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Abstract

Failure mode and effect analysis (FMEA) is a risk analysis tool widely used in the manufacturing industry. However, tra-
ditional FMEA has limitations such as the inability to deal with uncertain failure data including subjective evaluations of 
experts, the absence of weight values of risk parameters, and not considering the conditionality between failure events. In this 
paper, we propose a holistic FMEA to overcome these limitations. The proposed approach uses the fuzzy best–worst (FBWM) 
method in weighting three risk parameters of FMEA, which are severity (S), occurrence (O), and detection (D), and to find the 
preference values of the failure modes according to parameters S and D. On the other side, it uses the fuzzy Bayesian network 
(FBN) to determine occurrence probabilities of the failure modes. Experts use a procedure using linguistic variables whose 
corresponding values are expressed in trapezoidal fuzzy numbers, and determine the preference values of the failure modes 
according to parameter O in the constructed BN. Thus, the FBN including expert judgments and fuzzy set theory addresses 
uncertainty in failure data and includes a robust probabilistic risk analysis logic to capture the dependence between failure 
events. As a demonstration of the approach, a case study was conducted in an industrial kitchen equipment manufacturing 
facility. The results of the approach have also been compared with existed methods demonstrating its robustness.

Keywords Failure mode and effect analysis · Bayesian network · Trapezoidal fuzzy set · Best–worst method · Industrial 
kitchen equipment manufacturing

Introduction

Failure is a state or condition of not meeting a desired or 
intended objective. For production environments, this con-
cept is defined as the component that causes damage to engi-
neering equipment, manufactured products or plant infra-
structure, affecting operation, production and performance 
as well as the company’s brand and reputation [21]. Planning 
of failure analysis within the context of risk and reliability 
is a strategy that contributes to minimizing the total cost, 
increasing the number of production, and producing higher 

quality products [28]. In addition, failure analysis is very 
effective in determining the price policies of companies [6].

Faulty product is one of the main problems faced by 
companies. This problem does not only result in financial 
loss but also causes loss of prestige (Boral et al. 2020). To 
continue the activities of the companies in a healthy and 
to make profit in today’s overwhelming competitive envi-
ronment, they must increase their production quality and 
decrease the number of faulty products [39].

The demand for commercial cooking equipment is 
increasing day by day, especially due to the developments 
in the hotel industry. Commercial cooking equipment has 
a wide range of products for the preparation of large-scale 
dishes. The development of new cooking techniques and 
the differentiation of existing cooking techniques by rein-
terpreting increase the importance of cooking equipment 
day by day. In addition, this equipment is used in the train-
ing of chefs. As the quality of these equipment has a direct 
impact on human health, production requires special care 
and precision. Due to the factors mentioned above, com-
mercial cooking equipment demands in the global market 
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are expected to increase day by day and reach new heights 
(URL-1). The global commercial kitchen equipment market 
size is expected to grow by 6.7% annually in 2020–2027 
(URL-2). Although the production process of industrial 
kitchen equipment is relatively simple, inevitably, the fail-
ure analysis and control attempts to be made for this sector 
will contribute economically to the enterprises since high 
volume production is realized.

To evaluate failures and comment regarding their possi-
ble effects, some systematic techniques are required such as 
the Bow–tie method (BT), event-tree analysis (ETA), fault 
tree analysis (FTA) and failure mode and effects analysis 
(FMEA) [7]. FMEA is one of the methods used to specify 
and sort failure modes (FMs). FMEA was applied for the first 
time in 1960 to solve problems in the space and automobile 
industry [8]. Thanks to the FMEA analysis, the effects of the 
FMs on the system performance can be determined so that 
necessary measures can be taken [9, 35]. The risk priority 
number (RPN) is used as the prioritization index in FMEA 
analysis. The three factors used in the calculation of RPN 
as product failure severity, probability of failure occurrence 
and the probability of failure detection. RPN is calculated by 
multiplying S, O, and D parameters [47]. It is integrated with 
many multi-criteria decision-making (MCDM) methods, 
data analytics methods, and sophisticated methods. Since 
its traditional version has limitations such as the inability to 
deal with uncertain failure data including subjective expert 
judgments, the absence of weight values for risk parameters, 
and not taking into account the conditionality between fail-
ure events, it has extended by incorporating BWM, BN and 
fuzzy set theory [11, 64].

Fuzzy best–worst method (FBWM) has many drawbacks 
compared to pairwise comparison-based MCDM methods 
like fuzzy analytical hierarchy process (FAHP). This method 
determines the importance weights of the criteria by pro-
viding fewer pairwise comparisons and more consistent 
comparison matrices. The best criterion has the most vital 
role in decision making, while the worst criterion has the 
opposite role. Moreover, this method not only obtains the 
weights independently, but can also be integrated with other 
MCDM methods. In this study, we use this method under 
an FMEA study.

On the other hand, the Bayesian Networks (BNs) are 
visual tools based on probability theory. The use of this 
method in failure analysis is possible by showing the rela-
tionships of failure events and the conditional probability 
structure between them. It is frequently used to explain 
uncertainty. In this study, the fuzzy version of this method 
“fuzzy Bayesian Network-FBN” is used in the context of 
an FMEA study. The evaluator role of experts in failure 
analysis problems requires the use of fuzzy logic theory in 
the face of various uncertainties. Subjectivity and uncer-
tainty in the judgments of the evaluators about the FMs is 

an important and difficult problem that also occurs in the 
solution of the problem addressed in this study. The fuzzy 
set theory presented by Zadeh [61] has been previously 
applied to the solution of many decision problems. This 
theory has been developed over time and transformed into 
different versions and these versions have been effectively 
applied to many decision problems. Triangular and trap-
ezoidal fuzzy sets are among these extensions which are 
widely used by scholars.

