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Abstract 

We briefly review the formal picture in which a Calabi-Yau n-fold is the 
complex analogue of an oriented real n-manifold, and a Fano with a fixed 
smooth anticanonical divisor is the analogue of a manifold with bound-
ary, motivating a holomorphic Casson invariant counting bundles on a 
Calabi-Yau 3-fold. We develop the deformation theory necessary to ob-
tain the virtual moduli cycles of [31], [7] in moduli spaces of stable sheaves 
whose higher obstruction groups vanish. This gives, for instance, virtual 
moduli cycles in Hilbert schemes of curves in P 3 , and Donaldson- and 
Gromov-Witten- like invariants of Fano 3-folds. It also allows us to de-
fine the holomorphic Casson invariant of a Calabi-Yau 3-fold X, prove it is 
deformation invariant, and compute it explicitly in some examples. Then 
we calculate moduli spaces of sheaves on a general K3 fibration X, enabling 
us to compute the invariant for some ranks and Chern classes, and equate it 
to Gromov-Witten invariants of the "Mukai-dual" 3-fold for others. As an 
example the invariant is shown to distinguish Gross' diffeomorphic 3-folds. 
Finally the Mukai-dual 3-fold is shown to be Calabi-Yau and its cohomology 
is related to that of X. 

1. Introduction 

This paper is a continuation of the ideas presented in [12], [40]. 
There a formal picture was outlined in which the complex analogue of a 
real oriented n-manifold is a Calabi- Yau n-fold with a fixed holomorphic 
n-form playing the role of a "complex orientation", while a Fano with 
fixed smooth anticanonical divisor is the analogue of a manifold with 
boundary; the boundary being the (Calabi-Yau) divisor. I have since 
discovered this picture was known and used in low dimensions by the 
Yale school of Frenkel, Khesin, Todorov and others (see for instance [13], 
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[14], [26]); we concentrate on the central, three dimensional theory of 
[12]. The delay in publication is due to a complete reworking of the de-
formation theory of Section 3. While [40] and earlier forms of this paper 
initially used an older version of [31], then the derived category language 
of [7], here we present more elementary sheaf deformation theory that 
allows us to use the more down-to-earth definition of obstruction theory 
in the published form of [31] (without mention of the derived categories 
or T1-lifting of older drafts of this paper). This deformation theory 
is folklore but scattered and hard to find, and either highly abstract 
or not done in enough generality for this application (namely in global 
families, as the complex structure on the manifold is allowed to vary, 
arbitrary order deformations and obstructions are considered, and the 
determinant is fixed). So we are forced to give a full account, for which 
the unpublished manuscript [15] has been useful. 

In Section 2 we review the classical Casson invariant and Chern-
Simons functional, before describing their holomorphic analogues. We 
give two formulae for the holomorphic Chern-Simons functional, one 
in an algebro-geometric framework, the other illustrating the complex 
analogue of a manifold with boundary. We then discuss the holomorphic 
Casson invariant, and a version of it that so far has not been made 
rigorous but is reviewed as it motivates a number of calculations (and 
predicts the correct result for them). 

Section 3 discusses the technicalities involved in defining the invari-
ant via gauge theory, and then tackles them using algebraic geometry, 
and the virtual moduli cycle theory of [31], [7]. The result required 
to apply this machinery to count stable sheaves is that the tangent-
obstruction complex [31] or cut-off cotangent complex [7] (these are 
dual to each other) of the moduli space admits a certain two-step lo-
cally free resolution. We obtain one in all the cases we might hope for, 
namely whenever the higher obstruction groups Extg(£ ,£) , i > 3, of 
the sheaves £ vanish. 

This is the case, for instance, for ideal sheaves of curves in P 3 , so we 
obtain a virtual moduli cycle of the correct dimension in the correspond-
ing Hilbert schemes. The result also applies to a Calabi-Yau 3-fold, of 
course, allowing us to make our definition. Finally in this section we 
give some examples, including one conjectured in [12] that is fitted into 
this scheme and worked out in full, by computing all reflexive sheaves 
of certain Chern classes on a (2,4) complete intersection in P 5 . 

Section 4 deals with bundles on K3 fibrations. The results here may 
be of interest to physicists, being the "F-theory" dual picture to the 
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geometry of K3-fibred 4-folds. Calculating moduli spaces of sheaves on 
threefolds is extremely difficult, and we are forced to consider only Chern 
classes satisfying certain constraints, though this allows us to work on a 
general K3 fibred Calabi-Yau X (without reducible or multiple fibres). 
Thus we obtain a calculation of the invariant in some cases (where it is 
f), and obtain Gromov-Witten invariants of the "Mukai-dual" 3-fold in 
others. We then show this dual 3-fold is Calabi-Yau and determine its 
cohomology in terms of that of X. Finally we show that these results 
allow us to distinguish Gross' diffeomorphic Calabi-Yau 3-folds. 
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[24], which has been indispensable. 

Thanks also to the Institute for Advanced Study, Princeton, Balliol 
and Hertford Colleges, Oxford, NSF (grant number DMS 9304580), EP-
SRC and Professors Yau and Taubes at Harvard University for support. 

2. The holomorphic Casson invariant 

We begin by describing Taubes' version [39] of the Casson invari-
ant in purely formal terms, ignoring such issues as the structure group 
and reducible connections; we shall be able to bypass these in the holo-
morphic situation by considering only bundles for which semistability 
implies stability (such as bundles with rank and degree coprirne). 

For us, then, the Casson invariant of a real 3-manifold M counts 
flat connections with structure group G on a fixed vector bundle E. 
Formally the curvature FA of a connection A defines a closed one-form 

(2.1) a^-—r t r f a A F A a£Q1(adE), 
4 T H M 

on the space of connections #/. This is gauge invariant, and so descends 
to the space of gauge equivalence classes &. Fixing a basepoint AQ G 
srf this one-form is in fact the exterior derivative of a locally defined 
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function, the Chern-Simons functional: 

CS (A) = — j / tr I -d,A0a Aa -\—a Aa A a) , A = AQ + a, 
4TT M

 2 3 

which is independent of gauge transformations connected to the identity, 
and well defined modulo Z on 8$. In particular, at a zero of the one 
form, i.e., a flat connection, we see that the deformation complex of a 
flat connection is self-dual - this is the statement that the Hessian of 
CS is symmetric - as then are its cohomology groups H'l(adE; A) = 
H'i~i(adE; A)* by Poincaré duality. Therefore the virtual dimension of 
the moduli space of flat connections 

^ ( - l ) i + 1 d i m f r ( a d £ ; , 4 ) 
i=0 

is zero, and we could hope to count them. Formally, flat connections 
are the zeroes of the covector field FA (2.1) on &, i.e., critical points of 
CS, and we are trying to make sense of the Euler characteristic of the 
infinite dimensional space 8$. 

This formal picture translates wholesale onto a Calabi-Yau 3-fold 
(which for us means a smooth, compact, Kahler 3-fold X with a trivial-
isation 6 G H3,0 of the canonical bundle Kx — Ox)- Naively, we replace 
x by z, d by 5, Poincaré duality by Serre duality, and integrating against 
the complex volume form 6 on X instead of against the orientation of 
M. 

So now we consider the space ,s/ of 9-operators (or "half-connections") 
on a fixed C°°-bundle E —> X, and the closed one-form given by F^ : 

fl^A/tr(aAi?°'2)Aö, a G fi0'1 (adS). 

Again this is gauge invariant and descends to the space of gauge equiva-
lence classes Se. Fixing a basepoint AQ G =2/ this one-form is the exterior 
derivative of a locally defined holomorphic function, the holomorphic 
Chern-Simons functional: 

(2.2) CS(A) = —2 / tr ( -BAoa Aa + -a A a A a) Aô, A = A0+a, 

which is independent of gauge transformations connected to the identity. 
The periods under large gauge transformations are more complicated 
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(and will usually be dense), but this will not concern us. All statements 
will be made "mod periods" ; what we should really do is consider CS to 
be an element of some Albanese torus and formulate statements there, as 
discussed in [40], but this would take us too far afield. The zeroes of the 
one-form, i.e., the critical points of CS, are the integrable holomorphic 
structures on the bundle E (i.e., B2 = FA' = 0 instead of d2 = FA = 0), 
and the deformation complex of a holomorphic connection is self-dual -
again the statement that the Hessian of CS is symmetric - as then are its 
cohomology groups H°>t(a,dE; A) = H°'3~'l(adE; A)*, by Serre duality 
and the fixed trivialisation 6 of the canonical bundle Kx- Therefore the 
virtual dimension of the moduli space of holomorphic bundles 

3 

^{-l)i+1àimH^{a,àE;A) 
i=0 

is zero, and we could hope to count the bundles to formally compute 
the Euler characteristic of &. 

Of course to get some kind of compact space of objects to count we 
have to consider either Hermitian-Yang-Mills connections in the gauge 
theory set-up, or stable holomorphic bundles in algebraic geometry; this 
is in some sense most of them. 

Similar holomorphic analogues of all the main gauge theories also 
exist [12], [40] and have also now been studied by physicists [1], [5], and 
there is work of Tyurin [44] on related topics. Also, formally manipulat-
ing the holomorphic analogue of the Chern-Simons path integral using 
CS (2.2) gives a holomorphic linking number for complex curves in a 
Calabi-Yau manifold [40] but since I have discovered the more profes-
sional treatment of [14], [27], here we concentrate solely on defining and 
calculating the holomorphic analogue of the Casson invariant. Firstly, 
however, we give two formulae for CS to make it more familiar and 
further illustrate the holomorphic analogy. 

The first is in an algebro-geometric spirit, and well known on com-
plex curves as Abel-Jacobi theory: fixing a complex curve S the ap-
propriate Chern-Simons functional computes holonomy of 9-operators 
A = 8 + a on a topologically trivial line bundle, for simplicity. It is 

a i-» a ALO, W<E i f 1 , 0 ( S ) , 
E 

modulo periods. Again these periods are dense and the function is only 
well defined modulo a discrete lattice when considered as a function of 
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all a; s at once, as an element of the torus 

In this case we also have the alternative formula 

/ a AOJ = u) modulo periods, 
E -y 

where 7 is a path connecting the points that are the zeroes and poles of 
a section that is meromorphic with respect to the holomorphic structure 
8 + a. That is, if the holomorphic structure defined by a on the line 
bundle corresponds to the divisor ^a,i(pi), with a, G Z and pi G E, 
then Ô7 = ^üi(pi). The principle of the result is that the Euler class 
of the line bundle is represented holomorphically by both the divisor, 
which is Ô7, and the curvature da, and d and d are adjoints. 

In a special case there is an analogous formula on a Calabi-Yau 3-
fold, for a rank 2 holomorphic bundle E. Similarly the principle is that 
d CS = pi A 6 and, when det E is trivial, p\ = c<2 represents the Euler 
class of E, so we are interested in a homology class A, the analogue of 
7, with boundary the zero set of a section. (Here and below we use CS 
to denote both the functional (2.2) and the integrand.) 

Propos i t i on 2 .3 . [40] Suppose that AQ and A = AQ + a are in-
tegrable (F0,2 = 0) B-operators on E with trivial determinant, and 
(E,A), (E,AQ) admit holomorphic sections s, SQ, with transverse zero 
sets (S)Q, (SO)O- Then CS defined by (2.2) may also be described as fol-
lows. As the zero sets are homologous, write (s)0 — («o)o = " ^ for some 
singular 3-chain A. Then, modulo periods, CS(A) — CS(AQ) = j A 6. 

The second formula is the complex analogue of the classical formula 
for the Chern-Simons functional of a connection A on a bundle E —> M 
on a real 3-manifold: bound M by a 4-manifold N and extend (E, A) 
to a bundle and connection (E, A) on N. Then 

CS(A)-CS(A0) = [ Pl(A) -p i (Ao) , 
N 

where pi(A) = (1/4-7T2) tr _F& A F& is the Chern-Weil differential form 
representing the first Pontryagin class of E. This can be rephrased in a 
way that will make the complex analogy more apparent in terms of the 
long exact homology and cohomology sequences of the pair (TV, M), by 
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the commutative pairings 

[CS (A)] ^ [pi(A)-pi(Ao)] 

->• H3(M) -±+ H4(N,M) ->• 0 

<g> <g> 

<- H3(M) ^ - H4(N,M) <- 0. 

[M] <-i [N] 

That is, the fundamental class of M is in the image of the lower map, 
coming from the fundamental class of N, so to find fM CS {A) we can 
map the class [CS'(.A)] into H4(N, M) and evaluate on [TV] to give the 
result. 

The holomorphic analogue replaces the exact sequence of the pair 
(TV, M) by the sheaf cohomology sequence of the pair (Y, X), 

(2.4) 0 ->• KY -U- Or ->• O x - • 0, 

in the case that X is an anticanonical divisor in a 4-fold Y. Here then 
we think of X as being bounded by the "Fano" Y; we use the term 
Fano loosely to mean a variety Y with a section s of its anticanonical 
bundle Ky with a smooth zero set X, which is its "boundary" - it is 
Calabi-Yau by the adjunction formula. In fact about a point of X CY, 
choosing a local coordinate z whose zero locus is X, to leading order 
s~l = —9— uniquely defines a holomorphic 3-form 6 on X ([18] p 
147). Then we obtain 

T h e o r e m 2.5. Suppose that the Calabi-Yau 3-fold X is a smooth 
effective anticanonical divisor in a 4-fold Y defined by s G H°(Ky ). 
If E —>• X is a bundle that extends to a bundle E —> Y, then for a 8-
operator A on E, let A be any d-operator on E extending A. We have, 
modulo periods, 

Proof. Notice that H4(0Y) = H°(KY)* = 0: if t G H°(KY) then 
s.t is a holomorphic function on Y vanishing on X, thus t = 0. So 
the sequence (2.4) gives us the following commutative diagram of Serre 
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duality pairings, 

[CS (A)] ^ [p1(A)-p1(A0)]As-1 

-»• H3(öx) — • H\KY) — • 0 
(2.6) <g> <g> 

<r- H°(Ox) <— H°(0Y) <— 0, 

[i] ^ [i] 

(the first pairing is by integrating against 6) since the upper map takes a 
holomorphic (0, 3)-form on X, extends it to a C°° form on Y, and takes 
B( • ) A s _ 1 of the result. Setting CS(AQ) = JYPI(AQ) to fix constants 
gives the result. q.e.d. 

Just as the real case CS(Ä) = fNpi(A) can be proved directly by 
Stokes' theorem, the above amounts to an application of Stokes' theorem 
and the Cauchy residue theorem, hence reducing dimensions by two, as 
also observed in [26]. If ug(X) denotes a small tubular neighbourhood 
of X C Y then, by Stokes' theorem, 

f p1(A)As~1= i d(CS(A) A s " 1 ) = lim / C 5 ( A ) A s _ 1 , 
Y Y <^° dus 

which can be integrated first over the fibres of the circle bundle dug —> 
X, and then along X , by Fubini's theorem. As s~l ~ T^O—, integration 
over the fibres gives, by the Cauchy reside formula, j x CS(Ä) A0 in the 
limit of S —> 0. 

Hence, just as d is adjoint to the boundary operator d in real ge-
ometry, d{ • ) A s~l is adjoint to this complex boundary operation of 
taking the anticanonical divisor (s)0 with its induced complex volume 
form. An application of this to holomorphic linking is given in [27] -
the ô-Green's function for the current represented by a complex curve 
(weighted by a holomorphic one-form) is represented, as a current, by 
any Fano surface containing it as an anticanonical divisor. Thus inte-
grating this over another curve (against a one-form), to give Atiyah's 
holomorphic linking number, is the same as intersecting this second 
curve with the complex surface, and weighting intersection numbers by 
ratios of the holomorphic volume forms at intersection points. 

Finally we mention briefly the holomorphic analogue of Casson's 
original approach to counting flat connections by splitting a 3-manifold 
M (in fact a homology sphere) across a Riemann surface S, 

M = Mi U s M 2 . 
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The orientation of M induces a symplectic structure on E, and so one on 
(the smooth locus of) its moduli space of flat connections M.T.- Then 
those connections on E that extend to flat connections on M\ form 
a Lagrangian submanifold in . M E , the image of the restriction map 
M-Mx —> - M E - Similarly for M.M2- These are both of half dimension so 
we expect them to intersect in a finite number of points - the flat con-
nections on E that extend to both M\ and Mi, i.e., the flat connections 
on M. Casson overcomes the technical difficulties to define just such 
an invariant, counting (one half of) all the flat connections except the 
trivial one. 

Although not yet rigorous there is a holomorphic analogue of this 
[12], [26] following work of Tyurin [43]. We review it briefly because it 
motivates some examples and is verified in all of them. Our complex 
analogue of gluing across a boundary is to take two Fano 3-folds Xi with 
a common anticanonical divisor S, and form the normal crossings space 

X = Xi Us X2, 

which is a singular Calabi-Yau. The (singular) holomorphic volume 
form on Xi, with poles along S, induces a complex symplectic structure 
on the surface S (this is just the adjunction formula) and so on its 
moduli space of (stable) bundles M.s [32]. Then those bundles on S 
that extend to holomorphic bundles on X\ form a complex Lagrangian 
submanifold given by the restriction map M.X\ —> M.s (at least where 
this is defined, i.e., where stability is preserved on S); similarly for Xi. 
As before intersecting these 

(2.7) MXl n Mx2 

in M s we expect to get a finite number of holomorphic bundles that 
extend to both Xi, i.e., bundles on X. In the examples we consider 
X will be smoothable and the number of bundles will be preserved on 
smoothing to give the holomorphic Casson invariant of the smooth 3-
fold. 

3. Vir tua l modul i cycles 

To count (stable) holomorphic bundles on a Calabi-Yau 3-fold, there 
are two things we require of the moduli problem - compactness and 
transversality. In gauge theory such results are easier in lower dimen-
sions. In two real dimensions moduli of stable bundles are both compact 



376 R. P. THOMAS 

and of the right dimension. In three dimensions this can be achieved 
after a perturbation [39] (leaving aside problems with reducibles) for 
flat connections. In dimension four we need both perturbations to 
achieve transversality, and a compactification to take account of the 
non-compactness caused by conformai invariance [11]. Just recently we 
now have the results of Tian [42] in higher dimensions, proving just 
about everything that one would like to be true, giving a natural ana-
logue of the Donaldson-Uhlenbeck compactification of four dimensions. 
For a Kahler 3-fold this involves ideal instanton singularities along holo-
morphic curves in the 3-fold, but also some codimension 3 singularities 
that are harder to deal with. 

