculated relative to the predicted

ω′

healthy rather than the observed ωhealthy, the final results will

be relatively robust to imperfections in the numerical model.

Steps (1) through (4) are then repeated online, giving a new

frequency vector ωdamage. We likewise compute a frequency

change vector ∆ω for this data, i.e.,

∆ω =
ωhealthy − ωdamage

ωhealthy

(3)

Finally, we compute the correlation between the actual change

in frequency, ∆ω, and each predicted change in frequency,

δωj , as

DLACj =
(∆ω • δωj)

2

|∆ω|
2
· |δωj |

2
(4)

In Figure 5, we plot DLAC for a steel beam that has been

subdivided into 20 discrete regions; relatively high DLAC val-

ues concentrated around X = 5 indicate a strong correlation

with damage at the fifth region.

A salient feature of DLAC is that it ultimately represents

hundreds or thousands of raw sensor readings as a single

vector ωdamage. As we discuss in Section V, this represen-

tation effectively compresses the data by up to 99.8% in

a typical SHM setup, significantly reducing the network’s

communication burden. This is an especially attractive feature

for wireless sensor networks, where wireless bandwidth is

often limited and sensors typically have a low energy budget.

However, we note that DLAC is designed to detect damage

at only one location; other techniques are needed to detect

multiple damage locations [29], which we plan to explore as

future work.

B. Decentralized Architecture

We have developed a decentralized computing architecture

specifically optimized for the damage localization procedure



presented in Section III-A. Our structural health monitoring

system consists of low-power sensors (also called motes) and a

base station connected by a wireless network. Motes typically

have limited resources (e.g., processing capabilities and mem-

ory) and run on batteries. Due to the difficulty of replacing

batteries for sensors embedded in a structure, the sensors’

energy efficiency is a critical concern for SHM systems. In

contrast, the base station (typically a PC) is connected to

a wired power source and has significantly more resources

than the sensors. Each mote collects raw vibration data from

an attached accelerometer and performs parts of the damage

localization procedure. The motes transmit their partial results

wirelessly to the base station, which completes the damage

localization procedure.

With the advance of sensor hardware, commercial sensor

platforms such as the Imote2 are capable of moderate amounts

of in-network processing. Our decentralized architecture ex-

ploits these processing capabilities to reduce the commu-

nication and energy costs of damage localization. Because

portions of the damage localization procedure described in

Section III-A (e.g., the DLAC algorithm) involve complicated

optimization routines, it is impractical to perform damage lo-

calization entirely on the motes. However, offloading too much

computation onto the base station would require transmitting

large amounts of data, on the order of thousands of floating-

point numbers. An important design goal of our system was

therefore to find the proper balance between the time and

energy spent on computations on the motes, and the time and

energy spent sending partial results to the base station.

To identify the optimal partitioning between the motes and

the base station, we analyze here the data flow between stages

of the damage localization procedure. We validate our analysis

through a comprehensive empirical measurement of different

partitioning strategies in Section V. As shown in Figure 1,

we parameterize this analysis by the number of samples

being collected, D, and the number of frequencies to identify,

P (D ≫ P ). The FFT stage consumes D integer sensor

readings as input, and produces D floating-point values as

output. Power spectrum analysis transforms these D floating-

point values into D
2

floating-point magnitudes. The coefficient

extraction portion of the curve-fitting routine represents the

power spectrum data as 5P floating-point coefficients; apply-

ing the equation solver reduces this to P floating-point values.

As shown by the detailed empirical evaluation in Section V,

partitioning between the curve fitting and DLAC stages results

in an optimal energy efficiency and latency. The curve fitting

routine results in significant reduction in the amount of data

that must be transferred to the next stages, from the hundreds

or thousands of collected vibration samples to a single vector

of size P . For a typical setup of D = 2048, P = 5, 16-bit

accelerometer readings, and single precision (32-bit) float

types, the stages before curve fitting generate from 4 KB

to 16 KB of data; in comparison, curve fitting outputs only

20 B. In practice, the relatively complex equation solving

substage of the curve fitting routine may be impractical to

implement on some sensor network platforms. The system may

Fig. 6. The damage localization user interface

alternatively be partitioned between the coefficient extraction

and equation solving substages of the curve fitting routine,

which outputs 5P matrix coefficients (100 B of data under the

setup described above). Based our detailed empirical analysis

described in Section V, the in-situ processing performed before

either partitioning point reduces the communication latency so

that the raw data collection stage dominates the algorithm’s

running time. Similarly, the radio’s energy consumption is then

dwarfed by the cost of idle sleeping when either partitioning

point is selected, and represents 0.98% or less of the sys-

tem’s total energy budget. This partitioning of the damage

localization procedure between the motes and the central

base station highlights the importance of an integrated design

for the computing architecture and the damage localization

techniques.

