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Abstract: Early and precise COVID-19 identification and analysis are pivotal in reducing the spread
of COVID-19. Medical imaging techniques, such as chest X-ray or chest radiographs, computed
tomography (CT) scan, and electrocardiogram (ECG) trace images are the most widely known for
early discovery and analysis of the coronavirus disease (COVID-19). Deep learning (DL) frameworks
for identifying COVID-19 positive patients in the literature are limited to one data format, either
ECG or chest radiograph images. Moreover, using several data types to recover abnormal patterns
caused by COVID-19 could potentially provide more information and restrict the spread of the virus.
This study presents an effective COVID-19 detection and classification approach using the Shufflenet
CNN by employing three types of images, i.e., chest radiograph, CT-scan, and ECG-trace images. For
this purpose, we performed extensive classification experiments with the proposed approach using
each type of image. With the chest radiograph dataset, we performed three classification experiments
at different levels of granularity, i.e., binary, three-class, and four-class classifications. In addition,
we performed a binary classification experiment with the proposed approach by classifying CT-scan
images into COVID-positive and normal. Finally, utilizing the ECG-trace images, we conducted three
experiments at different levels of granularity, i.e., binary, three-class, and five-class classifications. We
evaluated the proposed approach with the baseline COVID-19 Radiography Database, SARS-CoV-2
CT-scan, and ECG images dataset of cardiac and COVID-19 patients. The average accuracy of 99.98%
for COVID-19 detection in the three-class classification scheme using chest radiographs, optimal
accuracy of 100% for COVID-19 detection using CT scans, and average accuracy of 99.37% for
five-class classification scheme using ECG trace images have proved the efficacy of our proposed
method over the contemporary methods. The optimal accuracy of 100% for COVID-19 detection
using CT scans and the accuracy gain of 1.54% (in the case of five-class classification using ECG
trace images) from the previous approach, which utilized ECG images for the first time, has a major
contribution to improving the COVID-19 prediction rate in early stages. Experimental findings
demonstrate that the proposed framework outperforms contemporary models. For example, the
proposed approach outperforms state-of-the-art DL approaches, such as Squeezenet, Alexnet, and
Darknet19, by achieving the accuracy of 99.98 (proposed method), 98.29, 98.50, and 99.67, respectively.

Keywords: chest radiographs; convolutional neural networks; COVID-19; classification; CT scans;
detection; ECG Trace Images; medical imaging; ShuffleNet
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1. Introduction

Last year, a global epidemic was triggered by the most recent coronavirus named
COVID-19. The first outbreak of COVID-19, which was transmitted to humans by bats,
was observed in Wuhan, Hubei Province, China, in December 2019 [1]. This condition,
which can be fatal, is caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). The COVID-19 virus is fatal because of its fast transmission. This virus
can spread through the air and physical contact, such as a handshake with a COVID-19
patient [2]. This virus transfers from one animal to another and from animals to humans.
Coughing, fever, and shortness of breath are all frequent symptoms of COVID-19 [3]. In
most cases, the virus damages the human lungs, causing pneumonia in severe cases. The
World Health Organization (WHO) claims that 649,038,437 verified cases of COVID-19 have
been noted worldwide to date, with 6,645,812 deaths [4]. According to WHO 268,252,496;
184,161,028; 60,719,433; and 9,431,508 cases of COVID-19 have been reported in Europe,
America, Southeast Asia, and Africa, respectively.

Existing COVID-19 detection tests are slow and usually take a few hours to obtain
the required results. In most cases, in medical research, the polymerase chain reaction
(PCR) test is used [5]. Unfortunately, because the number of cases is continually growing,
doing enough PCR testing has become almost impossible due to the time, shortage of
medical resources, and cost involved [6]. As the need for COVID-19 testing has expanded,
laboratory professionals have run across a growing number of obstacles, doubts, and, in
some cases, disputes. As a result, there is a compelling need to create alternative testing
(computerized COVID-19 detection) technologies that can consistently detect the virus in a
short period of time to recognize infected people and quarantine or isolate them promptly.

To reliably and automatically detect (identify or predict) COVID-19 in its early phases,
various medical imaging techniques, such as chest radiographs, ECG trace images, and
CT-scans have been used [7]. Chest radiographs, often known as X-rays, are images of the
inside of the chest that are utilized to examine chest problems [1]. ECG trace images are line
graphs that depict variations in the heart’s electrical behavior over time [7]. On the other
hand, a chest CT scan employs an X-ray scanner to produce a sequence of high-resolution
images of locations inside the chest [8]. Medical professionals value and prefer chest
radiograph images more because they can be easily accessed from radiology departments.
Chest radiograph images, according to radiologists, aid in the clear understanding of chest
pathology [2]. Additionally, the ECG trace images can easily be taken and gathered by
mobile phones and are quickly accessible technologies in nations with limited resources and
budgets. Therefore, the X-ray modality [9] and ECG images were the first low-cost and low-
risk tools for analyzing COVID-19. The X-ray technique is widely utilized for pneumonia
diagnosis [10]. Chest radiography exposes people to less radiation than magnetic resonance
imaging (MRI) and computed tomography (CT) [11].

Several research studies have shown that COVID-19 may be detected on chest radio-
graphs with radiologist-level accuracy using traditional machine learning (ML) or DL-based
CAD systems, which can be employed in medical practice [12–14]. Compared to traditional
ML techniques, DL techniques make use of unstructured data, automatically extract more
robust features, and produce more accurate results. At the beginning of 2022, various
studies have been undertaken to construct automated DL approaches for reliable recovery
of COVID-19 [15,16]. Most of these studies used convolutional neural networks (CNNs) to
classify COVID-19-infected or normal chest radiograph images.

Existing works on COVID-19 detection have some limitations: The majority of studies
relied on datasets with fewer images (training data); more specifically, limited ECG trace
images data is available for COVID-19 detection and as a result the model is not generalized,
and the model may have overfitted the training samples. Furthermore, the backpropagation
algorithm employed in CNN training is often very slow and requires the tuning of different
hyperparameters. In most studies, novel CNN algorithms are utilized as potential classifiers,
but the CNN algorithm has some pre-existing limitations. For example, when there are
any imbalanced classes in the dataset, it can be overfitted. The majority of previous
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algorithms were designed to train on either chest radiographs, CT scans, or ECG trace
images, i.e., only one or two types of data. However, the DL algorithm trained on different
data types (images) can extract more detailed information (most reliable deep feature)
for classification. Most of the studies perform either binary or multiclass classification of
images. Additionally, other state-of-the-art CNN frameworks have not been compared
separately in many studies.

To address the above-mentioned limitations of existing approaches in this area, we pro-
pose an effective single DL-based framework for chest radiograph, CT scan, and ECG trace
images to identify COVID-19 positive cases. The proposed framework utilizes filter-based
feature extraction, which can be useful in attaining the greatest classification performance.
The main contributions and novelty of this work are as follows: (1) We used ShuffleNet, a
transfer learning (TL) based framework for chest radiographs, CT scans, and ECG trace
images to detect and identify COVID-19 positive cases; (2) We examined and evaluated the
classification performance of the ShuffleNet pre-trained DL framework in terms of their
ability to identify COVID-19 using three different types of images data; (3) Using multiple
data sources, we utilized the same framework for binary and multiclass classification to
detect COVID-19 positive instances (COVID-19 infected individuals); (4) To assess the
suggested model’s efficacy, we compared its performance to that of existing state-of-the-art
DL frameworks on the same dataset and with the same experimental setup; and (5) We
assessed the classification performance of the suggested approach on widely accessible
standard datasets, such as an ECG image dataset of cardiac and COVID-19 patients, a
SARS-CoV-2 CT scan dataset, and a standard COVID-19 Radiography Database.

The following is how the rest of the paper is organized: Section 2 describes the
related work. In Section 3, we offered the motivation for the proposed work as well as an
explanation of it. Section 4 detailed the datasets, evaluation measures, and experimental
outcomes in depth. Section 5 completes the paper.

2. Related Work

Although COVID-19 has only recently begun to spread, researchers have completed
many research projects in a short period. Various ML, hybrid, and DL algorithms have been
proposed to categorize COVID-19 images, which is the present problem. Several works
have been briefly discussed and summarized.

In [17], for COVID-19 identification and detection, the authors used multi-level thresh-
olding and SVM. They analyzed the patient’s lung radiograph and utilized a median filter
to improve the contrast of the input radiographs. The support vector machine (SVM)
was then utilized to differentiate between diseased and normal lungs. In [8], COVID-19
was automatically identified from CT scans utilizing a variety of ML methods. Several
feature extraction algorithms, including the grey-level size zone matrix (GLSZM), grey-
level co-occurrence matrix (GLCM), and grey local directional pattern (GLDP), and the
discrete wavelet transform (DWT) technique were used to improve the performance. The
classification of extracted features was done using SVM with two-fold, five-fold, and
ten-fold cross-validations. The best accuracy was attained using GLSZM and ten-fold
cross-validation.

In [18], the authors utilized chest radiograph images to identify coronavirus infected
patients by utilizing a deep feature and SVM-based approach. Deep features from the
Convolutional neural networks (CNN) fully connected layers are retrieved and supplied to
SVM for image classification. For COVID-19 identification, ResNet50 plus SVM attained
the best accuracy, sensitivity, FPR, and F1 scores. In [19], the authors used the CNN models
to extract features and the SVM as a classification method to categorize radiograph images
into normal, COVID-19 positive, and pneumonia. They attained the highest average
accuracy through ResNet50, ResNet18, ResNet101, and GoogleNet. Furthermore, different
optimization algorithms were produced to improve the performance of machine learning
algorithms [20–24].
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Traditional ML techniques perform poorly compared to DL techniques since they
rely largely on manual feature extraction, whereas, DL approaches automatically extract
more robust deep features, and deliver more accurate results than typical ML techniques.
In [25], the authors used a truncated Inception network to differentiate COVID-19 and
normal images. In [26], the authors used the DarkNet architecture to construct a binary
classifier that detects COVID-19 and normal chest radiograph images and a multi-class
classifier that detects COVID-19 positive, pneumonia, and normal. On the ImageNet
dataset, the authors of [27] employed the pre-trained Xception framework. The authors
of [28] utilized MobileNet to train a framework from scrape and extract features for the
classification challenge. The authors [29] employed the Bayesian optimization method
to tune the SqueezeNet network on the COVID-19 diagnostic. Furthermore, different
optimization algorithms were produced to improve the performance of machine learning
algorithms [30–33].