What is missing, however, is a transversality result. Staying within 
the confines of algebraic Calabi-Yau manifolds we cannot hope to get a 
moduli space of the correct dimension; there is no result along the lines 
of Donaldson's generic smoothness result for moduli spaces on algebraic 
surfaces. One reason is that , in the rank two case for instance, relating 
the deformation theory of a bundle to that of a zero set of a section via 
the Serre construction, points are unobstructed on a surface but curves 
can be obstructed on a 3-fold (there is a fuller discussion of this and 
other such issues in [40], and an example in [41]). 

So we would like more perturbations. There is an elliptic perturba-
tion of the Hermitian-Yang-Mills equation valid on any almost-complex 
symplectic manifold, which I learnt from Donaldson: 

F0/ = d*u, 

iKF1/ = XL 

(The problem is that the Hermitian-Yang-Mills equations appear over 
n o 

determined, but are not because of the Bianchi identity dF^ = 0 on a 
Kahler manifold. This can be formalised by introducing the (0,3)-form 
u as above, and then B*u vanishes. It need not be zero in the almost 
complex case.) 

It seems that Tian's work [42] should also apply to these equations 
(with the singularities now along pseudo-holomorphic curves and at 
points) so long as we can get a bound on | | -PA| |^2 similar to that given 
by characteristic class formulae in the integrable case. A Weitzenböck 
formula shows that this is the case if, for instance, the scalar curvature 
is everywhere positive. Thus, at present, this would work best for Fano 
3-folds and the Calabi-Yau case is borderline. Either way a transversal-
ity result, proving that for generic almost complex structures the moduli 
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space of solutions is of the correct dimension, seems a long way off, as 
does understanding the codimension three singularities. 

So we turn to algebraic geometry where we have the now standard 
compactification of the moduli space of stable bundles by semistable 
sheaves, due to Gieseker, Maruyama and Simpson. This moduli space 
will invariably be singular and of too high a dimension, but it is often 
clear what the contribution of a particular component to the "number 
of bundles" should be - the Euler number of its cotangent bundle in the 
case it is smooth, two if it is a scheme-theoretic double point, etc. In 
the general case there is the machinery of [31], [7] to produce a "virtual 
moduli cycle" of the correct dimension (zero, for us) inside any moduli 
space satisfying certain conditions; we briefly outline the picture. 

Suppose a variety M (which will eventually be our moduli space 
M) sits inside a smooth ambient n-fold Z, cut out by a section s of a 
rank r vector bundle E —>• Z. Then the "virtual dimension" of M is 
(n — r) - the dimension it would be were s transverse. If it is not but, 
for instance, s lies in a subbundle E' C E and is a transverse section 
of E', then it is clear the "correct" (n — r)-cycle we should take is the 
Euler class of the cokernel bundle E/E' over M - this is homologous 
to the zero set of a transverse perturbation of s if one exists. In the 
general case dealt with by Fulton-MacPherson intersection theory [17], 
s induces a cone in E\M, which can be thought of as "s made vertical", 
i.e., the limit of the images of As as A —> oo. We may then intersect this 
with the zero set M inside E to get a cycle in A4 (whose image in Z 
represents the top Chern class of E, as required). 

The point here is that we worked entirely on M and not in the ambi-
ent space Z, and so we might hope the method is applicable to moduli 
problems where the ambient space Z does not exist. Instead the de-
formation theory of the moduli problem often gives us the infinitesimal 
version of (Z, E, s) on M , namely the derivative of s, yielding the exact 
sequence 

(3.1) 0 ->• TM -> TZ\M - ^ E\M ->• ob ->• 0, 

for some cokernel ob which in the moduli problem becomes the obstruc-
tion sheaf. In the general case we require a global version of this, namely 
a two term locally free resolution 

(3.2) 0 ->• 7 1 ->• E x ->• E 2 ->• T i ->• 0 , 
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of the tangent-obstruction functors to be introduced presently (3.26, 
3.28). 

Here E\ and E<2 play the roles of TZ\M and E\M in the above moti-
vation (these last two have the same fibre rank at each point of A4, and 
hence are locally free) and have difference in ranks equal to the virtual 
dimension of the moduli problem. It is shown in [31], [7] that such data 
on A4 is in fact sufficient to obtain a cone in the vector bundle E\ which 
can be intersected with the zero set A4 to give a virtual moduli cycle 
with the correct properties. The precise statement is given below. 

First then, we need to develop the necessary sheaf deformation the-
ory. An earlier version of this paper used the cotangent complex ap-
proach of [7], and Lehn's description [29] of equations cutting out the 
Quot scheme to calculate it; the deformation theory here is more clas-
sical and natural, even if it is a little longer, dealing with higher order 
deformations. 

An excellent reference for the sheaf theory we use is [24]; we shall 
assume familiarity with Gieseker stability (here always referred to just 
as stability), slope stability, the fact that 

slopestable =>• stable =4> semistable =4> slopesemistable, 

and that for rank and degree coprirne the circle is completed by slope 
semistability implying slope stability. Also refer to [24] for the fact that 
for either form of stability 

(slope) stable =>• simple, 

i.e., the only endomorphisms of the sheaf are the scalars C . id. Finally, 
stable sheaves are pure, i.e., torsion-free on restriction to their support. 

3.1 Sheaf deformation theory 

In this section all schemes will be complex and quasi-projective, and 
all sheaves coherent. We begin by recalling the definition of the trivial 
thickening 

(3.3) S * n 

of a scheme S by a coherent sheaf of O^-modules n. Namely make the 
O^-module O^Qn into a sheaf of rings by stipulating that n2 = 0, giving 
the trivial ring extension 0$ * n; the associated scheme is S * n. Then 
sheaf deformation theory is built on the following standard result. 
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Lemma 3.4. Let n be a sheaf on a scheme S, and let S * n be 
the trivial extension of (3.3) above. Then deformations of a sheaf £ on 
X x S, flat over S, to a sheaf on X x (S * n) ; flat over S * n, are in 1-1 
correspondence with Ext^X£(£,£ <g) n). 

Proof. Given such a deformation JF, tensoring with the sequence 

(3.5) 0 - • n - • QSm ^Os^O, 

gives a sequence, exact by flatness, 

(3.6) 0->-£<g>Ti->.F->£->-0 

on X x (S*n), using the fact that the left and right hand terms of (3.5) 
are O^-modules. The sequence (3.6) defines the class in F,x.ti

XxS(£,£ (g> 
n). 

Conversely such a class gives a sequence of OxxS-modules (3.6), 
which defines an Oxx(S'*n)"module T since there is an obvious action of 
Os * n on T: the n-action is given by projecting T —> £ and tensoring 
with n, mapping to £ <g) n C T. Flatness over X x (S * n) also follows 
from the sequence (3.6) and the following Lemma. q.e.d. 

Lemma 3.7. Let S C Y be a subscheme with ideal n C Oy such that 
n2 = 0. Then an öy-module T is flat over Y if and only if T ® n —> T 
is injective and T\s = F <8> Ö5 is flat over S. 

Proof. We must show ([21] III 9.1 A) that T <g> J —> T is injective for 
any ideal J C Oy. Given such a J, we have an exact sequence 

0 - > J n n ^ J - ^ J ' - > 0 , 

where J ' is annihilated by n so is naturally an ideal in Ö5. Thus the 
diagram 

0 

I 

i 
-+Hs—^0 

is exact by our hypotheses. To show the central vertical map is injective, 
then, it is sufficient to show that the first vertical map is injective. But 

f ® ( J n n ) ^ f ® J -

0 » - .FETI - •T-
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this map is ^r|5<8)(Jrin) —> JF^igm, through which ^r|5<8)(Jrin) —> T\s 
factors, and T\s is assumed flat so this last map is an injection. q.e.d. 

Next we consider obstructions to deformations. We will repeatedly 
use the following set-up. 

• Let S C Y C Y\ all be schemes over S, and denote the ideals of 
S C Y, S C Y\, Y C Y\ by n, m and J2" respectively. Assume also 
that m. J^ = 0, giving an exact sequence of Oy-modules 

(3.8) 0 - > J * - > - m - > t w O . 

Notice we do not assume that Y = S * n this time, or even that n2 = 0. 
Given a sheaf £ over X x Y (flat over Y and restricting to £o over 

S) we get an exact sequence 

(3.9) 0->£<g>n->£->£ 0 ->-0 , 

giving a class e G Ext^x5(^o? £ ® n) (we will consider all terms as (Dé-
modules using the projections y —> S, Y\ —> S, so all Exts will be over 
X x S from now on). 

We would like to lift this to an T on Y\ to give a sequence 

(3.10) 0->£<8>m->.F->£o->-0, 

(here T <g> m = £ (g> m since m. J^ = 0) defining / G Ext1(£'o, £ <g> m). / 
is a lift of e in the sequence 

(3.11) E x t ^ o ^ f g i m ) - •Ext 1 (£o ,£®n) - ^ Ext2(£0, <?o ® ^ ) , 

obtained by applying Horn (£o, • ) to the sequence £® (3.8): 

(3.12) 0->e0®S^£®m^S®n->0. 

(Exactness follows from the flatness of £ over Y.) 

Proposition 3.13. £ ouerXxY as aòowe extends to a sheaf T over 
XxYi, flat overYi, if and only if there is a lift f G Ext1^,*?®™) (3.10) 
of e G E x t ^ o ^ f g m ) (3.9), i.e., if and only if de G Ext2(£0,£0® rJ?) in 
the above sequence (3.11) is zero. 
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Proof. We are left with showing that the existence of a lift / of e 
gives such an T. f gives a sequence (3.9) of Ö s-modules lifting (3.10), 
and so a diagram 

0 - » £ ® m - i * . F — » - f o - ' - O 

I ^ II 
0 -^ £ ® n —*• £ —*• £0^0 

I I 
0 0. 

Here T is an O^-module, and we would like to make it an Oy1 -module, 
where Oy1 = 0^ © m via the maps S ï± Y\. So we define the action 
T ® m —> T by t o (n <gi id) in the above diagram. 

Flatness of J- over Y\ then follows from Lemma 3.7 on noting that 
T\y = £ is flat over Y, and J*2 = 0 since / C m and m . J* = 0. 

q.e.d. 

We note in passing that d is cup product with the element 
e' GExt1(£^ ® n,£o ® •-?) defining the extension (3.12), so £ extends 
to T if and only if e' U e G Ext2(£o, £o <8> <#) is zero. 

T h e t r a c e m a p 

We have now pretty much found the tangent-obstruction (in the sense 
of [31]) complex of the moduli problem for stable sheaves, as we shall 
see below. Unfortunately we are more interested in the moduli problem 
for sheaves of fixed determinant, for which we need the machinery of 
the Mukai-Artamkin trace map (in a little more generality than [32], 
[2], for higher order deformations). 

Given a coherent sheaf T on a quasi-projective scheme X and an 
affine open cover U = {U-i : % = 1 , . . . , n} of X, denote the Cech complex 
by 

io<---<ip 

with the usual Cech differential Ô : ( > ->• C> + 1 ([21] III 4.1). This 
computes the sheaf cohomology of JF, and as the construction is func-
torial in T it can also be applied to a complex of sheaves T* to give 
a double complex whose associated total complex has cohomology the 
hyp er cohomology M*(JF*). 
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If X is smooth then any sheaf £ has a finite locally free resolution 
E* —> £ —> 0, and the trace map is defined as follows (by standard ar-
guments it will be independent, up to quasi-isomorphism, of the choices 
U and E'). 

Given any sheaf I, form the complex Tiom'lE'^E' ®X) with 

Hom\E\E' <g>X) = QjUomiEi, Ei+i <g>T) 

and differential # = di+i o <p - ( - l ) V ° dj for <j> G Uorn(Ei, Ei+i g, j ) . 
This admits cochain maps 

(3.14) V.om'(E',E' ®ï) ï± 1, 

with the upper map given by 

tr = ^ ( - l ) * tr*(g)idx 
j 

(where tr* : %om(El,E%) —> 0 is the usual trace map on locally free 
sheaves), and the lower map 

id = ^ idg* ® idx . 
i 

That these are cochain maps follows from the easy computations tr o d = 
0 and d o id = 0. 

Notice that tr o id = £ ( - 1 ) * ^ ° i d £ ' = XX"1)* r k (&) = r k (£), 
so, for rk (£) > 0, we have a splitting 

Hom'(E',E' <g>T) = Hom'0{E', E' <g> X) © T, 

where Horrid is the kernel of tr. 

Thus (3.14) induces cochain maps between Cecil complexes 

C'(Hom'(E',E' <g>T)) ^ C"(X), 

inducing maps tr and id on cohomology 

Ext*(£,£<g>T) ^ fT(T), 

such that tr o id = rk£. Thus for rk(£) > 0, there is a splitting 
Ext* (5, £®X) = Ex4(£, £ <g> X) © fl^X) with Ext0 the kernel of tr. 

To work towards showing that taking the trace of deformations and 
obstructions of a sheaf gives the deformations and obstructions of the 
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determinant of the sheaf, we first need this (rather elementary) fact for 
locally free sheaves. Of course, phrasing the deformation theory of holo-
morphic vector bundles in terms of connections or transition functions 
this is simple; the work is then in showing the deformation theory co-
incides with the abstract sheaf deformation theory of the last section. 
This involves simple but very large computations with transition func-
tions as in [15]. Here we prefer to work directly with our definitions 
above; this then makes the proof below a little long, but the reader 
could take it on trust. 

Proposition 3.15. Take S C Y C Y\ to be as in (3.8). Suppose 
we have a rank r locally free sheaf E on X x Y, a flat deformation of 
EQ on X X S giving an extension e G Ext1(£'o, E ®n) (3.9). Assuming 
first that n2 = 0, then the extension defined similarly by the determinant 
ArE is 

tr(e) G H^n) = Ext1{ArE0,A
rE0(g)n). 

Likewise, for any n, given the obstruction de G Ext2(£'o,-E'o ® <#) of 
Proposition 3.13 to extending E over X xY to F over X xY\ (flat over 
Y\), the obstruction to extending krE is given by 

tr(öe) G H2{jr) = Ext2(ArE"0, Ar E0 <g> J). 

Proof. We begin by giving explicit descriptions of e and the obstruc-
tion de. 

Applying Hom(E'o, . ) to the extension (of OxxS-modules) 

(3.16) 0^E®n->E->EQ->0 

gives a connecting homomorphism Hom(£'o, EQ) —> Ext1 (EQ, E (g) n) un-
der which the image of idß0 is the extension class e G Ext1(£'o, E ®n). 

So consider the exact sequence of complexes below given by applying 
the exact functor %om(EQi . ) (recall that EQ is a locally free (Dé-
module) to the sequence (3.16) and taking Cecil complexes: 

0 - • C'{Hom(E0, E <g> n)) -^ C'(Hom{E0, E)) 

^C'(Hom(E0,E0))^0. 

I<1E0 gives a closed element of C° (T-Lom(EQ, EQ)) (i.e., a global section). 
Lift this to some a G C°('Hom(Eo,E)), giving, for each U, V in some 
affine open cover U of X, au, ay such that over U n V, ay — au =• 
i'(eunv) defines the (closed) element 

e G Ò1(nom(E0,E®n)) 
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that represents e G Ext (EQ,E (g> n). 
To identify de we use the similar exact sequence of Cech complexes 

0 ->• C'CHom(E0, E0 <g> J)) - ^ C'CHom(E0, E <g> m)) 

^ C " ( ^ o m ( £ 0 , £ ® n ) ) - ^ 0 , 

associated to the sequence (3.11). 
That is, choose lifts buy G Horn j/y (EQ, E" (g> m) of ejjv- Then 

over [/" n V n VF, 6(jy + byw + &wc/ = ^{(de)uvw) defines 
(de)uvw £ Horn uvw{EQ, -E"o ® •-#) giving the obstruction class 
de £Ext2(Eo,E0®S). 

We now use these explicit calculations to repeat the above exercise 
on the induced deformation of determinants 

(3.18) 0 ->• ArE <g> n ->• A r £ - • A r £ 0 ->• 0. 

Here for ArE' we have taken the rth exterior power of E as a sheaf of 
Q x XY-modules (not as a sheaf of OxxS-modules) but then we consider 
the result and the above sequence as OxxS-modules. Thus we have the 
analogue 

0 ^ C'(Hom(ArE0,A
rE®n)) 4 C'(Hom(ArE0,A

rE)) 

-+ C'(Hom(ArE0,A
rE0))^0 

of (3.17). 
Use Arau G Hom [ /(A r£ ,

0, ArE) to lift 

id A ^ 0 = A ridBo G Romu(ArEo,ArE0). 

Over U n V, Arajj — Aray = i(euv) defines 

euv G Hom t /y(Ar£'o,Ar£'<g)n), 

the extension class e G E^d1(ArEQ,ArE <g> n) = H1^) of (3.18). 
Over U n V there is a splitting of (3.16) induced by ajj: 

(3.19) E = (E®n)®E0, 

with respect to which ajj = 0©id.go, ay = eunv ffiid_B0, and (3.18) splits 
as ArE = (ArE ® n) © ATEQ (we are omitting some \unv s for clarity). 
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So in this splitting, over U fl V, 

euv = A r(id©e;7y) - id, euw = Ar (\<i®euw) - id, 

while evw = Ar (id ®euw) - A r(id©e;7y). 
For the first part of the Proposition we want to show that , for n2 = 0, 

these e s are (the images under i of) the traces of the corresponding e s 
(i.e., euv = tr(e[/y), etc.). But this is clear from the expansion 

A r ( id £ o ©e) = idArEo + tru(e) + 2 t r t / (A 2 e) + . . . , 

for e : EQ —> E © n, where tru(Ake) is a map of the right kind, i.e., an 
element of (ATEQ)* © ArE © n, on defining trjj by the composition 

AkEç © AkE © n ->• AfcE'o © AkE0 © n ->• n 

- • A r £ * © ArE0 © n - • A r £ * © A r £ © n 

of the projection, trace, identity and Arajj maps respectively. This is 
just a glorified version of the expansion of the determinant in terms of 
the elementary symmetric polynomials of e, but over the ring Oy. For 
n2 = 0 it is just the usual trace, independent of au, since any two a s 
differ by something in the ideal n. In this case all the higher order terms 
in the above expansion become zero anyway leaving just tr(e), giving 
the required result. 

To identify the obstruction we pick the obvious lifts of the e s. That 
is, over U fl V in the splitting (3.19), euv = ^Tu(^uv) + 2 tru(A2euv) + 
. . . , so we set ßuv = ^Tu(buv) + 2 tiu(A2buv) + • • • • (trjj is defined 
by the same formula as before but with m replacing n. Then ßuv is 
actually skew symmetric with respect to U and V, so is well defined, 
though it takes a calculation relating trjj and t ry to check it.) 