C. Implementation

Our architecture is implemented as a proof-of-concept SHM

system containing two major software packages, which are

available as open-source software at [30]. The first package is

implemented on top of the TinyOS 1.1 operating system, and is

deployed on the Imote2 hardware platform. The Imote2 motes

are equipped with 32 MB of RAM, XScale CPUs capable of

running at speeds up to 614 MHz, and add-on sensor boards

with integrated accelerometers [31].

Our current implementation assumes that sensors are within

a single hop from the base station, as the focus of this work

is on decentralized processing rather than network protocols.

However, our system can easily be extended to support multi-

hop networks by incorporating existing multi-hop data collec-

tion protocols [24], [32]. We discuss the implications of multi-

hop networking on our system’s lifetime in Section V-D.

The second software package consists of a Java application

and MATLAB scripts running on the base station PC. A GUI

(shown in Figure 6) allows users to set the algorithm’s pa-

rameters, initiate data collection and aggregation on individual

motes, and collect the partial curve fitting results computed by

the motes. Once the application receives partial results from a

mote, it completes the curve fitting procedure using an equa-

tion solver written in Java. The results of this equation solver

are then processed using a MATLAB script that implements

the DLAC algorithm. For debugging purposes, our system can

also retrieve the last set of raw sensor readings from individual

motes; this feature is not used under normal operations.



To simplify the implementation, the SHM algorithm is

currently invoked only when requested by the PC-side GUI.

The motes currently keep their radio on to listen for these

control messages, which can rapidly deplete their batteries. We

emphasize that there is nothing inherent in our decentralized

approach that prohibits performing autonomous readings at

prescheduled intervals and/or managing the radio power, e.g.,

by using existing power-efficient MAC protocols. We discuss

these options in greater detail in Section V-D.

D. Implementation Challenges

Sampling Jitter: One important lesson that we encountered

early in our project is the significant impact of jitter in

sensor sampling intervals on damage localization. We initially

targeted the Imote1 platform for our system but observed poor

experimental results. We traced the poor results back to the

Imote1’s sensor board, which sampled the accelerometer at

highly variable intervals. The significant jitter in the sampling

interval resulted in poor damage localization results, even

though the damage localization procedure itself was imple-

mented properly. We attempted to debug the Imote1’s sensor

drivers but were hindered by the fact that they are partially

closed-source.

After switching to the Imote2 platform, we discovered

other, smaller inaccuracies our experimental results. The ac-

celerometer chip on the Imote2’s ITS400 sensor board can be

programmed to collect samples at discrete frequencies of 280

Hz, 560 Hz, 1120 Hz, or 4480 Hz. Using an oscilloscope,

we determined that their sensor chips deviated within ±10%
of their programmed frequencies. While the “actual” sensing

frequencies varied from board to board, we did not observe

variations in frequency over time for individual boards within

our controlled lab environment; e.g., a board programmed to

sample its accelerometer at 560 Hz might actually operate at

550 Hz, but it would consistently operate at 550 Hz. For the

purposes of our proof-of-concept implementation, we therefore

simply measured the real sampling frequency of each board

offline using an oscilloscope and used this calibration data as

input to the power spectrum analysis routine. An autonomous

or semi-autonomous system could perform this calibration

online using the motes’ onboard microsecond clock.

Sensing Noise: After performing initial experiments on the

truss structure, we discovered that our results were not as high-

quality as on the simpler beam structure. We determined that

the truss’s more complex geometry introduced noise into the

sensor readings that degraded the DLAC results. Additionally,

a 280 Hz sampling rate was insufficient to identify the higher

frequencies in this structure. As a result, we increased the

frequency of data collection from 280 Hz to 560 Hz and

performed averaging over five consecutive sets of readings.

