
A Holistic View of Stream Partitioning Costs

Nikos R. Katsipoulakis, Alexandros Labrinidis, Panos K. Chrysanthis
University of Pittsburgh

Pittsburgh, Pennsylvania, USA

{katsip, labrinid, panos}@cs.pitt.edu

ABSTRACT

Stream processing has become the dominant processing model for

monitoring and real-time analytics. Modern Parallel Stream Pro-

cessing Engines (pSPEs) have made it feasible to increase the per-

formance in both monitoring and analytical queries by parallelizing

a query’s execution and distributing the load on multiple workers.

A determining factor for the performance of a pSPE is the parti-

tioning algorithm used to disseminate tuples to workers. Until now,

partitioning methods in pSPEs have been similar to the ones used

in parallel databases and only recently load-aware algorithms have

been employed to improve the effectiveness of parallel execution.

We identify and demonstrate the need to incorporate aggregation

costs in the partitioning model when executing stateful operations

in parallel, in order to minimize the overall latency and/or through-

put. Towards this, we propose new stream partitioning algorithms,

that consider both tuple imbalance and aggregation cost. We eval-

uate our proposed algorithms and show that they can achieve up to

an order of magnitude better performance, compared to the current

state of the art.

1. INTRODUCTION
Monitoring and real-time temporal analytic queries are being

widely used in a variety of services, whose quality relies on suc-

cessfully capturing topic drift or trend fluctuation. Examples of

such services include high-frequency algorithmic stock trading, so-

cial network analysis, targeted advertising, and click stream anal-

ysis. In order to match the speeds of data production, stream pro-

cessing is deemed as the most promising model. At a high level,

it requires (a) one-pass over the data, (b) constant processing time,

and (c) continuous execution. After many flavors of single-thread

stream processing engines [2, 6, 7, 11], Parallel Stream Processing

Engines (pSPEs) have been introduced as a solution for process-

ing high-volume data streams, in both single-node multi-threaded

(scale-up) [10, 24], and in multiple-node (scale-out) [1, 35, 27, 3,

37, 34, 25, 8, 30] environments.

pSPEs have dominated the streaming landscape because of their

ability to scale processing capability by dividing load into parallel

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 11
Copyright 2017 VLDB Endowment 21508097/17/07.

data-flows, handled by many workers. At their core, pSPEs are crit-

ically affected by the partitioning algorithm of the sub data-flows

delegated to workers: the more evenly the load is partitioned, the

more scalable a pSPE is. Therefore, partitioning is paramount, es-

pecially in stateful operations, which involve windows of computa-

tion, complex delivery semantics (i.e., exactly-once), and window

synchronization [8].

The focal point of our work is on stateful operations, which re-

quire the collocation of tuples with similar characteristics and pro-

duce an aggregated result, for each user-defined logical window.

A window contains tuples based on count, time, or even session.

The need for strict delivery semantics (e.g., exactly-once) imposes

additional overheads for guaranteeing correctness and timely deliv-

ery of results, which are generated by checkpointing, out-of-order

window alignment, window barriers, etc.

Often, pSPEs rely on dynamic re-partitioning of tuples to achieve

better load balance [32, 38, 17, 13, 18, 35, 9, 15]. However, re-

partitioning comes with the additional burden of state migration,

which is a heavyweight task and involves complex synchronization

protocols, state integration policies (subject to window semantics),

and can potentially lead to delayed tuple delivery. Therefore, in

our study we chose to take a step back and focus on the partition-

ing algorithm to make it more efficient, so that the need for re-

partitioning materializes less often. Of course, re-partitioning solu-

tions, such as Flux [32], require partitioning 1, and can complement

our work to enhance a pSPE’s performance further.

Until recently, pSPEs adopted partition algorithms used in Ma-

ssively Parallel Processing Database Management Systems. The

most popular algorithms among them are “shuffle” (or round-robin)

(SH), and “field” (or hash) (FLD) algorithms [8, 34]. The former,

blindly sends tuples to workers in a circular fashion akin to shuf-

fling a deck of cards; whereas, the latter exploits a random process,

usually a hash function, to disperse tuples to workers. Each parti-

tion algorithm has its merits and its drawbacks: SH manages to bal-

ance load evenly, but forces a computationally heavy aggregation

step (Fig. 1a); FLD underperforms on skewed streams (i.e., when

some keys appear more often than others) but does not require an

aggregation step (Fig. 1b).

The state of the art partition algorithm is “partial key” grouping

(PK) [28]. It focuses on improving performance by keeping track

of the number of tuples sent to each worker in an online fashion.

PK leverages the idea of key splitting [5], which dictates that tuples

with the same attribute(s) can be split among two workers for the

benefit of overall performance (Fig. 1c). Recently, an extension of

PK that uses more than two choices was proposed [29], and was

shown to further balance load among workers. The decision about

1Flux uses FLD as its partition algorithm.

1286

P

W1

W2

WV

A

...

a: SH’s aggregation runtime

is proportional to V times the

number of distinct groups.

P

W1

W2

WV

...

b: FLD doesn’t require aggrega-

tion, but fails to balance load un-

der skewed input.

P

W1

W2

WV

A

...

c: PK’s aggregation runtime

is proportional to M times the

number of distinct groups (M is

the number of choices).

Figure 1: Existing stream partitioning algorithms lack a unified model that limits imbalance while keeping aggregation cost low.

which worker will receive a tuple is determined by the total num-

ber of tuples already sent to each one of them at the time of the

decision. This way, the merits of FLD and SH are combined by

overcoming skewness through the use of multiple choices and, at

the same time, reducing aggregation cost.

Partition algorithms like PK (and its multi-choice variant [29])

focus on the aspect of imbalance, in terms of tuples sent to each

worker on the parallel step of a stateful operation. Nevertheless,

every stateful operation requires a step in which partial results are

combined (Figs. 1a and 1c). In our work, we argue that an im-

portant factor for performance is the aggregation cost required to

produce the final result, which is not considered by any other parti-

tioning algorithm. In fact, to the extent of our knowledge, no other

stream partitioning algorithm incorporates both imbalance and ag-

gregation cost.

In this paper we propose that tracking the aggregation cost of a

stateful operation reduces to counting the number of distinct keys

sent to each worker on every window. Hence, we introduce a new

class of partitioning algorithms, which leverage such information

during the decision process. Our contributions are:

• Introduce a novel cost model for stream partitioning that con-

siders both load imbalance and aggregation cost on every

window of a stateful operation.

• Propose novel stream partitioning algorithms that incorpo-

rate our cost model to improve performance.

• Demonstrate the benefits of our cost model in real world

benchmarks and present an empirical rule for choosing a par-

titioning algorithm for a stateful query.

Section 2 presents our model and existing partitioning algorithms.

Section 3 shows mechanisms for keeping track of cardinality, and

Section 4 presents our proposed algorithms. Section 5 and 6 demon-

strate the details of our experiments, followed by Section 7, which

offers a discussion on picking a partition algorithm. Finally, Sec-

tion 8 presents related work, and our work concludes in Section 9.

2. PROPOSED MODEL
We focus on pSPEs for either scale-up or scale-out architec-

tures. A scale-up architecture is a single multi-core machine, in

which multiple cores are used to accommodate concurrent threads.

A scale-out architecture is a multi-node environment in which a

cluster of machines is at the disposal of a central managing author-

ity of the pSPE.

2.1 Preliminaries
A query Q is submitted to the pSPE in either declarative or im-

perative form. For the rest of this section we are going to use the

SELECT R.a, COUNT(*)
FROM R JOIN S
 on R.a = S.b
[Range 5 minutes
 slide 30 seconds
]
WHERE S.c < 100
GROUP BY R.a

a: Input Query Q.
S
filter

join

map

groupby

R

output

stateful

stateless
b: Evaluation tree.

Figure 2: Query submission and evaluation on a pSPE.

Table 1: Model Symbol Overview

Model Symbol Overview

V # of workers

Si streams 1 ≤ i ≤ N

Xi schema of Si

eXi
tuple of Si

W : Si → {S1

i , . . . , S
w
i } window for Si

P : Sw
i → {L1

Sw

i

, . . . , LP
Sw

i

} partition function

LP
Sw

i

window load of worker i

f : LP
Sw

i

→ {. . . , (kx, vx), . . .} partial evaluation function

Γ : {. . . , f(Lj

Sw

i

), . . .} → R aggregation function

example query depicted in Fig. 2a, using CQL [4]. The pSPE trans-

forms Q into a logical plan, which is often modeled as an evalua-

tion tree (Fig. 2b). The root of the tree represents output, which

can either be an external system consuming the result or external

storage. The leaves of the tree are streams, each one represented by

Si, where 1 ≤ i ≤ N (N is the number of input streams). Each Si

is abstracted as a sequence of tuples eXi
with a predefined schema

Xi. From this point on we are going to describe our model based on

a single input stream Si. However, without any loss of generality

this model is capable of accommodating multiple streams as well.