The class of the obstruction we are seeking is given, on U fl V fl W, 

by 

(3.20) ßuv + ßvw + ßwu = tTu(buv) + trv(bvw) + trw(bWu) + •••• 

We claim that only the terms with a linear dependence on the b s are non-
zero up to coboundaries; this can be checked by a large local calculation 
or the following cheat. We know that byw = —buv — bwu + h where 
i lies in the ideal J2" (i is of course i(de)uvw)-) If we had chosen 
the different lift — buv — bwu of evw then (3.20) would of course give 
zero up to coboundaries. Thus (3.20), considered as a polynomial in 
i, has zero constant term, and any term of order > 2 (in the 6s or i) 
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involves i multiplying something in m, which vanishes since m. .y = 0. 
Thus the obstruction class is the just the linear part of (3.20), which is 
tr((de)uvw) since buv + bVw + bwu = i{{de)uvw)- q.e.d. 

Similar explicit calculations over patches of a cover U also give the 
standard results that, for line bundles L;b with deformation and obstruc-
tion classes e{Lì) and d(e(Lj)) as above, we have 

e{®iLi)= ^ e ( L j ) G ff1 (n), 

(3.21) * 
and d(e{ßiLi)) = ^ d ( e ( L ; ) ) G H2(n). 

i 

Also recall that for any sheaf £ with a finite locally free resolution 
Em, the determinant of £ is defined to be the line bundle 

(3.22) det £ = 0 ( d e t ^ ) ( _ 1 ) i , 
i 

which is independent of the resolution. 
So as before let X be a smooth quasi-projective variety and let S C 

Y C Y\ be as in (3.8). Fix a sheaf £ on X x Y that is flat over Y and 
restricts to £o on X x 51. Then since X is smooth, £ has such a finite 
locally free resolution E' that restricts on I x S, by flatness, to a finite 
locally free resolution EQ of £Q. 

Theorem 3.23. In the above situation, denote by e £ Extl(£o,£ ® 
n) and de G Ext2(£o,£o®^) the deformation and obstruction classes of 
£ (3.9, 3.13). Then the obstruction class of det £ is tr(de) G H2(,y) = 
Ext2(det £o?det £0 <g> y), and, if n2 = 0; the deformation class of det £ 
is tr(e) G ^ ( n ) = Ext1 (det £0, det £0 <g> n). 

Proof. Again we explicitly chase Cecil cocycles representing the ex-
tension and deformation classes. The exact sequence 0 —> n —> OxxY —> 
OxxS -> 0 gives the exact diagram of resolutions 

0 - » - E' <g> n -*- E' —>• E'0 —>• 0 

y I t 
0 -^ £ <g> n —>• £ —>• £0^0 

I I I 
0 0 0. 
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In turn this gives an exact sequence of Cech complexes 

0 ->• C'{nom'(E'0,E' <g> n)) 4 C'{Hom'{E'0,E')) 

^C'{nom'(E'0,E'0)) -+0, 

where the first complex computes Ex t 1 ^ ,*? ® n), etc. id G 
C°{nom'{E^E'0)) is Oiidi with id; G C°{'Hom0{El

0,EÌ))). Lift this 
to a G (7° (^ora* (££,£")) as © ^ with OJ G C°{'Hom0{El

0,E
i)). 

We now apply the total differential d + <5 to a, with d the differential 
on %om' and £ the Cech differential, keeping track of degrees. We get 

(d + 6)a = i(@iei + ®ifi), 

where 
ei £Ö1('Hom0(ElEi®n)) 

and 

fi G C^HomiElE*-1 (g)n)) © C , 0(^om(£'*+ 1 ,^ «in)). 

Thus t(e,) = ö(a,i) (and t(/j) = d(a,)). 
So ffijej + ©j/j is closed under d + 8 and represents the class e G 

Ext1(£^0)^ ® n) of the deformation £, whereas e, is closed under ö and 
represents the class in Ext1(£,Q,£'î ®n) of the deformation E%. Suppose 
that n2 = 0 so that E (g> n = EQ (g> n, etc. and tr is defined. Then since 
tr only acts on Horn0 components of the complex (3.14), we see that 

tr(e) = tr(©jej + ®ifi) = tr(© i e i) 

= Ç ( - l ) » tr(e(tf)) = £ ( - l ) < e(det &), 
i 

by Proposition 3.15. By (3.21) this is e(det£), as required. 
To deal with obstructions use 0—> J? —> m —> n —)• 0 to give the 

exact diagram 

0^E'0®Jr^E'®m^E'®n^0 

I I I 
0 - ^ £0 ® J1 —*- £ <g> m —*- £ <g> n —^ 0 

I I I 
0 0 0, 
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giving the exact sequence of Cecil complexes 

0 - • C'{Hom'{E'0,E'0®J?)) A C'{Hom'(E'0,E' <g> m)) 

-^C'{Hom'{E'0,E' ®n)) - • 0. 

Lift our class e = ©jej + ©j/j to ©,&, + ©,Cj in C"'(Horn'(EQ, E' ® n)), 
and apply ö + d to give, in different degrees, 

®iS(bi) + ©i(<J(ci)+d(6j)) + ©jrf(ci). 

This is i{de), by definition, with the component of de in C2('Hom0) 

being a sum ©jo, of terms such that L(OJ) = £(6j). Thus o;b is, by the 
definition of ftj, the obstruction de(E%) to the extension of £"*, and since 
tr only acts on W.om° components of the complex (3.14), i.e., on only 
the ®ide(El) parts of de, we have 

tr(de) = tT^ideiE1)) = ^ ( - l ) Ù r ( ô e ( ^ ) ) = ^(-îydeidetE*), 
i i 

by Proposition 3.15. But by (3.21) this is d e (de t£ ) , as required. q.e.d. 

We are finally in a position to find the "tangent-obstruction com-
plex" of our moduli problem, as defined in [31] (though our moduli 
problem is contravariant, not covariant). 

Fix a smooth quasi-projective scheme X and Chern classes Cj G 
H2l(X), and consider the moduli functor A4 that assigns to any scheme 
S the set of isomorphism classes of sheaves £ on X x S, flat over S, 

whose restriction to each fibre is stable and has Chern classes c;b. Here 
two sheaves are considered isomorphic if they differ by tensoring with a 
line bundle on S. This moduli functor has a coarse moduli space which 
we also denote by Al = M.(X, c{) [24], such that any sheaf £ as above 
induces a morphism / : S —> A4. Similarly for the sub-moduli problem 
A4L for sheaves of fixed determinant L (3.22), with its moduli space 
M.L C M.. We shall call this standard data: 

• S an affine scheme, 

• £o on X x S, stable on each fibre of p : X x S —>• S and flat over S, 

• Chern classes Cj(£o) G H2l(X), a rank r(£) G H°(X), and a line 
bundle L on X with c\(L) = a, 

• The corresponding classifying morphism / : S —> M. = M.(X, ci), 
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• An Os-module X. 

(3.24) 

Here we have also included the arbitrary O^-module X, along which we 
will consider deformations. 

Definition 3.25. [31] Given standard data (3.24) as above, the 
tangent functor of the moduli functor assigns to each X an O^-module 
Tg (X) such that the set of sheaves on X x (S * X) restricting to £o on 
X x S is isomorphic to 

rs(7ä(x)). 

We also require that given £Q on X x S2, a morphism of schemes / : S\ —>• 
S2 and a homomorphism j*X<i —> X\ induce a canonical homomorphism 

nlix^^rj^x,) 
compatible with base-change as in [31]. 

Denote by £xtp the right derived functors of l-k>mp = p* Horn, where 
p : X x S —>• S. The functoriality and compatability with base-change 
properties will follow from those of £xtp in our case. For S aÆne, so 
that H1 of any O^-module vanishes, the Leray spectral sequence shows 
that Ext^x5.(£o, £0 ®p*X) = Ts(£xÛ(£o, £0 ®p*X)) and similarly, for its 
trace-free counterpart, Fix.ti

XxS(£o,£o®p*X)0 = Ts(£xtp(£o,£olS)p*X))0. 
Thus we have, by Lemma 3.4 and Theorem 3.23, 

Proposition 3.26. The tangent functor for the above sheaf moduli 
problem M. assigns to any ös-module X the ös-module 

T£
1

0(X)=£xt1
p(£0,£o®P*X). 

For the moduli functor M.L the same applies to the trace-free Ös-module 
(T£

l
0UX) = £xt1

p(£o,£o®P*X)0. 

Definition 3.27. [31] Given standard data (3.24) as above, an ob-
struction sheaf for the moduli functor is an O^-module Tg satisfying 
the following conditions. 

Let S C Y C Y\ be as in (3.8), and take a sheaf £ over X x Y that 
is flat over Y, stable on the X-fibres, and restricts to £0 on S. Then 
there is an obstruction class 

ob(£,y 0 ,y i )er s(7£®J0 



390 R. P. THOMAS 

whose vanishing is necessary and sufficient for there to be an Oyj-flat 
extension of £ to £\ over XxY\. This should be functorial and canonical 
under base-change (as in [31] 1.2, but with contravariance replacing 
covariance). 

Theorem 3.28. Given any affine scheme S and a sheaf So on XxS 
as above such that dimExt*(£o|xs)£o|x.J is constant for all s £ S and 
i > 3 ; the sheaves 

T£Q = £xt\ {£0, £o ) and (7^2
0 ) 0 = Sxt\ {S0, £0 ) o 

are obstruction sheaves for both A4 and ML-

Proof. Proposition 3.13 shows that 

ob(£,y 0 ,y i ) :=d(ee) eExt2
XxS(£0,£o®P*J?) 

defines an obstruction class, and Theorem 3.23 shows that in fact it lies 
in the subspace Ext^x5.(£o,£o ®P*^)o since deformations of the line 
bundle det £ are unobstructed (PicX is smooth since X is smooth). By 
the Leray spectral sequence Ext^x5.(£o,£o ®p*^) = Ts(£xt2(£o,£o <g) 
,y)) (and similarly for the trace-free Exts, for which the rest of the proof 
is also similar and is omitted). 

There is a spectral sequence 

Tor , - (£x tP (£ 0 ,£o) ,J?)^ £xf-j{£o,£0®p*J?) 

(by standard nonsense and the flatness of £o so that Toij(£o,p*J?) = 
0, j > 0). By base-change (e.g. [3]) the hypothesis of the Theorem 
implies that £xtl (£o,£o) is locally free for i > 3, so its Tors vanish (as do 
those of W.omp(£o,£o) — Os)- So the spectral sequence for £xtp(£o,£o <g) 
p*J?) degenerates to £xt?p{£o,£o)®^-, and £xt2(£o,£o) is an obstruction 
sheaf as defined in (3.27). 

The necessary base-change for Tg follows from base change for £xtp. 
q.e.d. 

The condition required to employ the machinery of [31], [7] to obtain 
a virtual cycle is then the following, as promised in (3.2). 

Definition 3.29. [31] M. has a perfect tangent-obstruction complex 
if there is a complex E\ —> E^ of locally free sheaves on M. resolving the 
tangent obstruction functors (3.26, 3.28), in the following sense. Given 
standard data (3.24) we require that the cohomologies of the complex 

f*Ex®l^ f*E2®l 
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are T£ (X) and Tg <g) X, in degrees 1 and 2, respectively. Similarly for 

ML using the (Tg0)0s. 

R e m a r k s . The first condition is easily seen to be equivalent to 
the exactness of E'^ —> E\ —> ilj^ —> 0, because of course the tangent 
functor assigns to data (3.24) the O^-module 

T£
1
0(l)=norns(f*nM,l), 

by the standard deformation theory of the morphism / . One can also 
prove the equality l-Loms{f*ttM,X) = £xt1

s(f*£J*£®I) directly using 
(3.26) to identify QM with £ E Ì £ _ 1 ( £ , £ <g> Kx) 

(recovering the result 
of [29]; here £ is a local universal bundle on X x M —> M as will be 
described below) and using some base-change and relative Serre duality 
[23]-

There is a weaker notion of perfect in ([31]; comments following 
Corollary 3.6) which we will need later - namely that E\ need only 
exist locally on M, with E^ still a global vector bundle on M surjecting 
onto T 2 . 

T h e o r e m 3 .30 . Let X be a smooth, polarised, complex projective 

variety, and fix Chern classes Ci G H2t(X) and a line bundle L on X 

with c\ (L) = c\. Let M denote the corresponding moduli space of stable 
sheaves, and ML the subscheme of those with determinant L (3.22). If 

the numbers 

dim Ext*(£,£) , i > 3, 
are constant over M 3 £ (e.g. ifExt%

0(£,£) = 0 V£ G M, Vi > 3), then 
the tangent-obstruction complex of M given by T£

l
0, T^0 (3.26, 3.28) is 

perfect. Similarly, for rank r > 0, the tangent-obstruction complex of 
M given by T£\, (7?0)0 is also perfect, as is {T£\)Q, (7f0)0 for ML-

R e m a r k s . The required 2-step resolution is given in [31] for X a 
surface, but the method does not generalise to higher dimensions. The 
proof below can be seen (see [40]) as first working out the tangent-
obstruction theory of the Quot scheme (3.35) and then passing to the 
quotient M of the relevant subset of Quot by the appropriate projective 
linear group (3.36) - but we shall work purely algebraically. 

We work in the universal case of S being (an open subset of) M and 
resolve the sheaves £xt%

p{£,£ ®T), i = 1, 2, where X is an O^-module . 
Pulling back via maps / : S —>• M gives all that we need; the only 
problem is that the universal sheaf £ on XxM^M may of course not 
exist. However we shall ignore this irritation since the usual methods 
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(see e.g. [24] 10.2) circumvent it - £ exists locally on open subsets 
X x S (S C M.) and choices differ by line bundles pulled up from S. 
But £xtp(£,£ (g>T) is invariant under twisting by such line bundles and 
so exists uniquely and globally on X x M.. Thus all sequences in the 
proof below are really local, except those involving £xtp s, which patch 
together globally. 

Proof. We denote by 0(1) the pull-back to X x M. of the polarisation 
on X, by P(n) = x(£(n)) the Hilbert polynomial associated to the 
Chern classes c,, and by £ the (local) universal bundle (see the Remarks 
above). Choose ni > 0 such that £{n\) is generated by its fibrewise 
sections and has no other cohomology, i.e., we have a sequence 

(3.31) o-> jr->p*(p*£(ni))(-ni) -+e ->o, 

for some kernel J?T, and ffp*(£(ni)) = 0 Vi > 1. p*(£(ni)) is locally 
free as it has fibres of fixed dimension P(rii), and J^ is flat over M. 
because the other two terms are. 

Now twist with n2 sufficiently large such that J^(n2) and £{n2) are 
generated by fibrewise sections with no ffp*? a n d take cohomology: 

(3.32) 0^p*( JT(n 2 ) ) ->• p*£(nt) <g> V ->• p*(£(n2)) - • 0. 

V denotes p*(0(ni — n2)), and to pull the sheaf p*£(n\) through p*p* 
we have used its local freeness. 

Define an Ox-flat sheaf X by 

0 ->• X ->• p*p* ,Jtf{n2) ->• J f (n2) ->• 0. 

Then applying %omp( • ,£(n2) <g>p*X), for any 0^-module X, yields 

0-^om p ( j r ,£<g>p*X) ->• (p*jr (n 2 ) )*®p*5(n 2 )®2: 

-> Homp(X,£(n2) ®p*l) ->• £œij( j r ,£ ®p*X) ->• 0, 

where the final zero comes from the choice of n2 3> 0, and the second 
term is produced by the projection formula for the Ox-flat sheaves 
p*p*J^(n2) and £(n2). 

The higher terms in the above long exact sequence (3.33), with X 
trivial, give 

0 ->• £xtt(X,£(n2)) ->• £xtt+1(J(r,£) - • 0, i > 1, 
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while the long exact Homp( • ,£) sequence of (3.31) yields 

0 ->• Sxt^JfT, £) ->• £xt]
p
+1(£, £)->0, j > 1, 

by the choice of n\ ^> 0. Thus 

(3.34) £xtP(X,£(n2)) = £xtP
+1(Jf,£) =* £xtP

+2(£,£), 

for all i > 1. 

The last term is locally free, by base-change and the constancy of 
d imExts in the hypothesis. Therefore so is the first term for i > 1, so 
its % = 0 counterpart 

E2 :=nomp(X,£(n2)) 

is also locally free by base-change [3]. Here we have used the facts 
that X is smooth and that the sheaves concerned are flat over A4, 
which also implies that Toii(£(n2),p*X) = 0 for i > 0 giving a spectral 
sequence Toii(£xtp(X, £(112)),!) =>• £xtp~

] (X, £(112) <8> p*X) as in the 
proof of Theorem 3.28. By (3.34) this vanishes for i > 1, j > 1 since 
£xtP (£, £) is locally free for j > 1, so the spectral sequence degenerates 
to give T-Lomp(X,£(n2) <8>p*X) — E2 ®I. Therefore (3.33) has become 

0 ->• Uomp{X, £ ® p*X) -+E'1®1^E2®I 
(3.35) „ 

->£xtl(£,£®p*l)->0, 

with E2 a vector bundle on A4; here we have defined 

E[ : = ( p * J T ( n 2 ) ) * ® P * ^ M . 

Applying %omp{ • ,£ ® p*X) to (3.31) yields 

0 —> 'Homp(£,£ ®p*X) —> (p*£(n{))* ®p*£(n\) ®X 

->• Homp(Jtr, £ ® p*X) ->• £xt\{£, £ ® p*X) ->• 0. 

The first two terms are X (by base-change since £ is stable, and so 
simple, on the fibres) and £nd,M(p*£(ni)) ®X with the identity map 
between them, giving 

0 ->• £ndv{p*£{ni)) <g>X ->• Homp(Jtr,£ ®p*X) ->• £xt\{£,£ ®p*X) ->• 0. 
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Fit this into the sequence (3.35) 

0 

I 
£ndo(p*£(ni)) ®T 

I \ 
0 ->• Uornp(J{r, £ <g> p*X) -> E[®l->E2®l-> £xt2

p{£, £ ® p*l) ->• 0 
I 

£xt\{£,£®p*X) 

(3.36) Q 

and divide by the two injections of £ndo(p*£(ni)) to give the required 
sequence 

(3.37) 0 ->• £xt\{£, £ ®p*X) ->• £ i ®X ->• £ 2 ®X ->• £œij(£, £) ®X ->• 0, 

where I claim that £ i is locally free. To prove this it is enough to 
show the above map of vector bundles £ndo(p* £(ni)) ~~*" (p* =^(^2))* ® 
p*£(n2) = E[ is nowhere zero. But this follows easily by repeating all 
of the above analysis at a single point of M., instead of relative to A4, 
and using base-change: the same exact sequences show that the map on 
fibres End0(H°(£(m)) -+ H°(J^(n2))* ® H°(£(n2)) is an injection. 