IV. EVALUATION: DAMAGE LOCALIZATION

In this section, we present an evaluation of our SHM

system’s physical performance, discussing our system’s ability

to localize damage on two sample structures. The two struc-

tures’ different physical properties serve as good indicators

Mode 1 2 3 4 5

Measured 0.5381 4.0240 11.4705 22.5506 37.4316
Analytical 0.6564 4.1133 11.5180 22.5710 37.3160

TABLE I
MEASURED AND ANALYTICAL NATURAL FREQUENCIES FOR THE

HEALTHY BEAM
Mode 1 2 3 4 5

Analytical 0.6555 4.0105 10.6192 20.8768 36.1469
Sensor 1 0.5506 3.9043 10.2473 20.7641 36.6415
Sensor 2 0.5374 3.8902 10.2779 20.8069 36.6396
Sensor 3 0.5402 3.8977 10.2714 20.7964 36.6048
Sensor 4 0.5316 3.8564 10.2744 20.8470 36.6785
Sensor 5 0.5371 3.7678 10.0707 20.4038 36.9797
Sensor 6 0.5427 3.8488 10.3217 20.7546 36.5919
Sensor 7 0.5392 3.9012 10.2533 20.7751 36.6570

TABLE II
ANALYTICAL AND IDENTIFIED NATURAL FREQUENCIES FOR THE

DAMAGED BEAM

of DLAC’s performance under ideal and complex conditions,

respectively.

A. Beam

To validate our damage localization system, we first per-

formed a series of experiments on a steel cantilever beam

in the Structural Control and Earthquake Engineering Lab at

Washington University in St. Louis. The beam, depicted in

Figure 7, is 2.75 m long, 7.6 cm wide, and 0.6 cm thick

and fixed to the ground to approximate a cantilever support.

Damage along the beam can be simulated at three distances

from the beam support by attaching a 1.5 kg steel bar. Because

this beam has relatively simple structural properties, it serves

as a test of our system under ideal conditions.

We collected data about the beam’s healthy state by attach-

ing seven Imote2 wireless sensors at equidistant intervals along

the beam. Each mote was equipped with a Crossbow ITS400

sensor board with embedded 3-axis accelerometers; tests on a

shake table confirmed that these accelerometers are sufficiently

accurate for DLAC purposes within their saturation range of

±2.0g. After exciting the beam with a hammer, we collected

vibration data from each mote. Using this data, we determined

the beam’s healthy natural frequencies offline, as shown in

Table I.

A corresponding 2D Bernoulli beam model was generated in

MATLAB, which subdivided the beam into 20 elements with

42 global degrees of freedom (Figure 8). As shown in Table I,

the first natural frequency predicted by the model is within

22% of the experimental value, while the other predicted

frequencies fall within 2% of the experimental data. These

discrepancies can be explained by simplifying assumptions

in the model; e.g., the Imote2 nodes were not included in

the model. We remind the reader that the DLAC algorithm

uses both measured data and analytical data as inputs, thus

accounting for such discrepancies.

We then tested our system’s ability to detect and localize

damage along the beam structure. Using the procedure de-

scribed in Section III, we collected and analyzed vibration data

at 280 Hz, both in its healthy condition and with the steel bar
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Fig. 9. DLAC results for the beam damaged at element 5

attached at each of the three damage locations shown in Figure

7. We added an arbitrary amount of mass at each position in

our analytical model to develop the matrix of damage cases

for computation of the correlation factors. The amount of mass

that we added to the model intentionally did not match the

steel bar’s actual mass. We included this discrepancy to reflect

the fact that the amount of damage to a structure is not known

ahead-of-time, and to illustrate that DLAC will still adequately

localize damage as long as a reasonable guess is used.

For the sake of brevity, we present here only the results

for the first scenario, which simulates damage at the beam’s

fifth element. As shown in Table II, the natural frequencies

measured by each of the 7 sensor nodes closely match those

predicted by the “damaged” analytical model. Each node

therefore correctly predicts structural damage at the beam’s

fifth element with a correlation of 94% or higher (Figure

9). We observed similar results during the other two damage

scenarios, with the nodes consistently localizing the damage

at the correct element with correlations of 90% or higher.