In this paper, we propose a holistic FMEA study includ-
ing FBWM and FBN. The FBWM is used in the holistic 
approach:

(1) to determine weights for three risk parameters of 
FMEA (S, O and D),

(2) to find the preference values of the FMs with respect to 
two parameters (S and D).

On the other side, FBN is used to determine the occur-
rence probabilities (the remaining parameter of FMEA and 
indicated as “O”) of FMs in BN structure. Experts use a 
procedure adapted from Aliabadi et al. [3] using linguis-
tic variables whose corresponding values are expressed in 
trapezoidal fuzzy numbers, and determine the occurrence 
probability of each FM in the constructed BN. As a case 
study application of the approach, a risk assessment was 
performed in an industrial kitchen equipment manufacturing 
facility. The results of the approach have also been compared 
with an FMEA-based FBWM method without including a 
BN to provide its robustness.

In the lights of abovementioned short comments on the 
aims of the study, the contributions may be shortened as 
follows:

(1) FBWM is utilized to eliminate a drawback of FMEA 
which is related to the absence of weight values of risk 
parameters. At the same time, evaluations of each FM 
are performed with respect to S and D parameters by 
the aid of FBWM computation logic to obtain prefer-
ence values.

(2) A BN is designed to demonstrate conditionality 
between main FMs and auxiliary FMs for the studied 
industrial kitchen equipment manufacturing facility.

(3) Using an adapted FBN procedure of Aliabadi et al. 
[3], final occurrence probabilities (preference values 
of FMs with respect to parameter “O”) of each FM are 
computed.

(4) Obtained preference values of FMs with respect to 
FMEA risk parameters from both FBWM (for param-
eters S and D) and FBN (for parameter O) are then 
merged to determine final RPN of each FM. To the best 
of authors’ knowledge, this is the initial attempt that 
merges FBN and FBW as performed in this study.
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Literature review

In the literature, many scholars have dealt with FMEA 
extensions (with BN and BWM) and applied it to risk 
analysis problems. For a detailed view, Table 1 presents 
a comprehensive review of previous FMEA studies inte-
grating FMEA, (F)BWM and/or (F)BN. In addition, in 
Table 1, novelty of each study is explained with details. 
BWM (either in fuzzy form) and BWM (either in fuzzy 
form) are used together with FMEA concept in an equal 
number of studies (see Table 1). Moreover, some studies 
[12, 14, 17, 18, 20, 24, 34, 36, 42, 43, 46, 54, 56, 57, 62] 
use an auxiliary concept such as fuzzy MOORA, MUL-
TIMOORA, Z-MOORA, Markov chain, GRA, VIKOR, 
TOPSIS, multi-objective mathematical programming, 
WASPAS, COPRAS, Bow-tie analysis, FTA and case-
based reasoning. Lee [27] integrated FMEA and BN in 
the modeling of an inkjet printer. Yang et al. [58] applied 
fuzzy rule-based Bayesian reasoning with FMEA in the 
maritime industry. Yang et al. [57] demonstrated a Bayes-
ian-based FTA and FMEA methods in software industry 
failure assessment. García and Gılabert (2011) created a 
BN in FMEA analysis of marine diesel engine systems. 
Ma et al. [36] designed an FMEA and FTA integrated 
model for BN. Zarei et al. [62] performed a risk assess-
ment model for natural gas stations by FMEA, Bow–Tie 
and BN. Yang et al. [56] used case-based reasoning and 
FMEA together and applied for software failure assess-
ment. Rastayesh et al. [48] performed an FMEA–BN inte-
grated model for risk analysis in telecommunication. Nie 
et al. [43] proposed a novel FMEA method with FBWM, 
GRA, TOPSIS, and performed an implementation in an 
aero-engine turbine. Huang et al. [23] present a systematic 
review of FMEA during the years between 1998 and 2018. 
They analyzed 236 papers on FMEA. Interested readers 
and researchers can look at this useful review paper.

Methodology

Failure mode and effect analysis (FMEA)

FMEA is an old risk assessment method implemented in 
different application areas from manufacturing to service. 
It originated in the field of aerospace as a design tool by 
NASA in 1960s. Since then, various improvements are 
provided on the base version. Various sector-based types 
are developed such as manufacturing, service of design 
FMEA [52]. It contains three factors of S, O, and D. A 
RPN by multiplying these parameters is obtained. Each 
parameter takes values between 1 and 10 (1 refers to the 

lowest and 10 refers to the highest) [9]. Failures result 
in high RPN are critical and are ranked of first priority. 
Failures with low RPN are vice versa [45]. At the final 
stage, control measure suggestion is considered. Although 
this traditional FMEA has a strong ability in system safety 
assessment, there exist lots of drawbacks that are stated in 
the literature [4, 21], [9, 30, 33, 44, 45]. Some of those are 
summarized in Table 2.

More shortcoming can be found in Liu et al. [33], which 
is a comprehensive review of previous FMEA literature.

Fuzzy best–worst method (FBWM)

The best–worst method (BWM) is initially proposed by 
Rezaei [49]. It is used to obtain the importance weights of 
criteria in a multi-criteria decision problem. The method is 
based on evaluations considering the best and the worst of 
criterion among others [50]. Then, the model is solved as 
a max–min optimization problem. It is applied to various 
fields from manufacturing to service [37]. After its initial 
development and applying to various areas, it has also been 
extended methodologically by fuzzy sets [41]. Guo and 
Zhang [22] developed triangular FBWM and applied it in 
the logistics industry. In the following, we provide a sum-
marization of the steps of FBWM in Fig. 1.