Finally, take the cokernel of the map i?1p*0 —> E\, and/or the kernel 
of the map E2 —> R2p*Ö, in the following diagram 

0 -s- £xt\{£, £ ® p*T) -*E1®I->-E2®I->- £xt2
p(£, £ ® p*X) ->• 0 

idf ^ ^ ^ " " \ ^ |tr 

Ä 'p .0 8 1 R2p*ö®X 

t I 
(3-38) 0 0. 

For rank r > 0 these maps are injective and surjective respectively, 
and so give locally free resolutions of the trace-free tangent-obstruction 
complexes. q.e.d. 

Corollary 3.39. Let X be a smooth projective 3-fold with trivial 
or ariti-effective canonical bundle, let A4 denote the projective moduli 
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space of semistable (with respect to the projective polarisation) sheaves 
of some fixed rank r and Chern classes, and ML those sheaves of fixed 
determinant L. Suppose that all such sheaves are stable (e.g. if rank and 
degree are coprirne). Then for r > 0 there is a virtual cycle ZQ C ML, 
defined by the tangent-obstruction functors (T1)0 , (T2)0, of dimension 
the virtual dimension 

3 

U(i = ^(- l ) i + 1 dimEx4(£,£) . 

i=0 

Its class in the Chow group AV(i(X) is independent of the resolution 
(3.30). For any r there are similar classes Z C M using the tangent-
obstruction functors T1 , (T2)0 (of dimension vd + h0,1(X)) andT1, T 2 

(dimension vd+h0,1(X) — h0,2(X)). If M is smooth then the appropriate 
obstruction sheaf is locally free, and the virtual cycle is its top Chern 
class. 

Proof. Homo(£, £) = 0 for any stable sheaf £ in the moduli space, so 
by Serre duality Extg(£, £) = Honio(£, £®Kx)* and the assumptions on 
the canonical bundle Kx, Exto(£,£) vanishes also. Thus by Theorem 
3.30 we may apply ([31] 3.7) to give the required virtual cycle. q.e.d. 

For r > 0 we consider the trace-free obstruction class (T2)0 , since 
T2 contains a trivial i?2p*0 factor whose Chern class vanishes making 
the class of the virtual moduli cycle zero. For a Calabi-Yau manifold the 
above cycle ZQ has dimension zero and its length will give our definition 
of the holomorphic Casson invariant. For this to be a sensible definition, 
however, we would like it to be deformation invariant. So we need to 
work out the deformation and obstruction theory of a sheaf £ on X as 
the complex structure of X varies over an affine curve. We will do this 
in the next section; meanwhile since F3 has no complex deformations 
we can use the following Corollary to give an application of the virtual 
cycle. 

Corollary 3.40. Hilbert schemes of curves in a 3-fold X with trivial 
or negative canonical bundle (such as F3) have a virtual moduli cycle. 

Proof. We use the particular moduli space of rank 1 sheaves of 
trivial determinant that contains the ideal sheaves of the curves. All we 
need to show is that any sheaf £ of the same Hilbert polynomial and 
determinant is also an ideal sheaf (these are then automatically stable). 
But since £, being stable, is torsion free, it is contained in its double 
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dual, which is rank one, reflexive, and so a line bundle ([34] pp 154-
156). So it equals its own determinant 0 , so £ C 0 is a sheaf of ideals. 
q.e.d. 

Corollary (3.39) allows us to define Donaldson-like invariants for 
such a 3-fold X by doing intersection theory on moduli spaces of sheaves 
using characteristic classes of universal sheaves, in the usual way. For 
instance we may now define (deformation invariant, by the results of the 
next section) Gromov-Witten-like invariants (with integral coefficients) 
using Corollary (3.40): choose n homology classes a, in X of total 
codimension equal to the virtual dimension of a fixed Hilbert scheme H 
of curves in X, plus two. There is a universal curve C over H with a flat 
morphism to H, and similarly the projection of the n th fibre product 
to H, 

C xH ... xH C -> H, 

is flat. Thus ([17] 1.7) we may pull back the virtual cycle in i f to a cycle 
Z in the total space and push it forward via the universal evaluation 
map 

ev : C -> X inducing evn : C x f f . . . x f l C - > X n , 

to Xn. Then the invariant is the integer intersection number (in the 
smooth variety Xn) 

(3.41) e < ( Z ) . ( x « = i « , ) . 

Similarly for a Calabi-Yau 3-fold X we may simply count the number 
of points in the virtual moduli cycle (i.e., take its length as a scheme) 
to get a count of curves in X. 

These invariants differ from the Gromov-Witten invariants since 
Hilbert schemes contain many nasty components representing things 
other than curves. An example that will also be relevant later (ex-
plained to me by Jun Li) is given by two disjoint F 1 s in 3-space coming 
together at a single point in a flat family. Consideration of the Euler 
characteristic of the structure sheaf, or just looking at the equations 
defining the subscheme, shows that the limiting curve must have a fat 
point at the intersection point (pointing in the direction in which the 
curves came together). In a separate flat family this point can break off 
to give a P 1 and a distinct point in the same Hilbert scheme. 
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R e m a r k . A naive approach to creating a virtual fundamental class 
would simply be to take the top Chern class of the obstruction sheaf. 
This is correct if M. is smooth and so we have an obstruction bundle. 
In general Pidstrigatch [35] and Siebert [37] have shown the correct 
formula is the natural generalization of this given (3.1, 3.2), namely the 
f(i-dimensional part of 

Z = c(E1-EQ)n[cF(M)], 

where cp(M) is Fulton's total Chern class of the scheme M. ([17] 4.2.6). 

D e f o r m a t i o n i n v a r i a n c e 

Fix a quasi-projective scheme X with a flat map to a smooth aÆne curve 
C, with projective fibres i : Xt <—>• X over t G C. Given a stable (in 
particular, simple) sheaf £ on XQ we study deformations of its (stable 
and simple) pushforward t*£ to X, thus allowing it to move onto other 
fibres Xt (it is easy to see, using stability or simplicity, that this is all 
it can do: its support must remain over a finite number of points in C 
and stability, which is an open property, prevents it from splitting over 
more than one fibre; the deformation theory below will show this for 
instance). 

We will need here and later a technical result, part of whose proof 
was worked out with the generous help of Brian Conrad. 

L e m m a 3 .42 . Suppose i : D C Z is a Cartier divisor in a quasi-
projective scheme Z, with normal bundle v = Öß (D) . Then for coherent 
sheaves £ and T on D there is a long exact sequence 

->• Ext*D(£,.T) ->• Ext ' z(t*£:, t*^) ->• Ext£1(£>-77®i') A E x t ^ 1 ^ , ^ ) - • . 

Proof. The sheaf sequence 0 ->• 0(-D) -> 0 ->• / ,*0B ->• 0 yields 

Horn (0 , i*T) -> Horn ( 0 ( - D ) , i*.F) ->• £xt1(i*öD, i*.F) ->• 0. 

The first map, multiplication by the section of 0 ( D ) defining D, is 
zero since i*T is supported on D. Thus we see that £a;£1(t*0.D, i*T) = 
i*{^ ® v)i s o £xt}(b*E, b^T) = L*{'Hom (E,T) <g> v) for any locally free 
sheaf E on D . Thus, for a locally free sheaf E that is suÆciently negative 
(so that Ext 1 = H°(£xtl) in what follows) we have 

(3.43) Ext 1 (<,*£•, t*^) ^ H o m ^ , ^ ® ! / ) , 
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with higher Exts zero. 
Now take a (not necessarily finite) locally free resolution of E* —> 

£ —> 0 of £ on D with the Ets(i = 0,l,...) sufficiently negative with 
respect to i*T as above (this is possible since D is projective and we may 
take Ei+1 = ^{E^N)) <g> QD(-N) for large N). Take also an injective 
resolution 0 —> i*T —> I' on Z (• = 0, f , . . . ) . Then the cohomology of 
the complex Hom*(/,*£,I*) computes Ext"(t*£, b*T). But I* is a com-
plex of injectives bounded from below so respects quasi-isomorphisms 
like L*E' —> L*£ —> 0 (since t* is exact). Thus the double complex 
Horn*(L*E', I') also computes Ext*(t*£, L*T). 

Now, by (3.43) above, the associated single complex Horn*(L*E1, I') 
(for fixed i, and with differential Sj : Horn (it.E\P) —> Horn (t*i£\ P+1)) 
has cohomology only in degrees 0 and f. Thus, truncating all of these 
complexes (as % varies) simultaneously by setting terms in degree • > 2 
to zero, and replacing the degree one term by ker^1, we get a quasi-
isomorphic complex Bh', sitting in an exact sequence of complexes 

0 - • k e r $ ->• Bl'm -+ coker$ [-1] ->• 0. 

(Here [—f] means shift the complex one place to the right.) So by (3.43) 
this sequence is just 

(3.44) 0 ->• Horn {E\ F) ->• B^' ->• Horn {E\ T <g> v) ->• 0. 

The above complexes compute Ext'1 (£, T), Ext*(t*£, L*T) and 
Ext î _ 1(£, T ® v) respectively, so taking the long exact sequence in co-
homology of the exact sequence of total complexes gives the required 
result. q.e.d. 

Remark . The usual arguments show that the sequence is indepen-
dent of choice of resolutions, and that the maps are the natural ones. 
The map Ext^,(£,JF) —> Ext^(i*£, i*T) pushes forward by t* (which 
is exact) an extension of £ by T on D to the corresponding extension 
of L*£ by i^T on Z. The map Ext^(t*^, L*F) —> Honi£)(£, T <g> v) is a 
little harder to describe - taking an extension class on Z and a (local) 
section of £ on D, we must produce a section of T <g> v. But pulling 
back the extension (of t*£ by i*T) by the section of £ gives a section of 
£xtl (t*Öö, t*JF) which is shown in the proof to be canonically isomor-
phic to L*{T ® v). 

So in our usual set up (3.8) of S C Y C Yi, consider the obstructions 
and deformations of a sheaf T := t*£ on X x Y, where £ is a stable 
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sheaf on XQXY (flat over Y), and i denotes the inclusions XQ C X and 
X0 x Y C X x Y of the fibre of X over 0 G C. Restricting to 51 C Y 
gives Ĵ b = i*£o-

The sequence (3.11) for the deformations of T = t*£, and the corre-
sponding sequence for S in one lower degree, are linked by the sequence 
of Lemma 3.42 (applied to the sheaves £ and £ ® y on the Cartier 
divisor XQ x Y C X x Y and written vertically below) to form the 
diagram: 

^txoXs(£o,£®n)^Ext2
XoxS(£o,£o0ry) 

E x t k s C ^ o , T ® m) —* Ext^XiS(.Fo, ^ ® n) - ^ Ex t | . x S (^ 0 , ^o ® ^ ) 
\ \ \<t> 

HomXoXs(£o,£ ® m) ^ H o m X o X s ( £ o , £ ® n) ^ E x t ^ o x 5 ( £ 0 , £ o ® J1). 

Here we have used the fact that the normal bundle to XQ X S in X x S" is 
of course trivial. Since our extension class ê  G Ext1(jF0, jF(g>n) is in the 
image of t* in the above diagram, the obstruction d(ep) = t*do(e£) is 
in the kernel of <j>. Extending the right hand vertical sequence upwards 
therefore shows the following. 

Theorem 3.45. The obstruction map d of (3.13) takes values in 
coker (ô), with ö the last map in the following sequence (3.42) relating 
the first order deformations of To = t*£o to those ofSo: 

0 ->• E x t i xS{S0iSo ®S)^> Ext1
XxS(^S0ii*S0 <8> J) 

(3.46) 
->• HomXoxs(^o,^o ® y) —> Ext2

XoxS(S0,S0 <8> J»). 

The first map pushes deformations on Xo x S forward to X x S. For 
So simple (e.g. stable) the penultimate term is just H°(y), and ô is the 
obstruction to first order deformations of So off the fibre XoxS C XxS. 

We want to repeat this result for trace-free determinants. Of course 
there can be an obstruction to deforming the determinant of a sheaf to a 
nearby fibre, so we need to assume this vanishes by fixing a determinant 
that extends to all of X. So choose line bundle L on X, and study stable 
sheaves on fibres Xt of X whose determinant on Xt is L\xt- We will 
also now insist that rank So = r > 0. 

Then we showed above (3.45) that the obstruction to extending T is 
the image in Ext2(jF0, To <8> y) of the obstruction d(eg) G Ext2(So, So <8> 
y) to extending S from Xo x Y to Xo x Y\. By Theorem (3.23) this 
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last obstruction in fact lies in the trace-free part Exto(£o,£o ® --^)- So 
to get the trace-free analogue of the sequence (3.45) we want to show 
that the map 

HomX oxs(£o,£o ® J) - A E x t ^ o x 5 ( £ 0 , £ 0 ® S) 

of (3.45) in fact factors through Extg. But this map fits into the diagram 

ttomXoxs{£o,£o ® J?)-^Vxt2
XoxS{£0,£o ® S) 

4 o x S (^ ) - — - H X o x S ( , y ) . 

where the bot tom row is the corresponding sequence for det £, so the 
map ö is the obstruction to extending det £, which vanishes by our 
assumption that d e t £ is the restriction of a global line bundle L on 
X. Now this diagram commutes by the following observation of Brian 
Conrad, for which I am very grateful. Namely, the map Hom(£^,jF) —y 

Ext2(£^,JF) of Lemma 3.42, is covariant in T and contravariant in £, 

making it covariant in R,%om(£,JF) = 'Horn'(E', JF), where E' is a 
finite locally free resolution of £. Therefore applying the trace map to 
R % o m ( £ , £ ) gives the commutativity of the above diagram. 

So we can improve Theorem 3.45 to 

T h e o r e m 3.47. Taking So to have rank r > 0 and determinant 

L\x0, the restriction of a global line bundle L on X, Theorem 3.45 holds 

with Ext^ 0 x g (£Q , So (g> <#) replaced by its trace-free part Ext^o X i S(£o, £o® 

Corollary 3 .48 . Use the projections p : Xo x S —> S and q : 

X x S —>• S, and let S be a stable sheaf on Xo x Y (flat over Y) with 
restriction So to Xo x S such that dimExto(£o|x.3)£o|x s) = 0 for all 
s £ S and i > 3. Then 

Tß0 := coker {Os A £xt2(£0,£o)} 

= image {£xt2
p(£o, £Q) ->• £xt2

q(J
r
0,J

ro)} 

is an obstruction sheaf for T = i*£. Ifr > 0 and det £o is the restriction 
to Xo x S of a global line bundle L on X x S (pulled back from X), then 

(TF 0 )O : = coker {O5 —> £xi2
p{£o,£o)o} 

= image {£cip(£0 , £0)0 ^ £xt2
q(To,To)} 
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is also an obstruction sheaf for T = t*£. Also, 

C^0)o(x) : = coker{i21p*0 ®1^ Ext\(TQiTQ <g> S)} 

(where the map is the identity into £xtp(£o,£o (g> J^) followed by the 
inclusion into £xÛ(To,To <8> ^)) is a tangent functor for deformations 
of To with fixed determinant L on the Xt fibres. 

Thus tangent-obstruction functors of the moduli problems for £ on 
XQ and T on X fit into the exact sequences of ös-modules 

(3.49) 0 ->• Ti0(l) ->• T}0(1) - + X ^ 7£ ®X-> T|0 ®1 ^ 0, 

and 
(3.50) 

0 - • (T/0)0(î) -+ (r^0)0(X) ^ X ^ (7f0)0 ® X ^ (Tj0)0 ® X ^ 0, 

/or any Qs-module T. 

Proof. Use the results of (3.28, 3.26) for £Q and To = t*£o, using 
the condition that the higher Ext groups of £o vanish to show the same 
for To (this follows from the exact sequence (3.42) as usual.) Then 
Theorems 3.45, 3.47 give the required exact sequences. q.e.d. 

Theorem 3.51. The tangent-obstruction functors of £ on Xo (3.26, 
3.28) and of T = t*£ on X (3.48) are compatible in the sense of Li-Tian 
([31] Definition 3.8). 

Proof. The compatibility of Li-Tian says roughly that for an ob-
structed sheaf £ on Xo to extend without obstruction inside X, the 
obstruction must cancel the obstruction to extending t*£o in the direc-
tion of the base C. 

The precise statement is that there should be an exact sequence 
(3.49) (or (3.50) in the trace-free case) such that the following holds. 
Let S C Y C Y\ be as in (3.8), and take a sheaf £ on Xo x Y, giving 
a corresponding class e G Ext1(£'o, £ <8> n). Suppose that the obstruction 
class do(é) G Ext2(£o,£o <8> •-#) to extending it to Xo x Y\, has vanishing 
image in Ext2(jF0,jF0 (g> ,_?). Thus T = t*(£) extends to a sheaf on 
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X x Yi, giving a class / G Ext1(jF0, T <8> tn) and a diagram 

e e E x t 1 ^ , ^ ® " ) 
| . 

/ e E x t 1 ( ^ o , J r ® t n ) ^ E x t 1 ( ^ o , ^ ® n ) 
\<t> |v> 

0 —>• Horn (£0, £0® J<)^ Horn (£0 , £ ® tn) ->• Horn (£0 , £ ® n) 

|<s 

e e E x t ^ o ^ ^ n ) * Ext2(£0,£o® S), 

where all horizontal maps come from sequences of the form (3.11), and 
vertical maps from (3.42). Since t*(e) is mapped to zero under ip, <p(f) 
is in the image of a unique class c G Horn (£Q, So ® ^)- Then Definition 
3.8 of [31] requires that 8{c) = —9o(e). 

In our situation this holds by abstract homological algebra. We first 
need to lift the big commutative diagram of Ext groups that the above 
diagram is a part of to the level of short exact sequences of complexes. 
Given an O^-module J , we use the complex By, whose cohomology 
is Ext*(jF0,jF (g) J ) , from the proof of Lemma 3.42. This is functorial 
in J, and we denote the other two complexes in (3.44) by Ay and C} 
(computing the cohomology of E x t * ( £ Q , £ ® J ) and Ext'~l(£o,£®i"g)J) 
respectively). 

Thus we get a (horizontal) sequence of sequences of the form (3.44) 
(written vertically) by setting J to be the different modules in the exact 

sequence 0—> J? —> m —> n —> 0, yielding the exact commutative 
diagram of complexes 

0 

0 

0 

We now follow the previous diagram chase around this diagram at the 
level of complexes. So we start with e G A\ with 8e = 0 (we will denote 
all coboundary operators by 8) which we want to lift to / G B^ with 
Sf = 0. 