Recently, when CT scans and clinical observation histories are found, the artificial neu-
ral network effectively diagnoses a coronavirus patient [34]. A previous study used CNN
to diagnose COVID-19 illness from a chest radiograph using the inception network [35].
In [36], the author proposed a new ensemble-based technique to efficiently and accurately
identify COVID-19 by utilizing CT scans. They employed a TL to classify clustered images
of lung lobes using pre-trained DL frameworks, such as Xception, ResNet, VGG, and
integrated them into an ensemble framework. In [37], the authors used 11 DL frameworks
to categorize chest radiographs as normal, COVID-19, or pneumonia. They evaluated three
distinct modifications to change the frameworks for the classification task by adding some
additional layers. The EfficientNetB4 and Xception-based frameworks attained the best
classification performance. In [38], the authors purposed a CNN to identify COVID-19
using chest radiographs. Deep feature extraction has been done using pre-trained CNN
frameworks, including VGG16, InceptionV3, MobileNetV2, and ResNet50. InceptionV3
obtained the highest accuracy to detect SARS-CoV-2 from chest radiograph images. More
recently, DL approaches on ECG trace images have been explored with promising results.
The authors [39] used DL approaches to identify COVID-19 and other cardiovascular ill-
nesses (CVDs) from ECG trace images. Six deep CNN classifiers were utilized to perform a
series of classification experiments. The Densenet201 algorithm outperforms other algo-
rithms in binary and three-class fine-grained classification, whereas InceptionV3 surpasses
others in five-class classification.

There are various limitations of the approaches discussed above in the related work.
According to our knowledge, the existing methods on COVID-19 detection are unable to
achieve improved classification performance. One possible reason might be that research
studies have utilized databases with fewer images, and there is a potential that their pro-
posed framework has overfitted the training images. Furthermore, their comparisons are
made on one (single) dataset, which might hinder the model’s effectiveness. For example,
when only one type of image data is utilized to train and validate the framework, it is not
considered a generalized model. As a result, an effective and generalized classification sys-
tem and a unified model (a model that can detect COVID-19 utilizing several types of image
data) are required to solve the drawbacks of current COVID-19 detection methodologies.

3. Methodology

The proposed COVID-19 detection and classification mechanism is discussed in depth
in this section. The proposed DL system applies the ShuffleNet DL framework to detect
COVID-19 and classify the images of three datasets, as shown in Figure 1. The proposed
work comprises three main stages: In the first stage, COVID-19 is detected using chest
radiograph images, in the second stage, COVID-19 is detected using CT scan images,
whereas in the third stage COVID-19 is detected using ECG trace images represented with
revise stage in Figure 1. To the input data, we used a built-in MATLAB DL toolbox to
train the proposed model. The images in the datasets are different in size. According to
the input image requirements of the proposed model, we downsized all of the images
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to 224 × 224 pixels. For all experiments, the datasets were separated into training and
testing datasets. To be more explicit, we utilized 80% of the images for training and 20%
of the images for testing. The weights of the pre-trained ShuffleNet network are fine-
tuned by freezing the weights of the first layers—that is, the weights of the frozen layers
are not adjusted during training—while the fully connected (FC) layers, which map the
feature representations extracted by the first layers into the class label information, are
fine-tuned. The model’s classification layer and final FC layer are replaced, which was
initially planned to generate 1000 separate categories. The proposed framework is used to
accomplish both binary and multiclass classification to detect COVID-19-positive instances
(COVID-19-infected individuals) using chest radiographs and ECG trace images.
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Figure 1. Overview of the proposed method.

3.1. Motivations

COVID-19 has symptoms similar to severe pneumonia, so inspired by the success of
DL-based architecture in pneumonia detection [40], we proposed a COVID-19 identification
and classification approach based on the ShuffleNet DL model in this work. In addition,
inspired by pattern recognition and computer vision techniques, where the same framework
is trained for several different classes/objects. We proposed an effective single DL-based
framework for chest radiographs, CT scans, and ECG trace images to identify COVID-19
patients. This study aims to develop a unified framework that could be utilized for binary
classification (e.g., COVID-19 identification) and multiclass classification (e.g., COVID-19,
normal, and other CVDs classification) with greater accuracy using chest radiographs, CT
scans, and ECG trace images.

The importance and properties of the proposed method (ShuffleNet) include (1) it re-
quires minimal dataset pre-processing; (2) it saves time (TL-based approach) by eliminating
the need to train and validate the model weights from scratch; (3) it reduces the computa-
tion cost because the CNNs are often made up of repeating building blocks with the same
structure and do not completely account for 1 × 1 convolutions (pointwise convolutions),
which need a great deal of complexity. ShuffleNet, on the other hand, reduces the computa-
tion cost (to speed up training) by using group convolution on 1 × 1 layers. Furthermore,
the model is based on pointwise group convolution and channel shuffle, which decrease
computational costs while retaining classification accuracy and are optimized for devices
with low computational capacity. Batch normalization (BN) is used after each convolutional
layer to standardize the inputs, provide regularization, and reduce generalization error (to
improve generalization ability).

3.2. ShuffleNet Architecture Details

In the proposed work, we employed the ShuffleNet [41], a highly efficient DL architec-
ture created with mobile devices. Based on our computational resources (hardware), we
used shufflenetv1 version of the pre-trained ShuffleNet model to achieve better accuracy
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at low computational costs. The architecture of the proposed framework is revealed in
Figure 2. The proposed model is deeper than standard CNN with 50 learnable layers,
i.e., 1 convolution layer and 48 group convolution layers followed by an FC layer. The
architecture has a total of 172 layers, including 1 maximum pooling layer, 49 BN layers,
33 relu layers, 4 average pooling layers, a softmax layer, and a classification layer. The
framework employs four pooling layers to decrease the overall computational complexity.
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The input layer of our model is the initial layer, and it accepts 224 × 224 input images
(chest radiograph, CT scan, or ECG trace image) for processing. To generate the feature
map, the first convolution layer extracts the feature from the 224 × 224 input image by
applying at a time 24 kernels (filters) of size 3 × 3 with a stride of 2 × 2. The output of
convolutional layers (feature map) is calculated as:

s(i, j) = (I × K)(i, j) = ∑
n

∑
m

I(m, n)K(i − m, j − n) (1)

s represents the output feature map, i represent the input image, whereas K represents the
kernel of the current convolutional layer. After applying convolution operations on the
input image, the output of size o = ((i − k) + 2p)/(s + 1) is produced, where i represents
input, p means padding, k represents kernel size, and s represent steps.

The ShuffleNet unit with a shift (stride) of 2 × 2 receives the output feature map of
the first convolutional layer. The ShuffleNet unit comprises three convolutional operations,
i.e., two 1 × 1 pointwise group convolution and 3 × 3 depthwise convolutions. The first
pointwise group convolution is followed by BN, relu activation function, channel shuffle
operation. Relu activation is used because it is efficient and straightforward. Relu works
as follow

f (x) =
{

0, x < 0
x, x ≤ 0

(2)

Relu activates neurons with positive values and deactivates neurons (set neurons to 0)
with negative values. The second and third convolution operations, i.e., 3 × 3 depthwise
convolutions and 1 × 1 pointwise group convolution, are followed by BN. The model con-
tains a 3-by-3 average pooling on the shortcut paths. The model consists of 16 consecutive
ShuffleNet units. The model is made up of 50 layers, each of which provides trainable
feature maps. These layers also do feature extraction. These feature maps are submitted to
FC, and Soft-max activation is utilized to determine the classification probabilities used by
the final classification layer. Equation (3) represents the working of the FC layer.

ai =
m×n−1

∑
j=0

wij × xi + bi (3)
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where i denotes the index of the FC layer’s output; n, m, d, and i denote the height, width,
depth, and index of FC layers output. Furthermore, b and w represent the bias and weights,
respectively. The Soft-max layer’s classification probabilities can create up to 1000 separate
classes, but we have two, three, four, and five classes in our experiments.

3.3. Hyperparameters Settings

We used a trial-and-error approach in which we ran trials with various parameter
values to determine the best value for each one. The proposed techniques’ hyperparameters
are chosen after some preliminary trials on a smaller dataset. Table 1 illustrates the details
of the parameters that are chosen. Our model was trained using stochastic gradient descent
(SGD) with a learning rate of 0.001. The proposed framework is trained over 22 epochs to
classify radiograph, CT scans, and ECG trace images into binary and multiclass categories.

Table 1. Hyper-parameters values.

Parameter Value

Optimization algorithm SGDM
Learning rate 0.001

Shuffle Every epoch
Maximum epochs 22

Validation frequency 30
Mini batch size 10

Activation function Relu
Verbose false

4. Results

In this section, we provide an in-depth discussion of the findings of numerous ex-
perimentations designed to evaluate the performance of the proposed approach. This
section comprehends further information about the datasets used to assess the classification
performance of our approach, specifically the COVID-19 Radiography, SARS-CoV-2 CT,
and the ECG images dataset of cardiac and COVID-19 patients.

4.1. Research Datasets

For COVID-19 finding through chest radiographs, we utilized the COVID-19 Radiog-
raphy Database [42,43], which was created by scientists from Bangladesh’s University of
Dhaka and Qatar University. This COVID-19 chest radiograph images database was created
in collaboration with medical doctors for COVID-19, pneumonia, and normal radiographs.
The COVID-19 chest radiograph images database was just released; it includes 3616 chest
radiographs of COVID-19 infected persons, 10,192 chest radiographs of healthy people,
6012 Lung Obesity, and 1345 Pneumonia radiographs. The radiographs in this dataset have
a resolution of 1024 × 1024 pixels, as shown in Table 2. The images were resized to fit
the needs of each model. It is a standard Kaggle dataset that is open to the public. This
dataset’s radiograph images are grayscale and have the same dimensions. A few examples
from the SIRM dataset are displayed in Figure 3.

We detected COVID-19 by utilizing CT scans from a freely accessible SARS-CoV-2 CT
scan dataset [44] comprising 1252 CT scans of COVID-19 patients, with 1230 CT scans of
normal people (total of 2482 CT scans). These statistics were gathered from real patients in
Brazilian hospitals. Figure 4 displays a few examples from the dataset.

We employed an ECG images dataset of cardiac and COVID-19 patients [45] in this
work for COVID-19 identification using ECG, which comprised 1937 unique patient records
separated into 5 groups (Normal, COVID-19, RMI, AHB, and MI). All of the images were
together utilizing the ECG device ‘EDAN SERIES-3,’ which was deployed in Cardiac Care
Units of various health care organizations in Pakistan. Under the observation of qualified
medical practitioners with expertise in ECG analysis, 12 lead ECG trace images were
recorded and physically analyzed by professors utilizing a telemedicine ECG diagnostic



Diagnostics 2023, 13, 162 8 of 24

system. The dataset included 859 Normal, 250 COVID-19, 203 RMI, 548 AHB, and 77MI
ECG trace images. Figure 5 shows a COVID-19 sample ECG image of the dataset.