In determining the fuzzy weights via the FBWM method, 
an optimization model is required. The best-to-others 
( w̃B∕w̃j ) and the worst-to-others ( w̃j∕w̃W  ) should have 
w̃B∕w̃j = ãBj  and  w̃j∕w̃W = ãjW  .  |
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The current version of the model is a constrained optimization 
problem. To satisfy the conditions given below the objective 
function statement in Eq. (1), a solution where the maximum 
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Table 1  Analysis of previous studies integrating FMEA, (F)BWM and/or (F)BN

Study Approach Other concept Novelty

FMEA (F)BWM (F)BN Fuzzy extension

Dorosti et al. (2020) √ √ Triangular fuzzy number 
(TFN)

Fuzzy-MOORA *Criterion weights deter-
mined by FBWM

*FMs ranked by fuzzy 
MOORA

Gul et al. (2020) √ √ √ TFN – *FMEA parameters deter-
mined hierarchically

*Combined with the fuzzy 
rule-based and BN

*An RPN calculation algo-
rithm used

Dezan et al. (2020) √ √ – Markov Process *BN used to develop failure 
detection modules

*FMEA carried out for 
autonomous vehicles

*BN merged with Markov 
Decision Process

Kirchhof et al. (2020) √ √ – – *Risk analysis performed in 
the production of lithium 
ion battery

*A new method combin-
ing the expert knowledge 
acquisition with FMEA

*A special algorithm 
introduced to detect 
inconsistencies in experts’ 
evaluations

Cheng et al. (2020) √ √ Trapezoidal neutrosophic 
numbers

MULTIMOORA *Subjective and objective 
weights calculated by 
BWM

*MULTIMOORA used for 
RPN calculation in surgical 
procedures

Wan et al. (2019) √ √ TFN – * Evaluating the risks in the 
maritime supply chain

* Presenting an integrated 
methodology using FMEA 
and BN

*Proposed a fuzzy belief 
rule-based BN approach

Khalilzadeh et al. (2020) √ √ TFN GRA, VIKOR, multi-
objective mathematical 
programming

*FMEA integrated with 
GRA and VIKOR

*Performance indicators 
for each risk weighted by 
BWM

*Strategies determined by a 
multi-objective mathemati-
cal program

Kolagar et al. (2020) √ √ TFN – *Surgical cancellation fac-
tors weighted by FBWM

*Computed a fuzzy RPN
Momen et al. (2019) √ √ TFN – *FMs in hemodialysis 

weighted by FBWM
Rastayesh et al. (2019) √ √ – – *The BN constructed based 

on the FMEA criteria
Nie et al. (2019) √ √ – GRA, TOPSIS *BN used for identified FMs

*GRA and TOPSIS applied 
to prioritize FMs
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Table 1  (continued)

Study Approach Other concept Novelty

FMEA (F)BWM (F)BN Fuzzy extension

Ghoushchi et al. (2019) √ √ TFN Z-MOORA *A new FMEA approach 
introduced

*The weighting of the risks 
performed by FBWM

*Failures prioritized by a 
Z-MOORA

Chang et al. (2019) √ √ TFN TOPSIS, WASPAS *FMEA-based multi-
attribute decision-making 
implemented

*FMs weighted by FBWM
*FMs ranked by TOPSIS
*A WASPAS-based meth-

odology proposed for RPN 
calculation

Tian et al. (2018) √ √ TFN VIKOR *Risk factors weighted by 
FBWM

*The rank of risks deter-
mined by fuzzy VIKOR

Peko et al. (2018) √ √ – TOPSIS * Cost criterion attached to 
FMEA parameters

*The parameters calculated 
by BWM

*FMs ranked by TOPSIS
Liu et al. (2018) √ √ – – * BWM under two-dimen-

sional uncertain linguistic 
are used to weight risk 
factors

Lo and Liou (2018) √ √ TFN GRA *The cost variable added to 
the RPN calculation

*The general RPN calcula-
tion modified

*BWM and GRA integration 
used

*FMEA carried out for 
electronics industry

Nie et al. (2018) √ √ Fuzzy number COPRAS *BWM used to determine 
the weights

* COPRAS is extended for 
ranking FMs

Yang et al. (2018) √ √ – Case-based reasoning *CBR and BN-based diagno-
sis combined to overcome 
traditional FMEA

*A proposed model used in 
the deep-level Bayesian 
dynamic and uncertainty 
diagnostics network

Zarei et al. (2017) √ √ – Bow-tie analysis *A dynamic risk analysis 
performed for gas station 
safety assessment

*Basic events and minimal 
cut sets configured by the 
probability update

Ma et al. (2014) √ √ – FTA FTA, BN and FMEA inte-
gration model proposed 
for system reliability and 
safety analysis
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Table 1  (continued)

Study Approach Other concept Novelty

FMEA (F)BWM (F)BN Fuzzy extension

García and Gılabert (2011) √ √ – – *The failure analysis imple-
mented for marine diesel 
engine

*The evaluations to be used 
obtained with the help of 
sensors

Lian et al. (2010) √ √ – – *FMEA and cause failure 

effect type Bayesian net-
work topology created

Yang et al. (2008) √ √ – – *Subjective belief degrees 
assigned by fuzzy rule base

*Maritime risk analysis car-
ried out

Yang et al. (2009) √ √ – FTA *A case study carried out for 
the software industry

*A fault diagnosis model 
proposed using a combina-
tion of FMEA, FTA and 
BN

Calori (2007) √ √ – – *The system separated into 
components by Jacobson 
analysis