Fig. 10. 3D truss test structure

Wireless Sensor
Truss Frontal Panel

Fig. 11. Truss experimental setup; highlighted elements were replaced to
simulate damage

B. Truss

To evaluate our system under more complex structural

configurations, we then performed tests on a 5.6 m steel truss

structure [33] at the Smart Structure Technology Laboratory

(SSTL) at the University of Illinois at Urbana-Champaign

(see Figure 10). 11 Imote2 sensors were deployed on the

frontal panel of the truss, as shown in Figure 11; USB cabling

was deployed to power the motes, but all communication

occurred over their wireless radios. The truss consists of



Mode 1 2 3 4 5

Measured 20.65 41.49 64.59 69.41 95.51
Analytical 19.88 38.31 66.26 67.17 92.25

TABLE III
MEASURED AND ANALYTICAL NATURAL FREQUENCIES FOR THE

HEALTHY TRUSS
Mode 1 2 3 4 5

Analytical 19.19 38.35 63.58 66.30 90.96
Sensor 1 20.27 41.37 63.04 67.79 94.89
Sensor 2 20.28 41.40 63.17 67.89 95.08
Sensor 3 20.20 41.29 63.01 67.67 94.82
Sensor 4 20.17 41.23 63.05 67.68 94.73
Sensor 5 20.31 41.30 63.10 67.73 94.89
Sensor 6 20.23 41.29 63.02 67.68 94.81

TABLE IV
ANALYTICAL AND IDENTIFIED NATURAL FREQUENCIES FOR THE

DAMAGED TRUSS

fourteen bays 0.4 m-long bays and sits on four rigid supports.

Different structural configurations and damage scenarios can

be emulated by removing or replacing the truss’s members and

its supports.

As with the beam, we used collected truth data and a

MATLAB model to compute the natural frequencies in the

truss’s healthy state. We collected the truth data by vertically

exciting the truss structure using a magnetic shaker. (To ensure

a consistent mass distribution with later experiments, the

Imote2 motes were left installed but were not activated.) A

force transducer was used to measure the input force, and six

wired sensors were used to measure the vibrations at different

points on the truss’s frontal panel. A corresponding numerical

finite element model with 160 beam elements and 336 global

degrees of freedom (Figure 12) was generated in MATLAB.

As shown in Table III, the natural frequencies predicted by this

model are within 2–7% of the experimental data. Again, these

discrepancies can be explained by simplifying assumptions in

the model and are accommodated by the DLAC algorithm.

Fig. 12. Truss finite element model

To simulate damage along the truss structure, we replaced

the beam elements of the third bay (highlighted in Figure

11) with smaller elements. Specifically, two diagonal elements

were reduced in area by 52.7%, and two bottom elements were

reduced in area by 63.7%. We simulated damage to the truss’s

numerical model by reducing the model’s corresponding beam

elements.

We then excited the “damaged” truss structure and used

the Imote2 nodes to collect vibration data. Because the truss

has more complex behavior than the beam, we increased the
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Fig. 13. DLAC results for the damaged truss

sampling frequency to 560 Hz. To reduce noise, we also

averaged the power spectrum results over five consecutive

readings. 6 of the 11 sensors reported enough vibration data2

to compute natural frequencies with a DLAC correlation of

85%. The natural frequency data and DLAC results are shown

in Table IV and Figure 13, respectively. The DLAC results

strongly predict damage in the third bay, which is where the

elements were replaced.

V. EVALUATION: CYBER SYSTEM PERFORMANCE

We now evaluate the cyber aspects of our cyber-physical

SHM system. First, we will validate the optimal partioning

of the decentralized algorithm proposed in Section III-B,

by showing that it outperforms other potentional partitioning

points in terms of latency and energy consumption. Second,

we will demonstrate that our optimally-partitioned system

significantly outperforms a centralized approach in terms of

system lifetime. Based on these findings, we project that

our system would achieve a lifetime of approximately 193

days between battery replacements with appropriate power

management techniques.

Throughout this section, we will consider five different

configurations of our system. Four of these five configurations

represent different partitionings of the decentralized algorithm

discussed in Section III-B: they respectively perform up to

the FFT, power spectrum analysis, coefficient extraction, and

equation solving stages on the mote before transmitting their

partial results to the base station. The fifth configuration

performs no computations and transmits its raw sensor data

back to the base station, representing the behavior of a fully

centralized application.

A. Memory

Figure 14 presents the ROM consumption of five different

configurations of our SHM system. The onboard FFT routine

2The Imote2 vibration sensor will occasionally fail to collect a round of
samples, due to a driver bug that could not be isolated by the time the
experiments were run.
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Fig. 15. The RAM footprint of different SHM system configurations

has the largest impact on footprint, increasing the size of the

application from 228748 bytes to 247748 bytes (8.3%), while

the other routines add between 264 bytes (1.1%) and 424 bytes

(1.7%) each. We see a larger difference in RAM consumption

as we increase the amount of onboard computation, as shown

in Figure 15. The FFT routine again increases the footprint

the most, from 47460 bytes of RAM to 63844 bytes (34.5%).

