
A Holonic Metamodel for Agent-Oriented
Analysis and Design

Massimo Cossentino1,2, Nicolas Gaud1, Stéphane Galland1, Vincent Hilaire1,
and Abderrafiâa Koukam1

1 Multiagent Systems Group,
System and Transport Laboratory

University of Technology of Belfort Montbéliard
90010 Belfort cedex, France

{massimo.cossentino,nicolas.gaud,stephane.galland,
vincent.hilaire,abder.koukam}@utbm.fr

http://set.utbm.fr

2 ICAR Institute,
National Research Council,

Palermo, Italy
http://www.pa.icar.cnr.it/∼cossentino

Abstract. Holonic multiagent systems (hmas) offers a promising soft-
ware engineering approach for developing applications in complex do-
mains characterized by a hierarchical structure. However the process
of building mass and hmass is mostly different from the process of
building more traditional software systems and it introduces new design
and development issues. Against this background, this paper introduces
organization-oriented abstractions for agent-oriented software engineer-
ing. We propose a complete organizational meta-model as the basis of a
future complete methodology that will spread from requirements analy-
sis to code production. In addition to dealing with this last aspect, we
introduce our platform, called Janus, that we specifically designed to im-
plement and deploy holonic multiagent systems by adopting concepts like
role and organization as the leading issues of the analysis-development
process.

Key words: Agent Oriented Software Engineering, Holonic Modeling,
Methodology, Holonic multiagent systems

1 Introduction

Sociological concepts have always been a source of inspiration for multiagent
researches and recently the agent community has been returning the favor by
exploring the potential of agent-based models for studying sociological phenom-
ena (e.g. [1,2,3]). The result of this interaction has been the formalization of a
number of sociological, psychological and philosophical concepts with important
applications in engineering agent systems. Holon and organizational concepts

http://set.utbm.fr
http://www.pa.icar.cnr.it/~cossentino


2 M. Cossentino, N. Gaud, S. Galland, V. Hilaire, A. Koukam

like Role and Organization are examples of these important concepts. For a
successful application and deployment of mas, methodologies are essential [4].
Methodologies try to provide an explicit frame of the process to model and design
software applications. Several methodologies have been proposed for mas [5] and
some of them with a clear organizational vision (e.g. [6]). Most of these method-
ologies recognize that the process of building mass is mostly different from the
process of building more traditional software systems. In particular, they all
recognize (to varying extents) the idea that a mas can be conceived in terms
of an organized society of individuals in which each agent plays specific roles
and interacts with other agents [7,6]. However, most of them consider agents
as atomic entities thus rendering them inappropriate for Holonic mas (hmas).
In our approach the role is emphasized as a fundamental entity spreading from
requirements to implementation. Notice that some of the most known imple-
mentation platforms (Jade [8], FIPA-OS [9] and some others) usually do not
support the role concept. In our point-of-view the role element offers a number
of advantages, e.g. a greater reusability, modularity of developed solutions, and
finally encourages a quicker development with less code bugs.

The approach presented in this paper is based on a meta-model for hmas.
It provides a step-by-step guide from requirements to code and it can model a
system at different levels of details by using a suite of refinement methods. We
propose a meta-model, namely HoloPASSI, as a basis of extension of the PASSI
methodology [10] to deal with the analysis and design of hmas.

The goal of this paper is not to describe the complete methodological process
but it rather provides some organization-oriented abstractions that will become
the basis of this process. The elements of the meta-model are organized in three
different domains. The problem domain deals with the user’s problem in terms
of requirements, organization, role and ontology. The Agency Domain addresses
the holonic solution to the problem described in the previous domain. Finally,
the Solution Domain describes the structure of the code solution in the chosen
implementation platform. The platform Janus that was developed in our laboba-
tory is selected. It is specifically designed to implement and deploy hmas. This
paper is organized as follows. Section 2 briefly summarizes previous works on
Holonic Systems and outlines the key points behind the concept of holon. Section
3 will detail the Problem, Agency and Solution domains of our meta-model.

2 Theoretical Background

The concept of holon is central to our discussion and therefore a definition of
what is a holon should be helpful before proceeding. In multiagent systems, the
vision of holons is much closer to the one that mas researchers have of Recur-
sive or Composed agents. A holon constitutes a way to gather local and global,
individual and collective points of view. A holon is thus a self-similar structure
composed of holons as sub-structures and the hierarchical structure composed
of holons is called a holarchy. A holon can be seen, depending on the level of



A Holonic Metamodel for Agent-Oriented Analysis and Design 3

observation, either as an autonomous “atomic” entity or as an organization of
holons (this is often called the Janus effect).