0 0 0 

I I I 
A'

 3j
\ A'

 w
i A' , n 

i'-y I % 11-„ 
R* ig p . KB p . ^ 

\P-f |Pm jpn 
r<» ic n. ve n. 

• <^jr —>• O m — > • O n — > • U 

I I I 
0 0 0. 
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Lift e to ß G ^4,^ (using the fact that TI A is onto). This is then 
assumed not coclosed; its coboundary is by definition 8(ß) = JA(do(e)) 
where do(e) G A2j, represents the obstruction class do(e) G Ext2(£o, <?o ® 
J^) to lifting e. Pushing forward / := Lm(ß) to a class in B^, we see that 
a coclosed class / G B^ lifting tn(e) G B^ exists if and only if there is an 
a G By with 6(JB(O>)) = —6(f); the required / is then / = / + i s ( a ) . 
We are assuming / , and so a, exist. 

Thus, since JB{S{O)) = -ô{f) = -o(im{ß)) = -imJA{do(e)) = 
—JB ijr(do(e)), and since JB is an injection, we have 

(3.52) S (a) = -ty(d0(e)). 

In particular then, pjr(a) is coclosed, defining a class c G Horn (£Q, So ® 
J^) whose coboundary (by which we mean now the connecting homo-
morphism S in the cohomology sequence of the left hand column that 
arises in the previous diagram) ö(c) is —<9o(e) by (3.52). 

Thus we are left with showing that c is the same c as defined above, 
i.e., that jc{c) is pm{f). But jc{c) = jcPj>{a) =pmJB(a) =pm(f-f) = 

Pm(f) as required, since / = cm(ß) is in the kernel of pm. q.e.d. 

Corollary 3 .53 . The virtual moduli cycles of Corollary 3.39 are 
deformation invariant in the following sense. Given a family X —> C 
of smooth projective varieties Xt, t G C, consider the family of moduli 
spaces M.t of stable sheaves £ as in (3.39) on the fibre Xt (containing 
the virtual moduli cycle Zt). These form, the moduli space M. —>• C of 
sheaves {it)*£- Then under the same conditions as Corollary 3.39, A4 
has a virtual moduli cycle Z of dimension dimZt + 1, and as elements 
of the Chow group they satisfy t\Z = Zt. (Here vt is the Gysin homo-
morphism ([17] 6.2) of the inclusion it '• {t} —> C.) There is also the 
corresponding result for sheaves of fixed determinant Lt, with L a fixed 
line bundle on all of X, for rank r > 0. 

Proof. We first need to show that the tangent-obstruction functors 
of M. —> C are perfect in the weaker sense of the Remark preceding 
Theorem 3.30. The E^ of that Theorem exists on all of M. and surjects 
onto T~£ , and this in turn surjects onto T^ . So all we need is a local 
vector bundle E\ giving a resolution of T^ , T^ over an open set of M.. 

The map (DM —> T£0 of (3.49) locally factors through E-i —> T£0 via 
a local lift Ö —> E'i. Combining this lift with the map E\ —> E2 of 
Theorem 3.30 into a map E\ © 0 —> E^ gives an exact sequence, for any 
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0,5-module X, 

0 ->• T}0(1) -+ (Et © 0) <g> X ->• £ 2 ® X - • X|0 <g> X - • 0, 

by combining (3.37) with (3.49). Thus we can use [31] to produce the 
virtual moduli cycle Z (and similarly for the trace-free versions, using 
(3.38) and (3.50) instead). 

vtZ = Zt follows from ([31] 3.9), given the compatibility of Theorem 
3.51. q.e.d. 

The holomorphic Casson invariant 

Defini t ion 3 .54 . Fix a smooth projective Calabi-Yau 3-fold X, and 
a rank r and Chern classes Cj such that the moduli space M. of semistable 
sheaves with this data (and fixed determinant L if rank > 0) contains 
only stable sheaves (for instance if the rank and degree are coprirne). 
Then we define the holomorphic Casson invariant A{C.}(X) to be the 
length as a scheme of the zero dimensional projective virtual moduli 
cycle ZQ C ML of Corollary 3.39. It is invariant under deformations of 
X in any projective family to which L extends (e.g. if h0,2(X) = 0 this 
is immediate). 

The deformation invariance comes from the relation i\Z = Zt of 
(3.53) and the resulting "conservation of number" ([17] 10.2). This in-
variant is clearly similar in nature to the Gromov-Witten invariants of 
X. In fact we might expect to recover GW invariants either by consid-
ering moduli of ideal sheaves of curves as in (3.40, 3.41), or by relating 
rank two bundles to curves via zero sets of their sections (and vice-
versa by the Serre construction). However, we have already remarked 
that the first case gives something slightly different to GW invariants. 
As for rank two bundles, under the Serre construction spheres and tori 
tend to correspond to unstable bundles, and for a higher genus curve 
to correspond to a bundle its tangent bundle must extend to a line 
bundle on X, cutting down the space of admissible curves. Since the 
space of curves has expected dimension zero anyway we tend to find (for 
instance in the examples below) that rank two bundles correspond to 
non-generic high-dimensional families of curves. In this case deforming 
the curve corresponds to deforming the section, not the bundle, so GW 
invariants do not arise. 

We might also like to count fewer singular sheaves, i.e., to only count 
bundles. We would expect from Donaldson theory to have to include 
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sheaves with codimension two singularities (limits of stable bundles, 
where "bubbling" occurs), but in the rank two case one might hope to 
be able to ignore sheaves with codimension three singularities. However 
again the example above of a flat family of curves producing a distinct 
point shows that bundles can degenerate to sheaves with codimension 
three singularities, and so such sheaves can lie in the same connected 
component as bundles. 

In all of the examples we consider, however, we will be able to show 
there are no such singular sheaves, and in fact GW invariants will arise 
in a completely different way in the last section. 

E x a m p l e s . Simple examples of the invariant are given by consid-
ering ideal sheaves of I, 2 or 3 points in a Calabi-Yau 3-fold X. The 
moduli space is then X, Hilb2X or Hilb3X, and so smooth, with the 
invariant giving the Euler number of the cotangent bundle (since this 
is the obstruction bundle), i.e., —x(X), x(Hi lb 2 X), and —x(Hilb3X) 
respectively. 

A deeper example is motivated by Donaldson's reinterpretation [12] 
of work of Mukai ([32] 0.9) as an example of the Tyurin-style Casson 
invariant of (2.7). 

Fix a smooth quadric Qo m I"5) in a fixed F2-family of quadrics 
spanned by Qo, Q\ and Q2 , say. The singular quadrics in the family lie 
on the sextic curve 

C = {[A0; Ai; A2] G F 2 : det(A0Qo + A1Q1 + A2Q2) = 0} C P 2 

where the quadratic form defining the quadric becomes singular. 
For every point of P 2 \ C we get two tautological rank 2 bundles A 

and B over the corresponding quadric (thinking of it as a Grassmannian 
of 2-planes in C 4 , A and B are defined by the tautological sequence 
0 ->• A* ->• C 4 ->• B ->• 0), and so also over the K3 surface 

S = Qo n Qi n Q2. 

In fact these A and B bundles give a double cover Jv[ of P 2 branched 
along the sextic curve C (the A and B bundles coincide on the singular 
quadrics) as the moduli space of bundles of the same topological type 
over S. A4 is a (complex symplectic) K3 surface, notice. 

Similarly the Fano X\ = Qo n Q\ lies in the pencil spanned by Qo 
and Qi, a line P 1 in our P2-family. The 2-fold branched cover of this line 
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induced by A4 —> P 2 , i.e., the set of A and B bundles on the quadrics 
in this pencil, is the moduli space for X\. Similarly for X2 = Qo fi Q2 

and the cover of the line (Ao, A2) C P 2 . 
So we have an example of the Tyurin-Casson invariant (2.7), with 

two complex Lagrangians (the curves covering the P1s) as the moduli 
spaces of bundles on the two Fanos, injecting into the complex sym-
plectic moduli space of bundles on the common anticanonical divisor 
S. Their intersection, namely the double cover of the intersection point 
{Qo} of the lines in P 2 , corresponds to the two stable bundles AQ0 and 
BQ0 on the singular Calabi-Yau that is the union of X\ and X2. 

Deforming this singular quartic in Qo to a smooth Calabi-Yau we 
would like, then, to prove the following. 

T h e o r e m 3 .55 . Let Qo be a smooth quadric in P 5
; and let X be 

a smooth quartic hypersurface in Qo- Then the bundles A and B on 
Qo restrict to stable, isolated bundles of the same topological type on X, 
and they are the only semistable sheaves in the moduli space. Thus the 
corresponding holomorphic Casson invariant is 2. 

Proof. Standard exact sequences and geometry on the Grassmannian 
Gr (2,4) = Qo show that the bundles are stable and isolated ([40] 2.3.1). 
The more difficult part is to show that any semistable sheaf £ of the 
same Chern classes is either A or B. We will do this by controlling 
£'s cohomology by studying it on hyperplane sections, and then using 
Riemann-Roch to produce sections (cf. [22]). 

Let £ denote the double dual (or "reflexive hull") of £. Let H = 
P 4PlA be a smooth hyperplane section, with P 4 C P 5 sufficiently generic 
that £ \H is the double dual of £\H and so a bundle F, say. Then the 
Riemann-Roch formula for F is 

(3.56) 2h°(F)-h1(F) = 12-c2(F), 

by Serre duality, KH = 0 # ( 1 ) , and an unpleasant computation. Thus 
F has at least 4 sections, as 02(F) = c2(£) .co < c2(£) .LO = 4 (recall 
that passing to double duals lowers c2 because of the exact sequence 
embedding a sheaf inside its double dual). 

Also, as H is generic, we may assume its only line bundles are the 
O(n) bundles, by Noether-Lefschetz theory (see e.g. [19]). £ is slope 
semistable and so slope semistable on restriction to the generic hyper-
plane (see e.g. [22] 3.2). Thus F(—l) cannot have any sections, so 
the four sections of F must vanish only on points, giving us a Koszul 
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resolution ([18] p 688) of the form 

(3.57) 0 ->• 0 ->• F ->• Jc(\) ->• 0, 

where J^c is the ideal sheaf of functions vanishing at c = 02(F) < 4 
points. Taking sections and using the Riemann-Roch formula (3.56) 
gives 

h°(Sc(l)) = h°(F)-l>5-c/2. 

However /i°(Ofl-(l)) = 5, and the c points impose at least min(2, c) con-
ditions on the sections of 0 # ( 1 ) as they are the restriction of the sections 
of 0P4(1) on the F 4 hyperplane in P 5 . Thus 5 - c/2 < h°(J?c(l)) < 
5—min (2, c), i.e., c > 2 min (2, c), whose only integral solutions for 
0 < c < 4 are c = 0 and c = 4. We can rule out c = 0 by stability 
(either by the Bogomolov inequality or the fact that (3.57) would split); 
thus c = 02(F) = 4. Therefore £ has the same second Chern class as £ 
on X (since H4(X; C) is generated by a class non-zero on i f ) , and can 
only differ from it in codimension three. 

Notice also that as we must have h°(j?4(l)) = 3, the points lie on a 
web of hyperplanes in the F 4 hyperplane, i.e., on a line in F 4 . 

To control the cohomology of F we use (3.57) to give, for t > 2, 

0 ^ # i ( F ( t _ i ) ) ^ # i p r 4 ( t ) ) ^ H2(0H(t-l)) ^ 0 , 

il H 
H^F^-t))* H°(0H(2-t))* 

by stability. But the sequence 0 —> J^±(t) —> On(t) —> Oi(t) —> 0 shows 
that hl(^i(t)) = 0 Vi > 3 since we can find a polynomial of any 
degree > 3 taking any prescribed values at 4 points on a line (in F 4 ) . 
Similarly hl(^A(2)) = 1, and we get Hl(F(-n)) = 0 Vn > l ._ 

Thus we can now pass up to X using the sequence 0 —> £ (—1) —> 
£ —> £ \H —> 0, which is exact because £ is torsion free, giving 

Hl(£(-n - 1)) - • Hl(£(-n)) -+ Hl(F(-n)). 

Since Hl(£ (—n)) vanishes for large n it therefore vanishes for all n > 1; 
in particular H2(£ ) = 0. This and stability simplify the Riemann-Roch 
formula for £ to 

h°(£)-h1(£)=4 + c3(£)/2. 

The third Chern class of a rank two reflexive sheaf on a smooth 3-fold 
is always nonnegative and vanishes if and only if the sheaf is locally free 
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([22] 2.6), so £ has at least 4 sections which do not vanish on divisors, 
by stability. Thus we have a presentation ([22] 4.1) 

0 ->• 0 ->• £ ->• J^c(l) ->• 0, 

for some degree four curve C. Computing the third Chern class of such 
an extension to be zero shows that £ is locally free with the same Chern 
classes as £, i.e., £ = £ is locally free. (The point here is that the exten-
sion is locally free, and not just reflexive, because the determinant of £ , 
restricted to C, is isomorphic to the determinant of the normal bundle 
to C with the isomorphism set up by the determinant of the section. 
Thus the section vanishes transversally along C, the bove sequence be-
comes the Koszul resolution (3.57) for this section, and £ is locally free. 
In fact, the Serre construction ([34] p. 93) uniquely constructs a sheaf £ 
(which is then locally free) from the above resolution when the appro-
priate determinants are equal; it is only when they differ that reflexive 
sheaves arise from Hartshorne's generalization of the Serre construction 
[22].) 

But now h°(j?c(l)) > 3, so C lies in a web of hyperplanes in X C 
Qo C F 5 . Thus it lies on a linear F 2 plane P C P 5 . Since C lies in the 
quadric Qo, the plane P must do so too, otherwise the quadric would 
intersect P in a conic curve containing the degree four curve C, which 
is impossible. 

But the planes in Qo are precisely the standard planes in Gr (2,4) -
zero sets of sections of A and B. P uniquely defines either the A or the 
B bundle on Qo via the Serre construction (see [34] p. 93). 

0 ->• 0 ->• A/B ->• Sp(l) ->• 0, 

by the extension data E x t 1 ( J 2
P ( l ) , 0Qo) = H°(0P) 3 1. This extension 

restricts, on the quartic X, to 1 G H°(ÖC) = Ext1( t /C-(1) , Ox), defining 
our bundle £ 

O - ^ O -^£ ^ Sc(l) ^ 0 

by uniqueness, since H°(öc) — C (C is a curve in F 2 , so is connected). 
Therefore £ is one of A or B restricted to X. q.e.d. 

4. K3 fibrations 

We now turn to calculating the invariants on if3-fibred Calabi-Yau 
manifolds with no reducible or multiple fibres, using the nice properties 
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of moduli of bundles and sheaves on a K3 due to Mukai ([24] Chapter 6). 
These do not quite generalise to the singular K3 fibres. Although these 
have a (trivial) dualising sheaf as the fibres are complete intersections 
([21] III 7.11) and so the usual Serre duality holds ([21] III 7.6), the 
Serre duality we have been using [32], 

(4.1) E x t ^ , £)* =* E x t 2 - ^ , £), 

only holds for sheaves £ with a finite locally free resolution. On the sin-
gular fibres there will be sheaves with unbounded locally free resolutions 
for which the result does not hold. 

We will consider stability on X using a suitable polarisation u, in 
the sense of Friedman. This means that the fibres are small so that 
semistable sheaves restrict, on the generic fibre, to semistable sheaves. 
The basic idea is to add a large multiple of the fibre divisor / to any 
fixed polarisation, so that the sign of the degree u . LO . c\ of a possibly 
destabilizing subsheaf is the same as the sign of the degree f.uj.ci on 
a generic fibre. Since such subsheaves that we need to consider form a 
bounded family we can do this: 

Proposition 4.2. Let X be a surface-fibred projective 3-fold. Choose 
rank and Chern classes such that slope semistability implies slope sta-
bility on smooth fibres (e.g. if rank and degree are coprirne). Then we 
may add a sufficient number of fibre classes to the polarisation such 
that sheaves of the given rank and Chern classes are stable if and only if 
they are stable on the generic fibre, and there are no strictly semistable 
sheaves. Such a polarisation is called suitable. 

Proof. This should really be proved directly, but a cheat goes as 
follows. Choose N 3> 0 such that any slope semistable sheaf £ (of the 
given Chern classes) restricts to a slope semistable sheaf on a generic 
hyperplane H in the linear system |0(iV)| ([24] 7.2.1). Now there is 
an M such that (a; + Mf)\n is a suitable polarisation on H —> C by 
([24] 5.3) (here LO denotes the Kahler form on X, and / the class of a 
fibre). Thus £ is slope semistable on the generic fibre Ht of H —> C, 
and so slope semistable on the generic fibre Xt of X —> C (we are using 
the easy fact that the (slope/semi) stability of a sheaf on a hyperplane 
section implies the same on the whole space). By assumption, then, £ 
is slope stable on Xt. 

Reversing the argument, by increasing N if necessary, if £ is slope 
stable on Xt, then by a theorem of Bogomolov ([24] 7.3.5) £ is stable 
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on Ht. Since (a; + MJ')\H is a suitable polarisation, this implies that £ 
is slope stable on H, and so on X. q.e.d. 

Defini t ion 4 .3 . Let X be a smooth polarised 3-fold, K3-fibred over 
a smooth curve C, let c;b G H^'l(Xt)ì i = 1,2 be Chern classes in the 
cohomology of a generic fibre, and let r G Z>o be a rank. Then we say 
that (X,r,Ci) is admissible if and only if 

• X —> C has no reducible or non-reduced fibres, 

• the polarisation on X is chosen to be suitable for (r,Ci) using 
Proposition 4.2, 

• c\ is the restriction of the first Chern class of a global line bundle 
on X, i.e., is in the image of Hz' (X) —> Hz' (Xt), 

• gcd (r, c\ .ui,\c\ — C2) = 1 (where a; is the Kahler form of the 
induced polarisation on the fibre), and 

• on any fibre Xt, slope semistability of sheaves with Chern classes 
(r, Ci) implies slope stability (e.g. if rank r and degree c\. w\xt

 a r e 

coprirne). 

We then set d = 2rc2 — (r — l)cf — 2(r2 — 1), the dimension d in iExt 1 ^ ,*?) 
= ^i{—iy+1 d imExtg(£ ,£ ) (by Serre duality and the simpleness of £) 
of any nonempty moduli space of stable sheaves £ of Chern classes (r, c{) 
on a smooth fibre, d is even. 