Table 2. Datasets details.

Images Type Dataset Images Collections Format Bit Depth

Chest
Radiographs Chest Radiography Database COVID Normal Pneumonia Lung Obesity

PNG 83616 10,192 1345 6012

CT Scan SARS-CoV-2 CT scan dataset
COVID Non-CCOVID

PNG 24, 321252 1230

ECG trace
ECG image dataset of cardiac and

COVID-19 patients
COVID Normal RMI AHB MI JPG 24250 859 203 548 77
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4.2. Evaluation Metrics

The performance of the proposed framework is validated by computing the following
evaluation metrics: Accuracy, Precision, Sensitivity (Recall), specificity, and F1_score. The
accuracy of the proposed approach is given by Equation (4), defined as “the number of
correctly detected or classified images (COVID-19 or normal) to the total number of sample
images”. The precision of the proposed approach is identified as “the number of correctly
detected or classified images (COVID-19) to the total number of (COVID-19) positive
images detected (correctly or erroneously) by the model”. The recall is calculated as “the
number of correctly classified images (COVID-19) to the total number of COVID-19 images
in the dataset”. Similarly, specificity is calculated as “the number of correctly detected
negative images to the total number of negative (normal) images in dataset”, whereas
F1_score combines precisions and recall and calculates the weighted average of both. The
equations to estimate these metrics are:

Accuracy = (TN + TP)/TS (4)

Precision =
TP

TP + FP
(5)

Sensitivity (recall) =
TP

TP + FN
(6)

Speci f icity =
TN

TN + FP
(7)

F1_score = 2·Precision × Recall
Precision + Recall

(8)

TP, TS, FP, TN, and FN stand for true positive, total samples, false positive, true
negative, and false negative, respectively.

4.3. Experimental Setup

The proposed approach testing and validation are conducted on a machine equipped
with an Intel (R) Core (TM) i5-5200U CPU and 8 GB of RAM. To complete the research,
we used the R2020a version of MATLAB. Input images were resized according to the
input image requirements of models. We utilized 80% of images for training and 20% for
validation. The training and testing sets were used in all experiments to train and validate
our proposed model and other contemporary models using the identical experimental
parameters for COVID-19 detection as those listed in Table 1. A series of experiments were
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performed to evaluate the classification performance of the proposed framework for binary
and multiclass classification utilizing chest radiographs, CT scans, and ECG images.

4.4. Performance Evaluation on COVID-19 Detection

In this section, we assessed the performance of the proposed approach on COVID-19
detection. We performed classification experiments using three types of images. With the
chest radiographs, we performed two classifications (binary and multiclass-class classifi-
cation) experiments on the COVID-19 Radiography Database. Also, with CT scans, we
performed a binary classification experiment on SARS-COV-2 CT scan dataset. Finally, with
ECG images, we conducted two classifications (binary and multiclass-class classification)
experiments on ECG Images of Cardiac and COVID-19 Patients.

4.4.1. Performance Evaluation on COVID-19 Detection Using Chest Radiograph Images
(Binary Classification)

This experiment aims to validate the performance of the proposed approach for
COVID-19 detection using chest radiograph images. For this experiment, we used all
the 13,808 chest radiograph images (3616 COVID-19 radiographs and 10,192 normal ra-
diographs) of the dataset. We used 11,047 images (2893 COVID-19 radiographs and
8154 normal radiographs) for training. The remaining 2761 images (723 COVID-19 radio-
graphs and 2038 normal radiographs) were used for testing. The training of the proposed
framework took 1262 min and 58 s for COVID-19 detection using chest radiographs. The
proposed framework achieved higher TN and TP values, as well as lower FN and FP values
at 22 epochs by misclassifying 5 radiographs out of 2761 in the testing phase, as shown in
the Table 3. The proposed approach achieved the best accuracy, precision, recall, specificity,
and F1-score of 99.82%, 99.72%, 99.59%, 99.90%, and 99.65%. Demonstrating its reliability in
COVID-19 detection. The proposed method significantly extracts the more robust features
to describe the chest radiograph image for accurate and reliable classification, resulting in
these results.

Table 3. Confusion matrix attained by ShuffleNet in binary classification scheme using
chest radiographs.

True Class

Predicted Class

Class COVID-19 Normal
COVID-19 221 2

Normal 3 2035

4.4.2. Performance Evaluation on COVID-19 Detection (Multiclass Classification) Using
Chest Radiographs

This experiment aims to assess the classification performance of the suggested frame-
work for COVID-19 identification in the case of multiclass classification using chest ra-
diographs. We considered two multiclass classification schemes for this experiment, i.e.,
three-class classification (COVID-19, normal, and pneumonia) and four-class classification
(COVID-19 and Normal, pneumonia, and lung obesity).

In the first scheme, we used all the 15,153 radiograph images (3616 radiographs of
COVID-19, 1345 Viral Pneumonia radiographs, and 10,192 radiographs of healthy individ-
uals) of the database. The 12,123 radiographs (2893 radiographs of COVID-19, 1076 Viral
Pneumonia radiographs, and 8154 radiographs of healthy individuals) were used for
training, whereas the remaining 3030 radiographs (723 radiographs of COVID-19 patients,
269 Viral Pneumonia radiographs, and 2038 radiographs of healthy individuals) were
used for testing. The training of the proposed model in the first scheme took 1460 min
and 24 s for COVID-19 detection. The proposed framework achieved higher TN and TP
values and lower FN and FP values at 22 epochs by misclassifying only one COVID-19
radiograph image out of 3030 in the testing phase, as shown in Table 4. The proposed
technique attained the best accuracy, precision, recall, specificity, and F1-score of 99.98%,
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100%, 100%, 99.97%, and 100%, respectively, demonstrating its effectiveness in COVID-19
three-class classification.

Table 4. Confusion matrix attained by ShuffleNet in three-class classification using chest radiographs.

True Class

Predicted Class

Class COVID-19 Normal Pneumonia
COVID-19 722 1 0

Normal 0 2038 0
Pneumonia 0 0 269

In the second scheme, we used all the 21,165 radiograph images (3616 images of
COVID-19 patients, 1345 Viral Pneumonia radiographs, 6012 Lung obesity, and
10,192 radiographs of normal individuals) of the dataset. We used 16,933 radiographs
(2893 images of COVID-19 patients, 1076 Viral Pneumonia radiographs, 8154 radiographs
of normal individuals, and 4810 Lung obesity) for training. The remaining 4232 radiographs
(723 images of COVID-19 patients, 269 Viral Pneumonia radiographs, 2038 radiographs
of normal individuals, and 1202 Lung obesity) were used for testing. The training of
the proposed framework in the second scheme took 2108 min and 24 s. The proposed
framework achieved the best results at 22 epochs by misclassifying “6” radiographs out of
4232 in the testing phase, as shown in Table 5. The proposed method attained the highest
accuracy, precision, recall, specificity, and F1-score of 99.78%, 99.75%, 99.75%, 99.93%,
99.75%, respectively, for demonstrating the effectiveness of the proposed framework in
COVID-19 four-class classification, as elaborated in Table 6.

Table 5. Confusion matrix attained by ShuffleNet in four-class classification using chest radiographs.

True Class

Predicted Class

Class COVID-19 Lung obesity Normal Pneumonia
COVID-19 723 0 0 0

Lung obesity 0 1197 5 0
Normal 1 13 2024 0

Pneumonia 0 0 0 269

Table 6. Performance evaluation on COVID-19 Radiography Database multi-class classification.

Classification Scheme Accuracy Precision Recall Specificity F1_Score

COVID-19, Normal,
and Pneumonia 99.98 100 100 99.97 100

COVID-19, Normal,
Pneumonia, and

Lung Obesity
99.78 99.75 99.75 99.93 99.75

With an average accuracy, precision, recall, specificity, and F1-score of 99.98%, 100%,
100%, 99.97%, and 100%, respectively, for three-class classification utilizing chest radiograph
images, it is verified that our model performed best in the first scheme in terms of accuracy
and specificity when compared to the second classification schemes. To assess the proposed
approach training performance, we have shown accuracy and loss in Figure 6, elaborating
that accuracy and loss after epoch “6” almost remain the same, which means we can obtain
satisfactory results even at lower classification epochs. It is to be noted that the model
attained high precision and recall and an F1-score of 100% in the first classification scheme,
i.e., three class classifications. The proposed model earned the same precision, recall, and
F1-score of 100% and 99.75% in the first and second schemes. It is clear from the results
of both schemes that the proposed model achieved satisfactory results greater than 99%
in terms of all performance metrics. The proposed model adequately extracts the most
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important and reliable features to represent the radiograph image for accurate and reliable
classification, resulting in these findings. The proposed method effectively extracts the
most discriminating features to characterize the radiograph image for accurate and reliable
classification, resulting in these findings.
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4.4.3. Performance Evaluation on COVID-19 Detection Using CT Scans
(Binary Classification)

This experiment aims to use COVID-19 CT scans to assess the performance of the
suggested approach for COVID-19 detection. We used all the 2482 COVID-19 CT scans
(1252 COVID-19 CT scans and 1230 healthy CT scans) of the dataset for this experiment. We
used 1986 CT scans (1002 COVID-19 and 984 healthy images) to train the model. Whereas
the rest of the 496 images (250 COVID-19 images and 246 normal images) were used for
testing. For COVID-19 detection utilizing CT-scans, the proposed framework required
329 min of training. The proposed framework achieved higher optimal TN and TP values
of 246 and 250 at 22 epochs by misclassifying 0 CT scans out of 496 in the testing phase, as
shown in Table 7.

Table 7. Confusion matrix attained by ShuffleNet in binary classification scheme using CT scans.

