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Introduction

With biology becoming quantitative,

systems-level studies can now be per-

formed at spatial scales ranging from

molecules to ecosystems. Biological data

generated consistently across scales can be

integrated with physico-chemical contex-

tual data for a truly holistic approach, with

a profound impact on our understanding

of life [1–5]. Marine ecosystems are crucial

in the regulation of Earth’s biogeochemi-

cal cycles and climate [6,7]. Yet their

organization, evolution, and dynamics

remain poorly understood [8,9]. The Tara

Oceans project was launched in Septem-

ber 2009 for a 3-year study of the global

ocean ecosystem aboard the ship Tara. A

unique sampling programme encompass-

ing optical and genomic methods to

describe viruses, bacteria, archaea, pro-

tists, and metazoans in their physico-

chemical environment has been imple-

mented. Starting as a grassroots initiative

of a few scientists, the project has grown

into a global consortium of over 100

specialists from diverse disciplines, includ-

ing oceanography, microbial ecology,

genomics, molecular, cellular, and systems

biology, taxonomy, bioinformatics, data

management, and ecosystem modeling.

This multidisciplinary community aims to

generate systematic, open access datasets

usable for probing the morphological and

molecular makeup, diversity, evolution,

ecology, and global impacts of plankton

on the Earth system.

Viruses, bacteria, archaea, protists, and

planktonic metazoans form the bulk of

biomass throughout the oceans and drive

the global biogeochemical cycles that

regulate the Earth system [6,9,10]. For

instance, marine microbes produce nearly

as much oxygen through primary produc-

tion as land plants [11]. This system is

driven by a complex ecological network of

autotrophic, heterotrophic, and mixo-

trophic organisms, where trophodynamics

and biogeochemical interdependencies are

determining factors for primary production

rates in marine systems. In addition, ocean

viruses modulate primary production by

inducing organism mortality and by en-

coding core photosynthesis genes that are

expressed during infection [12–14]. There-

fore, only an ecosystem-wide approach,

from viruses to metazoans, will enable us to

start disentangling the functioning of the

Earth system. This approach ranges from

mapping organismal diversity across scales

spanning five orders of magnitude to

developing empirical datasets that inform

conceptual models about the complex

interplay between organisms driving fluxes

of energy, biogeochemical, and molecular

‘‘currencies’’ in ocean ecosystems [15].

A global-scale study of morphological,

genetic, and functional biodiversity of

plankton organisms in relation to the

changing physico-chemical parameters of

the oceans [8,16–18] is now critical to

understanding and managing our fragile

oceans. Specifically, such a dataset will

improve our understanding of the princi-

ples governing marine ecosystems and

the evolution of life in the ocean, thus

enhancing our capacity of assessing ecosys-

tem services and enabling a better predic-

tion of fish stock distribution and impacts of
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global climate variations [19]. Planktonic

organisms are also an enormous but largely

untapped source [8,20] of bio-active com-

pounds for the pharmaceutical, food, and

cosmetics industries, as well as metabolic

pathways that may provision our future

energy needs [21]. In this context, the Tara

Oceans consortium was founded, which

embarked on a 3-year research cruise

across the worlds’ oceans.

Tara Oceans is not the first group to

explore global ocean biodiversity. For

example, previous global initiatives include

satellite-based chlorophyll measurements,

the Census of Marine Life, long-term

observation sites, and arrays of remote

sensors on floats that provide physical,

chemical, and biological data [15]. Other

global genomics studies have been

launched, e.g., Global Ocean Sampling

(GOS) expedition [22] and the Earth

Microbiome [23] project, as well as inte-

grative projects focusing on specific biomes

(e.g., Malaspina, http://www.expedicion

malaspina.es/). However, Tara Oceans

takes such investigations one step further

by integrating the genetic, morphological,

and functional diversity in its environmen-

tal context at global ocean scale and at

multiple depths (Figure 1), from viruses to

fish larvae. While such a ‘‘study it all’’

approach is not novel (e.g., NSF Long

Term Ecological Research sites), it has

remained science fiction until technology

and informatics became enabling. Now,

high throughput sequencing, quantitative

imaging methods, dedicated bio-informat-

ics and modeling tools are poised to assess

the complexity of the global ocean systems.