*FMEA performed
*BN established by FMEA 

parameters
Lee (2001) √ √ – – *Integrating BN and FMEA

*Directed acyclic graph 
models construction

Table 2  Drawbacks of the FMEA method

# Drawback Useful reference(s)

1 Not mentioning weights of S, O and D Park et al. (2018); Liu et al. (2013); Huang et al. (2017); Başhan et al. 
(2020)

2 The case that different S, O and D values can have the same RPN Huang et al. (2017); Catelani et al. (2018); Du et al. (2016); Safari et al. 
(2016); Gul et al. (2020)

3 Limitation in the number of parameters that classic FMEA has Du et al. (2016); Lo et al. (2019); Seiti et al. (2020)
4 Difficulty in the precise examination of risk parameters due to 

their subjective evaluation on a scale of 1–10
Ozdemir et al. (2017); Zhao et al. (2017); Lo et al. (2019); Kutlu and 

Ekmekçioğlu (2012); Zhang et al. (2020)
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problem. Then, Eq. (1) is remodeled as a nonlinearly con-
strained optimization problem as follows:

where  � = (l� , m
�
, u

�) ,  cons ide r ing  l
� ≤ m

� ≤ u
�  . 

�∗ = (k∗, k
∗
, k

∗),k∗ ≤ l
� , Eq. (2) is transformed as:

(2)

min �

s.t.
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j
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j

lw
j
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j = 1, 2, ..., n
Equation (3) is solved for calculating the optimal fuzzy 
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1
, w̃

∗
2
, ..., w̃

∗
n
) . A consistency check is applied as 

in Guo and Zhang [22] after obtaining the optimal fuzzy 
weights.

(3)
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Fig. 1  The flowchart of the FBWM method

Fig. 2  A basic example of BN
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Fuzzy Bayesian network (FBN)

The Bayesian network (BN) method is a visual tool that is 
based on probability theory. In this method, a directed acy-
clic graph is used for demonstrating the quantity of variables 
and their dependency relationships [16, 51]. This method is 
frequently used to explain uncertainty [5]. Its notions consist 
of nodes and arrows. While nodes show a random variable, 
arrows refer to the relationship between the variables [21, 
59, 60]. In a BN, the nodes with arrows pointing towards 
them are called child nodes and the nodes with arrows point-
ing outwards from themselves are called parent nodes [32]. 
A node with child nodes but no parent nodes is called a 
root node. Figure 2 demonstrates the basic idea under BN 
concept.

In the example given by Fig. 2, both  X1 and  X2 are root 
nodes and they are the parent nodes of  X3.  X3 is a child of 
 X1 and  X2. Each node has two states: ‘state 0′ and ‘state 1′. 
A root node has only a marginal probability. Each child has 
a conditional probability table associated with it showing the 
states of its parent nodes (Liu et al. [34]) (Table 3).

In a usual BN demonstration, some formulas are used as 
in the following [60]. The formula in the following equation 
shows the joint probability value:

Here, �
i
 is the set of parents of node X

i
 . The marginal 

probability of X
i
 is

As an inferential tool, BN calculates the probability of an 
event given other evidences. The following formulae shows 
the calculation procedure for the posterior probability of 
evidence e:

Here,
P(U) : the prior probability of event U,

(4)P
(
X1, X2,… , X

n

)
=

n∏

1

P(X
i
|
|�i

)(i = 1,2,… , n)

(5)P
{

Xi

}

=

∑

exceptXi

P
{

X1, X2,… , Xn

}

.

(6)

P(U�e) = P(e�U)P(U)

P(e)
=

P(e�U)P(U)
∑

U
P(e�U)P(U)

, U =
�

X1, X2,… , X
n

�

P(e) : the pre-defined posterior probability of the evidence,
P(U|e) : the posterior probability of evidence e,
P(e|U) : the evidence likelihood of event U , and.∑

U
P(e�U)P(U) : the joint probability distribution of e.

Besides the traditional form of BN modeling, there is 
also a fuzzy form of BN which is called fuzzy Bayesian Net-
work (FBN). It presents uncertain information and decreases 
information loss [63]. In the scope of the current study, 
experts evaluate main FMs and auxiliary FMs with the aid 
of a fuzzy linguistic scale. Following a procedure which sug-
gested by Aliabadi et al. [3], final occurrence probabilities of 
each FMs are obtained. Hereafter this step, BN modeling is 
generated and crisp failure probabilities are gained.

The holistic approach

The holistic approach which is the basis for the methodology 
of this study consists of four main stages. The initial stage 
is about preparation for failure analysis and control. In this 
stage, experts were determined from the enterprise. In addi-
tion, the main and auxiliary FMs were identified that cause 
faulty products in the enterprise. The second stage concerns 
with assigning importance weights to the FMEA parameters 
via FBWM. In this stage, preference values of each main FM 
are computed with respect to two of the FMEA parameters 
which are S and D. The values regarding the remained risk 
parameter “O” are calculated via a different way as presented 
in the third stage in details. This way concerns a probabilistic 
approach including BN and fuzzy logic. When viewed from 
the probability perspective, each preference value of the fail-
ure event that may occur randomly can be evaluated as the 
probability of these events occurring. For this reason, FMs 
can be considered as random events and their preference 
values as probability functions [38]. In the third stage, first, 
each expert was evaluated considering their characteristics, 
and a weighting coefficient for each expert was calculated. 
Then, the BN was created considering the top event, main 
FMs, and auxiliary FMs which affects them. The linguistic 
assessments of experts in fuzzy environment that are used 
in BN modeling were collected and converted into actual 
failure occurrence probabilities according to the procedure 
of Aliabadi et al. [3]. The flowchart of this holistic approach 
is provided in Fig. 3. The detailed analysis of our case will 
be demonstrated in the following section.