An eXi
’s attributes can be represented as a triplet (τXi

, kXi
, pXi

).
τXi

is the attribute responsible for ordering tuples in Si and is

used to assign each eXi
to a logical window (either time- or count-

based). A logical window is abstracted as a function W : Si →
{S1

i , ..., S
w
i }, where w → ∞. Each Sw

i represents the tuples of Si

that belong to window w according to W . kXi
⊂ {Xi − τXi

} are

the attributes, which identify a tuple, and pXi
⊂ {Xi−(τXi

+kXi
)}

are the remaining attributes, which comprise eXi
’s payload. Often,

those appear in predicates, projection lists, or are used by aggre-

gate functions. In our example query, S1 = R and S2 = S.

1287

P((R⋈S)w)

f(L1
(R⋈S)w)

f(LV(R⋈S)w)

Γ({f(L1),
…,

f(LV)})

partition partial eval. aggregation

...
Figure 3: The windowed group-by count of the sample query

(Fig. 2) as a 3 stage process.

X1 = (t, a) and X2 = (t, b, c). Each tuple from R is modeled

as a triplet where τX1
= {R.t}, kX1

= {R.a}, and pX1
= ∅.

Similarly, τX2
= {S.t}, kX2

= {S.b}, and pX2
= {S.c}.

Turning to the evaluation tree, internal nodes represent algebraic

operations, which work as transformations of an input stream Si

to another S′
i. Each operation can be either stateless or stateful.

The former are pure functions (as defined by functional program-

ming principles) and are easily parallelized by arbitrarily partition-

ing their input stream. The latter can be either a relational algebra

operation or any user-defined function that produces a result on ev-

ery window Sw
i . Our work focuses only on partitioning tuples for

stateful operations. In the tree illustrated on Fig. 2b, map and filter

are stateless, whereas, join and group-by are stateful operations.

2.2 A new formulation for Parallel Stateful
Operations

By the time a stateful operation is scheduled to execute in paral-

lel, it transforms into a 3-stage process for each window Sw
i . Its

input consists of Sw
1 , . . . , Sw

N and the 3 stages are in order: (i)

partition, (ii) partial evaluation, and (iii) aggregation. Figure 3

depicts the windowed group-by count between streams R and S of

the sample query as the 3 stage process.

Partition can be modeled as a function that takes a subsequence

Sw
i and produces another sequence of equal length that indicates

the worker to which each eXw

i
is going to be sent. In other words,

partition is a function P : Sw
i → {o1, . . . , o|Sw

i
|}, where 1 ≤

ol ≤ V (|x| represents the length of a stream/sequence x). The re-

sulting sequence consists of elements ol, where 1 ≤ l ≤ |Sw
i |, each

one mapping eXw

i
indexed by l to a number in [1,V]. V represents

the pSPE’s parallelism degree for a particular stateful operation and

is materialized by V workers, which are responsible for processing

the partial result in window w. Each worker is either a thread or a

process. Lo
Sw

i

= {e ∈ eXw

i
|Pw(S

w
i)[e] = o} denotes the sequence

of tuples from Sw
i that will be sent to worker o, by the partition pro-

cess. Partial evaluation is executed by V workers in parallel. Each

worker receives its corresponding Lo
Sw

i

sequence and applies the

user-defined transformation f . f produces a set of key-value pairs:

f : Lo
Sw

i

→ {(k1, v1), . . . , (km, vm)} of arbitrary size m. m is

naturally bounded by the cardinality of Sw
i , which is defined as the

number of distinct values kSi
in Sw

i . For the rest of this paper,

the cardinality of a stream/sequence x will be represented by ‖x‖,

which is used to refer to the number of distinct keys (groups) held

by a worker. Finally, aggregation combines all the key value pairs

f(Lo
Sw

i

) produced by each worker o, ∀o ∈ [1,V], into a final result,

using an aggregation function Γ({f(L1

Sw

i

), . . . , f(LV
Sw

i

)}).
Going back to the query shown in Fig. 3, partition would be

a function P ({R ⊲⊳ Sw}) that partitions each windowed stream

based on R.a. Partial evaluation would be the partial count of the

group-by operator and the result of each worker would produce a

sequence of key value pairs, in which the keys would consist of

distinct R.a values and values would be the number of tuples for

each corresponding R.a key. Finally, the aggregation stage would

combine partial results by adding partial counts for every match-

ing R.a key. In essence, if 2 workers are used with worker #1
producing {(x, 12), (y, 123)} and worker #2 producing {(x, 43),
(y, 1), (z, 4)}, then aggregation (Γ) produces the result {(x, 55),
(y, 124), (z, 4)} (similar to the processing model of [33]).

2.3 Proposed partitioning cost model
Partition aims to: (i) divide Sw

i as evenly as possible among V
workers, while (ii) aggregation load (Γ) remains low. This way,

execution can benefit from employing multiple workers: the more

maxV(L
V
Sw

i

) gets reduced, the faster the partial evaluation step is

going to progress. In our work, we adopt the assumption that there

exists a monotonic relation between the number of tuples and load

increase (similar to previous work on stream partitioning [28]).

This entails that when a tuple is assigned to a worker, its load will

either increase or stay the same.

[28] introduced tuple imbalance as a metric for quantifying a

partitioner’s efficiency in terms of balancing load among work-

ers. However, [28] expressed imbalance on the entire stream (i.e.,

counting from the beginning of time), which we believe is limited,

given the dynamic nature and characteristics of data streams. In

this work, we extend imbalance to cover the window aspect of a

streaming query:

I(P (Sw
i)) = |max

j
(Lj

Sw

i

)− avg
j

(Lj

Sw

i

)|, j = 1, . . . ,V (1)

Equation 1 defines tuple imbalance as the difference of the max-

imum LSw

i
minus the average LSw

i
, as partitioned by a partition

algorithm P . The less the tuple imbalance achieved by P is, the

less the maximum runtime of each worker will be.

We propose a new model for measuring the effectiveness of a

partitioner by incorporating aggregation cost, which has been ig-

nored in the past. As we discussed in Sec. 2.2, the aggregation

stage will have to ingest all f(LV
Sw

i

) and combine every pair of

(k, v) tuples with a matching key k. Hence, the number of opera-

tions for processing partial results is proportional to the sum of the

sizes of all partial aggregations |f(LV
Sw

i

)|:

Γ(Sw
i) = O(

V∑

o=1

|f(Lo
Sw

i
)|) (2)

Equation 2 captures both processing and memory cost of the ag-

gregation, since partial results need to be stored until they are pro-

cessed. In fact, the larger Γ(Sw
i) is, the more memory is required

to accommodate partial results. Therefore, we model stream parti-

tioning as the following minimization problem:

minimize I(P (Sw
i))

while Γ(Sw
i) ≤ max

1≤j≤V
(Lj

Sw

i

)
(3)

The reason Γ(Sw
i) should be less or equal than the maximum LV

Sw

i

is so that execution benefits from parallelizing the workload and

not having aggregation become more than the maximum partial

processing cost.

Finally, in scale-out architectures, workers’ load might diverge

due to external factors (i.e., communication, multi-tenancy etc.).

Our model (Eq. 1) focuses on identifying load generated by the

1288

A
gg

re
ga

tio
n

co
st

Imbalance

Lo
w

H
ig

h shuffle
(SH)

field
(FLD)

worst

Low High

best

partial-key
(PK)

Figure 4: Stream partitioning algorithms expected performance.

stateful operation and act accordingly to balance it. To the ex-

tent of our knowledge, any method for broader load monitoring

in a pSPE involves architectural interventions, such as monitoring

modules and feedback loops [17, 38, 13, 18, 23, 31]. If a pSPE

features the aforementioned components to detect load divergence

caused by external factors, our cost model (Eq. 3) can be extended

to incorporate that information as well 2.

2.4 The pitfall of ignoring aggregation costs
To better understand inherent trade-offs among existing partition

algorithms, we present Fig. 4, which illustrates the two dimensions

with which each algorithm is measured. The horizontal axis repre-

sents the ability of an algorithm to balance the load among workers,

and the vertical axis represents an algorithm’s ability to maintain

the aggregation cost low, based on our model (Eq. 3). In Fig. 4 we

have placed previously proposed partition algorithms based on their

expected behavior in terms of imbalance and aggregation cost.

As indicated by Eq. 3, partitioning becomes a trade-off between

tuple imbalance and aggregation cost: the more tuples are spread,

the more aggregation time increases. Consider Si to be an input

stream with schema Xi = (t, a, b), where τXi
= {t}, kXi

= {a}
and pXi

= {b}. In a stateful operation, a partitioning algorithm

has to make a choice of where all tuples with a particular key a will

be sent. Partitioning algorithms can be categorized based on how

many worker options are presented for a given kXi
.