True Class

Predicted Class

Class COVID-19 Normal
COVID-19 250 0

Normal 0 246

To assess the training performance of our approach, we have shown the model accu-
racy and loss in Figure 7, which shows that accuracy and loss after epoch 14 almost remain
the same that means we obtain satisfactory results even at lower epochs (15 epochs). The
proposed method yielded the best accuracy, precision, recall, specificity, and F1-score of
100%. Although the CT scan images contain noise (such as darkness and low contrast),
the proposed method can still extract the distinctive features from the CT scans and detect
COVID-19 with optimal accuracy. The proposed framework effectively extracts the more
robust features to describe the CT scan image for accurate and reliable classification.
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4.4.4. Performance Evaluation on COVID-19 Detection Using ECG Images
(Binary Classification)

This experiment aims to evaluate the performance of the proposed approach for
COVID-19 identification using ECG trace images. For this experiment, we considered four
binary classification schemes, i.e., we performed binary classification of COVID-19 and
Normal, COVID-19 and MI, COVID-19 and AHB, and finally COVID-19 and RMI images
of the dataset named ECG Images dataset. In the first case, we used all the 1009 ECG
trace images (250 COVID-19 images and 859 healthy images) of the dataset. In contrast,
807 images (200 COVID-19 ECG images and 687 normal images) are utilized for training
and the rest of the 202 images (50 COVID-19 ECG images and 172 healthy images) for
testing. In the second case, we used all the dataset’s 327 ECG images (250 COVID-19
ECG images and 77 ECG images of MI patients). Similarly, 261 images (200 COVID-19
ECG images and 61 MI images) were utilized for training and the rest of the 66 images
(50 COVID-19 ECG images and 16 images of MI) for testing. In the third case, we used
all the dataset’s 798 ECG images (250 ECG images of COVID-19 and 548 ECG images
of AHB individuals). At the same time, 638 images (200 COVID-19 ECG images and
438 AHB images) were utilized for training and the remaining 160 images (50 COVID-19
ECG images and 110 AHB images) for testing. In the fourth case, we utilized all of the
dataset’s 453 ECG images (250 ECG images of COVID-19 patients and 203 ECG images of
RMI), whereas 362 images (200 COVID-19 ECG images and 162 RMI images) were utilized
for training and the remaining 91 images (50 COVID-19 ECG images and 41 RMI images)
for validation.

Table 8 summarizes the experimental findings from the four DL experiments. Com-
pared to all three remaining classification schemes, the proposed model attained the highest
accuracy and specificity results in the first scheme, with an accuracy of 99.10% and a speci-
ficity of 98.85% for COVID-19 detection using ECG trace images. In the third classification
scheme, COVID-19 and ABH classification, the proposed model has a second-best accuracy
of 98.74%, but the model has the lowest accuracy of 96.92% in the second classification
scheme. It is to be highlighted that all comparable models had an accuracy of greater than
95%. In all binary classification schemes, the proposed method achieved the same precision,
recall, and F1-score of 96.00%, 1.00%, and 97.96%, respectively. The proposed framework
effectively extracts the most discriminating features to represent the ECG trace image for
accurate and reliable classification, resulting in these findings.
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Table 8. Evaluation on ECG Images dataset of Cardiac and COVID-19 Patients binary classification.

Classification Scheme Accuracy Precision Recall Specificity F1_Score

COVID-19 and Normal 99.10 96.00 1.00 98.85 97.96
COVID-19 and

myocardial infarction 96.92 96.00 1.00 88.24 97.96

COVID-19 and
abnormal heartbeat 98.74 96.00 1.00 98.20 97.96

COVID-19 and recovered
myocardial infarction 97.80 96.00 1.00 95.35 97.96

4.4.5. Performance Evaluation on COVID-19 Detection Using ECG Images
(Multiclass Classification)

This experiment aims to measure the performance of the proposed framework for
COVID-19 identification using ECG trace images. We considered two multiclass classi-
fication schemes for this experiment, i.e., three-class classification (COVID-19, normal,
and other CVDs) and five-class classification (COVID-19 and Normal, MI, ABH, RMI).
In the first scheme, we used all the 1937 ECG images (250 ECG images of COVID-19
patients, 859 ECG images of healthy individuals, and 829 ECG images of other CVDs) of
the dataset, whereas, 1550 images (200 COVID-19 ECG images and 687 ECG images of
healthy individuals, and 663 ECG images of other CVDs) were used for training, and the
remaining 387 images (50 COVID-19 ECG images and 172 normal images, and 165 ECG
images of other CVDs) for testing. The second scheme used all the 1937 ECG images
(250 COVID-19, 859 normal, 77 MI, 548 AHB, and 203 RMI) of the dataset. In contrast,
1550 images (200 COVID-19, 687 normal, 62 MI, 439 AHB, and 162 RMI) were used for
training, the rest of the 387 images (50 COVID-19, 172 normal, 15 MI, 109 AHB, and 41 RMI)
for validation. The proposed framework achieved higher results (in the first classification
scheme) at 22 epochs by misclassifying only 6 ECG images out of 387 in the testing phase,
as shown in Table 9. The suggested framework achieved higher results (in the second
classification scheme) at 22 epochs by misclassifying only 6 ECG images out of 387 in the
testing phase, as shown in Table 10. The accuracy and loss performance of the proposed
approach training is shown in Figure 8. We obtained the maximum accuracy and minimum
loss at epochs 22. The results obtained from the classification experiments are depicted in
Table 11. The experimental findings show that the proposed model attained the best results
in the second scheme in terms of average accuracy and specificity compared to the first
classification schemes by achieving an accuracy of 99.37% and a specificity of 99.12% for
multiclass classification using ECG trace images. It is important to consider that the model
achieved high precision and recall of 98.00% and 99.0% in the first classification scheme, i.e.,
three-class classification. These results are because the proposed model effectively extracts
the most important and reliable features to represent the ECG trace image for accurate and
reliable classification.

4.5. Comparison with Hybrid Approaches (Sufflenet + SVM)

In this section, we conducted an experiment using classical decision-making methods
(SVM) instead of SoftMax structures in ShuffleNet. This experiment aimed to validate that
using SVM instead of SoftMax could reduce the computational complexity and compare
the performance of the proposed method with the hybrid method (Shufflenet and SVM).
Hence, we designed a hybrid approach in which we used the ShuffleNet for in-depth
features extraction and used these features as inputs to train SVM with linear kernel.
Dataset images are resized according to image input requirements of ShuffleNet by using
augmented image data stores before inserting them into the network for feature extraction.
We applied activations on the last global average pooling layer (a deeper layer) to extract
high-level features. According to the results, we achieved maximum results in three
classification schemes, i.e., a three-class classification scheme using chest radiographs,
binary classification using CT scans, and a five-class classification scheme using ECG
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images. Therefore, we used these three classification schemes in this experiment. The
classification results of deep features and the SVM approach are presented in Table 12. This
experiment showed that deep features of ShuffleNet and the SVM approach achieved lower
accuracy results than the proposed approach. However, this approach is more efficient
than the proposed approach in which we used SoftMax. Based on this experiment, we
can conclude that using SVM as a classifier instead of a SoftMax classifier can reduce the
computational complexity to a greater extent but affect the performance of the model.

Table 9. Confusion matrix attained by ShuffleNet in three-class classification scheme using
ECG images.

True Class

Predicted Class

Class COVID-19 Normal Other diseases
COVID-19 48 0 2

Normal 0 170 2
Other disease 0 2 163

Table 10. Confusion matrix attained by ShuffleNet in five-class classification scheme using
ECG images.

True Class

Predicted Class

Class COVID-19 MI RMI AHB Normal
COVID-19 48 0 0 2 0

MI 0 14 1 0
RMI 0 0 40 0 1
AHB 0 1 0 108

Normal 0 0 0 1 171

Diagnostics 2023, 13, x FOR PEER REVIEW 15 of 25 
 

 

other CVDs) and five-class classification (COVID-19 and Normal, MI, ABH, RMI). In the 

first scheme, we used all the 1937 ECG images (250 ECG images of COVID-19 patients, 

859 ECG images of healthy individuals, and 829 ECG images of other CVDs) of the da-

taset, whereas, 1550 images (200 COVID-19 ECG images and 687 ECG images of healthy 

individuals, and 663 ECG images of other CVDs) were used for training, and the remain-

ing 387 images (50 COVID-19 ECG images and 172 normal images, and 165 ECG images 

of other CVDs) for testing. The second scheme used all the 1937 ECG images (250 COVID-

19, 859 normal, 77 MI, 548 AHB, and 203 RMI) of the dataset. In contrast, 1550 images (200 

COVID-19, 687 normal, 62 MI, 439 AHB, and 162 RMI) were used for training, the rest of 

the 387 images (50 COVID-19, 172 normal, 15 MI, 109 AHB, and 41 RMI) for validation. 

The proposed framework achieved higher results (in the first classification scheme) at 22 

epochs by misclassifying only 6 ECG images out of 387 in the testing phase, as shown in 

Table 9. The suggested framework achieved higher results (in the second classification 

scheme) at 22 epochs by misclassifying only 6 ECG images out of 387 in the testing phase, 

as shown in Table 10. The accuracy and loss performance of the proposed approach train-

ing is shown in Figure 8. We obtained the maximum accuracy and minimum loss at 

epochs 22. The results obtained from the classification experiments are depicted in Table 

11. The experimental findings show that the proposed model attained the best results in 

the second scheme in terms of average accuracy and specificity compared to the first clas-

sification schemes by achieving an accuracy of 99.37% and a specificity of 99.12% for mul-

ticlass classification using ECG trace images. It is important to consider that the model 

achieved high precision and recall of 98.00% and 99.0% in the first classification scheme, 

i.e., three-class classification. These results are because the proposed model effectively ex-

tracts the most important and reliable features to represent the ECG trace image for accu-

rate and reliable classification. 

Table 9. Confusion matrix attained by ShuffleNet in three-class classification scheme using ECG 

images. 

True Class 

Predicted Class 

Class COVID-19 Normal Other diseases 

COVID-19 48 0 2 

Normal 0 170 2 

Other disease 0 2 163 

 

Figure 8. Training and testing accuracy and loss plots of five-class classification (black line shows 

the testing accuracy and loss) using ECG trace images dataset. 
Figure 8. Training and testing accuracy and loss plots of five-class classification (black line shows the
testing accuracy and loss) using ECG trace images dataset.

Table 11. Performance evaluation on ECG Images dataset of Cardiac and COVID-19 Patients multi-
class classification.

Classification Scheme Accuracy Precision Recall Specificity F1_Score

COVID-19, Normal,
and others 98.96 98.00 99.00 99.09 98.33

COVID-19, Normal,
MI, AHB and MI 99.37 97.0 97.60 99.12 97.29
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Table 12. Hybrid approach results.