To achieve such integration, Tara Oceans is

driven by researchers with expertise in

biological and physical oceanography,

ecology, microbiology, systematics, molec-

ular, cellular and systems biology, bioinfor-

matics, data management, and modeling.

Figure 1. The Tara Oceans cruise. (A) Route of the Tara Oceans expedition. Sampling stations from surface to 1,000 m are carried out between
ports of call guided by satellite data about the basin to sub-mesoscale structures. (B) Tara Oceans sampling sites in the Mozambique Channel and
South Atlantic. The images show near real time sea surface height (SSH) from satellite. Each sampling station is indicated by a black diamond; those
that are currently being targeted for priority studies are encircled by a white halo. The altimetry data is from September 16, 2011, when Tara was
sampling inside an Agulhas ring. Several other rings are also apparent in the figure, as is the Malvinas Current off the Argentinean coast that injects
cold Antarctic water into the resident waters.
doi:10.1371/journal.pbio.1001177.g001
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Pragmatically, to accomplish such an

ambitious goal, Tara Oceans consortium

scientists have necessarily been intimately

involved in every aspect of the expedition.

This includes planning, preparation, and

running of the on-board sampling proto-

cols, as well as the development of sample

analysis and bioinformatics pipelines, data

management, and modeling projects. This

involvement ensures a coherent worldwide

data collection and analysis strategy,

which is reinforced through regular work-

shops. The consortium has an open access

policy concerning the data that will be

made available to the scientific community

as soon as possible after validation. Finally,

a significant outreach effort is made to

show life on board of Tara as well as

translate results to the broader public (see

http://oceans.taraexpeditions.org/ and

http://www.planktonchronicles.org).

The Expedition and Sampling
Strategy

To collect and fractionate plankton

communities on the basis of organism size,

spanning five orders of magnitude

(Figure 2A), the sampling combines tradi-

tional (Niskin bottles and plankton net

tows) and novel methods (e.g., a gravity-

driven plankton sieve and chemistry-based

concentration of viruses [24]) that feed

into analytical pipelines appropriate for

each size class. These analyses range from

immediate visualization and quantification

on-board Tara with a diversity of imaging

tools, to collection and preservation of

samples for genomic and morphological

analysis back on land.

Given the global nature of the expedi-

tion and spatial heterogeneity in the

oceans, a concern is the ‘‘snapshot’’

sampling strategy employed here at a

single time point and at relatively sparse

stations relative to the global ocean, which

represents the inherent challenge of global

ocean studies. In Tara Oceans we leverage

near real-time remote sensing and other

data to locate oceanographically interest-

ing features (e.g., eddies, fronts, upwell-

ings) and strengthen ecosystem compari-

sons (Figures 1B and 2A). The vast ocean

basins are relatively homogeneous on

seasonal to decadal time scales, whereas

smaller-scale systems are more dynamic.

For example, the Agulhas leakage system

(Figure 1B) transports water from the

Indian to the Atlantic Ocean and across

to South America leaving heterogeneous

ocean features behind that persist for

weeks to months [25]. The Agulhas system

represents an ideal case for applying the

Tara Oceans near real-time sampling

strategy and downstream analysis pipeline

to deeply characterize the biology of these

ecosystems. Through systematic study of

such heterogenous systems coupled to

broader ‘‘normal’’ ocean sampling, we

hope to unveil the rules that govern the

structure and dynamics of ocean ecosys-

tems and to extrapolate such local obser-

vations to develop basin-scale process

models as predictive tools [26]. Undoubt-

edly, such measurements and predictions

will provide a starting point for hypothesis

testing by more focused, follow-up cam-

paigns.

The Tara Oceans Integrated
Pipeline: Towards Eco-Systems
Biology

The scientific programme of Tara

Oceans requires an integrated pipeline

that combines semi- or fully automated

data acquisition methods, new bioinfor-

matics tools, and standardized data orga-

nisation (Figure 2C). The high throughput

imaging platform includes instruments

tuned to organisms of particular size

classes. They include (i) on-board and

on-land flow cytometers to monitor virus

particles, bacteria, and small protists, (ii)