Two overlapping aspects have to be distinguished in holons: the first is di-
rectly related to the holonic nature of the entity (a holon, called super-holon,
is composed of other holons, called sub-holons or members) and deals with the
government and the administration of a super-holon. This aspect is common to
every holon and thus called the holonic aspect. The second aspect is related to
the problem to solve and the work to be done. It depends on the application or
application domain. It is therefore called the production aspect.

Holonic Systems have been applied to a wide range of applications, Manufac-
turing systems [11,12], Health organizations [13], Transportation [14], Adaptive
Mesh Problem [15], Cooperative work [16] to mention a few. Thus it is not sur-
prising that a number of models and frameworks have been proposed for these
systems, for example PROSA [17], MetaMorph [12]. However, most of them are
strongly attached to their domain of application and use specific agent architec-
tures. In order to allow a modular and reusable modeling phase that minimizes
the impact on the underlying architecture, a meta-model based on an organi-
zational approach is proposed. The adopted definition of role comes from [18]:
“Roles identify the activities and services necessary to achieve social objectives
and enable to abstract from the specific individuals that will eventually perform
them. From a society design perspective, roles provide the building blocks for
agent systems that can perform the role, and from the agent design perspective,
roles specify the expectations of the society with respect to the agents activity in
the society”. However, in order to obtain generic models of organizations, it is
required to define a role without making any assumptions on the agent which will
play this role. To deal with this issue the concept of capacity was defined [19]. A
capacity is a pure description of a know-how. A role may require that individ-
uals playing it have some specifics capacities to properly behave as defined. An
individual must know a way of realizing all required capacities to play a role.

3 Engineering Holons

As PASSI, the HoloPASSI methodology introduces three domains. The first is
the problem domain dedicated to the description of a problem independently
of a specific solution. The second is the agency domain which introduces agent
concepts to describe an agent solution on the basis of the elements of the prob-
lem domain. The third and last domain is the solution domain which includes
the elements used to implement at the code level the solution described in the
second domain. The following sub-sections describe these three domains. The
HoloPASSI meta-model is described by an UML class diagram in figure 1. Each
domain is separated by a dashed line.

3.1 Problem Domain

The PASSI, and then HoloPASSI, methodologies are driven by requirements.
Thus the starting phase is the Functional Requirements and Non Functional



4 M. Cossentino, N. Gaud, S. Galland, V. Hilaire, A. Koukam

Fig. 1. The Organizational Meta-Model of HoloPASSI

Requirements analysis. (Functional) Requirements can be identified by using
classical techniques such as use cases. Each requirement is associated to an Or-
ganization (see figure 1). An Organization is defined by a set of AbstractRoles,
their Interactions and a common context. The associated context (and therefore
the operating environment too) is defined according to an ontology. An ontology
is described in terms of concepts (categories, entities of the domain), predicates
(assertions on concepts properties), actions (performed in the domain) and their
relationships. The aim of an organization is to fulfill one or more (functional and
non functional) requirements. An Interaction is composed of the event produced
by a first role, perceived by a second one, and the reaction(s) produced by the
second role. The sequence of events from one to the other can be iterated several
times and includes a not a priori specified number of events and participants.
These roles must be defined in the same organization. Figure 2 details an ex-
ample of an organization and its associated ontology. The Project Management
organization in figure 2(a) defines two roles Manager and Employee, and two
interactions Supervise and Assigns. The context of the organization is defined



A Holonic Metamodel for Agent-Oriented Analysis and Design 5

according to the domain ontology described in figure 2(b). As described by John

Fig. 2. Organization and Ontology description using two specific UML profiles
for class diagram

H Holland : “The behavior of a whole complex adaptive system[cas] is more
than a simple sum of the behaviors of its parts; cas abound non linearity” [20].
The notion of capacity was introduced to control and exploit these additional
behaviors, emerging from roles interactions, by considering an organization as
able to provide a capacity. It describes what an organization is able to do. Or-
ganizations used to model roles interactions offer a simple way to represent how
these capacities are obtained from the roles.

Let us now consider our previous example of the Project Management or-
ganization. The role Manager requires for example the capacity of choosing
between various employee the most appropriate one to fulfill a task. Each entity
wishing to play the Manager role must have an implementation of this capacity
(through a service for instance implementing a classical algorithm). The choice
between various employees effectively depends on personal characteristics of the
entity (e.g. Acquaintances, Beliefs). Basing the description of role behavior on
capacities, thus gives to the role more genericity and modularity.