Case study

Description of the production process

The production process regarding industrial kitchen equip-
ment includes nine different steps as given in Fig. 4. The first 
step is measuring. In this section, the sheets to be cut are 

Table 3  The linguistic variables of decision makers

Linguistic term Corresponding TFN

Equally importance (EI) (1, 1, 1)
Weakly important (WI) (2/3, 1, 1.5)
Fairly important (FI) (1.5, 2, 2.5)
Very important (VI) (2.5, 3, 3.5)
Absolutely important (AI) (3.5, 4, 4.5)
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marked according to the order on the roll. The plates are then 
sent to the cutting section. The stainless-steel roll is placed 
on the unrolling machine. In this section, first, the rectangu-
lar and then the circular-shaped plates are obtained by laser 
cutting. Cut plates are brought to the hydraulic press section. 
The sheet metal is placed in the hydraulic press. The pres-
sure is adjusted in the press. Oil is used in order not to tear 
the metal in the press and to distribute the heat and pressure 
homogeneously. The sheets shaped in the press are brought 
to the washing section to remove dirt and oil residue. The 
plates are taken into the washing tank containing solvents to 
prevent any oil residue on the metal. The products are dried 

after washing. The outer surface becomes matte due to the 
processes performed. To remove this matting, the polishing 
process is applied to the outer surface. The hydraulic press 
is used again to connect the bottom of the operating pot 
with the side surfaces. Until these stages have been finalized, 
other parts of the pot, except for the handle part, have been 
completed. The handles of the pot are prepared and made 
ready for resistance welding. In the resistance welding sec-
tion, the welding surfaces are cleaned by the operator. The 
current and welding time is adjusted by the operator. The 
welding surfaces are melted, and adhered to each other. It is 
packaged to protect ready products from external influences.

Fig. 3  The flow in the holistic approach

Fig. 4  Production stages for 
industrial kitchen equipment
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Identification of failure modes and their effects

As a result of the evaluations made in the enterprise, five 
main FMs were identified. These FMs are stain on the prod-
uct (FM1), polishing color difference on product (FM2), 
scratch on the product (FM3), cracking on the product 
(FM4), and failure in welding of pot handles properly 
(FM5). In addition, eight auxiliary FMs have been deter-
mined. These are as follows: Mismeasurement (X1), Wrong 
cutting (X2), Unsuitable mold (X3), Usage of unsuitable oil 
(X4), Overloading the hydraulic press (X5), Not choosing 
the proper brush (X6), Improper polishing (X7) and Unsuit-
able raw material (X8). Failures in industrial kitchen pro-
duction cause the product to be scrapped or to be sold as 
a low-quality product, selling them below the sales price.

Stain on the product (FM1), usually takes place in the 
press section. If suitable oil is not selected during press-
ing, the material temperature cannot be lowered by dis-
tributing the heat throughout the plastic shape change of 
the material. In this case, it causes a permanent stain on 
the product. In addition, the resistance of the raw material 
to the deformation of plastic, in other words, its hardness, 
causes stains on the product. In addition, oil-raw material 
compatibility must be checked before production in large 
batches. Polishing color difference on the product (FM2) 
is directly related to the raw material and polishing appli-
cation. In this section, the outer surface of the product is 
abraded with abrasive solutions, the product contact time 
with the solution should be adjusted very well. The fact 
that the materials sent by the suppliers do not always have 
the same characteristics, this requires a re-evaluation of 
the material-solution contact time. All products produced 
must be of the same color. When the consumer sees prod-
ucts of different colors, she/he thinks this is a manufactur-
ing failure. Polishing failure does not cause any negative 
function of the product. However, this situation reduces 
the sales price of the product. Products with polishing fail-
ures are transferred to different sales channels. Scratch 
on the product (FM3), is closely related to brush selec-
tion. Scratches on the product may occur if a hard brush 

is selected. If a soft brush is chosen, the product will not 
be polished to the desired level. Cracking on the product 
(FM4) is closely related to overloading on the hydraulic 
press and wrong plate cutting. Wrong cut is due to wrong 
measurement and inappropriate mold usage. Overload-
ing and wrong oil selection in the hydraulic press also 
causes the product to crack. Unlike the others, this failure 
makes the product completely unusable. If the product is 
cracked, the product is scrapped. Failure to weld pot han-
dles properly (FM5), the reliability of this weld depends 
on the cleanliness of the weld surfaces, the electrode tips 
not oxidized and the correct electrode selection, and the 
good adjustment of the welding current and time.

Implementation of FBWM

The FBWM implementation stage (second stage) concerns 
with assigning importance weights to the FMEA param-
eters. In this stage, the preference values of each main 
FM are also computed with respect to two of the FMEA 
parameters which are severity (S) and detection (D).

Fig. 5  Reference comparison in FBWM assessed by Expert 1

Table 4  Defuzzified weight values of FMEA risk parameters 
assessed by six experts

Expert ID S O D

Expert 1 0.461 0.372 0.167
Expert 2 0.302 0.597 0.101
Expert 3 0.550 0.249 0.201
Expert 4 0.428 0.428 0.144
Expert 5 0.302 0.597 0.101
Expert 6 0.194 0.479 0.327

Fig. 6  Importance weights of FMEA parameters obtained from 
FBWM implementation
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Determination of importance weights of FMEA 
parameters

In the second stage of the holistic approach, evaluations 

were made by six experts to determine importance weights 
for S, O and D parameters. FBWM was used to make calcu-
lations. As an example, the evaluation of an expert is pre-
sented in Fig. 5.

The optimal fuzzy weights of three FMEA param-
eters assessed by one expert are calculated as follows: 
w
∗
S
= (0.391, 0.463, 0.520) , w

∗
O
= (0.300, 0.374, 0.435)

,w∗
D
= (0.160, 0.168, 0.173) . Then, the crisp weights 

are determined as follows: w
S
= (0.460),w

O
= (0.372)

,w
D
= (0.167) . Similarly, the evaluations made by other 

experts were calculated and presented in Table 4. By aver-
aging these values, the weight values for each parameter are 
computed as in Fig. 6.

