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Abstract— In this paper, a novel systematic design method,
namely homogeneous domination approach, is developed for
the global output feedback stabilization of nonlinear systems.
The nonlinearities of the systems considered in this paper
are neither linearly growing nor Lipschitz in unmeasurable
states, which make the most of existing methods inapplicable
to solve the problem. By utilizing the homogeneous domination
approach, a global output feedback stabilizer is explicitly
constructed in two steps: i) we first design for the nominal lin-
ear system a unique homogeneous output feedback controller
whose construction is genuinely nonlinear, rather than linear
as used in the literature; ii) then we scale the homogeneous
observer and controller with an appropriate choice of gain
to render the nonlinear system globally asymptotically stable.
The homogeneous domination approach not only enables us
to completely remove the linear growth condition, which has
been the common assumption for global output feedback sta-
bilization, but also provides us a new perspective to deal with
the output feedback control problem for nonlinear systems.

I. INTRODUCTION

The primary objective of this paper is to consider the
problem of global output feedback stabilization of a general
class of uncertain nonlinear systems described by

ẋi = xi+1 + φi(t, x, u), i = 1, · · · , n (1.1)

where u := xn+1 ∈ IR and y := x1 ∈ IR are the
system input and output respectively, and φi(t, x, u) is an
unknown nonlinear function of all the states and control
input. An important fact presently known about the global
output feedback stabilization of system (1.1) is that the
nonlinear functions φi(t, x, u) cannot grow too fast due to
the finite escape time phenomenon as demonstrated in [17].
Because of this negative result, it has been assumed that
it is almost impossible to use output feedback to globally
stabilize systems with polynomially growing nonlinearities
of unmeasurable states. Therefore, most of the existing
results on global output feedback stabilization of system
(1.1) are based on certain restrictive conditions imposed
on the nonlinear terms φi(·). A class of nonlinear systems
called “output feedback form” in which nonlinear function
is only dependent of the output was characterized and
considered in [3], [13], [14], [16], [15]. Another common
assumption for the global output feedback stabilization is
the Lipschitz or linear condition in the unmeasurable states
as discussed in the works [12], [23], [7], [2] and the
references therein. For the non-Lipschitz systems, a recent
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result [20] developed a feedback domination method to
achieve the global output feedback stabilization of (1.1)
under a linear growth condition with a constant growth rate.
Later in [18], [4], this condition was extended to the case
when the growth rate is a polynomial of the output.

Nevertheless, a common property of all aforementioned
conditions is that the unmeasurable states in the nonlinear
functions φi(·), if there is any, should be at least linearly
growing. A rarely-asked but important question is to what
extent this restriction can be relaxed to achieve global
stabilization using output feedback for system (1.1). For
example, is it possible to achieve global output feedback
stabilization of the following system

ẋ1 = x2, ẋ2 = x3, ẋ3 = x4 + d(t)x3 ln(1 + x2
3)

ẋ4 = u + d(t)x3
2 + x2

2 sin x4, |d(t)| ≤ 1 (1.2)

with output y = x1? Apparently, in system (1.2) the
nonlinear functions of unmeasurable states satisfy neither
the linear growth nor the Lipschitz condition. Therefore,
all the aforementioned design methods are inapplicable to
achieve global output feedback stabilization of (1.2).

In this paper, we aim to tackle this challenging question
and shall provide a solution to the problem of global
output feedback stabilization for nonlinear systems without
requiring the linear growth restriction. To accomplish this
goal, we first identify a polynomial growth condition of
the nonlinearities under which the global output feedback
stabilization of (1.1) is still achievable. The next important
issue is that most of the existing design methods are
based on the linear-like observer which is inadequate in
dealing with the highly nonlinear functions of unmeasurable
states. In order to overcome this obstacle, we introduce
a novel recursive design method called the homogeneous
domination approach which can be used to construct a
global output feedback stabilizer for system (1.1) under the
weaker growth condition.

The homogeneous domination approach that we employ
in this paper begins with the linear domination idea pro-
posed in [20] where a global output feedback stabilizer is
constructed for uncertain system (1.1) under a linear growth
condition. The underlying philosophy of the linear feedback
domination approach is that the output feedback controller
is first developed for the nominal linear system and then is
utilized to dominate the uncertain nonlinear terms without
knowing their precise information. To be more specific, we
first design a linear controller and observer for the nominal
system without considering the unknown nonlinear func-
tions. Then we scale the linear output feedback controller
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using a gain which will be chosen based on the growth
rate of the nonlinearities to counteract the effect of the
uncertain nonlinearities. Due to this design method, the
proposed output feedback controller will work for different
systems satisfying the same linear growth condition. This
robustness property is the most significant advantage of
the domination approach over the other existing methods
and ultimately enables us to handle non-triangular, non-
Lipschitz and uncertain nonlinearities.