A 1-choice partitioner offers no mechanisms to balance skew-

ness on input data. As a result, the workers that happen to be as-

signed the part of the data that appear the most (i.e., most frequent)

will always have more work compared to others. That leads to

higher imbalance (Eq. 1). In addition, when a single option for each

kXi
is presented, aggregation cost (Eg. 2) is minimal, because each

worker will produce a subset of the full result. On the other hand,

a M -choice partitioner (M ≤ V) presents M candidate workers

for each kXi
. Thus, load for kXi

is divided into M equal parts and

handled by M workers. As a result, imbalance (Eq. 1) is reduced,

and the pSPE takes better advantage of parallelism. Unfortunately,

partial results produced by the M workers handling a particular

kXi
have to be gathered and combined. That entails an inflated

aggregation cost, which is expected to increase by a factor of M .

For example, in a single window Sw
i , if tuples with kXi

= ax are

assigned to 4 workers, then the aggregation stage will process 4
partial results (i.e., one from each worker).

Shuffle Partitioning (round-robin) - SH blindly sends tuples

to workers, without making any attempt to balance load and col-

locate keys (Fig. 1a). Therefore, SH is categorized as a M -choice

partitioner because an aggregation stage is required to produce the

2By changing Eq. 1 to multiply L
j

Sw

i

with load-divergence coeffi-

cients, produced periodically by monitoring components.

final result. SH manages to minimize tuple imbalance (Eq. 1) since

each worker receives the same number of tuples in a given window

Sw
i : if V workers exist, each one will receive

|Sw

i
|

V tuples. Turning

to aggregation cost Γ(Sw
i) (Eq. 2), when SH is used it becomes

computationally expensive, because tuples are partitioned without

an attempt to collocate keys. Therefore, in a worst case scenario,

each worker will produce a partial result (f(LV
Sw

i

)) with all the keys

that exist in Sw
i (illustrated in Fig. 1a). In that case, Γ(Sw

i) will

become equal to M times ‖Sw
i ‖. As far as our cost model is con-

cerned (Eq. 3), SH minimizes imbalance, but does not act to limit

the aggregation cost.

Hash Partitioning (field) - FLD follows a different approach

than SH, by collocating tuples with the same kXi
on the same

worker (Fig. 1b). FLD feeds kXi
to a hash function and selects

a worker based on the result. It guarantees that keys from the

same group will be collocated, resulting in minimal aggregation

cost (Eq. 2). Hence, FLD is characterized as a 1-choice partitioner.

Nevertheless, FLD fails to balance the load effectively when input

is skewed and some keys appear more often than others. (i.e., there

is tuple imbalance - Eq. 1). Matters can get exacerbated if initial

expectations (or assumptions) on input load do not hold true over-

time. Under such circumstances, “struggling” workers with excess

load will hinder the progress of a query and even compromise the

correctness of the result. In conclusion, FLD imposes minimal ag-

gregation cost but does not act on limiting tuple imbalance (based

on the cost model - Eq. 3).

Partial Key Partitioning - PK, is the current state of the art al-

gorithm [28]. It adopted the idea of key splitting [5] to alleviate the

load of processing keys that are part of the skew. PK was first to

incorporate load in terms of the number of tuples assigned to each

worker (i.e., LV
Sw

i

). Key splitting is materialized by using a pair

of independent hash functions (i.e., H1,H2) and feed kXi
to both.

Also, PK maintains an array of size V with the total tuple count

sent to each worker. Every time a tuple arrives, its kXi
is fed to H1

and H2 to identify 2 candidate workers. The partitioner will for-

ward the tuple to the candidate that has received the least number

of tuples up to that point. PK was extended to more than two candi-

dates [29], when two are not sufficient to handle skew. Even though

PK succeeded in improving imbalance (Eq. 1) compared to FLD,

it did so by adding an essential aggregation step (Eq. 2). There-

fore, PK is expected to incur aggregation cost proportional to the

number of candidates. Turning to our cost model (Eq. 3), PK can

potentially violate the aggregation cost constraint, when Γ(Sw
i) ex-

ceeds the maximum workload experienced by each worker.

Summary: Our goal is to propose partitioning algorithms that be-

long to the best quartile (Fig. 4) and use our cost model (Eq. 3).

To achieve this, we have to maintain the aggregation cost low and

achieve better imbalance.

3. MINIMIZING IMBALANCE WITH LOW

AGGREGATION COST
Designing a partitioning algorithm that achieves low aggrega-

tion cost entails keeping track of the number of keys produced by

each worker on every window Sw
i (i.e., f(Lj

Sw

i

), for 1 ≤ j ≤ V).

Equation 2 indicates that if the sum of f(Lj

Sw

i

) is reduced, then the

aggregation cost gets reduced as well. However, the boundaries of

the aggregation cost need to be identified first.

PROPOSITION 1. For a given stream Sw
i , a stateful operation

f , and V number of workers, Γ(Sw
i) is bounded by: ‖Sw

i ‖ ≤
Γ(Sw

i) ≤ V‖Sw
i ‖.

1289

PROOF. Γ(Sw
i) will always be greater or equal to ‖Sw

i ‖ and

that happens when the partitioning algorithm sends each key to a

single worker only. In this case, Li
Sw

i

∩ L
j

Sw

i

= ∅, ∀ 1 ≤ i 6=

j ≤ V . Hence, ‖L1

Sw

i

‖ + . . . + ‖LV
Sw

i

‖ = ‖Sw
i ‖. Similarly,

if the partition algorithm sends at least one tuple for each key to

every worker (i.e., k ∈ ‖Lj

Sw

i

‖, ∀k ∈ Sw
i and 1 ≤ j ≤ V), then

‖L1

Sw

i

‖+ . . .+ ‖LV
Sw

i

‖ = ‖Sw
i ‖+ . . .+ ‖Sw

i ‖
︸ ︷︷ ︸

V

= V‖Sw
i ‖

A mechanism for monitoring Γ(Sw
i)’s value has to be established.

Eq. 2 can be expanded to the sum of its operands as:

Γ(Sw
i) = |f(L1

Sw

i
)|+ . . .+ |f(LV

Sw

i
)| (4)

Hence, in order to monitor aggregation cost, the partition algorithm

has to keep track of the number of distinct keys sent to each worker,

for each Sw
i .

3.1 Incorporating Cardinality in Partitioning
Assuming a mechanism for keeping track of workers’ cardinal-

ities has been established, the cost model (Eq. 3) can be extended

to incorporate the knowledge of the number of distinct keys sent to

each worker. As indicated by Eq. 3, the information about workers’

cardinalities can be used in two places: (a) imbalance (Eq. 1), and

(b) aggregation cost (Eq. 2).

3.1.1 Cardinality in imbalance

The load of each worker has been modeled in terms of number

of tuples. In the same manner, a worker’s load can be expressed in

terms of cardinality using the following formula:

CL
j

Sw

i

= ‖Lj

Sw

i

‖, 1 ≤ j ≤ V (5)

Equation 5 depicts the load of a worker in terms of the number of

distinct keys sent to it. Therefore, cardinality imbalance can be

expressed as the difference between the maximum and the mean

cardinality of all workers for a given window Sw
i , as a result of a

partitioning algorithm P :

CI(P (Sw
i)) = max

j
(CL

j

Sw

i

)− avg
j

(CL
j

Sw

i

), 1 ≤ j ≤ V (6)

At this point, imbalance is determined by tuple count and cardi-

nality. However, different stateful operations are affected by each

metric differently. Hence, there is a need for a more diverse load

estimation formula, which combines tuple count and cardinality. In

order to avoid one metric dominating the other, the initial values

should be scaled accordingly:

L
j

Sw

i

′
=

L
j

Sw

i

−min1≤k≤V(L
k
Sw

i

)

max1≤k≤V(Lk
Sw

i

)−min1≤k≤V(Lk
Sw

i

)
(7)

CL
j

Sw

i

′
=

CL
j

Sw

i

−min1≤k≤V(CLk
Sw

i

)

max1≤k≤V(CLk
Sw

i

)−min1≤k≤V(CLk
Sw

i

)
(8)

H
j

Sw

i

= pL
j

Sw

i

′
+ (1− p)CL

j

Sw

i

′
, where 1 ≤ j ≤ V (9)

Equation 9 combines the normalized loads both in terms of tuples

(Eq. 7) and distinct keys (Eq. 8) in a unified score. That score is ad-

justable based on a user’s (or query optimizer’s) parameter p, which

controls the bias for each score accordingly: the smaller the p, the

less the load in terms of tuples affects Eq. 9; whereas the higher the

p, the less the load in terms of distinct keys affects Eq. 9. Finally,

imbalance can be expanded to a hybrid form that incorporates load

in terms of both tuple count and cardinality:

HI(P (Sw
i)) = max

j
(Hj

Sw

i

)− avg
j

(Hj

Sw

i

), 1 ≤ j ≤ V (10)

3.1.2 Cardinality in aggregation

Aggregation cost is determined by Γ(Sw
i) (Eq. 2) and reducing

it emanates from reducing the sum of distinct keys sent to each

worker. Its minimum value can be ‖Sw
i ‖ when each key is sent to

only a single worker. This behavior resembles FLD and it might

result in imbalance on workers. To avoid this, we employ key split-

ting for keys that have not been sent to a worker before in a partic-

ular window Sw
i . By sending each newly encountered key to the

worker with either the least keys or the least number of tuples up

to that point, the aggregation cost remains low. Also, imbalance is

expected to be lower compared to the one achieved from FLD.