The penultimate condition ensures that a universal sheaf exists on 
the product of any fibre and its moduli space ([24] 4.6.6), and also that 
semistable sheaves on the fibres are in fact stable ([24] 4.6.8 - here is 
where we use the assumption that the fibres are reduced and irreducible 
to ensure the ranks of possible destabilising subsheaves are integers.) 
Thus the fibre moduli spaces are fine. But in general this may not 
be enough to ensure slope stability, so we require the last condition. 
Under these conditions we will often just talk about stability. For some 
results we will restrict to fibrations X —> C whose singular fibres have 
only ordinary/rational double point (ODP/RDP) singularities, since we 
then understand something about reflexive sheaves on such K3 fibres 
(e.g. [25], [28]). 

Defini t ion 4 .4 . We say the above data (4.3) is very admissible if 
each singular fibre of X —> P 1 contains only a single ODP, and r and 
c\ . co are coprirne. 
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T h e o r e m 4.5 . Choose an admissible triple (X,r,Ci) as in Defini-
tion 4-3- Then there is a projective scheme M. —>• C with fibres Ait 
that are the moduli spaces of stable sheaves of Chern classes (r,Ci) on 
Xt. Suppose that for some smooth fibre Xt, Ait ^ 0. Then M. —>• C 
is surjective with generic fibres smooth of dimension d, and there is a 
universal sheaf T on X Xc A4 (unique up to twisting by the pull-back of 
a line bundle on C). 

Suppose now thai the singular fibres of X —>• C have only RDPs. If 
d = 2 and r > 2 then all elements of M. are reflexive on their supporting 
fibre (and so locally free on smooth fibres). If d = 0 and r > 1, T is 
locally free, each Ait is a single reduced point, A4. = C', and so T is a 
bundle on X. 

Proof. Simpson's construction of a projective proper A4. —> C is now 
standard [24], given the assumption that there are no semistable sheaves. 
If we have a stable sheaf £ in the moduli space of a smooth fibre Xt then 
its deformations are unobstructed since by Serre duality Extjj(£,£) = 
Endo {£)* = 0 and det E is unobstructed by the assumptions on c\. 
Thus it may deformed off Xt (3.45), making A4 —> C onto over an open 
set of C, and so onto all of C by properness. Since Extg(£, £) = 0, Ait 
is smooth of the correct dimension d. 

Consider sheaves £t G M.t to be torsion sheaves on X, by pushing 
them forward to (it)*£t, where it : Xt —> X is the inclusion. Then 
M. —> C is part of the moduli space of sheaves on X of the same Hilbert 
polynomial (in fact deformation theory and stability show it an entire 
component of the moduli space). There is a universal sheaf on X x M. 
as the numerical conditions of ([24] 4.6.6) are satisfied by (it)*£t'- they 
are satisfied by £t on Xtj as gcd (r ,c\ .LO, \c\ — c^) = 1, and they only 
depend on the Hilbert polynomial, which is the same for £t and (it)*£t-

The universal sheaf on X x M. is supported on the image of the 
diagonal map X Xc M - ) I x M., and so defines T on X Xp A4. 

The statements about reflexivity of sheaves of rank r > 1 are stan-
dard arguments of Mukai ([24] 6.1.6, 6.1.9) for smooth fibres - taking 
the double dual of a sheaf does not affect c\ but decreases c<2 (look at 
the exact sequence of the sheaf injecting its double dual, which it does 
if r > 1 since it must then be torsion-free by stability), which decreases 
d (4.3) by Ir times as much. Since the double dual is also stable it 
sits inside a moduli space of the correct dimension, thus d(£ ) must be 
greater than or equal to zero. Thus if d = 0, or d = 2 and r > 2, the 
sheaf must be its own double dual and so reflexive. 
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For a sheaf £ on a singular fibre Xt with only RDPs we again take its 
double dual £, and then pull this up to the minimal desingularisation 
7T : Xt —> Xt of the fibre (another K3), and divide by torsion. This gives 
a vector bundle £ on Xt which we show is stable with respect to the 
(degenerate) polarisation 0(1) pulled up from Xt. Any subsheaf T "—^ £ 
can be pushed down to a subsheaf of 7r*£, and 7r*£ = £ , Rlrn*£ = 0 
(see e.g. [25]). So for n ^> 0, 

x(Hn)) = x(K*Hn)) - XÌR1**?) 

<x(K*F{n))<x(£{n)) 

= x(K*£(n)) = x(ë(n)) 

by the stability of £, demonstrating the stability of £. Thus it is also 
stable for nearby nondegenerate Kahler forms. 

In particular £ is simple, so that its topological invariant d(£) (4.3) 
gives the dimension Ext1(^,£^) of the moduli space it sits in. This 
must be greater than or equal to zero, so the previous argument (in the 
smooth case) goes through as before to show that £ is locally free for 
d(£) = 0, r > 1 and reflexive for d(£) = 2, r > 2, if we can show the 
inequality 

(4.6) d{£) < d(£), 

with equality if and only if £ is locally free (notice that we already know 
that d(£ ) < d(£) with equality if and only if £ is reflexive). 

So we want to compare the topological invariant d on smooth fibres 
with d(£ ) on the resolution of the singular fibre Xt. This is more-or-
less contained in the work of Langer [28], and I am grateful to him 
for explaining it to me. He defines a second Chern class for reflexive 
sheaves such as £ on singular surfaces such as Xt, which we will denote 
by c%(S). This is not the same as what we will denote by C2, namely the 
class which gives the right contribution to the Riemann-Roch formula 
(the deformation invariant C2(£) := C2(£) — I, where I is the length of 
the torsion sheaf cokernel of £ <—^ £ , and 02(8) is measured on a nearby 
smooth fibre). 

Langer's definition (building on work of Wahl) is given in terms of 
the sheaf £ = (-K*£ / tors ion) upstairs, as ([28] Section 3) 

(%(£):= C2(£)-Y,c*&y)> 
y 
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where y runs over the RDPs of Xt, and Ci(S,y) is the local ith Chern 
class on its resolution ([28] 2.2, 2.3). He defines ([28] 2.7) ay{£) to 
be the local difference between c\ and the c2 we use that fits into the 
Riemann-Roch formula; that is 

c2(£) = <$(£)-Y,<h(n 
y 

The last result of ([28] Section 6) is that for an RDP y, 

ay(£) = 2Ci(<^y) - c 2 ( £ , y ) , 

giving 

^ ) = # ) + ^ ^ , y ) . 
y 

Also, the local first Chern class satisfies 

y 

so that putting these two formulae together gives 

[2rc2 - (r - l)c{ - 2(r2 - f )] {£) 

(4.7) _ [2rc2 - (r - f)c? - 2(r2 -!)]{£) 

y 

Thus d(£) - d(£) = Y,ycì(£iy) i s t h e 

sum of squares of divisors like 
—c\ (£, y), a positive multiple of which is effective and supported entirely 
on the exceptional set. This is therefore negative, and zero if and only 
if ci(£,y) = 0 for all y, if and only if £ is locally free at all singular 
points y [25]. 

Finally, we want to show that if d = 0 then M.t is a single point. This 
is an argument of Mukai for smooth fibres ([24] 6.1.6) which generalises 
to singular fibres with RDPs since we have just shown that the sheaves 
are locally free, so the duality Ext*(£,£)* ^Ext2"*(£,£) (4.1) holds, 
which is all that is used. q.e.d. 

Alternatively, in the d = 0 case, we can give an easier proof of the 
existence of T: using the same diagonal map X X p M H i x M and 
Luna's étale slice theorem for the quotient map from the relevant Quot 
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scheme to Ai, T exists locally over C. It is simple, so is patched together 
by nonzero scalars on overlaps of open sets. Thus the obstruction to 
the patchings satisfying the cocycle condition lies in H2(Q*C), which is 
zero. We start by analysing the holomorphic Casson invariant in this 
d = 0 case. 

T h e o r e m 4.8 . Let (X,r,Ci) be as in Definition 4-3, K3-fibred over 
C = F 1 , with d = 0, r > 1. If the fibres have only RDPs then the 
bundle T —> X constructed in Theorem 4-5 is slope stable, isolated, and 
the only semistable sheaf with the same Chern classes. 

R e m a r k s . Though the method of this proof and that of Theorem 
4.19 below could be applied to other such "adiabatic limit" problems for 
stable bundles in any dimension, the conditions we require (that the fibre 
moduli spaces should be empty for stable sheaves of the same rank and 
ci, lower C2, and any c;b i > 3) are so stringent that they are probably 
only effective on K3- (or, with some modifications to take account of the 
fundamental group, T 4 - ) fibred 3-folds, and Fano-surface-fibred 3-folds. 
Again, allowing for the fundamental group (i.e., fixing determinants), 
we can extend the above to any base curve C, but we restrict to P 1 for 
simplicity and because it is the case relevant to Calabi-Yau 3-folds. 

Notice we are not claiming that the moduli spaces are so simple for 
any classes on the total space satisfying Irc^ — (r — l)c\ — 2(r2 — 1) = 0 
on the fibres. Even when a stable bundle with these classes exists on a 
fibre, we could modify T by giving it ideal-sheaf singularities contained 
in fibres, or make it unstable on some fibres, or add codimension 3 
singularities, to produce stable sheaves in different, more complicated 
moduli spaces. What is remarkable about T's moduli space is that no 
such singular phenomena can occur. 

Corollary 4 .9 . Any such K3-fibred 3-fold admits isolated bundles 
if the generic fibre does (with c\ a class coming from the total space), 
and with respect to some polarisation these bundles are stable and the 
only point in their moduli space of sheaves. In particular, the relevant 
holomorphic Casson invariants of K3-fibred Calabi-Yau 3-folds are one. 
The same is true for the dual Chern classes (—1)V, G H'h%{Xt). 

Proof. The point here is to show that the Casson invariant is de-
fined, i.e., that semistability implies stability. But this follows from the 
choice of polarisation (4.2), implying that slope semistability implies 
slope stability, which is stronger. 

As for deformations, in a polarised family of Calabi-Yau manifolds 
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the fibration structure survives (the obstructions to the survival of a 
generic fibre Xt in a deformation lie in Hl{vXt\x) = H1(QKZ) = 0), 
and the suitability of the polarisation is preserved (the volume of the 
fibres is unchanged, for instance). 

For the dual Chern classes we take the dual bundle on a smooth 
fibre and repeat the construction, giving the unique bundle T* in the 
moduli space. q.e.d. 

Proof of Theorem. Denoting the projection map by n : X —> 
F 1 , I claim that £xt\(T,T) is zero by standard base-change arguments. 
Namely: pick a finite, very negative, locally free resolution E' —> T, 
so that E x t ^ ' l x ^ T l x J = 0 for i > 0 and t G F 1 . Then £xt*7r(T,T) 
is the cohomology of the complex F' = p* V.om(E',T). T is flat over 
F 1 so we can restrict to any fibre Xt to give a resolution of T\Xt; thus 
F'\xt = 'RomXt{E'\xt,T\xt) computes Ex_t*Xt(T\XtiT\Xt). Since the 
higher Exts vanish by construction, and since T is flat over P 1 , the 
dimension of each ~RovnXt(E'\Xt,T\Xt) is constant in t. Thus F' is a 
complex of locally frees. By stability, its zeroth cohomology on each 
fibre is canonically End (T\Xt) = C . id, so we get a nowhere vanishing 

map Opi -^» ker (F° H> F1), and the image <f(F°/QFi) C F1 is locally 
free. Therefore £xt^(T, T) is the kernel of the map d1 that dl induces on 
the locally free cokernel of d°. Similarly Fix.tl(T\Xt,T\Xt) is the kernel 
of d1 \xt on coker d° \Xt. But this is zero for Xt a smooth fibre, so that d1 

is generically an injection of vector bundles. Thus its kernel, as a map 
of sheaves, is zero, and £xt\(TJT) vanishes. 

So the Leray spectral sequence for -K*£nds(T) and £xtt
K(T,T) shows 

that T is isolated. (Alternatively, the proof below extended to X x 
SpecC[e]/(e2) shows there is a unique bundle on this thickened space.) 
Stability follows from fibrewise stability and the choice of polarisation. 

What we want to prove is that any stable sheaf £ of the same Chern 
classes is isomorphic to T. The basic idea is that , firstly, taking double 
duals decreases c^ and the fibrewise moduli spaces of lower c^ are empty, 
and secondly, that if sheaves have fibres on which they are unstable, this 
only ever increases c^- Playing these two phenomena off against each 
other ensures we have no non-reflexive sheaves, and no unstable fibres. 

We first replace the stable sheaf £ by its double dual £, which on 
the generic fibre is the double dual of the restriction of £ to that fibre, 
and hence slope stable and locally free there. 
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We have a sequence 

0 ^ £ ^ £ ^ T ^ 0 , 

where T is a sheaf supported on a subvariety Z of codimension two or 
higher. Therefore 

(4.10) C2(T).UJ = C2(£).UJ = C2(£).UJ + [ rkz(T)cü>c2(£).uj, 
z 

with a similar inequality c2(£\xt) < c2(T\xt) on a generic fibre Xt. 
But the dimension d of the moduli space on a smooth fibre decreases 
by Ir > 2 for every decrease in C2, and must remain non-negative on 
the generic fibre where £ \xt is stable. Since d = 0 we see that £ \xt 

is reflexive and in the same moduli space as T\xt, and so it is T\xt, 
recalling that the moduli space is a single point. 

Therefore, using stability, on the generic fibre Horn (T\xt, £ \xt)
 1S a 

copy of C, so 
7T*^om(T,£) 

is a rank one torsion free sheaf on F 1 , i.e., 0(—n) for some n. This gives 
the exact sequence 

(4.11) 0 - > T ( - n ) ^ £ ^ Q ^ O , 

where T(—n) denotes the twist of T with the pullback of 0(—n) from P 1 , 
and Q is a sheaf supported on some finite number d of possibly singular 
fibres {Xti}f=1. (Some of these fibres might be infinitely close; d is the 
total number counted with multiplicities: the length of the scheme in 
P 1 over which the union of the fibres sit.) Write Q = ©f= 1 t*Qj, where 
Qi is a sheaf supported on Xti. 

Since £ is torsion free we have the sequence 

0 ->• £{-!) -+ £ ->• S\Xt. ->• 0, 

inducing 

0 - ^ H o m ( T ( - n + l ) , ^ ) -^ H o m ( T ( - n ) , £ ) -^ H o m ( T ( - n ) , ^ | X t . ) . 

Therefore if <f) in (4.11) is zero on Xf{ it comes from an element of the 
first group in the above sequence. Thus, by reducing n if necessary, we 
may assume that (j>\xt. 7̂  0, so that the rank of Qi is at most r — 1 on 
its support. 
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Since £ is reflexive on a smooth variety, it has homological dimension 
at most one, i.e., £xf(£ ,T) = 0 Vi > 2, for all coherent sheaves T. Also 
T(—n) is locally free, so from (4.11) we see that £xt'l(Q,Jr) = 0 Vi > 2, 
and Q has homological dimension at most one. Therefore it is supported 
in exactly codimension one; i.e., the rank of each Q,b is at least 1 (since 
there are no reducible fibres). That is 1 < r, < r — 1, where r, = r k Q j . 

Now the slope stability of T\xt., and the sequence 

T\xti -> £ \xH -> Qi -> o, 

imply that the slope of Qi is less than that ofT\xt.- That is, 

(4.12) c i (Qi)-u; |x t . < - c i ( T ) . w i . w , 
% r 

where u\ is the pullback via n of the standard Kahler form on F 1 . 

By the Grothendieck-Riemann-Roch theorem (or more elementary 
considerations), c/i(t*Qj) = t*c/i(Qj), where t : Xti —> X is the inclusion 
of a fibre (in particular it has a trivial normal bundle), and ch is the 
Chern character. Therefore 

ci(t*Qi) = ricoi and C2{L*QÌ) = - i *c i (Q , ) , 

since ci(t*Q,)2 = 0. (The pushforward on cohomology t* increases 
the (complex) degree by one in cohomology; it is Poincaré dual to the 
inclusion on homology.) 

Combining this with (4.11), and denoting the total Chern class by 
c, we have 

d 

:(£)= c(T(-n))l[c(uQ, 

i=l 

1 + ci(T) - moo! + c2(T) - (r - l ) na ; i c i ( r ) 

( à d \ 

. l + ^2 riUJi - ^ t*ci (Qi) J 
i=l i=l 

up to second degree in cohomology. Since £ and T have the same Chern 
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classes, this gives 

c2(£) - c2{£) = 5Z(n) -rncoi 

+ (èfa)-(r-1)n)WlCl(T) 
d 

- ^ ^ c i ( Q i ) . 

i = l 

The degree one piece thus gives 

d 

E r, = rn, 
i = l 

which with (4.12) yields 

(4.13) 2 c i ( Q i ) . w | x t . <nci (T) .o ; i .a ; , 
i = l 

unless the number of fibres d is zero, in which case both sides vanish. 
Taking the cup product of the second order piece with UJ, however, gives 

d 

nci(T) .UJI .UJ - ^ci(Qi) .aj\xt. = (c2(£) - c2(£)). w, 
i = l 

which, by (4.10), is nonpositive. Therefore (4.13) cannot hold, and so 
d = 0 = n, Q = 0, and (4.11) becomes 

0 - > • T - > • £ - > • 0 . 

Thus the Chern classes of 5 and £ are the same (they are both equal 
to that of T) and £ = £ = T. q.e.d. 

Examples 

• Consider the Calabi-Yau 3-fold that is a smooth (2,2,3) divisor in a 
product of projective spaces, 

^ 2 2 3 C F 1 X F 1 X F 2 . 
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The projection n\ to the first P1 exhibits X as a K3 fibration, with 
fibre a (2,3) divisor in F1 x F2 . In turn this fibre is a double cover of 
F2 branched over a sextic - the zero locus of the discriminant of the 
quadratic on P1 (which has coefficients that are cubics on F2) defining 
the K3 fibre. It is well known that the pullback of the tangent bundle of 
F2 is an isolated slope stable bundle on any such K3 with respect to the 
pullback of the polarisation on F2 (the proof in [11] 9.1.8 works even for 
the singular covers). So taking the polarisation vr*Ö(N) <8>7r|Ö(l), N 3> 
0, in the obvious notation, we see that 

n* T P 2 -+X 

is slope stable and unique in its moduli space of sheaves, giving a holo-
morphic Casson invariant of one. The same is true of the pullback of 
TP2 to a more general double cover of P1 x P2 branched over a smooth 
(4,6)-divisor. 