The remaining routines require an additional 166 bytes (0.2%)

to 4864 bytes (7.1%).

In absolute terms, this footprint fits well within the hardware

capabilities of the current-generation sensor hardware. Indeed,

on platforms such as the Imote2 (which is equipped with 32

MB each of flash ROM and SDRAM) this application would

significantly underutilize the hardware capabilities. As shown

above, the incremental cost of adding each additional onboard

computation is also small in relative terms. Nevertheless, the

memory consumption of our system could be further reduced

by two straightforward optimizations, which could potentially

expand the number of platforms which our system could be

deployed on.

First, because our application was designed for the rela-

tively resource-rich Imote2 platform, we have not written our

codebase with RAM conservation in mind. Specifically, our

application retains copies in RAM of the raw sensor data

and the output of intermediate computations. This decision

simplifies the implementation and allows us to retrieve these

intermediate values for debugging purposes. On more RAM-

constrained devices, our application could be altered to keep

only a single memory buffer and perform all computations

in-place on this single buffer.

Second, the beta Imote2 toolchain for TinyOS 1.1 tends to

greatly inflate the footprint of compiled applications compared

to other platforms. The Wasabi GCC compiler used by this

toolchain will crash unless the toolchain is invoked in debug

mode, which disables nesC’s aggressive inlining optimizations

and inserts debugging symbols into the binary. Also, because

binary size is not generally a concern on the Imote2, the

toolchain automatically includes complex subsystems (such as

a USB debugging console) which contribute to the size of the

binary. For comparison, a simple test application included in

TinyOS (CntToRfm) consumes 195052 bytes of ROM and

18532 bytes of RAM on the Imote2 platform compared to

11234 bytes of ROM and 371 bytes of RAM for the TelosB

platform. We anticipate that deploying our application with a

different toolchain (whether a different platform or the more

modern, stripped-down Imote2 toolchain used by TinyOS 2.1)

would therefore achieve a significant footprint reduction.
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Fig. 16. The latency of sensor data collection and processing

B. Latency

To evaluate the latency of a single round of damage

detection, we timed the execution of its constituent steps:

collecting the raw sensor data from the accelerometer, per-

forming onboard computations on the data, and transmitting

the computed results back to the base station. Again, because

the computation and communication latency of our SHM sys-

tem depends greatly on how much computation is performed

onboard, we present this data for the five different system con-

figurations. Where possible, we measured these latencies using

the Imote2’s onboard microsecond timer and took the mean

of 50 rounds. Because the Imote2’s onboard radio interferes

with the hardware microsecond timer, the data transmission

latencies (with the exception of the FFT data latency3) were

collected over 10 rounds using an oscilloscope. We focus

here on the latencies incurred by on-board processing and

communication, excluding processing at the base station. We

note that this decision benefits the fully centralized approach,

which will pay a comparatively higher processing cost at the

base station.

Figure 16 presents the average latency for each of these five

configurations. All five schemes incur a mean cost of 3772 ms

3Our oscilloscope did not have a large enough data buffer to reliably
measure the time spent transmitting the FFT data. We instead measured this
latency by instrumenting the PC base station software, which we expect to
provide results within one packet RTT of the actual time spent transmitting.



(σ = 0.80 ms) to collect raw sensor data. This closely matches

the 2048

560 Hz
≈ 3.7 s needed to collect 2048 samples, with some

additional overhead to copy the sensor data into a local buffer.

The cost of all the onboard computations is relatively small:

the FFT, power spectrum analysis, coefficient extraction, and

equation solving routines consume 566.8 ms (σ = 2.78 ms),

17.1 ms (σ = 2.78 ms), 97.2 ms (σ = 0.01 ms), and 27.1 ms

(σ = 0.26 ms) respectively.

These latter two computations reduce the data to be trans-

mitted by 98.8% and 99.8% respectively, from 2048 data

points to 25 and 5. Therefore, these two configurations take

only 271 ms (σ = 11 ms) and 142 ms (σ = 16 ms) respectively

to transmit their results to the base station, compared to

the 9638 ms (σ = 28 ms) to transmit all raw data in the

fully-centralized case. By performing computation and an

appropriate amount of processing on the nodes, we incur

very little system overhead on our current-generation sensor

hardware. 79.8% to 81.6% of the system’s time is spent

collecting data; only 20.1% or less of the latency represents

reducible overhead. In comparison, the centralized approach

spends 71.9% of its time transmitting data to the base station.