3.2 Cardinality Estimation data structures
The partitioner needs to keep track of each worker’s cardinality,

every time a new tuple arrives. Hence, it should maintain an ar-

ray of V cardinality estimation structures (C), which will offer two

methods: (i) update(kXi
): for updating the count of distinct keys;

and (ii) estimate(): for returning the count of distinct keys.

3.2.1 Naive

The naive approach for estimating a worker’s cardinality involves

keeping track of the exact number of distinct keys. Therefore, a

partitioner responsible for V downstream workers, V unordered set

structures are needed. This way, the update and the estimate meth-

ods will offer constant execution time (O(1)).

One caveat of using an unordered set structure for each worker

is the memory overhead. Depending on the algorithm used, a key

can end up in multiple workers (e.g., SH). This way, the memory

required for maintaining the number of keys on each worker can be-

come O(V‖Sw
i ‖), since all unordered sets can end up having each

key. The memory cost of a naive cardinality estimation structure is

related to the cardinality of Sw
i and the choice of the partitioning

policy: If ‖Sw
i ‖ remains low and the partitioner does not send the

same keys to multiple workers, the memory requirements for C will

remain low. However, if ‖Sw
i ‖ is high and the partitioner tends to

send tuples with the same key to multiple workers, then memory

load can hinder the partition process.

3.2.2 Hyperloglog

HyperLogLog (HLL) introduced by Flajolet et al. [14] is an al-

gorithm for estimating the number of distinct elements in databases

with a bounded error. HLL requires O (log
2
log

2
N) memory for

a relation expected to have N distinct elements. Every time a new

tuple arrives, its kXi
is extracted and fed through a hash function.

HLL extracts the m most significant bits of the hash result, and uses

them to identify which register (out of 2m) to update. Each register

is log
2
log

2
N bits long, and its value is updated depending on the

left-most zero of the m most significant bits of the hashed value.

HLL has been shown to present an accuracy of 1.04√
m

. Recent work

from Heule et al. [20] presented a number of improvements that

need to take place so that cardinalities in the orders of billions can

be estimated efficiently. For cardinality estimation, a partition algo-

rithm is required to use V HLL’s to measure the number of distinct

keys sent to each of the V worker.

HLL can be used to limit the memory cost but it uses irreversible

operations to update its internal buckets. That constitutes it unable

to check whether a key has been previously sent to a worker. We

introduce an optimistic mechanism for checking if a key has been

1290

Algorithm 1: Partition.

input : eXi
, tw, C, L

output: worker to which eXi
will be sent to

1 k = GetKey(eXi
);

2 t = GetTimestamp(eXi
);

3 if t ≥ tw then

4 Reset(C);

5 Reset(L);

6 c1 = H1(k);

7 c2 = H2(k);

8 return decide(C, L, k, c1, c2);

forwarded to a particular worker before: upon the arrival of a key

that hashes to a worker i, its cardinality ci is estimated (call to esti-

mate). A trial update of ci is performed and the new cardinality c′i
is estimated. If the cardinality estimate difference ∆(|ci−c′i|) = 0,

then our mechanism optimistically assumes that the key has already

been sent to the corresponding worker. HLL is expected to make

wrong decisions at the benefit of a constant memory cost.

4. PROPOSED CARDINALITYAWARE PAR

TITIONING ALGORITHMS
PK [28, 29] has motivated the merits of key splitting [5] for re-

ducing imbalance among workers. Therefore, all the variations of

our proposed algorithms leverage key splitting, which materializes

with the use of multiple hash functions for identifying candidate

workers. For simplicity, our algorithms are presented with only

two candidates, but they can be extended to accommodate more.

The basis of our algorithms is presented in Alg. 1 and is called by

the pSPE’s partitioner when a new tuple arrives. The partitioner

maintains two arrays of size V: one with cardinality estimation

structures (C), and one with tuple counters (L). L is identical to the

one used by PK and gets updated the same way in all our proposed

algorithms. eXi
’s key is extracted and fed to the two hash functions:

H1 and H2. If the partitioner uses more than two candidates (i.e.,

M > 2), then an equal number of hash functions are used in the

decision process. The resulting choices (c1 and c2) along with the

arrays C and L are passed to decide().

During query execution, a pSPE might have multiple instances of

partitioners running on different machines (especially in a scale-out

setting, where thousands of threads are involved in a query). The

advantage of using hash functions is that no exchange of informa-

tion is required among different instances of partitioners. On top

of that, C and L have their counts monotonically increasing on each

window. Therefore, if each of the partitioners tries to reduce imbal-

ance and/or aggregation cost, then (through the additive property)

the overall imbalance and/or aggregation cost are reduced. Finally,

C and L need to be reset when a window expires (Alg. 1 line 3).

This guarantees that decisions reflect the temporal nature of stream

processing. Algorithm 1 receives tw as an argument, which is the

expiration timestamp of the current window.

In the following sections we go over our variations for decide():

(i) Cardinality imbalance Minimization (CM), (ii) Group Affinity

with imbalance Minimization (AM & cAM), and (iii) Hybrid im-

balance Minimization (LM).

4.1 Cardinality Imbalance Minimization (CM)
The first partitioning algorithm aims at limiting cardinality im-

balance (Eq. 6) and the decision is made based on the cardinality

Algorithm 2: Cardinality imbalance minimization (CM)

input : C, L, k, c1, c2
output: worker to which the tuple is going to be sent to

1 l1 = C[c1].estimate();
2 l2 = C[c2].estimate();
3 if l1 ≤ l2 then

4 C[c1].update(k);
5 L[c1] += 1;

6 return c1;

7 else

8 C[c2].update(k);
9 L[c2] += 1;

10 return c2;

Algorithm 3: Group affinity combined with cardinality imbal-

ance minimization (AM)

input : C, L, k, c1, c2
output: worker to which the tuple is going to be sent to

1 if C[c1].contains(k) then

2 L[c1] += 1;

3 return c1;

4 else if C[c2].contains(k) then

5 L[c2] += 1;

6 return c2;

7 else

8 l1 = C[c1].estimate();
9 l2 = C[c2].estimate();

10 if l1 ≤ l2 then

11 C[c1].update(k);
12 L[c1] += 1;

13 return c1;

14 else

15 C[c2].update(k);
16 L[c2] += 1;

17 return c2;

estimate retrieved by the C array structure (Eq. 5). The newly ar-

rived tuple eXi
is sent to the candidate worker that has the least

cardinality. Algorithm 2 illustrates the cardinality imbalance min-

imization algorithm (CM), which works as a counterpart to PK.

CM can have its cardinality estimation structure be either the Naive

(Section 3.2.1) or the HLL with our optimistic mechanism (Sec-

tion 3.2.2).

This algorithm is expected to be used in operations in which pro-

cessing cost is dominated by the amount of distinct keys. This way,

imbalance in terms of cardinality will be minimal. However, imbal-

ance in terms of tuple counts will be increased, since CM is tuple

count agnostic and makes no effort on limiting aggregation cost.

4.2 Group Affinity and Imbalance Minimiza
tion (AM & cAM)

Group Affinity algorithms try to impose no additional aggrega-

tion cost, while balancing load with the use of key splitting. The

name affinity comes from keeping track of whether a key has been

encountered before in Sw
i , and if it did, then it is forwarded to the

worker that received it previously.

The first variation of affinity based algorithms, is AM and fo-

cuses on cardinality imbalance (Alg. 3). AM tries to minimize ag-

gregation cost by not splitting keys among workers. First, it checks

1291

Algorithm 4: Group affinity with imbalance minimization

(cAM)

input : C, L, k, c1, c2
output: worker to which the tuple is going to be sent to

1 if C[c1].contains(k) then

2 L[c1] += 1;

3 return c1;

4 else if C[c2].contains(k) then

5 L[c2] += 1;

6 return c2;

7 else

8 l1 = L[c1].estimate();
9 l2 = L[c2].estimate();

10 if l1 ≤ l2 then

11 C[c1].update(k);
12 L[c1] += 1;

13 return c1;

14 else

15 C[c2].update(k);
16 L[c2] += 1;

17 return c2;

Algorithm 5: Hyblid imbalance minimization (LM)

input : C, L, k, c1, c2
output: worker to which the tuple is going to be sent to

1 hl1 = pL
c1
Sw

i

+ (1− p)CL
c1
Sw

i

;

2 hl2 = pL
c2
Sw

i

+ (1− p)CL
c2
Sw

i

;

3 if hl1 ≤ hl2 then

4 C[c1].update(k);
5 L[c1] += 1;

6 return c1;

7 else

8 C[c2].update(k);
9 L[c2] += 1;

10 return c2;

if one of the candidate workers has encountered key k previously.