• On K3 x T2, fixing determinants to be trivial in the T2 direction, 
the method of the proof of the theorem shows that, given an isolated 
slope stable bundle on K3 with gcd (r, c\ .uj,^cf — c<i) = 1, we get a 
holomorphic Casson invariant of r2 by pulling the bundle back from K3 
and twisting by line bundles on T2 whose rth power is trivial. (Notice 
that here we are taking a polarisation with the T2 fibres large, the op-
posite of [16].) It would be especially interesting to study the higher 
dimensional moduli spaces. The parts of the moduli space arising as 
pullbacks from K3 are smooth and the corresponding invariant would 
be the Euler characteristic of the moduli space, to within a sign. Gen-
erating functions of these give modular forms, by the work of Vafa and 
Witten [45], so it would be interesting to compute the corrections given 
by other parts of the moduli space. For instance, the next section will 
show there are no corrections for the 2-dimensional moduli spaces and 
we get a Casson invariant 

A(ÜT3 x T2) = r2x(MK3). 

• It would be fashionable, and by now almost expected, to find modu-
lar forms arising from the Casson invariants on more general Calabi-Yau 
manifolds. An easy, cheating, way to produce them is to take the moduli 
spaces of stable bundles on Fano surfaces in [45], and push these for-
ward to give torsion sheaves on any Calabi-Yau 3-fold that is modeled 
locally on the total space of the canonical bundle over the Fano. De-
formation theory (3.42) shows that all sheaves in the same component 
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of the moduli space are of the same form, so the holomorphic Casson 
invariant is the Euler characteristic of the moduli space if it is smooth, 
and some appropriate modification of it if not. (In fact this gives a way 
of rigorously defining the Euler characteristics of moduli spaces in [45] 
so long as there are no semistable sheaves.) Thus generating functions 
of the invariants (for Chern classes on the Calabi-Yau that are pushfor-
wards from the Fano surface) do indeed give modular forms in the cases 
studied in [45]. 

• We can also consider the two examples of Mark Gross [20], [36]. 
Let Ex be the trivial rank four bundle O®4 over F 1 , E2 = 0 ( - l ) © 0 © 
Ö © 0(1) , and P, = T(E,i). Let the JQ be anticanonical divisors in Pj 
(Gross shows they can be chosen smooth). They are clearly both fibred 
7T : Xi —> P 1 by K3 s that are quartics in P 3 . Their second cohomologies 
are generated by t = ci(Op(£ ' .)(l)) and the fibre class / = -K*OJ\. We use 
a polarisation t + Nf, N ^> 0. 

The Xi are in fact diffeomorphic via a diffeomorphism taking t and / 
on X\ to t and / on X%. They are not, however, deformation equivalent 
as projective or even symplectic manifolds (by work of P. M. H. Wilson 
in the first case, and Gross and Ruan in the second [36]). We might hope 
to be able to prove the projective statement (or even both if Tian's work 
mentioned in Section 3 can be developed to give symplectic invariants) 
using the holomorphic Casson invariant. The most obvious bundle to 
take is, in the first case, 

7T*TF3 -+Xi. 

Propos i t i on 4 .14 . The restriction o / T F 3 to any irreducible, re-
duced quartic in F 3 is slope stable (with respect to the restriction of the 
Fubini-Study metric), isolated, and unique in its moduli space. 

Proof. While it is well known that T P 3 is stable on the generic 
quartic this is not enough for us - it is a priori possible that the unique 
stable bundle on each quartic is generically T P 3 but something else on 
a closed subset of quartics. The other statements follow by the usual 
methods if we can show that T P 3 is stable, since it is locally free and 
so satisfies Serre duality even on the singular quartics. 

So fix a (possibly singular) quartic S C F 3 . Suppose firstly that 
TP 3 1s is (slope) destabilised by a rank two subsheaf. Then the quotient 
map gives us a sequence 

T P 3 ( - 1 ) | 5 ->• C^O 



A HOLOMORPHIC CASSON INVARIANT FOR CALABI-YAU 3-FOLDS 421 

on S, with £ a torsion free (without loss of generality) rank one sheaf. £ 
is generated by its sections since T P 3 ( - 1 ) is, and of de gree less than or 
equal to 1. If £ were trivial then the dual of the above sequence would 
give fìp3(l)|s a section which the restriction sequence from F 3 shows it 
does not have. Therefore £ must have degree 1 and at least 2 sections 
to be generated by them. 

Sections of £ vanish on a degree one curve in S C P 3 , which must 
therefore be a line. Taking two sections of £ we get two homologous 
distinct F 1 s in S which is a contradiction, since they must have self-
intersection —2 by adjunction. 

Since S is irreducible and reduced it is now sufficient to consider 
TP3(—1) being destabilised by a rank one subsheaf. Dualising, we get 
a sequence 

O p 3 ( 2 ) | s ^ £ ^ 0 , 

for some other torsion free (without loss of generality) rank one sheaf 
£ . Again this shows that £ is generated by its sections, and is of degree 
< 2 this time. But degree 2 curves in P 3 are also P 1 s and a similar 
argument applies. q.e.d. 

Therefore, by Theorem 4.8, ir* T P 3 ->• X1 is the unique stable sheaf 
in its moduli space with total Chern class 1 + At + 6t2 + 4t3 . Thus we 
have a holomorphic Casson invariant of one, but it does not distinguish 
the XjS since for the corresponding (under the diffeomorphism) Chern 
class 1 + 4t + Qt2 + 4t3 on X2 the invariant is also one, given by the 
relative tangent bundle down the fibres of ^{E<ì): 

TwnE2)\x,2 -+ X2. 

So to distinguish the X;b s we have to consider two dimensional moduli 
spaces on the K3 fibres. 

The fibre dimension two case 

To study bundles with d = 2 dimensional moduli spaces on the fibres we 
follow the same method as before, considering sections of the fibration of 
fibrewise moduli spaces - the "Mukai-dual" 3-fold M ->• F 1 constructed 
by applying Mukai duality (replacing a K3 by a 2-dimensional moduli 
space of sheaves on it - another K3) fibrewise as in Theorem 4.5. We 
will show that M. is Calabi-Yau. 

In this two dimensional situation a new feature can occur, namely 
the sections can change homology class. However, just as introducing 
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codimension two singularities and unstable fibres drives C2 higher, we 
shall find that changing the section to one of higher degree does the 
same (where degree is measured appropriately). Thus for sections of 
the smallest possible degree this cannot happen in a fixed moduli space. 

Relating the deformation theories of the bundles and the sections 
will show the Casson invariant of X is equal to the appropriate Gromov-
Wit ten invariant oî M.. Thus we see Gromov-Witten invariants arising, 
but not in the way we might have expected (with rank 2 bundles cor-
responding to curves via zero sets of their sections), and in fact for 
arbitrary rank. 

Throughout this section we will work with K3 fibrations whose sin-
gular fibres have only single ODPs. Many of the results are true for 
arbitrary reduced irreducible fibres (and in fact all of them should be, 
but I cannot prove it). We start with some technicalities improving on 
Theorem 4.5. 

T h e o r e m 4 . 1 5 . Fix (X —>Fl,r, c-i) as in Definition 4-4> w^h d = 2 
and r > 2. Then the moduli space M. —> F 1 is smooth with fibres M.t 
having only ODPs as singularities. The singular points represent the 
reflexive non locally free sheaves on Xt; all other points correspond to 
vector bundles. 

Proof. These results were conjectured in an earlier version of this pa-
per based on comparing monodromy in M. —> P 1 around singular fibres 
with the corresponding monodromy in X —> F 1 (using Mukai's natural 
isomorphisms between the cohomologies of the fibres Xt and M.t as in 
([HL] 6.1.14); see Theorem 4.24 below). Since then, however, a remark-
able proof of the smoothness of M. using Fourier-Mukai transforms has 
appeared [10] (this applies directly in our case, even without assuming 
RDP fibres: the assumptions on Chern classes (4.3) make the fibrewise 
moduli spaces of "Fourier-Mukai type" in the terminology of [10] - the 
Mukai vector of the sheaves is primitive of square zero). The remain-
ing results can be deduced from standard theory of reflexive sheaves on 
ODPs, and I would like to thank Akira Ishii for explaining this theory 
to me. 

From Theorem 4.5 all sheaves in M are reflexive, and locally free if 
supported on a smooth fibre. So consider a reflexive, non locally free 
sheaf £ o n a singular fibre Xf. As in the proof of Theorem 4.5, consider 
£ = TT*£/ torsion on the minimal resolution n : Xt —> Xt. We proved 
that £ was simple and had d(£) < d(£) = 2, so that it sits in a moduli 
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space of dimension zero: 

Ext1 (<?,,?) = 0 . 

In fact from equation (4.7) we see that the local first Chern class satisfies 
cl(£,y) = —2, where y is the ODP (for instance, dimension considera-
tions force it to be between —1 and —3, and it must be even since this 
is the only ODP, and the intersection form on K3 is even). 

Thus standard theory of reflexive modules (see e.g. [25] Example 
3.2) implies that £, restricted to the exceptional —2-sphere Z C Xt, is 

O p 7 2 © 0 P i ( l ) © 0 P i ( l ) . 

The local deformations of the corresponding reflexive module over the 
ODP are then given by ([25] Theorem 4.3 (2)) pushing down bundles 
whose restriction to Z is any deformation of 

(4.16) O p 7 2 © 0 P i ( l ) © 0 P i ( - l ) 

(or Op7 © Opi(—1) © Opi(—1), but this gives the same local reflexive 
module). Pushdowns of deformations of the above bundle give the 2 
dimensional local moduli space of deformations of the sheaf. This has 
an ODP (the original reflexive sheaf) away from which the sheaves are 
all locally free ([25] Theorem 4.6), corresponding to the deformation 
Opl of (4.16) on the resolution. 

Now H2{£nd£) = Horn (£nd£, Kxt)* by Serre duality, and this is C 
(Kxt is trivial and £nd(£)* = £nd£ since it is reflexive - it is the 
pushforward of the restriction of itself to the smooth locus of a normal 
surface). (Thanks to Akira Ishii for this argument.) 

The local-to-global Ext spectral sequence yields 

0 ->• Hx{£nd£) -+ E x t 1 ^ , ^ ) - • H°\£xtl{£,£)) -+ H2(£nd£), 

where the last term is all trace H2(Öxt) — C that survives in the 
spectral sequence for Ext 2 (£ , £). Thus the penultimate map is onto, and 
global deformations of £ map onto local deformations £xtl(£,£) of the 
module over the ODP. But both have dimension 3 (global deformations 
of £ are the deformations of a singular point in a surface M.t in a smooth 
3-fold M., so have Zariski tangent space of dimension 3), so we get a local 
isomorphism from the global deformations to the local model described 
above. In particular we see that there are locally free deformations of 
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£, the moduli space is 2 dimensional, and the non locally free sheaf is 
isolated in its moduli space and represents an ODP. q.e.d. 

We need to fix an appropriate polarisation on M —> P1. In fact, all 
that will concern us will be its restriction to the fibres, so we consider a 
polarised K3 surface S with at worst an ODP singularity y G S, and Ms 
a moduli space of semistable sheaves of fixed determinant such that rank 
and degree are coprirne. Let if be a generic smooth hyperplane section 
of S missing its singularity y, p : Sx Ms —> Ms and q : S x Ms —> S 
be the projections, and let £ be a (local) universal sheaf. Then there 
is an obvious class [£ndo(£|ff)] m the K-group K°(S x Ms) which is 
just £ndo£ if £ is locally free, and more generally the kernel of the trace 
map on the restriction to H of the tensor product of a finite locally free 
resolution of £\s\{y} with the dual complex. This is uniquely defined 
even though £ is only defined locally up to tensoring with a line bundle 
pulled back from M. 

Likewise the push down 

pr- K°(SxMs)^K°(Ms) 

([24] 2.1.11) is p\ = p* — Rlp* + R2p*, or p* on a finite resolution by 
sheaves with no higher cohomology (this always exists [21] III 2.7). Then 
the result we need is the following. 

Lemma 4.17. In the above set-up and notation, the determinant 
line bundle 

(detp\ £ndo£\H)* 

is ample on Ms-

Proof. Fix a point x G .^{a;} and let |{a;}xA ŝ denote ®q*öx in the 
K-group (resolve by locally frees away from y and restrict to x). Let 
x = X(£\H) = x(£) - x (£( - l ) ) - Then it is a result of Jun Li ([30], [24] 
Section 8.2) that 

\x}xMs TC,\H) 

is ample on the moduli space of slope stable sheaves (which for us is 
all of Ms) for S smooth. But the proof goes through for surfaces with 
isolated singularities for rank and degree coprirne: for a fixed bundle 
£ the restriction to the generic curve in 10(a) |, a ^> 0 is semistable 
(Flenner's theorem ([24] 7.1) applies to normal varieties) and so stable 
if a is coprirne to the rank, and the generic curve misses the singularities 
and is smooth. Now proceed as in ([24] 8.2) to deduce ampleness of Jun 
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Li's line bundle on the locus of locally free sheaves. As the non locally 
free sheaves are isolated in the moduli space (4.15) this is suÆcient. 

Thus it is suÆcient to show that the two line bundles have the same 
first Chern class. 

But by Grothendieck-Riemann-Roch we have 

ciP\(x£\{x}xMs ~r£\H) =P*[ch(x£\{x}xMs ~r£\H) T d ( # ) ] 2 

= p*{-rch2(E\H)) 

+ci{£\{x}xMs) lx-^r{2-2g) , 

where g is the genus of H C S. Therefore x ~ \ r (2 — 2g) is the degree 
of £\H, i-e., p*ci(£), so we obtain 

ciP\(x£\{x}xMs-
r£\H) = P*{-rch2(£\H) + -ci(£\H)2) 

= p,{rc2(£\H)-\(r-l)Cl{£\Hf) 

(4.18) = --p*ch2{£ndQ£\H)-

But since chi(£ndo£\H) = 0, Grothendieck-Riemann-Roch equates the 
last term with ^ci[(p\ (£ndo£|ff))*)- q.e.d. 

So consider again the relative moduli space M - ^ P 1 , with a (local) 
universal sheaf T. Let p be the projection p : X x p i A ^ —> M., and pick 
a smooth hyperplane H of X , flat over F 1 . Then the first Chern class 
Q of the line bundle (detp\ (£ndoT\H))* is, by the above lemma, ample 
on the fibres M-t-

So denoting by ui\ the pull-back to M. of the Fubini-Study form 
on P 1 , NUJI + O is ample on M. for N suÆciently large. N will be 
unimportant for us (we are concerned with sections of M. —> P 1 which 
all have fixed degree measured against ui), so we fix one such N and 
measure the degree of sections against the above polarisation. 

In the following, for any section t : P 1 —> A4 we will denote by t the 
induced section t : X —> Xx-piM.. 

T h e o r e m 4.19. Let (X,r,Ci) satisfy Definition 4-4- Denote by T a 
universal sheaf on X x p i A ^ as produced by (4-5), and choose a section 
a of M. —)• P 1 of strictly minimal degree with respect to the polarisation 
Noj\ + il described above. Then all stable sheaves with the same Chern 
classes as à* T are pull-backs of T by sections in the same homology 
class, and these are locally free. 
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R e m a r k s . The theorem should be true in greater generality, with-
out the assumptions of Definition 4.4. For fibrations with worse singular 
fibres one can extend the proof, getting slightly weaker results. In fact 
one can show, using [10] to study the obvious Fourier-Mukai transform 
on a singular fibre Xt x M.ti that smooth points of the moduli space 
are in one-one correspondence with locally free sheaves. Understanding 
when the singularities of M.t are isolated is more difficult, and stops one 
proving the ampleness (4.17) of Jun Li's line bundle. But in examples 
this is obvious, so the results still apply. 

As mentioned earlier the theorem also applies to 3-folds fibred by 
surfaces with negative canonical bundle, and arbitrary base curves if 
we take account of the fundamental group. The K3-fibred case is most 
relevant to us, however. 

Proof. We want to study an arbitrary stable sheaf £ with the same 
Chern classes as d* T. We follow the proof of Theorem 4.8, adapting 
the argument where necessary. 

As in (4.8) the restriction of the double dual £ to the generic fibre 
must lie in the same moduli space as T, giving us a rational (and so 
regular) section s : F 1 —> M.. Again, as before, this gives us a sequence 

0 ->• s* T(-n) - ^ S -+ Q ->• 0, 

for some n, with Q = ©f=1t*Qj supported on a finite number of fibres 

{Xti}i=i, rank(Qj) = n, 1 < n < r, and </>\Xt. + 0. 

Computing Chern classes as in (4.8) gives, for ci, 

(4.20) c i ( à * T ) - c i ( s * T ) = ^{ri)-rn u}U 

which, with the stability inequality (4.12), yields 

(4.21) 
^ci{Qi).u}\xt. 
i = l 

< n u;i + - ( c i ( c r * T ) - c i ( 5 * T ) ) . c i ( s * T ) . W ) 
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with the inequality strict if d ^ 0. For c2 we obtain 

d 

c2(£) = - y^i*ci(Qi) 
i=l 

+ ( e ( ^ ) - ( r - l ) n W i . C l ( r r ) 

+ c2(s*T). 

Proceeding as before, with (4.21) this yields 

0 > (C2(£)-C2(£)).UJ 

> (i-l\[Cl(ä*T)- Cl (s* T)].Cl (s* T). u 

+ [c2(s*T)-C2(**T)]u,, 

with a strict inequality for d ^ 0. 
Now [ci(cr*T) - ci(s*T)]2 = 0 from (4.20) (this also shows that 

the inequality is independent of twisting T by a line bundle on P1, as it 
should be), so we may rewrite the first term in the above inequality to 
arrive at 

0 > (5* - a * ) a;. ^T)-\l--rc1{Tf 

The idea now is that the quantity in the square brackets is the dis-
criminant ([24] 3.4) of T (divided by 2r), which, by stability, should 
be positive in some sense. In fact, letting if be a smooth hyperplane 
section dual to w, flat over F1 as before, we have 

0 > I (cr* - s*) u). ch2 (SndoT) = [ (CT* - s*) ch(£nd0T\H) Td(Tp). 

Here p denotes the projection p : HxPiA4 —> A4, with relative tangent 
bundle the class Tp in K-theory, and the other terms in (ch. Td) do not 
contribute as ch\ = 0 and cho Td(Tp) is the same under s* and CT*. Also 
\H is meant in the sense of multiplication by O^x jM m K-theory, as 
before. 

Thus, by Grothendieck-Riemann-Roch, we have 

0 > / (a*-s*)p,(ch(£nd0T\H) Td(Tp)) = / (a*-s*) ch (p, £nd0T\H), 
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where p\ = p* — Rlp*. Thus, finally, 

0 > [ (s* -a*) c i ( ( d e t p . £ n d o 2 V ) * ) . 