An AbstractRole is the abstraction of a behavior in a certain context defined
by the organization and confers a status within this context. The status is defined
as a set of rights and obligations made available to the role, and also defines the
way the entity playing the role is perceived by other entities playing another role
in the same organization. Specifically, the status gives the playing entity the right
to exercise its capacities. To clearly understand this status aspect, let us return to
our preceding example. The status of Manager gives the right to use his authority
to assign a task to one of his subordinates. No Employee will be surprised if a
Manager uses his authority, because the way under which Employee perceive
their responsible (status), gives him this right. Another important aspect is that
the role (and not the individual, like an agent or a holon, who plays the role)
belongs to the organization. This means that the same individual may participate



6 M. Cossentino, N. Gaud, S. Galland, V. Hilaire, A. Koukam

to an organization by playing one or more roles that are perceived as different
(and not necessarily related) by the organization. Besides, the same individual
can play the same or a different role in other organizations.

The goal of each AbstractRole is to contribute to (a part of) the requirements
of the organization within which it is defined. The behavior of a AbstractRole is
specified within a Scenario. Such a scenario describes how a goal can be achieved.
It is the description of how to combine and order interactions, external events,
and RoleTasks to fulfill a (part of a) requirement (the goal). A RoleTask is
the specification of a parameterized behavior in form of a coordinated sequence
of subordinate units (a RoleTask can be composed of other RoleTasks). The
definition of these units can be based on capacities, required by the role.

3.2 Agency Domain

After modeling the problem in terms of organizations, roles, capacities and in-
teractions, the objective is, now, to provide a model of the agent society in terms
of social interactions and dependencies between entities (Holons and/or Agents)
involved in the solution. From an overview at the Agency Domain part of the
hmas meta-model reported in figure 1, some elements are the specialization of
other elements defined in the Problem Domain. They constitute the backbone
of our approach and they move from one domain to the other in order to be
refined and they contribute to the final implementation of the system. These el-
ements are: (i) Group is a specialization of the Organization. It is used to model
groups of Agents that cooperate in order to achieve a goal. This element is fur-
ther specialized in the HolonicGroup element that is a group devoted to contain
roles taking care of the holon internal decision-making process (composed-holon’s
government). (ii) AgentRole is the specialization of AbstractRole. An AgentRole
interacts with the others using communications (that are a more refined way for
interacting compared to the simple Interactions allowed to the AbstractRole).
Several AgentRoles are usually grouped in one Agent that is in turn a member of
the Group. An AgentRole can be responsible for providing one of more services.
(iii) Capacity is the specialization of the AbstractCapacity. It finds an implemen-
tation in the Service provided by roles and it is used to model what is required
by an AgentTask in order to contribute in providing a service. (iv) AgentTask is
the specialization of the RoleTask. It is aggregated in AgentRole and contributes
to provide (a portion of) an AgentRole’s service. At this level of abstraction,
this kind of task is no more considered atomic but it can be decomposed in finer
grained AgentActions.

A very important element of the mas meta-model is newly introduced in the
Agency Domain; this is the Agent. An Agent is an entity which can play a set
of roles defined within various organizations; these roles interact each other in
the specific context provided by the agent itself. The Agent context is given by
the knowledge, the capacities and the environment. Roles share this context by
the simple fact of being part of the same agent. For instance, this means that
an agent can play the role of Buyer in an organization and later the same agent
can sell the goods it had just acquired thus playing for the same organization a



A Holonic Metamodel for Agent-Oriented Analysis and Design 7

different role (Seller); conversely, the same agent can also play roles that belong
to another organization (for instance devoted to monitoring businesses) and
thus it can play a role (AffairMonitor) to trace the results and the performance
exploited during the first acquisition process. It is worth to note that the agent
is still not an implementing element but rather it needs further refinements; only
when it will become a JAgent (in the Solution Domain) it can really be coded.
Figure 3(a) depicts the context defined by an agent as an interaction space for
the roles it plays. These roles, in turn, belong to different organizations, each one
defining its own context. An agent in our approach defines a particular context
of interaction between roles belonging to different organizations. This aspect is
depicted in figure 3(a).

The concept of Holon is specialized from the Agent. Naturally our definition
of holon integrates the production and holonic aspects previously described in
section 2 and it merges them within an organizational approach. A holon is thus
a set of roles that can be defined on various organizations interacting in the spe-
cific context provided by the agent. A holon can play several roles in different
organizations and be composed of other holons. A composed holon (super-holon)
contains at least a single instance of a holonic organization to precise how mem-
bers organize and manage the super-holon and a set (at least one) of production
organizations describing how members interact and coordinate their actions to
fulfill the super-holon tasks and objectives. An atomic (non composed) holon is
an AtomicAgent. Figure 3(b) illustrates this definition of holon.