If one of them did, then the tuple is forwarded to that worker; oth-

erwise, it is sent to the worker with the least cardinality up to that

point. A different variation of AM, named cAM (Alg. 4) behaves

similarly, but it forwards the tuple to the worker with the least tuple

count up to that point. This way, both aggregation cost and imbal-

ance are considered during partitioning. Despite the fact that AM

and cAM resemble FLD, they are expected to perform better be-

cause of the multiple number of choices that are presented to them.

4.3 Hybrid Imbalance Minimization (LM)
For stateful operations equally affected by tuple count and car-

dinality, we propose the hybrid load imbalance minimization algo-

rithm (LM). It combines a worker’s tuple count with cardinality and

calculates hybrid load as indicated in Eq. 9. A tuple is forwarded to

the worker with the least load and LM’s main goal is to minimize

hybrid load imbalance (Eq. 10). LM is depicted on Algorithm 5.

5. EXPERIMENTAL SETUP
Our experiments were conducted on an AWS c4.8xlarge instance,

running Ubuntu v14.04. For all experiments, we used our own

multi-threaded stream partitioning library, developed in C++11 and

Table 2: Stream partitioning algorithms. w is the total number of

workers.

Symbol Algorithm Choices Cardinality Estimation

Structure used

SH-w shuffle w None

FLD-1 field 1 None

PK-2 partial-key [28] 2 None

PK-5 partial-key [29] 5 None

CM-2 Alg. 2 2 Naive, Sec. 3.2.1

AM-2 Alg. 3 2 Naive, Sec. 3.2.1

AM-5 Alg. 3 5 Naive, Sec. 3.2.1

cAM-2 Alg. 4 2 Naive, Sec. 3.2.1

cAM-5 Alg. 4 5 Naive, Sec. 3.2.1

LM-2 Alg. 5 2 Naive, Sec. 3.2.1

CM-2-H Alg. 2 2 HLL, Sec. 3.2.2

AM-2-H Alg. 3 2 HLL, Sec. 3.2.2

LM-2-H Alg. 5 2 HLL, Sec. 3.2.2

compiled with GCC v4.8.2. Our performance analysis involved a

varying numbers of concurrent worker threads (8 up to 32), and

data partitions (from 8 to 256). The reason we did not experiment

with more threads was because we did not want to pollute results

with context-switching overheads. All reported runtimes are the av-

erages of 7 runs, after removing minimum and maximum reported

times, to compensate for anomalies related to running concurrent

processes.

5.1 Stream Partitioning Algorithms
We evaluated algorithms shuffle (SH), field (FLD), and partial

key (PK) [28] (with 2 and 5 candidate workers), along with dif-

ferent variations of our proposed algorithms: Cardinality Imbal-

ance Minimization (CM), Group Affinity with Cardinality Imbal-

ance Minimization (AM), Group Affinity with Imbalance Minimiza-

tion (cAM) and Hybrid Imbalance Minimization (LM). For all vari-

ation of LM we set p to 0.5 to achieve unbiased load estimation.

As a reference implementation for SH, FLD and PK we used

the ones found in Apache Storm. In addition, we used the open

source implementation of Murmur-Hash v3. All our proposed al-

gorithms appear in two versions: one with naive and one with HLL

as the cardinality estimation structure. For the former, we used

C++ STL’s implementation of unordered set, and for HLL, we im-

plemented our version with 4096(= 212) registers and a register

size of 5 bits. The choice of the number and size of registers was

made to accommodate up to 107 distinct keys of 32 bits, with an

accuracy lower than 2%, as instructed in [14]. Table 2 explains the

algorithm symbols we use in our graphs.

5.2 Data sets and Workloads
Table 3 summarizes the characteristics of each data set/benchmark

used in our experiments. Below, we go over each data set and the

queries we used in our study.

TPC-H (TPCH): TPCH has been extensively used for through-

put oriented streaming scenarios [13, 30, 10, 8, 12]. Out of 22
TPCH queries, 16 of them feature a grouping statement: half main-

tain a constant and half a scaling number of groups that increases

when the scale factor grows. Due to the fact that our work ad-

dresses stateful operations, we focused on grouping TPCH queries

and picked Query 1 (as a constant grouping query) and query 3
(as a scaling grouping query). Those two differ significantly in the

number of resulting groups, and this enabled us to document the

performance of different partition algorithms, when the aggrega-

1292

Table 3: Summary of data characteristics.

Dataset Size Groups Window Metric

TPC-H 10GB 4 up to ∼100k N/A throughput

DEBS 32GB 62.5K up to 8.1M sliding latency

GCM 16GB 4 to ∼670K sliding latency

0

5

10

15

8 16 32T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Number of workers

SH-w FLD-1 PK-2 CM-2

LM-2 AM-2 cAM-2 CM-2-H

AM-2-H LM-2-H AM-5 PK-5

cAM-5

Figure 5: TPCH Query 1 performance (throughput).

tion cost varies in terms of size. As indicated in Table 3, Query

1 presents 4 and Query 3 presents up to 110000 resulting groups.

Data were generated using the dbgen tool (v2.17) with a scale

factor of 10.

ACM DEBS 2015 Grand Challenge (DEBS): DEBS totals 32
GBs in raw size, and comes with two sliding window queries [21]:

(i) the Top-10 most frequent routes (Query 1), and (ii) the Top-

10 most profitable areas (Query 2). DEBS presents a per window

latency oriented data set, and its two queries offer group numbers

that can potentially range from 62.5 thousand to 8.1 million.

Google Cluster Monitoring (GCM): This data set contains ex-

ecution traces from one of Google’s cluster management software

systems, and for it we used two sliding window queries, which, like

DEBS, are per window latency oriented. GCM Query 1 was taken

from [24], and scans the task event table to calculate every 60
seconds (with a slide of 1 second) the total CPU cores requested

by each scheduling class. In addition, we introduced GCM Query

2 that calculates every 45 minutes (with a slide of 1 second) the

average CPU cores requested by each job ID. There are more than

600 thousand job IDs in the whole data set.

6. EXPERIMENTAL RESULTS
Our experiments evaluate the impact of a partition algorithm on

performance (Sec. 6.1), in terms of throughput (using the TPCH

data set) and window latency (using the DEBS data set). Moreover,

we evaluate the scalability (Sec. 6.2) of our algorithms compared

to the state of the art (using the GCM data set). For all experi-

ments, data were loaded in main memory before execution. The

time to load data and write output to storage was not included in

the reported times. Finally, for the experiments of Sec. 6.1 and 6.2,

the time it takes to partition tuples is not included, because it is

analyzed in Sec. 6.3 in terms of both processing and memory costs.

6.1 Performance
In this set of experiments, we used the TPCH and DEBS bench-

marks to evaluate performance.

6.1.1 TPCH Query 1 (Fig. 5)

Figure 5 indicates that for TPCH Query 1, SH-w performs the

best. This behavior is expected since there are only 4 groups for

Query 1. Therefore, aggregation cost is negligible and performance

is affected only by tuple imbalance. SH-w is expected to offer op-

timal tuple imbalance (≤ 1), which is reflected on results shown in

Fig. 5. Those agree with our model (Eq. 3), which identifies that

SH-w offers minimal imbalance with constant aggregation runtime

of O(4V) (V is the number of workers). In addition, PK-5 offers the

next best throughput, since it reduces tuple imbalance, compared to

all other algorithms with 2 and 5 alternative choices per group. CM

and LM do not scale well with two choices, since they are affected

by cardinality imbalance. LM is expected to perform similarly to

PK, if p takes a value of 1 (as indicated in Eq. 9). Turning to 1-

choice partitioners (i.e., FLD-1, AM and cAM), they present con-

stant performance and do not scale when the number of workers

increases. This happens because each group, is presented to a sin-

gle candidate worker.

Take-away: If the number of groups is constant and much smaller

than the size of the aggregation, SH performs the best.

6.1.2 TPCH Query 3 (Figs. 6 7)

The query plan of TPCH Query 3 consists of a parallel hash join

for the customer and orders tables, followed by a broadcast join

with the lineitem table. Then, a parallel computation of the group

by follows, and execution concludes with a final aggregation step

to materialize the result.

Figure 6 illustrates the performance of 1-choice partitioners (i.e.,

FLD-1, AM, and cAM), SH-w, PK-2, and PK-5. M-choice parti-

tioners performed from 2.5x up to an order of magnitude worse

(LM and CM offered similar performance to PK-2). As shown on

Table 3, TPCH Query 3 involves 110 thousand groups (before ap-

plying the limit statement), and aggregation can take up to 60%

of total execution time for M-choice partitioners. As a result, M-

choice partitioners (i.e., SH, PK, CM, and LM) experience a sub-

stantial performance overhead on the final aggregation step.