Letting Q = c\ [(detpi £ndoT\H)*), which is ample on the fibres, NLO\ + 
O is a polarisation for N 3> 0. s and a are both sections of Jv[ —> F 1 

and so have the same degree with respect to wi, and so we arrive at 

0 > / (s* - a*) n = I (s* - a*) (NUJ! + Q). 

Thus if, as in the conditions of the theorem, u is of strictly minimal 
degree then we must have s and a in the same homology class, and, as 
the inequality is now non-strict, d = 0 = Q. By (4.20) n = 0, and so 
s*T = £ =£. 

Finally, sections s : P 1 —> M. miss the singular points of fibres where 
the derivative of the projection to P 1 vanishes. Thus s takes its image 
in the smooth points of A4, which correspond to locally free sheaves on 
the fibres by (4.15). Thus s* T is locally free. q.e.d. 

Corollary 4 .22 . Under the conditions of Theorem ^-19, the holo-
morphic Casson invariant of X equals the algebraic Gromov-Witten in-
variant GWM([&]) of M. (as defined in [31], [6]) counting curves in the 
same homology class as a. 

Proof. Let M denote the moduli space of curves in the homology 
class (which is isomorphic to the space of stable maps as the curves 
are sections - they can have no bubbles in fibres by the assumptions 
on degree - and so regularly embedded). Use s : A^ x P 1 s - A/" x X 
to denote the universal curve, with s : M x X M- M x Ai xPiX the 
induced map. Let the pull-back of the universal sheaf on X x P i .M to 
Af x XxpiTW be denoted by £. Then the sheaf s*£ on Af x X exhibits Af 
as the relevant moduli space of sheaves on X as produced by the above 
Theorem, depicted by the diagram: 

s*£ £ 

I _ I 

Af x X A Af x MxpiX 

I p in 

AfxF1 A AfxM 

iq ip 
Af AfxF1. 
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We must show that the tangent-obstruction functor of the sheaves is 
the same as that of the curves in the Gromov-Witten theory of [31]. 
Since the curves are sections they miss the singularities of the projection 
M. —> F 1 and so, by the above discussion, lie in the open set of A4 
corresponding to locally free sheaves on fibres, which therefore satisfy 
the Serre duality (4.1) on their Exto s. Thus the only non-zero such Exto 
is Ext^ t( jF t , Tt)ü (for Tt a sheaf on the fibre Xt), which is the fibrewise 
tangent space to M. —> F 1 at Tt-, i.e., the normal bundle to any section 
through Tt-

For smoothly embedded rational curves the deformation theory of 
[31] reduces to Rtq*vs ®T, % = 0, 1, where vs is the normal bundle to s 
and I is an arbitrary Öjv-module. This is then 

Klq*{s*Tp) = R%(s*£xtl(£,£ <g> TT*1)0) = Rl q*.{£xt}p{s* £, s* £ ®p*l)), 

where for the last equality we have base-changed around the square 
in the above diagram using the flatness of £ and {£XÌ\)Q (since the 
other {£XÌ\)QS vanish). By the Leray spectral sequence this yields 
£xt\+£(s*£,s*£ 0 (q °p)*l)o, t = 0 ,1 , which gives the deformation 
theory of the sheaf moduli problem, as required. q.e.d. 

R e m a r k . Degenerating the base F 1 to a curve with one node de-
generates M. (which we show below is Calabi-Yau) to a normal crossings 
space of two "Fanos" (their anticanonical bundles are effective) joined 
across a common anticanonical divisor S - the fibre of M. over the node. 
Then the Tyurin-Casson invariant picture sketched in (2.7) becomes, in 
terms of the sections of M. —> F 1 , a formal picture mentioned in [40] 
(where it was also motivated by relating bundles to curves, but in that 
case via zero sets of rank 2 bundles). Namely, to count curves in such 
a singular Calabi-Yau, one should count those in each Fano component 
which meet in the "boundary" S. Analogously to the Tyurin picture we 
find [40] that the image of the map taking a curve in one Fano component 
to its intersection with S, which generically lies in the complex symplec-
tic space Hilb"(S'), is a complex Lagrangian. (Here n is the intersection 
number of the curve with S.) Intersecting the two Lagrangians should 
give something like the GW invariant of a smoothing of the Calabi-Yau. 
It would be nice to rigorise this and the Tyurin-Casson invariant (of 
course one is a special case of the other, by considering the case of ideal 
sheaves of curves). 

We next show that Al is in fact a Calabi-Yau 3-fold. This result 
has now also been given a new proof in [10], using Fourier-Mukai trans-
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forms, without the need for assumptions on the singular fibres of X. 
Notice that although (4.19) did not hold for rank r < 1, this result 
does, provided that A4 is smooth and sheaves supported on singular 
fibres without locally free resolutions are isolated. Thus, in the case 
that the fibres Xt are themselves elliptically fibred, we may take as A4t 
the moduli of torsion sheaves that are rank one, degree zero sheaves 
supported on elliptic fibres (so that Ait is a compactified Jacobian of 
Xt —> P 1 ) . In a hyperkähler rotated complex structure (and for some 
appropriate choice of "B-field") this should be the mirror K3 to Xt 

([38] 4.1) and A4 is a obtained from X by fibrewise mirror symmetry 
and hyperkähler rotation. However A4 is not the mirror of X (its Hodge 
numbers are not flipped, for instance; see below), though it is "T-dual" 
t o i . 

T h e o r e m 4 .23 . Let A4 be a relative moduli space of slope stable 
sheaves on X with data (4-3), d = 2, r > 2, and single ODP singulari-
ties in the fibres of X —> F 1 . Then Ai is a Calabi- Yau 3-fold. 

Proof. As before consider A4 to be the moduli space of torsion 
sheaves (/-<)*£, where £ is a sheaf on Xt C X. Let T denote the universal 
sheaf on X x P i A4, and let i : X x P i A4 —> X x A4 be the inclusion and 
p : X x A4 —>• A4 the projection. Then, as A4 is smooth (4.15), it has 
a tangent sheaf given by £xt1

p(t,T,i,T). 

The holomorphic 3-form is the pairing on the tangent bundle given 
by the cup product pairings 

£xt1
p(i,T,t*T)0£xt1

p(^T,i,T)®£xt1
p(i,T,t*T) -^ £r i 3 ( i*T, t*T) =* QM, 

in the spirit of Mukai's symplectic structure for moduli spaces on K3 
surfaces [32]. Notice its dependence on the holomorphic 3-form on X 
is through the final isomorphism. To show that this pairing is non-
degenerate everywhere and that A4 is Calabi-Yau it is enough to show 
it does not vanish on any divisor in A4. But by (4.15) it is enough 
to show this at points of A4 corresponding to locally free sheaves since 
their complement is isolated; these then satisfy Serre duality on their 
Exts. As then all of the sheaves in the above pairing are locally free and 
we can localise at a point to get, at the level of tangent spaces, the cup 
product pairing 

Ext 1 (T, T) <8> Ext 1 {T, T) <8> Ext 1 (?, ?) -)• Ext 3 (?, ?) = C 

at the point T = (H)*£ G A4, where £ is a sheaf on the fibre Xt. 
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So now to show the pairing is non-degenerate it is enough to show, 
by Serre duality, that the pairing 

E x t 1 ^ , ^ ) » E x t 1 ^ , ^ ) ->• E x t 2 ( ^ , ^ ) 

is onto. By Lemma 3.42 above the inclusion Xt C X induces a long 
exact sequence 

. . . - • E x t ^ t ( £ , £ ) - • E x t ^ p 7 , ^ ) - • TtF1 <g> E x t ^ 1 ^ , ^ ) ->• . . . , 

which yields, for Xt a K 3 and £ stable and satisfying Serre duality, 

0 - • E x t ^ t ( £ , £ ) - • Ex t^p 7 , . ? 7 ) - • T t F 1 ->• 0, 

and 

0 ^ E x t ^ t (£,£) ^V*t2
x(T,T) ->• T tP 1 <g> Ex t^ t (£ ,£ ) - > 0 . 

The pairing respects these sequences in the obvious way. Firstly the cup 
product of the image of two elements of E x t ^ (£,£) C Ext^( jF, T) is 
just (the image of) the cup product on Xt, with image in E x t ^ (£, £) C 
Ex t^p 7 , . ? 7 ) , and this is non-degenerate. Secondly, pairing an element x 
of Ext^( jF, T) with (the image of) an element y of E x t ^ (£, £) and pro-
jecting Ex t^ -p 7 ,T) —> TfF1 (giExt^ (£ ,£ ) gives the same as projecting 
x to TtF

l and tensoring with y. Again this is onto, so we are done. 
q.e.d. 

We now study the cohomology of such an A4, putt ing Mukai's iso-
morphism of Hodge structures ([24] 6.1.14) between Xt and A4t into a 
family X x P i Ad. We avoid problems with the singularities of fibres of 
X by working on X x M . 

Fix X and a rank and Chern classes satisfying the conditions of 
Theorem 4.19, pick a universal sheaf £ on X x A4, and let n and p be 
the projections to X and .M respectively. 

Then define maps 

/ : H*(X;C) -+H*(M;C), / ' : H*(M;C) -+H*(X;C), 

by 

/ ( c ) = p,(ch?(£)V^(X x M ) . i * ( c ) ) , 

/ ' ( c ) = TT, (-ch(£)y/Td(X X M) .p*(c)) , 

where c/tv = ^ (—l )V/ i , . 
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Theorem 4.24. / o / ' is the identity. 

Proof. We simply mimic the exposition of Mukai's proof for K3 
surfaces in ([24] 6.1.13). Label two copies of M by Mi and M2, and 
denote by Si the pull back of the universal sheaf on X x Mi to X x Mi x 
M.2. We must transfer a class c from Mi to X via / ' , then back to M2 
via / . Pulling everything back to X x .Mi x M2 via the commutativity 
of various push-down pull-back squares, and pushing down X before 
Mi (as in [24] 6.1.13), we can reduce to the following diagram 

X x Mi x M2 
IP 

Mi x M2 
«72 i / \ <7i 

M2 Mi, 

arriving at 

' (c) = Q2*P* chv(Si)ch{S2)^/Td(Mi x M 2 ) TdpO.ç î (c ) 

where we have supressed some obvious pull-back maps for clarity. By 
multiplicativity of the Chern character this yields 

(4.25) ç2* [p,(-cfr(Rftom(£i,£2) T d ( X ) ) ^ T d ( M i x M 2 ) . ç î ( c ) 

Now p*(c/i(R^om(^i,£:2)Td(X)) = c ^ R ^ m i j i ^ i , ^ ) ) , by the 
Grothendieck-Riemann-Roch theorem. But we know that 

(4.26) E x t V ( ^ i , ^ 2 ) = 0 , Vi, 

for sheaves T\ 7̂  T2 in M unless both are non locally free on their 
support (where again we are considering Al to be a moduli space of 
torsion sheaves supported on fibres Xt). This is because if either is 
locally free then the Serre duality (4.1) holds on the fibres and the 
usual arguments go through ([24] 6.1.8, 6.1.10) to give the vanishing of 
all Ext^ ts on the fibre; thus by (3.42) all Ext^s vanish too. 

So the Ext*s (i < 3) vanish outside a subvariety of codimension three 
(the union of the diagonal I x A c I x ^ l i X M2 and the codimension 
six (4.15) locus of pairs of non locally free sheaves) for all % < 3, from 
which it follows ([33] 2.26) that 

£xtÌ(£i,£2)=0, i < 3, 
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and £xÛ(£i,£2) is concentrated on A. On A we have Ext3( jF,T) 

= H3(öx) via the trace map, inducing an isomorphism 

RHomp(£li£2) [3] = £xt3
p(£,£) -^ R3p*0XxA = 0A. 

Again by Grothendieck-Riemann-Roch we have 

ch(i,0A)^/Td{Mi x Ad2) = i*(cfc(0A)), 

so plugging everything into (4.25) (and noting that the shift by [3] in-
troduces a minus sign in ch) gives 

ff'(c)=q2*(ch(öA)ql(c))=c. q.e.d. 

Corollary 4 .27 . Let A4 be a relative moduli space of slope stable 

sheaves on X with data (4-4); and d = 2, r > 2. Then the groups Ik = 

®j_7=fc H1'3 are isomorphic on X and Ad; thus their Hodge numbers 

K1^ are the same. 

Proof. Since the Fourier-Mukai machinery of [10] now gives a quick 
proof of this result we will only give a sketch of our previous argument. 

Note that all we want to do is reverse the roles of X and Ad, using 
the universal sheaf on Xx-piAd, restricted to fibres {xt} x Adt, to exhibit 
X as a fibrewise moduli space of sheaves on Ad and deduce (4.24) that 
f'of = id. 

Pick a smooth fibre Xt and consider the universal bundle on Xt x Adt-
Firstly, by results of Mukai, (see e.g. [9] Theorem 1.1), the correspond-
ing Fourier-Mukai transform is an equivalence. By using the correspond-
ing transform for Hermitian-Yang-Mills connections in differential geom-
etry (see for example [4]), one can show that the transform maps slope 
stable sheaves to slope stable sheaves, making Xt a moduli space of slope 
stable sheaves on Adt of "Fourier-Mukai type" (that is the Mukai vector 
is primitive and of square zero; equivalently, gcd (r, c\ . u, \c\ — c2) = 1 
for an appropriate choice of polarisation). 

Thus even on singular fibres semistable sheaves are stable and so 
simple, so long as we can show that X really does parametrise sheaves 
on Ad over these fibres; i.e., we need to show that the universal sheaf 
on X x Ad is flat over X. 

But this follows by mimicking the argument of ([8] Lemma 5.1) one 
dimension up on K3 fibrations instead of elliptic fibrations. (All that 
[8] uses is the fact that the sheaves parametrised by Ad are flat over Ad 
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and have a locally free resolution of length 2 on X. In our case flatness 
over M. is again immediate, and since the sheaves are reflexive on the 
fibres by Theorem 4.5 they have depth 2 and so homological dimension 
I by the Auslander-Buchsbaum theorem ([24] 1.1).) 

Using (Gieseker) stability we get the condition (4.26) so that the 
proof of Theorem 4.24 goes through with X and M exchanged. 

Since ch and Td are of pure (p,p) Hodge types, the Iks are pre-
served. Calculating their dimensions in terms of h0,1, h1,1 and h1,2, by 
symmetries of the Hodge diamond, we see that these three numbers are 
preserved. q.e.d. 

Theorem 4.24 is of course the fibrewise Fourier-Mukai transform of 
[10] at the level of K-theory. Theorem 4.19 can also be interpreted in 
terms of this transform; the transform of Or^i, where [a] is the image 
of a minimal degree section of Jv[ —> P 1 , is just a*T. Thus one might 
try to use [10] to study moduli of sheaves on X; the difficulties are then 
displaced to understanding when the transform gives stable sheaves, 
and not more exotic elements of the derived category. Nonetheless, 
one might try to study moduli by transforming the structure sheaves 
of connected curves in a class that intersects the fibre class once. The 
singular nodal sections with components lying in fibres will give rise to 
fibres on which instabilities and singularities of the sheaves lie. 

E x a m p l e s 

We have already mentioned how the two dimensional results apply to 
K3 x T2. Now we again study Gross' examples, this time considering 
two dimensional moduli spaces, doing a family version of an example in 
([24] 5.3.7) and extending the proof of stability to all quartics in P 3 . 

Propos i t i on 4 .28. Fix any irreducible, reduced quartic surface S C 
P 3

; and a closed point x G S. Then the rank two sheaf E = Ex defined 
by the sequence 

o-> .£ - • ffVx(i))-• A U ) - • o, 

is slope stable with respect to the restriction of the Fubini-Study met-
ric. Ex is a bundle for x a smooth point of S, and the above gives an 
isomorphism between the appropriate moduli space and S. 

Proof. The dual E* of such a sheaf is generated by its sections, and a 
destabilising rank one (torsion free, without loss of generality) quotient 
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sheaf C is therefore also generated by its sections and of degree < 2. 
Therefore the proof of (4.14) applies to obtain a contradiction. q.e.d. 

So in this case, for the two Gross 3-folds JQ, the relative moduli 
spaces M.i are in fact isomorphic to X;b. It is easy to see that the 
polarisation on M.% is that on X plus NUJI, since this gives the right 
fibre polarisation on Ait for the generic fibre Xt of Picard number one. 
Unfortunately this example only satisfies the conditions of Definition 
4.3, not Definition 4.4, so Theorem 4.19 does not really apply. But 
the extra conditions of Definition 4.4 were only used to show that Jun 
Li's line bundle (4.17) was ample on the singular fibres of Al —> F 1 , 
and that the smooth points of the fibres corresponded to locally free 
sheaves, both of which, as mentioned earlier, should be true in general 
anyway. I cannot prove it in the general case, but it clearly holds in this 
example, so we may use Theorem 4.19. 

Thus the holomorphic Casson invariants are given by counting the 
number of lowest degree sections of 

{Xi -+ P1) C (P(#i) -»• P1) 

with respect to the form t = ci(Op(£ ' .)(l)), which is ample on the fibres. 
For X2 the subbundle 0(1) C E2 = 0 ( - l ) © 0 © 0 © 0 ( l ) gives a section 
of P(£ ,2) —> P 1 which lies in X2, is of lowest degree (—1) with respect 
to t, and is unique. Thus we get a Casson invariant of one, counting a 
locally free sheaf. 

For the moduli space that corresponds to this one under the dif-
feomorphism between the Xi, however, we must consider sections of 
X\ —?• P 1 of degree —1 with respect to the Kahler form of P 3 on 
I C P 1 x P 3 . There clearly are none. 

(The Casson invariant of X\ that corresponds to lowest degree sec-
tions is for degree 0 sections, i.e., those of the form P 1 x {x} C X\. Write 
the equation defining the (2,4) divisor X\ = M.\ as x2f + xyg + y2h = 0, 
where / , g, h are quartic polynomials on P 3 . Then P 1 x {x} lies in S 
if and only if x lies in the intersection of the three quartic surfaces in 
P 3 . Thus we may deform to a case where there are precisely 64 isolated 
sections in the moduli space, and therefore the Casson invariant is 64, 
and again all the sheaves are locally free.) 

Thus we have finally recovered the result that the Xi are not defor-
mation equivalent, as polarised varieties. Although the result is both 
weaker than the results using Gromov-Witten invariants [36] and es-
sentially a more complicated rerun of the same proof (going as it does 
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via the same Gromov-Witten invariants), it is nonetheless encouraging 
that there are examples of the invariant which are calculable yet contain 
highly non-trivial information. 
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