Determination of priority values of FMs in terms 
of severity and detection parameters

Similarly, all FMs were evaluated with respect to S and D 
parameters. As an example, the evaluation of Expert 1 with 
respect to S parameter is presented in Fig. 7. Other evalu-
ations cannot be included in the paper due to space limita-
tions. The preference values of each main FM are computed 
with respect to two of the FMEA parameters which are S and 

Fig. 7  Evaluation of main FMs with respect to S parameter by Expert 
1

Table 5  The preference values 
of five FM according to S and 
D parameters assessed by each 
expert

Severity (S) Detection (D)

FM1 FM2 FM3 FM4 FM5 FM1 FM2 FM3 FM4 FM5

Expert 1 0.096 0.164 0.108 0.355 0.277 Expert 1 0.339 0.233 0.221 0.111 0.095
Expert 2 0.096 0.108 0.164ss 0.355 0.277 Expert 2 0.378 0.153 0.253 0.109 0.108
Expert 3 0.108 0.096 0.164 0.355 0.277 Expert 3 0.339 0.233 0.221 0.111 0.095
Expert 4 0.164 0.096 0.108 0.355 0.277 Expert 4 0.277 0.355 0.108 0.164 0.096
Expert 5 0.087 0.112 0.187 0.289 0.325 Expert 5 0.253 0.153 0.378 0.108 0.109
Expert 6 0.132 0.108 0.132 0.224 0.405 Expert 6 0.253 0.153 0.378 0.108 0.109

Fig. 8  The averaged preference 
values of FMs according to S 
and D parameters
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D. The obtained results are presented in Table 5. By averag-
ing the values in Table 5, the preference values of five FMs 
according to S and D parameters are presented in Fig. 8.

Implementation of FBN

The values regarding the remained risk parameter “occur-
rence (O)” are calculated via a different way as presented 
by Aliabadi et al. [3]. This procedure and its computational 
steps are given in this stage. The BN structure of main fail-
ures and auxiliary failures is presented in Fig. 9. As seen 
from the Fig. 9, the top event concerns with scrapping the 
product or designating it as a low-quality product. This will 
probably cause a selling below the sales price. There are 
seven root nodes (basic events) in the BN. These are X1, X3, 
X4, X6, X7, X8 and FM5. The remaining are child nodes 
and they have their own conditional probability table associ-
ated with its parent nodes.

We used GeNle commercial software (version 3.0) 
which was developed by Decision Systems Labora-
tory, University of Pittsburgh. Failure probability of 
basic events can be calculated by expert evaluation. In 
our case, the evaluations of six experts are considered. 
These experts are working as engineer, operator and tech-
nician. Their years of experience are varied between 4 
and 15 years. While Expert 2 and Expert 5 have bachelor 
degree, Expert 1 has a Ph.D. degree on engineering. The 
weight factor is the sum of the coefficient of job title, years 
of experience, and educational level. The weighting coef-
ficient is calculated by giving a grade to each feature (job 
title, year of experience, education level) between 1 to 
5. For example, the weight factor of Expert 1 is 13 and 
the total weight factor is 45. Then, by dividing these two 
values, a weighting coefficient of Expert 1 is calculated as 
(13∕45 = 0.29) . The weighting coefficients of all experts 
are presented in the last column of Table 6.

Fig. 9  The BN structure

Table 6  The information of the experts

Expert ID Job title Years of 
experience

Educational level Job title 
grade (1–5)

Years of experi-
ence grade (1–5)

Education level 
grade (1–5)

Weight factor Weighting 
coefficient

Expert 1 Chief engineer 15 PhD 5 3 5 13/45 0.29
Expert 2 Engineer 10 BSc 3 3 3 9/45 0.20
Expert 3 Operator 10 High school 1 3 1 5/45 0.11
Expert 4 Technician 5 Vocational school 2 1 2 5/45 0.11
Expert 5 Engineer 8 BSc 3 2 3 8/45 0.18
Expert 6 Technician 4 Vocational school 2 1 2 5/45 0.11
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To obtain crisp failure occurrence probabilities using 
FBN, a procedure suggested by Aliabadi et al. [3] is fol-
lowed. This procedure can easily aggregate the linguistic 
evaluations of experts and reach a consensus in finding crisp 
failure probabilities of main FMs. The steps in this proce-
dure are given in Fig. 10. In the first step of this procedure, 
the degree of agreement between two experts among a group 
of experts is computed using the corresponding formulae. 
In the formulae, A

i
 and Aj refer to two different linguistic 

variables that are presented in trapezoidal fuzzy numbers 
style. A

i
= (a1, a2, a3, a4) and Aj = (b1, b2, b3, b4) . In the 

second and third steps, the average agreement degrees (AA 
values) and relative agreement degrees (RA values) are com-
puted, respectively. In the fourth step, consensus coefficient 
degrees (C values) of experts are calculated using the related 
formulae. Here, � is a factor which shows the importance 
of weight coefficients of experts over RA

(

Experti

)

 . Its val-
ues vary between 0 and 1. In the fifth step, the aggregated 
results of the experts are obtained. Here, R

i
 refers to the 

fuzzy probability assigned by an expert. In the sixth step, 
the fuzzy probability of the basic and conditional events is 
crispified. Finally, the crisp failure occurrence probability 
(CFP) values are transformed into actual failure occurrence 
probability (FP) values using the formulae in Fig. 10. At 
the end of the implementation of this procedure, all cal-
culations related to the occurrence probability values have 
been made. Due to space limitations in this study, we have 
attached them as a Supplementary file. These values cover 
evaluations of just one parameter of FMEA (“occurrence” 
parameter). Expert assessments on the other two parame-
ters (severity and detection) of FMEA have been made via 

FBWM method in “Determination of priority values of FMs 
in terms of severity and detection parameters”. In addition, 
parameter weights of FMEA are assessed by experts and a 
weight matrix for them has been gained in “Determination 
of importance weights of FMEA parameters”. Then, merg-
ing of both matrices, final RPN values of each failure mode 
can be computed. This will be explained in the next section 
(“Determination of FM scores”).