Figure 7 illustrates the relative to FLD-1 tuple imbalance achieved

by different variations of AM and cAM. Even though, AM-2-H

achieves better tuple imbalance compared to FLD-1, it fails to per-

form in the same level as AM-2. Tuple imbalance results justify

the throughput shown on Fig. 6, in which (apart from AM-2-H) all

variations of our proposed algorithms perform significantly better

than FLD-1. By adopting key splitting, throughput increases with

the use of multiple candidate workers. AM-5 and cAM-5 offer im-

proved throughput up to 47% compared to FLD-1.

Take-away: For throughput-oriented queries, with a large number

of groups, cAM and AM perform the best. They achieve up to an

order of magnitude better throughput compared to PK, and outper-

form FLD by up to 47%.

6.1.3 DEBS Query 1 (Figs. 8a 8c)

Turning to DEBS, both queries involve window semantics and

the performance is measured in window latency. Figure 8 shows

the mean and 99 percentile window latency achieved by each parti-

tion algorithm. It is clear that in all worker settings, FLD-1, AM-2,

cAM-2, AM-2-H, AM-5, and cAM-5 perform the best. This em-

anates from a lack of aggregation overhead, which constitutes those

algorithms scalable when the number of workers increases. In fact,

aggregation cost amounts for more than 70%, 84%, and 88% of

total runtime for SH-w, PK-2, PK-5, CM-2, and LM-2. Finally,

AM-2-H achieves identical performance with AM-2, which leads

us to believe that our optimistic mechanism for cardinality estima-

tion maintains a low error.

Take-away: For latency-oriented stateful queries, AM, and cAM

perform from 4.5x up to 11.6x better compared to PK.

1293

0

5

10

15

8 16 32

T
h
ro

u
g
h
p
u
t
(G

B
/s

)

Number of workers

FLD-1 AM-2 AM-2-H

cAM-2 AM-5 cAM-5

SH-w PK-5 PK-2

Figure 6: TPCH Query 3 performance (throughput).

6.1.4 DEBS Query 2 (Figs. 9a 9c)

The execution plan starts by partitioning incoming tuples based

on the medallion of each ride and each worker has to create two

local indices: one for accumulating fares for each pickup cell, and

one for keeping track of the latest drop-off cell. Then, an aggrega-

tion step follows, which gathers each pickup cell’s fares and deter-

mines the latest cell for each medallion. The two resulting streams

are partitioned based on pickup and drop-off cell IDs. Next, a

gather step is executed, in which the median fare and the number

of vacant taxis are processed to calculate the profit of each cell. Fi-

nally, partial results are merged and ordered to produce the Top-10
most profitable cells. This query represents a problematic case for

our model (Eq. 3), because partitioning does not necessarily affect

the workload imposed on each worker (i.e., the partitioning key is

the medallion but each worker’s state is affected by the number of

distinct cells).

Fig. 9 depicts window latency achieved by each algorithm, and it

is apparent that FLD-1, AM-2, AM-5, cAM-2, cAM-5, and AM-2-

H offer the best performance. AM and cAM in all their variations

outperform FLD in both mean (from 1.2x up to 1.5x) and 99 per-

centile (from 1.3x to 1.9x) latency. This is justified by AM’s and

cAM’s ability to partition data more evenly compared to FLD. M-

choice partitioners underperform because they do not act on lim-

iting aggregation overhead. In comparison with PK (in both PK-2

and PK-5), AM and cAM perform up to 5.7x faster. In order to

examine AM’s and cAM’s scalability, we also ran DEBS Query 2
with 64 and 128 workers. They performed up to 6.2x better than

PK and up to 2.3x better than FLD.

Take-away: For latency-oriented complex queries, with more than

one stateful operations, AM and cAM have window latency be-

tween 1.2x and 1.9x lower than FLD, and up to 5.7x lower than

PK.

6.2 Scalability
We used the GCM dataset to measure the scalability of AM and

cAM compared to SH and PK. The reason for picking GCM for

scalability experiments is because it presents a conventional moni-

toring scenario, in which groups are not significantly more than the

number of tuples in a window (like in TPCH and DEBS), and the

queries consist of a single stateful operation. This way, M-choice

partitioners would not be impeded by the aggregation cost.

6.2.1 GCM Query 1 (Figs. 10 & 11)

GCM Query 1 features up to 4 groups and differs from TPCH

Query 1 because the number of tuples in every window is com-

0

0.5

1

8 16 32

R
e
la

ti
v
e
 I

m
b
a
la

n
c
e

Number of Workers

AM-2 AM-2-H AM-5 cAM-2 cAM-5

Figure 7: TPCH Query 3 relative imbalance to FLD.

parable to the number of groups (the average window size is 42
groups). For this query, we measured SH’s, AM’s and cAM’s scal-

ability compared to PK-2, which is the current state of the art and

is expected to be scalable due to the small number of groups (as in

Sec. 6.1.1).

Fig. 10 presents the percentage improvement in window latency

of SH, AM, and cAM compared to PK-2. SH-w has its latency

improvement decrease, because aggregation cost increases when

more workers are employed. In contrast, AM and cAM have their

latency decrease when the number of workers increases and they

exhibit lower latency than PK-2. As Fig. 11 indicates, AM’s and

cAM’s scalability results from their constant aggregation cost while

the partial evaluation latency decreases. The former is not the case

with SH-w and PK-2, which have the aggregation cost percentage

increase with the number of workers.

Take-away: AM and cAM are scalable, maintain a constant aggre-

gation cost, and outperform PK-2 by up to 1.3x.

6.2.2 GCM Query 2 (Fig. 12)

Fig. 12 illustrates the percentage improvement in window la-

tency of SH-w, AM, and cAM over PK-2. Even though this query

contains a large number of groups (Table 3), its average window

size is only 181 tuples and group repetition is scarce. Therefore,

M-choice partitioners will not have their performance deteriorate

due to an overwhelming aggregation cost (the case in TPCH Query

3-Sec. 6.1.2). However, SH-w is not scalable because when addi-

tional workers are employed its aggregation cost becomes higher.

Turning to PK-2, it manages to be scalable, but it underperforms

compared to AM and cAM in all worker settings.

Take-away: AM and cAM are scalable and present more than 1.4x

better latency compared to PK.

6.3 Partition algorithm cost
In this set of experiments, we measure overhead imposed by each

algorithm in terms of processing and memory cost. To that end, we

picked DEBS Q1, because it features the longest group identifier

(15 bytes), and the number of groups can reach up to 8.1M.

6.3.1 Partition latency (Figs. 13a 13c)

To measure processing time, we marshaled DEBS data to each

algorithm and measured partition latency on each window. As de-

scribed in Sec. 3.2, the cardinality estimation structure size relies on

the number of workers. Therefore, we measured partition latency

for 8, 16, and 32 workers. Figure 13 illustrates the total time spent

on each window with each partition algorithm. We included 90
and 99 percentile window latency. Most of the algorithms present

constant values for 8, 16, and 32 workers. However, noticeable

1294

0

10

20

30

40

50

S
H

-w

F
L

D
-1

P
K

-2

C
M

-2

A
M

-2

C
M

-2
-H

A
M

-2
-H

L
M

-2

L
M

-2
-H

A
M

-5

P
K

-5

cA
M

-2

cA
M

-5

W
in

d
o
w

 L
at

en
cy

 (
m

se
c)

mean 99 %ile
a: 8 workers.

0

10

20

30

40

50

S
H

-w

F
L

D
-1

P
K

-2

C
M

-2

A
M

-2

C
M

-2
-H

A
M

-2
-H

L
M

-2

L
M

-2
-H

A
M

-5

P
K

-5

cA
M

-2

cA
M

-5

W
in

d
o
w

 L
at

en
cy

 (
m

se
c)

mean 99 %ile
b: 16 workers.

0

10

20

30

40

50

S
H

-w

F
L

D
-1

P
K

-2

C
M

-2

A
M

-2

C
M

-2
-H

A
M

-2
-H

L
M

-2

L
M

-2
-H

A
M

-5

P
K

-5

cA
M

-2

cA
M

-5

W
in

d
o
w

 L
at

en
cy

 (
m

se
c)

mean 99 %ile
c: 32 workers.

Figure 8: DEBS Query 1 performance (window latency).

0
100
200
300
400
500
600
700
800

S
H

-w
F

L
D

-1
P

K
-2

C
M

-2
A

M
-2

C
M

-2
-H

A
M

-2
-H

L
M

-2
L

M
-2

-H
A

M
-5

P
K

-5
cA

M
-2

cA
M

-5

W
in

d
o
w

 L
at

en
cy

 (
m

se
c)

mean 99 %ile
a: 8 workers.