Inspired by the result [20] obtained by the linear domina-
tion approach, we intend to apply the same idea to systems
with higher-order nonlinear terms. Apparently, the linear-
based observer and controller in [20] will not have enough
control authorities to dominate the higher-order terms such
as those in (1.2). Therefore, a new observer/controller that
ideally should be of the same order as the higher-order terms
are needed. Fortunately, the homogenous system theory
provides us a perfect tool to treat the traditional higher-
order terms from a new point of view. This idea has
been very successful in the state-feedback stabilization of a
class of nonlinear systems without controllable/observerable
linearization [5], [6], [11], [1], [19]. Recently, the output
feedback stabilization problem of such system has also been
addressed in [21], [24]. A new tool proposed in [21] is
the systematic construction of a reduced-order homogenous
observer. Although those results were initially developed
for the high-order systems without controllable/observerable
linearization, they also provide us a new point of view to
deal with linear systems. In this paper, we will first extend
the adding a power integrator [19] technique to construct
for the nominal linear system of (1.1) a nonlinear controller
which is homogenous in nature. Then, we will recursively
design a reduced-order homogeneous observer which again
is genuinely nonlinear even for the linear nominal system.
Finally, based on the homogeneous observer/controller, we
design a scaled output feedback controller which can effec-
tively dominate the highly nonlinear terms φi(·) by taking
advantage of the homogenous structure of the controller.

The contribution of this paper is two-fold: i) we show
that the linear growth condition can be removed and a
weaker sufficient condition is given for the global out-
put feedback stabilization of (1.1); and ii) we develop a
novel design method called the homogeneous domination
approach which handles the nonlinear output feedback
control problem from a new perspective. The approach
enables us to achieve rather general results on global output
feedback stabilization of (1.1) without requiring the linear
growth condition which is the once seemingly indispensable
assumption. Moreover, an interesting byproduct of the paper
is the unique construction of a homogenous observer and
controller which will always be genuinely nonlinear even
for the linear system.

II. MATHEMATICAL PRELIMINARIES

In this section, we collect some useful definitions and
lemmas which paly very important roles in this paper.

A. Homogenous Systems
The innovative idea of homogeneity was introduced for

the stability analysis of a nonlinear system [8] and has led to
a number of interesting results (see [9], [1], [10], [5], [11],
[6]). We recall the definitions of homogeneous systems with
weighted dilation (refer to [11], [9], [1] for details).
Weighted Homogeneity: For fixed coordinates
(x1, · · · , xn) ∈ IRn and real numbers ri > 0, i = 1, · · · , n,

• the dilation ∆ε(x) is defined by ∆ε(x) =
(εr1x1, · · · , εrnxn), ∀ε > 0, with ri being called
as the weights of the coordinates ( For simplicity of
notation, we define dilation weight ∆ = (r1, · · · , rn)).

• a function V ∈ C(IRn, IR) is said to be homogeneous
of degree τ if there is a real number τ ∈ IR such that

∀x ∈ IRn\{0}, ε > 0, V (∆ε(x)) = ετV (x1, · · · , xn)

• a vector field f ∈ C(IRn, IRn) is said to be homoge-
neous of degree τ if there is a real number τ ∈ IR
such that for i = 1, · · · , n
∀x ∈ IRn \ {0}, ε > 0, fi(∆ε(x)) = ετ+rifi(x).

• a homogeneous p-norm is defined as ‖x‖∆,p =(∑n
i=1 |xi|p/ri

)1/p
, ∀x ∈ IRn, for a constant p ≥ 1.

For the simplicity, in this paper, we choose p = 2 and
write ‖x‖∆ for ‖x‖∆,2.

In what follows, we list some useful properties of ho-
mogenous function.

Lemma 2.1: Given a dilation weight ∆ = (r1, · · · , rn),
suppose V1(x) and V2(x) are homogenous functions of
degree τ1 and τ2, respectively. Then V1(x)V2(x) is also
homogeneous with respect to the same dilation weight ∆.
Moreover, the homogeneous degree of V1 · V2 is τ1 + τ2.