Approach Classification
Scheme Dataset Accuracy Precision Recall Specificity F1_Score Time

Elapsed

Shufflenet
and SVM

Binary
classification

CT
scan dataset 91.33 91.5 91.5 93.56 91.5 2 min 32 s

Proposed
method

Binary
classification

CT
scan dataset 100 100 100 100 100 329 min

Shufflenet
and SVM

Three-class
classification

Radiograps
Database 96.34 92.66 94.33 96.56 93.59 15 min 8 s

Proposed
method

Three-class
classification

Radiograps
Database 99.98 100 100 99.97 100 1460 min

Shufflenet
and SVM

Five-class
classification

ECG
Images dataset 89.74 67 68.2 82.19 67.49 3 min 13 s

Proposed
method

Five-class
classification

ECG
Images dataset 99.37 97.0 97.60 99.12 97.29 193 min

4.6. COVID-19 Detection Comparison with State-of-the-Art DL Models

In this section, we performed experiments to confirm the effectiveness of the proposed
method for COVID-19 detection over the contemporary DL models. According to our
results, we achieved maximum results in three classification schemes, i.e., a three-class
classification scheme using chest radiographs, binary classification using CT scans, and a
five-class classification scheme using ECG images. So, we compared the performance of
our method (in above classification schemes) with different contemporary models.

4.6.1. COVID-19 Three-Class Classification Using Chest Radiographs Comparison with
State-of-the-Art Deep Learning Models

This experiment evaluates the usefulness of the proposed framework for COVID-19
three-class classification over the contemporary DL frameworks using chest radiograph
images. The proposed method attained the highest accuracy in the three-class classifica-
tion scheme using chest radiograph images. We compared the proposed method with
contemporary models just for COVID-19 three-class classification rather than binary and
four-class classification. For this purpose, we compared the classification performance
of our framework with three pre-trained DL models, i.e., Squeezenet [46], Alexnet [47],
and Darknet19 [48]. The frameworks are trained on millions of images from the Ima-
geNet database in a TL configuration. All networks’ pre-trained versions can classify
images into 1000 separate classes. The final three layers are fine-tuned to separate the
chest radiograph images into three groups: COVID-19 positive and COVID-19 nega-
tive, i.e., normal and pneumonia. The image input size of models varied, so we resized
the chest radiograph images of the dataset according to the input image requirement of
the models. We utilized the same experimental settings, as shown in Table 1, to tune
the models as we did for the proposed model. For this experiment, we used all the
15,153 radiograph images (3616 images of COVID-19 patients, 1345 Viral Pneumonia ra-
diographs, and 10,192 radiographs of normal individuals) of the dataset named COVID-19
Radiography Database. The 12,123 radiographs (2893 COVID-19 radiographs, 1076 Viral
Pneumonia radiographs, and 8154 radiographs of normal individuals) were used for
training, whereas the remaining 3030 radiographs (723 COVID-19 radiographs, 269 Viral
Pneumonia radiographs, and 2038 radiographs of normal individuals) were used for test-
ing. From the findings shown in Table 13, it is obvious that SqueezeNet achieved the
lowest performance results in terms of all performance metrics. DarkNet19 attained the
second-best classification accuracy of 99.67%. It is important to mention that the proposed
model achieved the optimal precision, recall, and F-measure of 100%. Based on the results,
we noticed that the proposed framework performed better than the other DL frameworks
by achieving accuracy, precision, recall, specificity, and F1-scores of 99.98%, 100%, 100%,
99.97%, and 100% for COVID-19 detection using chest radiograph images. The AlexNet
model has a lower accuracy than the proposed model since each convolutional layer in
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AlexNet is followed by the Relu activation function. The Relu sets all values smaller than
(x < 0), i.e., negative values, to zero for all neurons with negative values. There is no
assurance that all neurons will be activated all of the time, which leads to the dying Relu
problem. The model does not learn in this scenario because the optimization algorithm
does not work. The dying ReLU problem is problematic because it causes a significant part
of the network to become inactive over time. Because the proposed model applies BN after
each convolutional layer, the significance of each feature is preserved, even though some
features have a higher numerical value than others. As a result, the proposed model will be
completely unbiased (to higher-value features). In addition, as compared to a framework
that does not use BN, the framework that uses this technique is trained faster and has a
higher accuracy.

Table 13. COVID-19 three-class classification using chest radiographs comparison with state-of-the-
art frameworks.

Model Accuracy Precision Recall Specificity F1_Score

Squeezenet 98.29 98.33 94.67 95.02 96.46
Alexnet 98.50 98.66 95.00 95.85 96.79

Darknet19 99.67 99.66 99.00 99.43 99.32
Proposed model 99.98 100 100 99.97 100

4.6.2. COVID-19 Detection Using CT Scans Comparison with State-of-the-Art Deep
Learning Models

This experiment aims to evaluate the usefulness of the proposed methos for COVID-19
identification over the contemporary DL frameworks using CT scans. For this purpose,
we compared the detection performance of our framework with, i.e., Squeezenet [46],
GoogleNet [49], MobileNetv2 [50], and DenseNet [51]. The frameworks are trained on
millions of images from the ImageNet database in a TL configuration. All networks’
pre-trained versions can categorize images into 1000 different classes. The final three
layers are fine-tuned to separate the CT scans into COVID-19 positive and COVID-19
negative, i.e., normal. The image input size of models varied, so we resized the CT
scan images of the dataset. We utilized the same experimental settings, as shown in
Table 1 to tune the models as we did for our model. For this experiment, we used all
the 2482 COVID-19 CT scans (1252 COVID-19 CT scans and 1230 normal CT scans) of the
dataset named SARS-COV-2 CT scan dataset. We used 1986 CT scans (1002 COVID-19 and
984 normal images) to train the model, whereas the remaining 496 images (250 COVID-19
and 246 normal images) were used for testing. It is included from Table 14 that the proposed
approach outperformed other fine-tuned DL frameworks by achieving optimal results in
terms of all performance metrics. MobileNetv2 achieved the second-best accuracy of
99.80%, whereas SqueezNet and GoogleNet achieved the minimum accuracy of 99.60%.
SqueezeNet achieved recall and specificity of 100%, whereas GoogleNet achieved a recall
of 100%. Both SqueezeNet and GoogleNet achieved the same accuracy and F1-score of
99.60% and recall of 100%. It is important to mention that GoogleNet achieved lower
precision and specificity than SqueezeNet. So, we can say that GoogleNet is a worse
performing model in terms of precision and specificity compared to Squeezenet in this
case. The second-best accuracy is achieved by the Mobilenetv2 model, which employs
the concept of depthwise convolution and pointwise convolutions with 1 × 1 convolution
to capture the most significant information. A linear bottleneck is utilized between the
layers to avoid nonlinearities from causing more information loss. Despite the fact that
Densenet201 is deeper than ShuffleNet, the results indicate that ShuffleNet’s efficacy stems
from its efficient structure rather than its depth. ShuffleNet is built on pointwise group
convolutions and channel shuffle strategies, allowing for more feature map channels and
hence more knowledge to be encoded, which is extremely significant for the performance of
small networks. It is worth mentioning that, when compared to ShuffleNet, these methods
are more computationally intensive. The proposed framework attained the best results
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because of its capacity to extract more detailed features of CT scans by using small filters of
1 × 1 and 3 × 3.

Table 14. COVID-19 binary classification using CT scan images comparison with state-of-the-
art models.

Model Accuracy Precision Recall Specificity F1_Score

Squeezenet 99.60 99.21 100 100 99.60
Googlenet 99.60 99.20 100 99.19 99.60

Mobilenetv2 99.80 100 99.60 100 99.80
Densenet201 99.40 99.5 99.5 100 99.5

Proposed model 100 100 100 100 100

4.6.3. COVID-19 Five-Class Classification Using ECG Trace Images Comparison with
State-of-the-Art Deep Learning Models

This experiment aims to evaluate the usefulness of the proposed frameworks for
COVID-19 detection over the contemporary DL frameworks using ECG trace images. The
proposed approach achieved the highest accuracy in a five-class classification scheme using
ECG trace images. We compared the proposed method with contemporary models just
for COVID-19 five-class classification rather than binary and three-class classification. For
this purpose, we compared the classification performance of the framework with, i.e.,
Squeezenet [46], GoogleNet [49], DarkNet19 [48], Inceptionv3 [52], and Resnet101 [53].
All TL frameworks are trained on millions of images from the ImageNet database in a TL
configuration. All networks’ pre-trained versions can categorize images into 1000 different
classes. The final three layers are fine-tuned to separate the ECG trace images into three
groups: COVID-19, Normal, and other CVDs. The image input size of models varied, so we
resized the ECG images of the dataset. We utilized the same experimental settings (shown
in Table 1) to tune the models as we did for our model. For this purpose, we used all the
1937 ECG images (250 COVID-19, 859 normal, 77 MI, 548 AHB, and 203 RMI) of the dataset.
In comparison, 1548 images (200 COVID-19, 687 normal, 61 MI, 438 AHB, and 162 RMI)
were used for training and the remaining 389 images (50 COVID-19, 172 normal, 16 MI,
110 AHB, and 41 RMI) for testing. The results shown in Table 15 depicts that the proposed
method outperformed other fine-tuned DL models by achieving the highest results in
terms of all performance metrics. GoogleNet achieved the second-best accuracy of 99.28%,
whereas SqueezNet achieved the minimum accuracy of 97.83%. It is important to mention
that GoogleNet achieved lower precision and specificity than DarkNet19. So, we can say
that GoogleNet is a worse performing model in terms of precision and specificity compared
to DarkNet19 in this case. It is to be noted that SqueezeNet, DarkNet19, GoogleNet, and
ShuffleNet are 18, 19, 22, and 50 layers deep, respectively. The results show that accuracy
increases with model depth, as deeper CNN’s collect more complicated features and
improve the model’s classification performance. However, Resnet101 (101 layers deep),
a strong structure, led to worse results (accuracy of 90.15%) than the proposed approach.
The Resnet101 and GoogleNet uses a relu activation function after each convolutional
layer that makes a large portion of the network inactive (as relu makes all negative values
zero). In contrast, the ShuffleNet does not use the Relu activation function after depthwise
convolutions. Additionally, ShuffleNet uses 1 × 1 convolutions that extract more detailed
and distinctive features than Resnet variants that use 3 × 3 and 7 × 7 convolutions. Because
of its ability to extract more complex features for COVID-19 identification using ECG trace
images, the proposed COVID identification model achieved comparatively better results.
These results show the superiority of the proposed model over other contemporary models.

4.7. Comparison to the State-of-the-Art Approaches

We planned a multi-stage experiment to compare the suggested and existing state-
of-the-art COVID-19 identification approaches to verify the proposed model’s superiority
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over existing methodologies. We compared the proposed approach to the most recent DL
frameworks and presented the results in Table 16.

Table 15. COVID-19 five-class classification using ECG trace images comparison with state-of-the-
art models.