0
100
200
300
400
500
600
700
800

S
H

-w
F

L
D

-1
P

K
-2

C
M

-2
A

M
-2

C
M

-2
-H

A
M

-2
-H

L
M

-2
L

M
-2

-H
A

M
-5

P
K

-5
cA

M
-2

cA
M

-5

W
in

d
o
w

 L
at

en
cy

 (
m

se
c)

mean 99 %ile
b: 16 workers.

0
100
200
300
400
500
600
700
800

S
H

-w
F

L
D

-1
P

K
-2

C
M

-2
A

M
-2

C
M

-2
-H

A
M

-2
-H

L
M

-2
L

M
-2

-H
A

M
-5

P
K

-5
cA

M
-2

cA
M

-5

W
in

d
o
w

 L
at

en
cy

 (
m

se
c)

mean 99 %ile
c: 32 workers.

Figure 9: DEBS Query 2 performance (window latency).

0

5

10

15

20

25

30

8 16 32 64 128 256

L
at

en
cy

 i
m

p
ro

v.
 o

v
er

 P
K

 (
%

)

Number of Workers

SH-w AM-2 AM-2-H

AM-5 cAM-2 cAM-5

Figure 10: Latency percentage improvement over PK for GCM

Query 1.

difference can be seen with 32 workers (Fig. 13c) for the 99 per-

centile window latency of CM-2, CM-2-H, LM-2, and LM-2-H.

The increase is a result of additional processing required for those

algorithms.

Take-away: Using our proposed algorithms does not incur any no-

ticeable overhead in latency.

6.3.2 Partition Memory (Table 4)

Our proposed algorithms make use of cardinality estimation struc-

tures. Hence, we ran a micro-benchmark, in which we produced

each possible key and replicated it to both available candidate work-

ers. This experiment aims at examining an extreme scenario, in

which all of the 8.1M groups appear in a single window. We mea-

sured memory consumed in MBs (Table 4). The naive cardinality

estimation structure size quickly increases with the number of keys.

Since each key is sent to both of the two candidates, the naive car-

dinality estimation structure’s size increases further. Conversely,

when HLL is used, memory consumption increases when the num-

ber of workers increases and its size does not get affected by neither

the number of keys, nor the number of candidates. However, if the

0

50

100

8 16 32 64 128 256

A
g

g
r.

 (
%

)
o

f
R

u
n

ti
m

e

Number of workers
SH-w PK-2 AM-2 AM-2-H

AM-5 PK-5 cAM-2 cAM-5

Figure 11: Aggregation percentage of runtime for GCM Query 1.

expected cardinality of the input stream is more than 10 million,

then each HLL structure needs to double its number of buckets.

Take-away: Memory requirements of the cardinality estimation

structure can be significantly limited with the use of HLL.

7. DISCUSSION
In conclusion, a pSPE’s performance can be affected by both

imbalance and aggregation cost. According to our experimental

results, the state of the art solution (i.e., PK) fails to perform well,

when a large number of groups appears, and 1-choice partitioners

like FLD can make use of key splitting [5] to achieve better perfor-

mance.

Maintaining low imbalance does not necessarily lead to lim-

iting aggregation cost. Even if an “improved” and diverse load

metric is used (i.e., CM with Eq. 6 and LM with Eq. 10), perfor-

mance will degrade when the number of groups increases. In fact,

M-choice partitioners underperform when a large number of keys

appear, because they focus solely on minimizing imbalance. After

conducting a sensitivity analysis on M-choice partitioners and their

1295

-10

0

10

20

30

40

50

8 16 32 64 128 256

L
at

en
cy

 i
m

p
ro

v.
 o

v
er

P

K
 (

%
)

Number of Workers

SH-w AM-2 AM-2-H

AM-5 cAM-2 cAM-5

Figure 12: Latency percentage improvement over PK for GCM

Query 2.

Table 4: Memory requirements in MBs of proposed algorithms for

DEBS Query 1.

DEBS Query 1
no. of workers 8 16 32

CM-2 243 243 243

AM-2 122 122 122

LM-2 243 243 243

CM-2-H 0.02 0.04 0.08

AM-2-H 0.02 0.04 0.08

LM-2-H 0.02 0.04 0.08

inaction for limiting aggregation cost, we found out that only un-

der specific circumstances they achieve minimal aggregation cost

(i.e., Γ(Sw
i) = O(‖Sw

i ‖)). One such scenario is when tuples ap-

pear in an order that prohibits key sharing among workers. For

example, Sw
i contains tuples with keys x and y, which map to 2

available workers w1 and w2. If all tuples with key x appear in

even positions, and all tuples with key y appear in odd positions,

then Γ(Sw
i) = O(2). Another scenario in which LM achieves min-

imal aggregation cost is when keys are uniformly distributed and

each one appears at most once. None of the data sets we used in

our experiments demonstrated any of these scenarios and we could

not find real-world data sets that behaved as such.

To address the important question of when to use each parti-

tion algorithm. As indicated by our experiments, SH is the best

option for stateful operations, in which the expected number of

groups is constant and far less than the window size divided by the

number of workers. Our results on TPCH Query 1 (Fig. 5) agree

with the previous statement, since SH performed the best and was

the only scalable algorithm. Conversely, when a stateful operation

involves a large number of groups, that constitute a significant per-

centage of total tuples on each window, AM and cAM have to be

used. They offer minimal aggregation cost (like FLD), while lever-

aging the merits of key splitting to decrease imbalance.

Summary: We codify our results into the following:

Stream partitioner selection Rule: If the number of groups in a

stateful operation are expected to be constant and significantly less

than the average number of tuples assigned to a worker on each

window, then SH must be used. Otherwise, AM and cAM will offer

the best trade-off between imbalance and aggregation cost.

8. RELATED WORK
Load Balancing: Seminal work on stream re-partitioning is pre-

sented in Flux [32], in which the Flux operator is presented for

monitoring load on each operator. Compared to our work, Flux

employs FLD to distribute tuples and is orthogonal to ours be-

cause we do not consider solutions that employ state migration

and re-partitioning in the event of imbalance. Furthermore, Flux’s

model does not consider the aggregation cost of stateful operations.

Closer to our work is PK, presented by Nasir et al. [28], which com-

bines key splitting when tuple imbalance appears. Our proposed

algorithms rely on a more complete model that considers both tu-

ple imbalance and aggregation cost. Thus, as shown in Sec. 6.1,

our proposed AM and cAM algorithms achieve better performance.

Recent work on partitioning by Rivetti et al. [31] has presented a

solution for online adjustment of SH. Their goal is to decrease pro-

cessing latency by making better decisions of tuple counts. Our

work differs from theirs in the sense that we aim to improve stream

partitioning in terms of both imbalance and aggregation cost. The

model presented in [31] does not consider aggregation cost, and it

only focuses on SH, which is expected to underperform in stateful

operations that involve multiple groups. In addition, THEMIS [22]

presented a federated way of controlling load shedding to preserve

balanced execution in a pSPE. Our work is orthogonal to THEMIS

because our goal is to improve tuple imbalance by altering the par-

titioning algorithm and not by shedding tuples.

Elasticity - Query Migration: Previous work that involves query

(or state) migration [32, 36, 38, 16, 9] is orthogonal to our work.

Our focus is on the performance of the partition algorithm and its

performance in the event that migration is not an option. Never-

theless, our partition algorithms can be integrated as part of a pSPE

that allows for state migration, but is beyond the focus of this paper.

Work by Gedik [15] performs an extended study on partition algo-

rithms for pSPEs by improving state migration and adaptability by

measuring skewness. That work is similar to ours in terms of mon-

itoring input stream cardinalities, but, our model differs because it

incorporates the aggregation cost in the decision process. Finally,

a lot of work focuses on online elasticity of a pSPE and adaptive

behavior based on the input. Recent works [13, 26] aim to com-

bine efficient stream partitioning and load migration for distributed

stream joins. Additional work has been done on scaling-out [35,

18, 19, 23], where pSPEs are presented with the ability to detect

struggling operators, decide on migration policies, and perform on-

line re-configuration of the execution plan. Online re-configuration

and state migration are outside the scope of this work.

9. CONCLUSIONS
We presented a new model for stream partitioning which consid-

ers tuple imbalance and aggregation cost for stateful operations.

Inspired by it, we introduced novel partition algorithms, which

adopt our model by keeping track of the cardinalities of each worker.

Our experiments indicated that when the number of groups is large,

our algorithms are significantly faster compared to both the state of

the art (PK) and previously proposed solutions. We conclude that

selecting a partitioning algorithm for a stateful operation has to be

made after considering the expected number of groups, and when

that number is large, our proposed algorithms offer the best perfor-

mance.

10. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their help-

ful feedback and insightful comments. Furthermore, we thank Cory

Thoma, Nicholas Farnan, and Briand Djoko for their feedback on

earlier versions of this work. The experimental evaluation was sup-

ported by the AWS Cloud Credits for Research program.