In this procedure, the linguistic variables which the 
experts used for evaluation of basic events and their cor-
responding trapezoidal fuzzy numbers are presented in 
Table 7.

The evaluation of experts for each basic event in the 
constructed BN (shown in Fig. 9) is presented in Table 8. 
These evaluations are considered as input in the aggrega-
tion procedure. Then, the aggregation operator is applied 
for each basic event. We presented the details of aggrega-
tion for basic events X1 in Table 9.

Fig. 10  The procedure of the aggregation used in expert judgments in FBN

Table 7  The linguistic scale in trapezoidal fuzzy numbers

Linguistic term Trapezoidal fuzzy number

Very low (VL) (0, 0, 0.1, 0.2)
Low (L) (0.1, 0.2, 0.2, 0.3)
Mildly low (ML) (0.2, 0.3, 0.4, 0.5)
Medium (M) (0.4, 0.5, 0.5, 0.6)
Mildly high (MH) (0.5, 0.6, 0.7, 0.8)
High (H) (0.7, 0.8, 0.8, 0.9)
Very high (VH) (0.8, 0.9, 1.0, 1.0)
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In addition, the conditional probabilities of the nodes are 
also calculated. For example, if the basic events of X1 and 
X3 have occurred, the occurrence probability of conditional 
event X2 is calculated as 0.902. In the same manner, all pos-
sible situations are presented in Table 10.

The occurrence probabilities of FMs are then calcu-
lated, and they are given in Table 11. FM3 is determined as 
FM with the highest occurrence probability. Then, occur-
rence probabilities obtained using FBN were normalized to 
become suitable for matrix multiplication and comparative 
study.

Determination of FM scores

Two matrices are used in the RPN calculation of five FMs. 
The first matrix consists of three columns. The first and 
third columns consist of averaged preference values of FMs 
according to S and D parameters as presented in Fig. 7. The 
second column contains the normalized occurrence prob-
abilities as given in Table 10. The second matrix includes 
the importance weights of FMEA parameters obtained from 
FBWM implementation as given in Fig. 5. By multiplying 
these two matrices, RPNs are obtained as follows:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.114 0.194 0.307

0.114 0.218 0.213

0.144 0.391 0.260

0.322 0.141 0.118

0.306 0.055 0.102

⎤
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎣

0.372

0.454

0.174

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.184

0.179

0.276

0.205

0.157

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Table 8  The expert evaluation 
on basic events

X1 X3 X4 X6 X7 X8 FM5

Expert 1 ML L L L M ML L
Expert 2 VL VL L VL MH ML L
Expert 3 L VL L L MH ML ML
Expert 4 M L M L H ML M
Expert 5 M L L M MH MH L
Expert 6 M L L L H MH VL

Table 9  The aggregation procedure for basic event X1

Experts Linguistic 
judgment

Trapezoidal fuzzy number

Expert 1 ML 0.2 0.3 0.4 0.5
Expert 2 VL 0.0 0.0 0.1 0.2
Expert 3 L 0.1 0.2 0.2 0.3
Expert 4 M 0.4 0.5 0.5 0.6
Expert 5 M 0.4 0.5 0.5 0.6
Expert 6 M 0.4 0.5 0.5 0.6
S (1–2) 0.725 AA  (Expert1) 0.825
S (1–3) 0.850 AA  (Expert2) 0.665
S (1–4) 0.850 AA  (Expert3) 0.765
S (1–5) 0.850 AA  (Expert4) 0.825
S (1–6) 0.850 AA  (Expert5) 0.825
S (2–3) 0.875 AA  (Expert6) 0.825
S (2–4) 0.575 C  (Expert1) 0.232
S (2–5) 0.575 C  (Expert2) 0.170
S (2–6) 0.575 C  (Expert3) 0.136
S (3–4) 0.700 C  (Expert4) 0.142
S (3–5) 0.700 C  (Expert5) 0.177
S (3–6) 0.700 C  (Expert6) 0.142
S (4–5) 1.000 A1 0.245
S (4–6) 1.000 A2 0.328
S (5–6) 1.000 A3 0.368
RA  (Expert1) 0.174 A4 0.468
RA  (Expert2) 0.141 K 2.815
RA  (Expert3) 0.162 CFP 0.353
RA  (Expert4) 0.174 FP 0.001
RA  (Expert5) 0.174
RA  (Expert6) 0.174