Model Accuracy Precision Recall Specificity F1_Score

Squeezenet 97.83 89.00 94.40 95.01 91.62
Googlenet 99.28 96.80 97.60 98.52 97.19
Darknet19 99.17 97.8 95 99.10 96.38
Resnet101 90.15 87.33 88.33 88.67 87.82

Mobilenetv2 91.71 74.2 75.2 89.24 74.70
Inceptionv3 80.61 78.31 79.23 79.2 78.76

Proposed model 99.37 97.0 97.60 99.12 97.29

Table 16. Accuracy comparison with state-of-the-art models in the literature.

S. No Work Classification Scheme Method Date Accuracy

Comparison with previous COVID-19 detection approaches using COVID-19 Radiography Database
1 Sanida et al. [54] COVID-19, Normal, and pneumonia Light weight CNN 2022 95.80
2 Kumar et al. [11] COVID-19, Normal, and pneumonia SARS-Net 2022 97.60%
3 Paul et al. [12] COVID-19, Normal, and pneumonia Ensemble method 2022 99.66%
4 Proposed approach COVID-19, Normal, and pneumonia ShuffleNet 2022 99.98

Comparison with previous COVID-19 detection approaches using SARS-COV-2 CT Scan Dataset
5 Basu et al. [55] COVID-19 and Normal Two-stage framework 2022 98.87%
6 Alquzi et al. [56] COVID-19 and Normal Efficientnet-B3 2022 99.0%
7 Dutta et al. [57] COVID-19 and Normal EDLFM-SI 2022 96.25
8 Proposed approach COVID-19 and Normal ShuffleNet 2022 100%

Comparison with previous COVID-19 detection approaches using ECG Images of Cardiac and COVID-19 Patients
9 Rahman et al. [39] COVID-19, Normal, and other CVDs COV-ECGNET 2021 97.36%

10 Proposed approach COVID-19, Normal, and other CVDs ShuffleNet 2022 98.96
11 Rahman et al. [39] Normal, COVID-19, MI, AHB, and RMI COV-ECGNET 2021 97.83%
12 Proposed approach Normal, COVID-19, MI, AHB, and RMI ShuffleNet 2022 99.37

In the first stage, we compared the proposed model with the contemporary COVID-19
detection methods [11,12,54] for three-class classification using chest radiographs. The
results are presented in Table 16 (row 1 and row 2). Kumar et al. [11] presented and analyzed
the performance of SARS-Net, to detect irregularities in a patient’s chest radiographs for
the presence of COVID-19 infection, SARS-Net merged Graph Convolutional Networks
with CNN. On the validation set, the suggested model was found to have an accuracy of
97.60% and a sensitivity of 92.90%. To detect COVID-19 from chest radiograph images, the
authors developed an inverted bell-curve-based ensemble of DL frameworks in [12]. For
this purpose, the pre-trained models were first retrained with radiograph datasets using
a TL method and integrated with the suggested inverted bell curve weighted ensemble
approach, which assigns a weight to each classifier’s output and performs a weighted
average of those outputs to get the final prediction. Two datasets were used to test the
suggested method: the COVID-19 Radiography Database and the IEEE COVID Chest X-ray
dataset. In the first dataset and the other dataset, the suggested technique achieved 99.66%
and 99.84%, respectively.

In the second stage, we compared the proposed approach with the contemporary
COVID-19 identification approaches [55,56] using CT scan images, and the findings are
shown in Table 16 (rows 5 and 6). For detecting COVID-19 from CT scan images,
Basu et al. [55] suggested an end-to-end system with feature extraction followed by feature
selection. Three CNNs were used to extract feature information. For feature selection, they
merged Harmony Search (HS), a meta-heuristic optimization technique, with Adaptive
β-Hill Climbing (AβHC), a local search approach. The technique achieved the best accuracy



Diagnostics 2023, 13, 162 20 of 24

ratings of 98.87% on the SARS-COV-2 CT scan dataset. Alquzi et al. [56] proposed a classifi-
cation approach using CT scans and machine learning to diagnose patients with COVID-19
infection. The system was built using the EfficientNet model. The authors altered the
Efficientnet-B3 model by deleting the top layer and replacing it with two branches with
different layers. The proposed approach was tested on the SARS-CoV-2 CT dataset and
achieved an accuracy of 99%.

Finally, in the third stage, we compared the proposed classifier with the contemporary
COVID-19 detection approaches [39] using ECG trace images, and the results are shown in
Table 16 (rows 7 and 9).

In the third case, the proposed model performed the best and achieved an accuracy
of 99.37% for five-class classification and 98.96% for three-class classification. In contrast,
Rahman et al. [39] produced an accuracy of 97.83% for five-class classification and achieved
an accuracy of 97.36% for three-class classification. It is significant to mention that the
research methods compared with the proposed framework detect COVID-19 using one
image type, i.e., chest radiographs, CT scans, or ECG trace images. To the best of our
knowledge, no research study uses three types of images data to detect COVID-19. As
the proposed method satisfactorily identifies and detects COVID-19 using three types of
images data, we can conclude that the proposed approach is more effective for COVID-19
detection and classification.

5. Discussions

This study presents an effective COVID-19 detection and COVID-19 and other diseases
(such as CVDs, Pneumonia, and Lung Obesity) classification approach using the TL ap-
proach by employing three types of images. We performed extensive classification (binary
and multiclass) experiments with the proposed approach using each type of image (chest
radiographs, CT scans, and ECG trace images). We evaluated the proposed approach with
the baseline datasets and achieved a higher accuracy than state-of-the-art approaches. We
achieved an accuracy of 99.82%, 99.98%, and 99.78% for binary, three-class, and four-class
classifications, respectively, using chest radiographs. Furthermore, we achieved the optimal
accuracy of 100% in the case of binary classification using CT scans. Finally, we achieved
an accuracy of 99.10%, 98.96%, and 99.37% in the case of binary, three-class, and five-class
classification schemes using ECG images.

This research study will aid in the speedier computer-aided detection of COVID-19
and other cardiac disorders. The proposed approach employs ECG trace images collected
by cellphones and are commonly accessible in nations with limited resources and budgets.
Chest radiographs enable community hospitals and local health centers to do investigations
in a short amount of time. The suggested method’s key advantage is that it outperforms
current state-of-the-art techniques without necessitating a segmentation process. The
proposed approach will be valuable in supporting doctors in formulating clinical judgments
to determine COVID-19 as soon as possible and strict the flow of contagious and viral
diseases, such as Covid-19. Furthermore, if this method is used in clinics, the number of
treatments will decrease, and it will help to limit doctor involvement and save countries’
health systems from collapsing.

Even though the proposed approach achieved promising results, we still discov-
ered some limitations and recommendations for future work. In this study, the proposed
approach could not categorize the numerous stages of COVID-19 infection, such as pre-
symptomatic, asymptomatic, moderate, and severe, due to a lack of datasets that could be
utilized to examine the severity level of COVID-19 infection. The proposed approach does
not identify how well the system detects COVID-19 using other imaging modalities, such
as lung ultrasound and lung PET (positron emission tomography) scans. The proposed
approach is currently trained and validated with comparatively limited data set instances.
However, the number of training data significantly influences the performance and effec-
tiveness of DL-based frameworks; therefore, the proposed approach may also be expanded
by employing a large-scale dataset containing millions of images. We consistently split
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images data into an 80% training set and a 20% test set in the proposed approach. It is
possible, though, that alternative splits will provide different outcomes.

In the future, we intend to perform experiments using comparatively large-scale
datasets of chest radiographs, CT scans, and ECG trace images to evaluate the models’
identification and classification ability by testing them on a variety of large-scale datasets
from various sources and with images obtained by multiple machines. We intend to use
the same approach to categorize the numerous stages of COVID-19 infection, such as
pre-symptomatic, asymptomatic, moderate, severe, etc. Additionally, we will use the
proposed method in other COVID-19 datasets or other medical datasets with CT scans or
chest radiographs. Another future direction is to employ different image segmentation and
pre-processing approaches to remove noise, i.e., darkness, low contrast, damaged pixels,
or occlusion from the input images, particularly, CT-scan, to improve the classifier results.
Additionally, due to the emergence of the internet, many countries’ health care institutions
are using many smart and intelligent electronic devices to combat diseases and obtain
pivotal information about their growth. Furthermore, IoT and blockchain technologies are
helping medical professionals to obtain essential insights and information about patients’
symptoms and behaviors. Similarly, medical physicians utilize IoT-enabled devices to
remotely monitor patients, assuming that COVID-19 spreads faster than the average viral
disease. More recently, Internet of Medical Things (IoMT) applications and devices have
been heavily used in the medical domain to gather, analyze, and transmit healthcare-
related information. Therefore, IoT-based medical devices can improve and enhance
the diagnosis and detection process of various infectious diseases, which is essential in
the case of COVID-19. Furthermore, IoT-enabled medical devices can capture the body
temperature, gather samples and information from the infected patients, and minimize
human intervention to reduce virus spread. In addition, during the quarantine period of
COVID-19 positive patients, IoT medical devices can monitor infected patients remotely
to prevent the spread of the virus. Therefore, it is necessary to propose machine and deep
learning approaches based on blockchain and IoT technologies because both significantly
leverage the global healthcare industry to timely detect and identify COVID-19 from the
data generated by these devices. Furthermore, to generalize the proposed approach in
detecting other important medical diseases [58,59], we aim to validate the performance of
the proposed approach by training and testing it on the identification of brain tumors [60,61],
pest detection [62], heart diseases [63,64], and mask detection [65], blood diseases [66–68].

6. Conclusions

This work presents an effective method for automated COVID-19 detection by em-
ploying the ShuffleNet DL model in a TL setup. The ShuffleNet framework was chosen for
its proven effectiveness in image detection and classification tasks. The presented DL-based
model reliably and accurately detects COVID-19 using three types of images data, i.e.,
chest radiographs, CT scans, and ECG trace images. Moreover, we have validated the
robustness and generalizability of the proposed model on three publicly available datasets.
The accuracy of 99.98% for COVID-19 detection in the case of three-class classification using
chest radiographs, optimal accuracy of 100% for COVID-19 detection using CT scans, and
99.37 for five-class classification using ECG trace images have verified the effectiveness of
our proposed model over the contemporary methods. The optimal accuracy of 100% for
COVID-19 detection using CT scans and the accuracy gain of 1.54% (in the case of five-class
classification using ECG trace images) from the previous approach, which utilized ECG
images for the first time, has a major contribution to improving the COVID-19 predic-
tion rate in early stages. Experimental results demonstrate that the proposed framework
outperforms the existing COVID-19 detection and classification approaches.

Author Contributions: N.U. developed the method; N.U., M.S.K., N.E.-R. and J.A.K. performed the
experiments and analysis, and J.A.K., N.U. and S.E.-S. wrote the paper. All authors have read and
agreed to the published version of the manuscript.