As a result, our decentralized system can achieve latencies

up to 65.5% lower than those of a centralized algorithm. It is

also worth noting that delegating the equation solving substage

to the base station incurs only a 2.2% performance penalty

compared to doing the entire curve-fitting routine onboard,

because both approaches are dominated by the time spent

collecting raw sensor data. Therefore, transmitting the partial

curve-fitting results is an acceptable alternative on systems

where the equation solving routine cannot realistically be

implemented.

Notably, performing the power spectrum analysis onboard

does not reduce latency at all, and performing FFT onboard

is actually counterproductive: it takes 22206 ms (σ = 133

ms) to transmit the FFT results and 9668 ms (σ = 28 ms)

to transmit the power spectrum data to the base station.

This phenomenon validates the data flow analysis in Section

III-A (note that the single-precision floating-point values in

the FFT and power spectrum data are twice the width of

the 16-bit sensor readings). These findings also highlight

the importance of a systematic evaluation for identifying the

optimal configuration of cyber-physical systems through data-

flow analysis and empirical benchmarks.
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Fig. 17. The energy consumption of sensor data collection and aggregation

C. Energy Consumption

The current version of our SHM system performs only

limited power management, since the TinyOS 1.1 drivers for

the Imote2 do not put all of the hardware to sleep when

deactivated. The Imote2 driver subsystem has been rewritten

for TinyOS 2.1, which was released shortly before this writing

and which we expect will fix this shortcoming. Nevertheless,

we can estimate the energy consumption of a fully power-

managing SHM system by combining the latency statistics

given above with current consumption data for the radio,

sensor, and CPU taken from the corresponding datasheets [5],

[34], [35].

Figure 17 shows the energy cost of a single round of SHM

data collection. Performing the entire curve-fitting routine

onboard compared to a fully centralized approach significant

reduces the energy consumption, from 0.222 mAh to 0.066

mAh. This reduction is mainly due to the expense of sending

raw sensor readings to the base station. A configuration which

performs the curve-fitting routing onboard consumes 0.006

mAh (31 mA [5] for 708 ms) to perform its computations.

However, these computations save the node an average of

0.162 mAh during transmission, since it reduces the time

that the radio is active and transmitting by 9.5 s. Again,

offloading the equation solving portion of this routine to the

base station has a minimal effect on energy consumption.

The node would save 0.0002 mAh on computation costs but

would expend an additional 0.0022 mAh on communication,

representing an increase of 3% compared to performing the

equation solving onboard. The energy consumption of either

of these two decentralized approaches is dominated by the cost

of collecting raw sensor data (84.5% and 87% of the total

energy consumption), whereas the fully centralized approach

spends 74.2% of its energy transmitting the sensor readings

back to the base station.

We again find that performing any fewer stages of com-

putation onboard is counter-productive. Performing the FFT

and power spectrum analysis locally incurs a computational

overhead of 0.005 mAh but does not affect the amount of data

being sent back to the base station. As a result, this approach

incurs a 2.5% energy penalty compared to the fully centralized

approach. Computing only the FFT data onboard performs

even worse, since its output is double the size of its input.

This approach therefore increases the energy consumption by

99.0% over the fully centralized case.

The memory, latency, and energy consumption benchmarks

demonstrate that the optimal partitioning point indeed occurs

after the curve-fitting routine, as indicated by the data-flow

analysis in Section III-B. These results also validate that, on

systems where the full curve-fitting routine cannot realistically

be implemented, even implementing a portion of this routine

provides substantially better performance than simply sending

the raw sensor data to the base station for processing. Again,

the performance of the FFT and power spectrum routines high-

light the importance data-flow analysis in decentralized cyber-

physical applications: in terms of RAM, ROM, latency, and



energy consumption, both partially-decentralized approaches

perform worse than a fully centralized approach.

Fig. 18. System lifetime under different usage patterns

D. Projected Lifetime

We can estimate the system’s expected lifetime by noting

that the Imote2 consumes 382 µA in its deep sleep state [5],

plus 15 µA for the accelerometer [35]. Figure 18 presents

the estimated system lifetime when the Imote2 is deployed

with a standard 3x AAA battery pack providing 2400 mAh

of charge. In the interest of reducing clutter, we only present

only the fully-centralized case (i.e., where no processing is

performed onboard) and the most decentralized case (where

all computations prior to the final DLAC stage are performed

onboard). As noted above, performing only the FFT or power

spectrum analysis onboard would in fact reduce the node’s

lifetime, and running only part of the curve-fitting onboard

has similar performance to the fully-decentralized case.