Fig. 3. Agent and Holon symbolic representation, and an example of the concrete
structure of a super-holon

The holonic aspect considers how members organize and manage the super-
holon. A specific organization, called Holonic organization, is defined to describe
the government of a holon and its structure (in terms of authority, power reparti-
tion). Depending on the level of abstraction, a super-holon can be considered as
an atomic entity (let’s say level n) or as an organization of holons (let’s say level
n-1). In the same manner several different holons could be seen as interacting



8 M. Cossentino, N. Gaud, S. Galland, V. Hilaire, A. Koukam

individuals, parts of some organization or as parts of a super-holon. These inter-
actions usually happen in form of communications. Interactions between layers,
instead, can happen in two ways: i) (internal) interactions of roles of the same
agent if the same agent plays different roles within a holon. For instance, an
agent can be the Head delegated to accept some contract (a role of the holonic
organization, played at level n) but also the worker which will do part of the work
related to that contract in the production organization at level n-1; the Agent
existence in this case enables the interactions among the different roles. ii) (ex-
ternal) interactions (mostly communications) between roles at different layers
of several agents. For instance the Head (layer n) responsible for accepting a
contract asks worker roles (layer n-1) to provide the service.

Figure 3(c) illustrates the concrete structure of a super-holon Project 1 com-
posed of a production organization called g1:Project and an instance of the
holonic organization.

An agent should be able to estimate the agent’s competences in order to
identify the most appropriate collaborators. The Capacity concept allows us to
represent the competences of an agent or of a set of agents. A Capacity describes
what an Agent should be able to do in order to satisfy the requirements it
is responsible for. This means that the set of Capacities obtained by refining
the AbstractCapacity of the Problem Domain, becomes the specification of the
system requirements in the Agency Domain. Indeed, Capacities describe what
the holon is capable of doing at an abstract level, independently of how it does
it (this is a concern dealt by the Service concept).

A service implements a capacity thus accomplishing a set of functionalities on
behalf of its owner: a role. These functionalities can be effectively implemented
by a set of capacities required by the owner role. A role can thus publish some of
its capacities and other members of the group can take profit of it by means of
a service exchange. Similarly a group, able to provide a collective capacity can
share it with other groups by providing a service.

The relation between capacity and service is thus crucial in our meta-model.
A capacity is an internal aspect of an organization or an agent, while the service
is designed to be shared between various organization or entities. To publish a
capacity and thus allow other entities to benefit from it, a service is created.

3.3 Implementing Solution Domain with Janus

This part of the model is related to the Holon Implementation Model; its ob-
jective is to provide an implementation model of the solution. This part is thus
dependent on the chosen implementation and deployment platform. A platform
called Janus3 was built in our lab. It is specifically designed to deal with the
holonic and organizational aspects. The goal of Janus is to provide a full set of
facilities for launching, displaying, developing and monitoring holons, roles and
organizations.

3 http://www.janus-project.org

http://www.janus-project.org


A Holonic Metamodel for Agent-Oriented Analysis and Design 9

The two main contributions of Janus are its native management of holons
and its implementation of the notion of Role. In contrast with other platforms
such as MadKit [21], JADE, FIPA-OS, the concept of Role in Janus is considered
as a first class entity. It thus allows the user to directly implement organizational
models without making any assumptions on the architecture of the holons that
will play the role(s) of this organization. An organization is defined by a set
of roles and a set of constraints to instantiate these roles (e.g. maximal num-
ber of authorized instances). Thus, organizations designed for an application
can be easily reused for another. Janus so promotes reusability and modularity,
moreover the use of organizational design patterns is strongly encouraged. Each
organization is a singleton and it can be instantiated by several groups. Group is
the runtime context of interaction. It contains a set of roles and a set of Holons
playing at least one of these roles. In addition to its characteristics and its per-
sonal knowledge, each agent/holon has mechanisms to manage the scheduling
of its own roles. It can change dynamically its roles during the execution of the
application (leave a role and request a new one). The life-cycle of each agent is
decomposed into three main phases : activation, life, termination. The life of an
agent consists in consecutively execute its set of roles and capacities. To describe
the personal competences of each agent/holon, Janus implements the concept of
JCapacity that is an abstract description of a competence; each agent can be
equipped from its birth or can dynamically acquire an implementation of a new
JCapacity (this function is still under development). In addition to the integra-
tion of these personal characteristics, a holon provides an execution context for
roles and capacities.