Diagnostics 2023, 13, 162 22 of 24

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used in this investigation are available on request from
the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ullah, N.; Khan, J.A.; Almakdi, S.; Khan, M.S.; Alshehri, M.; Alboaneen, D.; Raza, A. A novel CovidDetNet deep learning model

for effective COVID-19 infection detection using chest radiograph images. Appl. Sci. 2022, 12, 6269. [CrossRef]
2. Ullah, N.; Javed, A. Deep Features Comparative Analysis for COVID-19 Detection from the Chest Radiograph Images. In

Proceedings of the 2021 International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 13–14
December 2021; pp. 258–263.

3. Peng, X.; Xu, X.; Li, Y.; Cheng, L.; Zhou, X.; Ren, B. Transmission routes of 2019-ncov and controls in dental practice. Int. J. Oral
Sci. 2020, 12, 9. [CrossRef]

4. Available online: https://covid19.who.int/ (accessed on 12 September 2022).
5. World Health Organization. Laboratory Testing for Coronavirus Disease 2019 (COVID-19) in Suspected Human Cases March 2,

2020. Available online: https://apps.who.int/iris/bitstream/handle/10665/331329/WHO-COVID-19-laboratory-2020.4-eng.pdf
(accessed on 15 May 2020).

6. American Society for Microbiology. Supply Shortages Impacting COVID-19 and Non-COVID Testing. 2020. Available online:
https://asm.org/Articles/2020/September/Clinical-Microbiology-Supply-Shortage-Collecti-1 (accessed on 14 September 2022).

7. Nawaz, M.; Nazir, T.; Javed, A.; Malik, K.M.; Saudagar, A.K.J.; Khan, M.B.; Hasanat, M.H.A.; AlTameem, A.; AlKhathami, M.
Efficient-ECGNet framework for COVID-19 classification and correlation prediction with the cardio disease through electrocar-
diogram medical imaging. Front. Med. 2022, 9, 1–19. [CrossRef]

8. Barstugan, M.; Ozkaya, U.; Ozturk, S. Coronavirus (COVID-19) classification using CT images by machine learning methods.
arXiv 2020, arXiv:2003.09424.

9. Akudjedu, T.N.; Botwe, B.O.; Wuni, A.R.; Mishio, N.A. Impact of the COVID-19 pandemic on clinical radiography practice in low
resource settings: The Ghanaian radiographers’ perspective. Radiography 2021, 27, 443–452. [CrossRef]

10. Ashar, H.; Singh, B.; Desai, R.; Abbas, R.A.; Raut, P. A Deep Learning-Based Approach for Detection of Viral and Bacterial
Pneumonia from Chest X-rays. In Information and Communication Technology for Cohempetitive Strategies (ICTCS 2020); Springer:
Singapore, 2022; pp. 173–182.

11. Gaál, G.; Maga, B.; Lukács, A. Attention U-Net Based Adversarial Architectures for Chest X-ray Lung Segmentation. arXiv 2020,
arXiv:2003.10304.

12. Kumar, A.; Tripathi, A.R.; Satapathy, S.C.; Zhang, Y.D. SARS-Net: COVID-19 detection from chest X-rays by combining graph
convolutional network and convolutional neural network. Pattern Recognit. 2022, 122, 108255. [CrossRef]

13. Paul, A.; Basu, A.; Mahmud, M.; Kaiser, M.S.; Sarkar, R. Inverted bell-curve-based ensemble of deep learning models for detection
of COVID-19 from chest X-rays. Neural Comput. Appl. 2022. [CrossRef]

14. Kumari, A.; Mehta, A.K. Effective prediction of COVID-19 using supervised machine learning with Ensemble Modeling. In
Proceedings of the International Conference on Paradigms of Communication, Computing and Data Sciences; Springer: Singapore, 2022;
pp. 537–547.

15. Aggarwal, P.; Mishra, N.K.; Fatimah, B.; Singh, P.; Gupta, A.; Joshi, S.D. COVID-19 image classification using deep learning:
Advances, challenges and opportunities. Comput. Biol. Med. 2022, 144, 105350. [CrossRef]

16. Hassan, H.; Ren, Z.; Zhou, C.; Khan, M.A.; Pan, Y.; Zhao, J.; Huang, B. Supervised and Weakly Supervised Deep Learning Models
for COVID-19 CT Diagnosis: A Systematic Review. Comput. Methods Programs Biomed. 2022, 218, 106731. [CrossRef]

17. Mahdy, L.N.; Ezzat, K.A.; Elmousalami, H.H.; Ella, H.A.; Hassanien, A.E. Automatic X-ray COVID-19 lung image classification
system based on multi-level thresholding and support vector machine. medRxiv 2020. [CrossRef]

18. Sethy, P.K.; Behera, S.K. Detection of Coronavirus Disease (COVID-19) Based on Deep Features. 2020. Available online:
https://www.preprints.org/manuscript/202003.0300/v1 (accessed on 19 March 2020).

19. Novitasari, D.C.R.; Hendradi, R.; Caraka, R.E.; Rachmawati, Y.; Fanani, N.Z.; Syarifudin, A.; Toharudin, T.; Chen, R.C. Detection
of COVID-19 chest X-ray using support vector machine and convolutional neural network. Commun. Math. Biol. Neurosci. 2020,
2020, 42.

20. Agushaka, J.O.; Ezugwu, A.E.; Abualigah, L. Dwarf Mongoose Optimization Algorithm. Comput. Methods Appl. Mech. Eng. 2020,
391, 114570. [CrossRef]

21. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods
Appl. Mech. Eng. 2021, 376, 113609. [CrossRef]

22. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila optimizer: A novel meta-heuristic
optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]

http://doi.org/10.3390/app12126269
http://doi.org/10.1038/s41368-020-0075-9
https://covid19.who.int/
https://apps.who.int/iris/bitstream/handle/10665/331329/WHO-COVID-19-laboratory-2020.4-eng.pdf
https://asm.org/Articles/2020/September/Clinical-Microbiology-Supply-Shortage-Collecti-1
http://doi.org/10.3389/fmed.2022.1005920
http://doi.org/10.1016/j.radi.2020.10.013
http://doi.org/10.1016/j.patcog.2021.108255
http://doi.org/10.1007/s00521-021-06737-6
http://doi.org/10.1016/j.compbiomed.2022.105350
http://doi.org/10.1016/j.cmpb.2022.106731
http://doi.org/10.1101/2020.03.30.20047787
https://www.preprints.org/manuscript/202003.0300/v1
http://doi.org/10.1016/j.cma.2022.114570
http://doi.org/10.1016/j.cma.2020.113609
http://doi.org/10.1016/j.cie.2021.107250


Diagnostics 2023, 13, 162 23 of 24

23. Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired
meta-heuristic optimizer. Expert Syst. Appl. 2021, 191, 116158. [CrossRef]

24. Oyelade, O.N.; Ezugwu, A.E.S.; Mohamed, T.I.; Abualigah, L. Ebola Optimization Search Algorithm: A New Nature-Inspired
Metaheuristic Optimization Algorithm. IEEE Access 2022, 10, 16150–16177. [CrossRef]

25. Das, D.; Santosh, K.; Pal, U. Truncated inception net: COVID-19 outbreak screening using chest X-rays. Phys. Eng. Sci. Med. 2020,
43, 915–925. [CrossRef]

26. Ozturk, T.; Talo, M.; Yildirim, E.; Baloglu, U.; Yildirim, O. Automated detection of COVID-19 cases using deep neural networks
with X-ray images. Comput. Biol. Med. 2020, 121, 103792. [CrossRef]

27. Khan, A.; Shah, J.; Bhat, M. Coronet: A deep neural network for detection and diagnosis of COVID-19 from chest X-ray images.
Comput. Methods Programs Biomed. 2020, 196, 105581. [CrossRef]

28. Apostolopoulos, I.D.; Aznaouridis, S.I.; Tzani, M.A. Extracting Possibly Representative COVID-19 Biomarkers from X-ray Images
with Deep Learning Approach and Image Data Related to Pulmonary Diseases. J. Med. Biol. Eng. 2020, 40, 462–469. [CrossRef]

29. Ucar, F.; Korkmaz, D. COVIDiagnosis-Net: Deep Bayes-SqueezeNet based Diagnostic of the Coronavirus Disease 2019 (COVID-19)
from X-ray Images. Med. Hypotheses 2020, 140, 109761. [CrossRef]

30. Momani, S.; Abo-Hammour, Z.S.; Alsmadi, O.M. Solution of inverse kinematics problem using genetic algorithms. Appl. Math.
Inf. Sci. 2016, 10, 225. [CrossRef]

31. Abo-Hammour, Z.; Arqub, O.A.; Alsmadi, O.; Momani, S.; Alsaedi, A. An optimization algorithm for solving systems of singular
boundary value problems. Appl. Math. Inf. Sci. 2014, 8, 2809. [CrossRef]

32. Ullah, N.; Javed, A.; Ghazanfar, M.A.; Alsufyani, A.; Bourouis, S. A novel DeepMaskNet model for face mask detection and
masked facial recognition. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 9905–9914. [CrossRef]

33. Abu Arqub, O.; Abo-Hammour, Z.; Momani, S.; Shawagfeh, N. Solving singular two-point boundary value problems using
continuous genetic algorithm. Abstr. Appl. Anal. 2012, 2012, 205391. [CrossRef]

34. Mei, X.; Lee, H.-C.; Diao, K.Y.; Huang, M.; Lin, B.; Liu, C.; Xie, Z.; Ma, Y.; Robson, P.M.; Chung, M. Artificial intelligence–enabled
rapid diagnosis of patients with COVID-19. Nat. Med. 2020, 26, 1224–1228. [CrossRef]

35. Wang, S.; Kang, B.; Ma, J.; Zeng, X.; Xiao, M.; Guo, J.; Cai, M.; Yang, J.; Li, Y.; Meng, X.; et al. A deep learning algorithm using ct
images to screen for corona virus disease (COVID-19). Eur. Radiol. 2021, 31, 6096–6104. [CrossRef]

36. Aversano, L.; Bernardi, M.L.; Cimitile, M.; Pecori, R. Deep neural networks ensemble to detect COVID-19 from CT scans. Pattern
Recognit. 2021, 120, 108135. [CrossRef]

37. Okolo, G.I.; Katsigiannis, S.; Althobaiti, T.; Ramzan, N. On the Use of Deep Learning for Imaging-Based COVID-19 Detection
Using Chest X-rays. Sensors 2021, 21, 5702. [CrossRef]

38. Uddin, A.; Talukder, B.; Monirujjaman, K.M.; Zaguia, A. Study on convolutional neural network to detect COVID-19 from chest
X-rays. Math. Probl. Eng. 2021, 2021, 3366057. [CrossRef]

39. Rahman, T.; Akinbi, A.; Chowdhury, M.E.; Rashid, T.A.; Şengür, A.; Khandakar, A.; Islam, K.R.; Ismael, A.M. COV-ECGNET:
COVID-19 detection using ECG trace images with deep convolutional neural network. arXiv 2021, arXiv:2106.00436. [CrossRef]
[PubMed]

40. Absar, N.; Mamur, B.; Mahmud, A.; Emran, T.B.; Khandaker, M.U.; Faruque, M.R.I.; Osman, H.; Elzaki, A.; Elkhader, B.A.
Development of a computer-aided tool for detection of COVID-19 pneumonia from CXR images using machine learning
algorithm. J. Radiat. Res. Appl. Sci. 2022, 15, 32–43. [CrossRef]

41. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices.
arXiv 2017, arXiv:1707.01083v2.