If we assume that the system remains asleep between

periodic readings, then the decentralized approach achieves a

projected lifetime of 213 days, even at a relatively aggressive

hourly schedule. In contrast, the centralized approach achieves

a lifetime of 160 days at an hourly schedule, though it stays

within 0.2% of the decentralized approach’s lifetime at lower

frequencies. The sharp drop in the centralized system’s lifetime

occurs because sleeping dominates the system’s energy cost

at lower frequencies, while the high communications costs

dwarf the sleeping cost at an hourly frequency. As a result,

in-situ processing enables more frequent monitoring than is

realistically possible for a centralized scheme.

In practice, a SHM system may not be able to behave

autonomously: its deployers may want some kind of manual

control (e.g., to perform on-demand readings after a natural

disaster). This can be achieved by having the nodes listen

for radio transmissions between readings. Keeping the CPU

and radio active at 100% duty cycles would reduce the node

lifetime to only 55 hours. However, power-saving MAC layers

like SCP [36] can achieve duty cycles as low as 0.1% with

reasonable responsiveness tradeoffs. As shown in Figure 18,

this would have a fairly low impact on system lifetime (an

8.5%–9.8% reduction in the decentralized case).

Fig. 19. System lifetime with hourly readings and 0.1% radio duty cycle,
under various network configurations

The difference in communication costs between a central-

ized approach and our decentralized approach are amplified

under a multi-hop network configuration. This kind of network

configuration is necessary for monitoring many real-world

structures, since the structure’s length will exceed the motes’

communication range. For example, [24] required a 46-hop

network to span the Golden Gate Bridge, and [25] estimates

that 3–4 hops will be needed to span small bridges. The

nodes closest to the sink suffer the most from communication

overhead, since they must receive and relay packets from all

of the nodes further away from the sink. If we assume that

nodes are configured in an n-hop line, as in [24], then the

node closest to the sink will have to receive n−1 sets of data

and transmit n sets each time damage detection is performed.

As shown in Figure 19, under the centralized approach this

node’s lifetime will drop dramatically as the number of hops

increases. The mote must keep its radio active for an extra

19.3 seconds for each additional hop, transmitting during half

of this time and receiving during the other half. This quickly

depletes the mote’s battery power, decreasing the network’s

lifetime from 191 days in a single-hop configuration to 179

days under a 4-hop network, and to 95 days under a 46-hop

network. In contrast, the decentralized approach transmits a

much smaller amount of data, so that the cost of idle sleeping

still dwarfs the communication cost under any realistic hop

count. A 4-hop network will reduce the decentralized system’s

lifetime by 5 hours, and a 46-hop network will reduce the life-

time from 196 days to 193 days. Our decentralized approach

therefore represents a 9.2% increase in lifetime under a 4-

hop network compared to a centralized scheme, and a 103%

increase with a larger 46-hop network.

As observed in [24], reliably transporting large amounts of

data over lossy links is challenging. The lifetimes of both

approaches will be reduced compared to those projected here,

due to packet retransmissions. However, we note that packet



retransmissions will have a significantly higher impact on a

centralized system’s lifetime, since its communication costs

represent a much higher proportion of the total energy budget.

VI. CONCLUSIONS

We propose a holistic approach to SHM that features a

decentralized computing architecture specifically optimized for

the DLAC damage localization algorithm. We have imple-

mented our prototype SHM system on an off-the-shelf sensor

platform while using less than 1% of its memory capacity.

Our experiments show that, compared to earlier centralized

solutions, our system can reduce the latency and energy

consumption of each damage localization round by 65.5%

and 70.4% respectively, increasing the system’s projected

lifetime by up to 103% under an hourly schedule. We also

demonstrate that our system is able to effectively localize

damage to discrete locations on the structure on two physical

structures. Finally, we identify the importance of selecting

an optimal partitioning point between the onboard processing

and the processing done at the base station, through data-flow

analysis and systematic empirical benchmarks. These results

highlight the advantages of closely integrating the design of

computing systems and physical engineering techniques for

cyber-physical systems.
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