1296

0

5

10

15

20

25

S
H

-w

F
L

D
-1

P
K

-2

C
M

-2

A
M

-2

C
M

-2
-H

A
M

-2
-H

L
M

-2

L
M

-2
-H

cA
M

-2

cA
M

-5W
in

d
o

w
 P

ar
t.

 L
at

en
cy

(m
se

c)

mean 90 %ile 99 %ile
a: 8 workers

0

5

10

15

20

25

S
H

-w

F
L

D
-1

P
K

-2

C
M

-2

A
M

-2

C
M

-2
-H

A
M

-2
-H

L
M

-2

L
M

-2
-H

cA
M

-2

cA
M

-5W
in

d
o

w
 P

ar
t.

 L
at

en
cy

(m
se

c)

mean 90 %ile 99 %ile
b: 16 workers

0

5

10

15

20

25

S
H

-w

F
L

D
-1

P
K

-2

C
M

-2

A
M

-2

C
M

-2
-H

A
M

-2
-H

L
M

-2

L
M

-2
-H

cA
M

-2

cA
M

-5W
in

d
o

w
 P

ar
t.

 L
at

en
cy

(m
se

c)

mean 90 %ile 99 %ile
c: 32 workers

Figure 13: Per window Partition latency for DEBS Query 1 (i.e., processing cost of partitioning algorithm).

11. REFERENCES

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, et al. The
design of the Borealis stream processing engine. In CIDR, 2005.

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, et al. Aurora:
A new model and architecture for data stream management. VLDBJ,
12(2):120–139, 2003.

[3] T. Akidau, R. Bradshaw, C. Chambers, et al. The dataflow model: A
practical approach to balancing correctness, latency, and cost in
massive-scale, unbounded, out-of-order data processing. In PVLDB,
pages 1792–1803, 2015.

[4] A. Arasu, S. Babu, and J. Widom. The cql continuous query
language: Semantic foundations and query execution. VLDBJ,
15(2):121–142, 2006.

[5] Y. Azar, A. Z. Broder, et al. Balanced allocations. SIAM J. Comput.,
29(1):180–200, 1999.

[6] B. Babcock, S. Babu, M. Datar, et al. Models and issues in data
stream systems. In PODS, pages 1–16, 2002.

[7] S. Babu and J. Widom. Continuous queries over data streams.
SIGMOD Record, 30(3):109–120, 2001.

[8] P. Carbone, S. Ewen, S. Haridi, et al. Apache flink: Stream and batch
processing in a single engine. IEEE Data Eng. Bull., 2015.

[9] R. Castro Fernandez, M. Migliavacca, et al. Integrating scale out and
fault tolerance in stream processing using operator state
management. In SIGMOD, pages 725–736, 2013.

[10] B. Chandramouli, J. Goldstein, M. Barnett, et al. Trill: A
high-performance incre- mental query processor for diverse
analytics. In PVLDB, pages 401–412, 2015.

[11] S. Chandrasekaran, O. Cooper, A. Deshpande, et al. Telegraphcq:
Continuous dataflow processing for an uncertain world. In CIDR,
2003.

[12] G. J. Chen, J. L. Wiener, S. Iyer, et al. Realtime data processing at
facebook. In SIGMOD, pages 1087–1098, 2016.

[13] M. Elseidy, A. Elguindy, V. A., and C. Koch. Scalable and adaptive
online joins. In PVLDB, pages 441–452, 2014.

[14] P. Flajolet et al. Hyperloglog: The analysis of a near-optimal
cardinality estimation algorithm. In AOFA, 2007.

[15] B. Gedik. Partitioning functions for stateful data parallelism in
stream processing. VLDBJ, 23(4):517–539, 2014.

[16] V. Gulisano et al. Streamcloud: An elastic and scalable data
streaming system. TPDS, 23(12):2351–2365, 2012.

[17] T. Heinze, V. Pappalardo, Z. Jerzak, and C. Fetzer. Auto-scaling
techniques for elastic data stream processing. In DEBS, pages
318–321, 2014.

[18] T. Heinze, L. Roediger, A. Meister, et al. Online parameter
optimization for elastic data stream processing. In SoCC, pages
276–287, 2015.

[19] T. Heinze, M. Zia, R. Krahn, et al. An adaptive replication scheme
for elastic data stream processing systems. In DEBS, pages 150–161,
2015.

[20] S. Heule, M. Nunkesser, and A. Hall. Hyperloglog in practice:
algorithmic engineering of a state of the art cardinality estimation
algorithm. In EDBT, pages 683–692, 2013.

[21] Z. Jerzak and H. Ziekow. The debs 2015 grand challenge. In DEBS,
pages 266–268, 2015.

[22] E. Kalyvianaki, M. Fiscato, T. Salonidis, and P. Pietzuch. Themis:
Fairness in federated stream processing under overload. In SIGMOD,
pages 541–553, 2016.

[23] N. R. Katsipoulakis, C. Thoma, E. A. Gratta, et al. Ce-storm:
Confidential elastic processing of data streams. In SIGMOD, pages
859–864, 2015.

[24] A. Koliousis, M. Weidlich, R. Castro Fernandez, et al. Saber:
Window-based hybrid stream processing for heterogeneous
architectures. In SIGMOD, pages 555–569, 2016.

[25] S. Kulkarni, N. Bhagat, M. Fu, et al. Twitter heron: Stream
processing at scale. In SIGMOD, pages 239–250, 2015.

[26] Q. Lin, B. C. Ooi, Z. Wang, and C. Yu. Scalable distributed stream
join processing. In SIGMOD, pages 811–825, 2015.

[27] D. G. Murray, F. McSherry, R. Isaacs, et al. Naiad: A timely dataflow
system. In SOSP, pages 439–455, 2013.

[28] M. A. Nasir, G. Morales, D. Garcia-Sorano, et al. The power of both
choices: Practical load balancing for distributed stream processing
engines. In ICDE, pages 137–148, 2015.

[29] M. A. Nasir, G. Morales, N. Kourtellis, and M. Serafini. When two
choices are not enough: Balancing at scale in distributed stream
processing. In ICDE, pages 589–600, 2016.

[30] M. Nikolic, M. Dashti, and C. Koch. How to win a hot dog eating
contest: Distributed incremental view maintenance with batch
updates. In SIGMOD, pages 511–526, 2016.

[31] N. Rivetti, E. Anceaume, Y. Busnel, et al. Online scheduling for
shuffle grouping in distributed stream processing systems. In
Middleware, pages 11:1–11:12, 2016.

[32] M. Shah, M. Hellerstein, S. Chandrasekaran, and M. J. Franklin.
Flux: an adaptive partitioning operator for continuous query systems.
In ICDE, pages 25–36, 2003.

[33] A. Shein, P. Chrysanthis, and A. Labrinidis. Flatfit: Accelerated
incremental sliding-window aggregation for real-time analytics. In
SSDBM, pages 5:1–5:12, 2017.

[34] A. Toshniwal, S. Taneja, A. Shukla, et al. Storm@twitter. In
SIGMOD, pages 147–156, 2014.

[35] Y. Wu and K. L. Tan. Chronostream: Elastic stateful stream
computation in the cloud. In ICDE, pages 723–734, 2015.

[36] Y. Xing, S. Zdonik, and J. H. Hwang. Dynamic load distribution in
the borealis stream processor. In ICDE, pages 791–802, 2005.

[37] M. Zaharia, T. Das, H. Li, et al. Discretized streams: An efficient and
fault-tolerant model for stream processing on large clusters. In
HotCloud, 2012.

[38] Y. Zhu, E. A. Rundensteiner, and G. T. Heineman. Dynamic plan
migration for continuous queries over data streams. In SIGMOD,
pages 431–442, 2004.

1297

	Introduction
	Proposed Model
	Preliminaries
	A new formulation for Parallel Stateful Operations
	Proposed partitioning cost model
	The pitfall of ignoring aggregation costs

	Minimizing imbalance with low aggregation cost
	Incorporating Cardinality in Partitioning
	Cardinality in imbalance
	Cardinality in aggregation

	Cardinality Estimation data structures
	Naive
	Hyperloglog

	Proposed Cardinality-aware Partitioning algorithms
	Cardinality Imbalance Minimization (CM)
	Group Affinity and Imbalance Minimization (AM & cAM)
	Hybrid Imbalance Minimization (LM)

	Experimental Setup
	Stream Partitioning Algorithms
	Data sets and Workloads

	Experimental Results
	Performance
	TPCH Query 1 (Fig. 5)
	TPCH Query 3 (Figs. 6 - 7)
	DEBS Query 1 (Figs. 8a - 8c)
	DEBS Query 2 (Figs. 9a - 9c)

	Scalability
	GCM Query 1 (Figs. 10 & 11)
	GCM Query 2 (Fig. 12)

	Partition algorithm cost
	Partition latency (Figs. 13a - 13c)
	Partition Memory (Table 4)

	Discussion
	Related Work
	Conclusions
	Acknowledgements
	References