42. Chowdhury, M.E.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Mahbub, Z.B.; Islam, K.R.; Khan, M.S.; Iqbal, A.; Al
Emadi, N.; et al. Can AI help in screening Viral and COVID-19 pneumonia? IEEE Access 2020, 8, 132665–132676. [CrossRef]

43. Rahman, T.; Khandakar, A.; Qiblawey, Y.; Tahir, A.; Kiranyaz, S.; Kashem, S.B.A.; Islam, M.T.; Al Maadeed, S.; Zughaier, S.M.;
Khan, M.S.; et al. Exploring the Effect of Image Enhancement Techniques on COVID-19 Detection using Chest X-ray Images.
Comput. Biol. Med. 2020, 132, 104319. [CrossRef]

44. Soares, E.; Angelov, P.; Biaso, S.; Froes, M.H.; Abe, D.K. SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for
SARS-CoV-2 identification. medRxiv 2020. [CrossRef]

45. Khan, A.H.; Hussain, M.; Malik, M.K. ECG Images dataset of Cardiac and COVID-19 Patients. Data Brief 2021, 34, 106762.
[CrossRef]

46. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

47. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM
2017, 60, 84–90. [CrossRef]

48. Redmon, J. Darknet: Open Source Neural Networks in C. Available online: https://pjreddie.com/darknet (accessed on 23
May 2021).

49. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

http://doi.org/10.1016/j.eswa.2021.116158
http://doi.org/10.1109/ACCESS.2022.3147821
http://doi.org/10.1007/s13246-020-00888-x
http://doi.org/10.1016/j.compbiomed.2020.103792
http://doi.org/10.1016/j.cmpb.2020.105581
http://doi.org/10.1007/s40846-020-00529-4
http://doi.org/10.1016/j.mehy.2020.109761
http://doi.org/10.18576/amis/100122
http://doi.org/10.12785/amis/080617
http://doi.org/10.1016/j.jksuci.2021.12.017
http://doi.org/10.1155/2012/205391
http://doi.org/10.1038/s41591-020-0931-3
http://doi.org/10.1007/s00330-021-07715-1
http://doi.org/10.1016/j.patcog.2021.108135
http://doi.org/10.3390/s21175702
http://doi.org/10.1155/2021/3366057
http://doi.org/10.1007/s13755-021-00169-1
http://www.ncbi.nlm.nih.gov/pubmed/35096384
http://doi.org/10.1016/j.jrras.2022.02.002
http://doi.org/10.1109/ACCESS.2020.3010287
http://doi.org/10.1016/j.compbiomed.2021.104319
http://doi.org/10.1101/2020.04.24.20078584
http://doi.org/10.1016/j.dib.2021.106762
http://doi.org/10.1145/3065386
https://pjreddie.com/darknet


Diagnostics 2023, 13, 162 24 of 24

50. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520.

51. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; Volume 1, pp.
4700–4708.

52. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

53. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

54. Sanida, T.; Sideris, A.; Tsiktsiris, D.; Dasygenis, M. Lightweight Neural Network for COVID-19 Detection from Chest X-ray
Images Implemented on an Embedded System. Technologies 2022, 10, 37. [CrossRef]

55. Basu, A.; Sheikh, K.H.; Cuevas, E.; Sarkar, R. COVID-19 detection from CT scans using a two-stage framework. Expert Syst. Appl.
2022, 193, 116377. [CrossRef] [PubMed]

56. Alquzi, S.; Alhichri, H.; Bazi, Y. Detection of COVID-19 Using EfficientNet-B3 CNN and Chest Computed Tomography Images.
In International Conference on Innovative Computing and Communications; Springer: Singapore, 2022; pp. 365–373.

57. Dutta, A.K.; Aljarallah, N.A.; Abirami, T.; Sundarrajan, M.; Kadry, S.; Nam, Y.; Jeong, C.W. Optimal Deep-Learning-Enabled
Intelligent Decision Support System for SARS-CoV-2 Classification. J. Healthc. Eng. 2022, 2022, 4130674. [CrossRef] [PubMed]

58. Ahmad, I.; Wang, X.; Zhu, M.; Wang, C.; Pi, Y.; Khan, J.A.; Khan, S.; Samuel, O.W.; Chen, S.; Li, G. EEG-based epileptic seizure
detection via machine/deep learning approaches: A Systematic Review. Comput. Intell. Neurosci. 2022, 2022, 6486570. [CrossRef]
[PubMed]

59. Ullah, N.; Khan, J.A.; Khan, M.S.; Khan, W.; Hassan, I.; Obayya, M.; Negm, N.; Salama, A.S. An Effective Approach to Detect and
Identify Brain Tumors Using Transfer Learning. Appl. Sci. 2022, 12, 5645. [CrossRef]

60. Ullah, N.; Khan, M.S.; Khan, J.A.; Choi, A.; Anwar, M.S. A Robust End-to-End Deep Learning-Based Approach for Effective and
Reliable BTD Using MR Images. Sensors 2022, 22, 7575. [CrossRef]

61. Raza, A.; Ayub, H.; Khan, J.A.; Ahmad, I.; Salama, A.S.; Daradkeh, Y.I.; Javeed, D.; Rehman, A.U.; Hamam, H. A Hybrid Deep
Learning-Based Approach for Brain Tumor Classification. Electronics 2022, 11, 1146. [CrossRef]

62. Ullah, N.; Khan, J.A.; Alharbi, L.A.; Raza, A.; Khan, W.; Ahmad, I. An Efficient Approach for Crops Pests Recognition and
Classification Based on Novel DeepPestNet Deep Learning Model. IEEE Access 2022, 10, 73019–73032. [CrossRef]

63. Ali, L.; Niamat, A.; Khan, J.A.; Golilarz, N.A.; Xingzhong, X.; Noor, A.; Nour, R.; Bukhari, S.A.C. An optimized stacked support
vector machines based expert system for the effective prediction of heart failure. IEEE Access 2019, 7, 54007–54014. [CrossRef]

64. Ali, L.; Rahman, A.; Khan, A.; Zhou, M.; Javeed, A.; Khan, J.A. An automated diagnostic system for heart disease prediction
based on X2 statistical model and optimally configured deep neural network. IEEE Access 2019, 7, 34938–34945. [CrossRef]

65. Jabbar, A.; Li, X.; Assam, M.; Khan, J.A.; Obayya, M.; Alkhonaini, M.A.; Al-Wesabi, F.N.; Assad, M. AFD-StackGAN: Automatic
Mask Generation Network for Face De-Occlusion Using StackGAN. Sensors 2022, 22, 1747. [CrossRef] [PubMed]

66. El-Rashidy, N.; ElSayed, N.E.; El-Ghamry, A.; Talaat, F.M. Utilizing fog computing and explainable deep learning techniques for
gestational diabetes prediction. Neural Comput. Appl. 2022. [CrossRef]

67. El-Rashidy, N.; ElSayed, N.E.; El-Ghamry, A.; Talaat, F.M. Prediction of gestational diabetes based on explainable deep learning
and fog computing. Soft Comput. 2022, 26, 11435–11450. [CrossRef]

68. El-Rashidy, N.; Abuhmed, T.; Alarabi, L.; El-Bakry, H.M.; Abdelrazek, S.; Ali, F.; El-Sappagh, S. Sepsis prediction in intensive
care unit based on genetic feature optimization and stacked deep ensemble learning. Neural Comput. Appl. 2022, 34, 3603–3632.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/technologies10020037
http://doi.org/10.1016/j.eswa.2021.116377
http://www.ncbi.nlm.nih.gov/pubmed/35002099
http://doi.org/10.1155/2022/4130674
http://www.ncbi.nlm.nih.gov/pubmed/35178226
http://doi.org/10.1155/2022/6486570
http://www.ncbi.nlm.nih.gov/pubmed/35755757
http://doi.org/10.3390/app12115645
http://doi.org/10.3390/s22197575
http://doi.org/10.3390/electronics11071146
http://doi.org/10.1109/ACCESS.2022.3189676
http://doi.org/10.1109/ACCESS.2019.2909969
http://doi.org/10.1109/ACCESS.2019.2904800
http://doi.org/10.3390/s22051747
http://www.ncbi.nlm.nih.gov/pubmed/35270898
http://doi.org/10.1007/s00521-022-08007-5
http://doi.org/10.1007/s00500-022-07420-1
http://doi.org/10.1007/s00521-021-06631-1

	Introduction 
	Related Work 
	Methodology 
	Motivations 
	ShuffleNet Architecture Details 
	Hyperparameters Settings 

	Results 
	Research Datasets 
	Evaluation Metrics 
	Experimental Setup 
	Performance Evaluation on COVID-19 Detection 
	Performance Evaluation on COVID-19 Detection Using Chest Radiograph Images (Binary Classification) 
	Performance Evaluation on COVID-19 Detection (Multiclass Classification) Using Chest Radiographs 
	Performance Evaluation on COVID-19 Detection Using CT Scans (Binary Classification) 
	Performance Evaluation on COVID-19 Detection Using ECG Images (Binary Classification) 
	Performance Evaluation on COVID-19 Detection Using ECG Images (Multiclass Classification) 

	Comparison with Hybrid Approaches (Sufflenet + SVM) 
	COVID-19 Detection Comparison with State-of-the-Art DL Models 
	COVID-19 Three-Class Classification Using Chest Radiographs Comparison with State-of-the-Art Deep Learning Models 
	COVID-19 Detection Using CT Scans Comparison with State-of-the-Art Deep Learning Models 
	COVID-19 Five-Class Classification Using ECG Trace Images Comparison with State-of-the-Art Deep Learning Models 

	Comparison to the State-of-the-Art Approaches 

	Discussions 
	Conclusions 
	References