Table 10  The occurrence probability for conditional event X2 case

If X1 is No Yes

If X3 is No Yes No Yes

If X2 is No 0.999 0.939 0.947 0.902
If X2 is Yes 0.001 0.061 0.053 0.098

Table 11  The results of FBN

FM Occurrence probability Normalized 
occurrence prob-
ability

FM1 0.001511 0.194
FM2 0.001700 0.218
FM3 0.003045 0.391
FM4 0.001097 0.141
FM5 0.000430 0.055
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Scratch on the product (FM3) has been calculated with 
the highest risk value of 0.276. The occurrence of this risk 
does not make the product scrapped, but service sectors such 
as hotels and restaurants avoid buying such faulty products. 
Therefore, the price of products with this defect drops dra-
matically. Cracking on the product (FM4) has been calcu-
lated as the second-highest risk value 0.204. In this case, 
the product is no longer usable in any way and is sent for 
scrap. The third highest risk has been calculated 0.183 stain 
on the product (FM1). Although FM1 causes a decrease in 
the price of the product due to cosmetic reasons similar to 
FM3, its effect is more limited than FM3. The fourth highest 
risk has been calculated 0.204 polishing color difference on 
the product (FM4). This risk is similar to FM1 and FM3. 
However, its effect is much more limited than others. This 
color difference can only be evaluated by experts. Generally, 
this situation is noticed during and after product delivery, 
negatively affects the brand image in the long term. The low-
est risk was calculated as Failure to weld pot handles prop-
erly (FM5) with 0.157. The occurrence of this risk makes 
the product unusable and unsold, but it is easy to detect. In 
addition, technological developments in resistance welding, 
especially in recent years, have considerably reduced the 
possibility of faulty welding.

Comparative study

In our proposed approach, preference values of FMs with 
respect to parameters S and D were obtained via FBWM. 
Then, the preference values of FMs with respect to param-
eter O were obtained via FBN-based procedure. To test the 
validity of the proposed holistic approach, a benchmarking 
approach which considers evaluations of FMs with respect 
to all of the three parameters via FBWM is demonstrated. 
Table 12 shows the preference values of five FMs according 
to parameter O assessed by each expert. Preference values of 
FMs with respect to parameters S and D are given in Table 5.

By combining Tables 12 and  (the averaged values), the 
first matrix is gained as in the following. Then, new RPNs 
were obtained by multiplying these two matrices. In the 
obtained results, it starts with RPN for FM1 in the first row 
of the matrix (a value of 0.202) and ends with RPN value 
for FM5 in the 5th row (a value of 0.185):

As a result of the calculation, FM ranks are as follows: 
RPN3 > PRN1 > RPN2 > PRN4 > RPN5. When the 
values of this RPN calculation procedure and the proposed 
holistic approach are compared, it is observed that the 
ranks are similar. The comparison results are provided in 
Table 13. Pearson correlation coefficient regarding ranks in 
both approaches was determined as 0.998. In this case, it 
can be said that there is a very strong relationship between 
the two rankings.

Conclusion

Industrial kitchen equipment is used in many commercial 
and non-commercial organizations such as hotels, airports, 
universities, shopping malls, and laboratories. The service 
industry plays the most important role in the rise of indus-
trial kitchen equipment. In parallel with the development of 
the service industry, industrial kitchen equipment production 
is also developing. Companies need to increase their qual-
ity and reduce their sales prices in order to compete in the 
market. For this reason, the failure analysis can be a guide 
in reducing the number of scrap products and increasing 
product quality. FMEA is one of the most frequently used 
failure analysis tools in the decision-making process of dif-
ferent industry types and operations, and it enables decision-
makers to make critical decisions easier.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.114 0.234 0.307

0.114 0.250 0.213

0.144 0.288 0.260

0.322 0.111 0.118

0.306 0.117 0.102

⎤
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎣

0.372

0.454

0.174

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0.202

0.193

0.229

0.191

0.185

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Table 12  The preference values of five FM according to “occurrence” 
parameter assessed by each expert

Expert Occurrence probability (O)

FM1 FM2 FM3 FM4 FM5

Expert 1 0.251 0.140 0.365 0.103 0.140
Expert 2 0.132 0.224 0.405 0.108 0.132
Expert 3 0.153 0.378 0.253 0.109 0.108
Expert 4 0.153 0.371 0.229 0.142 0.105
Expert 5 0.339 0.233 0.221 0.095 0.111
Expert 6 0.378 0.153 0.253 0.109 0.108
Averaged 0.234 0.250 0.288 0.111 0.117

Table 13  Results of comparative study

FM Proposed approach Benchmarking 
approach

RPN Rank RPN Rank

FM1 0.184 3 0.202 2
FM2 0.179 4 0.193 3
FM3 0.276 1 0.229 1
FM4 0.205 2 0.191 4
FM5 0.157 5 0.185 5
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In this study, a failure analysis is performed for the indus-
trial kitchen equipment production. Failures in the manufac-
turing process have not been easily predictable, and the com-
plexity required a change in the traditional FMEA concept. 
While this traditional RPN logic may seem like a methodical 
way to rank failures in system safety assessment, it has many 
disadvantages handled in the literature up to now. Therefore, 
in this study, an FMEA with a holistic FBN and FBWM 
approach is proposed. FBWM has been injected into the 
proposed holistic approach to assign importance weights to 
the three risk parameters of FMEA and to obtain preference 
values of FMs with respect to S and D parameters. In addi-
tion, the FBN is used to find the actual occurrence prob-
ability values of FMs. Finally, obtained preference values 
of FMs with respect to all three risk parameters from both 
FBWM and FBN are then merged to determine final RPN 
of each FM.

This study has revealed a general risk analysis of the pro-
duction process for the observed production facility consid-
ering all product types. In this industry, dozens of product 
types are produced and the production process of each prod-
uct changes slightly. For future studies, a separate BN can be 
created for each product type. This constructed BN should 
include main and auxiliary FMs of each product type. Thus, 
it will be possible to generate a more representative FMEA 
for the facility, as each product type is produced in different 
quantities.

Another limitation of the study is that the company have 
not analyzed the causes of failures in the previous period 
and not kept the records systematically. The availability of 
past records would allow a more efficient computation with 
precise data on the FMEA parameters. Another suggestion 
for future studies is that the weights of the risk parameters 
as well as each FM can be calculated with other MCDM 
methods. Thus, the results obtained not only with FBWM 
but also from other methods will guide decision-makers.
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