on-land digital and confocal microscopy

for detailed 2D/3D imaging of cells within

the 5–20-mm range, (iii) on-board and on-

land FlowCams and ZooScans for quan-

titative recognition of organisms ranging

from 20 mm to a few cm, light sheet and

confocal microscopes for 3D imaging, and

(iv) on-land electron microscopes for

detailed ultrastructural analyses of small

protists and viruses. In parallel, we use

high throughput sequencing methods to

obtain both deep phylogenetic rDNA/

rRNA tag data and metagenomic and

metatranscriptomic functional profiles

from size fractions covering the entire

plankton community from viruses to fish

larvae (Figure 2B and 2C). To bring all

these data together for analyses, we

leverage recently developed, dedicated

computational approaches [27]. In addi-

tion, Tara Oceans is archiving meteoro-

logical, oceanographic, biogeochemical,

and plankton morphology data in the

PANGAEA database (http://www.pangaea.

de/), linking to larger European and inter-

national data infrastructures. Thus, Tara

Oceans can visualize, quantify, and ge-

netically characterize ocean biodiversity

within entire plankton ecosystems, as well

as find patterns across unprecedentedly

comprehensive data types.

With such a powerful dataset and

toolkit, we anticipate testing the predic-

tions of biodiversity hotspots from stochas-

tic modelling [28–31], as well as mapping

functional gene ecology and activities

throughout the world’s oceans. This pro-

cess has been initiated, predominantly for

0.1–0.8-mm-sized surface ocean microbes,

using data provided by the GOS expedi-

tion [22,27,32,33], but will be dramatical-

ly extended here by sampling throughout

the water column, across organismal size

scales and beyond metagenomic sequenc-

ing, tightly coupled to global ocean-

modelling efforts.

These data will transform our ability to

link species diversity and metabolic poten-

tial/activity to environmental conditions

and ecosystem outputs and promises to

lead to the discovery of emergent ecolog-

ical principles (Figure 2C). They will allow

a deeper understanding of biodiversity

gradients within and among systems and

contrasting environments. We also antic-

ipate establishing rules governing the self-

organization of organism networks (e.g., to

address which types of viruses, bacteria,

protists, and zooplankton live together in a

given environment) [16,27], and develop

predictions about how these rules and

communities will be affected by a chang-

ing environment.

In summary, the Tara Oceans project

leverages powerful new technologies and

analytical tools to develop the first plane-

tary-scale data collection effort that links

biogeography with ecology, genetics, and

morphology. Guided by the cross-disci-

plinary philosophy the pay-offs can be

immense, considering the massive number

of samples and data that have been

collected, archived, and interconnected

for scientific study, only half-way through

the expedition. A lesson from this project

is that, when it comes to addressing broad

and complex issues of general interest to

mankind, competition between scientists

may not be the best model. The Tara

Oceans project is a pioneering enterprise

towards a truly worldwide, systems-level

characterization of the largest and most

fundamental ecosystem on our planet.
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doi:10.1371/journal.pbio.1001177.g002
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Dandonneau Y, Lévy M (2010) Fluid dynamical

niches of phytoplankton types. Proc Natl Acad

Sci U S A 107: 18366–18370.

29. Tittensor DP, Mora C, Jetz W, Lotze HK,

Ricard D, et al. (2010) Global patterns and

predictors of marine biodiversity across taxa.

Nature 466: 1098–1101.

30. Barton AD, Dutkiewicz S, Flierl G, Bragg J,

Follows MJ (2010) Patterns of diversity in marine

phytoplankton. Science 327: 1509–1511.

31. Bragg JG, Dutkiewicz S, Jahn O, Follows MJ,

Chisholm SW (2010) Modeling selective pressures

on phytoplankton in the global ocean. PLoS ONE

5: e9569. doi:10.1371/journal.pone.0009569.

32. Gianoulis TA, Raes J, Patel PV, Bjornson R,

Korbel JO, et al. (2009) Quantifying environ-

mental adaptation of metabolic pathways in

metagenomics. Proc Natl Acad Sci U S A 106:

1374–1379.

33. Temperton B, Gilbert JA, Quinn JP, McGrath JW

(2011) Novel analysis of oceanic surface water

metagenomes suggests importance of polypho-

sphate metabolism in oligotrophic environments.

PLoS ONE 6: e16499. doi:10.1371/journal.

pone.0016499.

PLoS Biology | www.plosbiology.org 5 October 2011 | Volume 9 | Issue 10 | e1001177