4 Conclusion

This article focuses on the key issues related to the identification of appropriate
abstractions for organizational software engineering and to the basis of a suit-
able methodology from requirement to implementation of complex applications
in terms of hmas. In so doing, the two main contributions of this article are a
complete organizational meta-model for the analysis and design of complex sys-
tems, and a specific platform, Janus, designed to easily implement and deploy
models issued from the HoloPASSI meta-model. It fully implements organiza-
tional and holonic concepts. However it is also able to support more “traditional”
multiagent systems.

This work is a part of larger effort to provide a whole methodology and its
supporting set of tools for the analysis, design and implementation of complex
applications. Future works will deepen the meta-model concepts and associate
a methodology to guide the developer during his work of modeling and imple-
menting a complex (and possibly holonic) multi-agent system.

References

1. Carley, K., Prietula, M., eds.: Computational Organization Theory. (1994)



10 M. Cossentino, N. Gaud, S. Galland, V. Hilaire, A. Koukam

2. Epstein, M., Axtell, R.: Growing Artificial Societies: Social Science from the
Ground Up. MIT Press (1996)

3. Prietula, M., Carley, K., Gasser, L.: Simulating Organizations: Computational
Models of Institutions and Groups. AAAI Press (1998)

4. Gasser, L.: Mas infrastructure definitions, needs, prospects. In: Infrastructure for
Agents, Multi-Agent Systems, and Scalable Multi-Agent Systems. (01)

5. Iglesias, C., Garijo, M., Gonzalez, J.: A survey of agent oriented methodologies. In:
Workshop on Intelligent Agents V: Agent Theories, Architectures and Languages
(ATAL-98). Volume 1555., Springer-Verlag (1999) 313–327

6. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the
gaia methodology. ACM Trans. on Software Engineering and Methodology 12(3)
(2003)

7. Jennings, N.: On agent-based software engineering. Artificial Intelligence 177(2)
(2000) 277–296

8. Bellifemine, F., Poggi, A., Rimassa, G.: JADE: a FIPA2000 compliant agent de-
velopment environment. In: Agents. (2001) 216–217

9. Poslad, S., Buckle, P., Hadingham, R.: FIPA-OS: the FIPA agent platform available
as open source. In: Practical Application of Intelligent Agents and Multi-Agent
Technology (PAAM 2000). (2000) 355–368

10. Cossentino, M.: IV : From Requirements to Code with the PASSI Methodology.
In: Agent-Oriented Methodologies. (2005) 79–106

11. Wyns, J.: Reference architecture for Holonic Manufacturing Systems - the key to
support evolution and reconfiguration. PhD thesis, Katholieke Universiteit Leuven
(1999)

12. Maturana, F.: MetaMorph: an adaptive multi-agent architecture for advanced
manufacturing systems. PhD thesis, The University of Calgary (1997)

13. Ulieru, M., Geras, A.: Emergent holarchies for e-health applications: a case in
glaucoma diagnosis. In: IEEE IECON 02. Volume 4. (2002) 2957– 2961

14. Bürckert, H., Fischer, K., G.Vierke: Transportation scheduling with holonic mas
- the teletruck approach. In: Conf. on Practical Applications of Intelligent Agents
and Multiagents. (1998) 577–590

15. Rodriguez, S., Hilaire, V., Koukam, A.: Towards a methodological framework for
holonic multi-agent systems. In: Workshop of Engineering Societies in the Agents
World. (2003) 179–185

16. Adam, E.: Modele d’organization multi-agent pour l’aide au travail cooperatif dans
les processus d’entreprisee: application aux systemes administratif complexes. PhD
thesis, Univ. de valenciennes et du hainaut-cambresis (2000)

17. Brussel, H.V., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference
architecture for holonic manufacturing systems: Prosa. Computers in Industry 37
(1998) 255–274

18. Dignum, V., Dignum, F.: Coordinating tasks in agent organizations. or: Can we ask
you to read this paper? In: Coordination, Organization, Institutions and Norms
Engineering Societies in the Agents’ World. (2006)

19. Rodriguez, S., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: An analysis and
design concept for self-organization in holonic multi-agent systems. In: Engineering
Self-Organising Systems. Volume 4335 of LNAI., Springer-Verlag (2007) 15–27

20. Holland, J.: Hidden order: how adaptation builds complexity. (1995)
21. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organiza-

tional view of multi-agent systems. In: AOSEIV@AAMAS03. LNCS 2935 (2004)
214–230


	A Holonic Metamodel for Agent-Oriented Analysis and Design
	
	1 Introduction
	2 Theoretical Background
	3 Engineering Holons
	3.1 Problem Domain
	3.2 Agency Domain
	3.3 Implementing Solution Domain with Janus

	4 Conclusion