Lemma 2.2: Suppose V : IRn → IR is a homogenous
function of degree τ with respect to the dilation weight ∆.
Then the following holds:

1)
∂V

∂xi
is still homogeneous of degree τ − ri with ri

being the homogeneous weight of xi.
2) There is a constant c such that

V (x) ≤ c‖x‖τ
∆. (2.1)

Moreover, if V (x) is positive definite,

c‖x‖τ
∆ ≤ V (x), for a positive constant c > 0. (2.2)

B. Useful Inequalities
The next three lemmas were first introduced in [19] and

will also be frequently used in this paper.
Lemma 2.3: For x ∈ IR, y ∈ IR, p ≥ 1 is a constant, the

following inequalities hold:

|x + y|p ≤ 2p−1|xp + yp|, (2.3)

(|x| + |y|) 1
p ≤ |x| 1p + |y| 1p ≤ 2

p−1
p (|x| + |y|) 1

p .(2.4)

If p ≥ 1 is odd1 then

|x − y|p ≤ 2p−1|xp − yp|. (2.5)

1In this paper, a real number is called “odd” if the number is an odd
integer or a ratio of odd integers
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Lemma 2.4: Let c, d be positive constants. Given any
positive number γ > 0, the following inequality holds:

|x|c|y|d ≤ c

c + d
γ|x|c+d +

d

c + d
γ− c

d |y|c+d. (2.6)

Lemma 2.5: Let p ≥ 1 be an odd real number and x, y
be real-valued functions. Then,

|xp − yp| ≤ p|x − y|(xp−1 + yp−1). (2.7)

III. HOMOGENEOUS STABILIZER BY STATE FEEDBACK

In this section, we propose a new design method for
a homogeneous state feedback stabilizer for (1.1). Unlike
the controller obtained using adding a linear integrator
or backstepping methods, the homogeneous controller is
genuinely nonlinear even for the linear system. However,
this unusual construction of the homogeneous controller
is essential for the construction of the output feedback
controller in this paper.

In order to obtain a homogenous state feedback controller
of degree τ which globally stabilizes system (1.1), we
assume the following assumption:

Assumption 3.1: There are constants τ ≥ 0 and c ≥ 0
such that for i = 1, · · · , n

|φi| ≤ c
[
|x1|iτ+1 + |x2|

iτ+1
τ+1 + · · · + |xi|

iτ+1
(i−1)τ+1

]
. (3.1)

The following theorem shows that Assumption 3.1 guar-
antees a homogenous state feedback controller for (1.1).

Theorem 3.1: Under Assumption 3.1 there exists a ho-
mogeneous state-feedback controller rendering system (1.1)
globally asymptotically stable.
Proof. The proof is carried out by using an inductive
argument which enables one to simultaneously constructs a
C1 Lyapunov function which is positive definite and proper,
as well as a homogeneous stabilizer.

For the simplicity, we assume τ = q
p with an even integer

q and an odd integer p. We further denote

ri = (i − 1)τ + 1, i = 1, · · · , n (3.2)

which will be always odd numbers. We will show later that
similar result can be achieved when ri is not odd.

Initial Step. Choose V1 = r1
2rn−τ x

(2rn−τ)/r1
1 . Clearly,

the time derivative of V1 along the trajectory of (1.1) is

V̇1 = x
(2rn−τ)/r1−1
1 [x2 + φ1(t, x)] . (3.3)

By Assumption 3.1,

V̇1 ≤ x
(2rn−τ)/r1−1
1

[
x2 − x∗

2 + x∗
2 + x

r2/r1
1 c

]
.

Then, the virtual controller x∗
2 defined by x∗

2 = −x
r2/r1
1 (n+

c) := −x
r2/r1
1 β1, yields

V̇1(x1) ≤ −nx
2rn/r1
1 + x

(2rn−τ)/r1−1
1 [x2 − x∗

2] . (3.4)

Inductive Step. Suppose at step k − 1, there are a C1

Lyapunov function Vk−1 : IRk−1 → IR, which is positive

definite and homogeneous with respect to (3.2), and a set
of C1 virtual controllers x∗

1, · · · , x∗
k, defined by

x∗
1 = 0, ξ1 = x1 − x∗

1,

x∗
j = −ξ

rj/rj−1
j−1 βj−1 ξj = xj − x∗

j , j = 2, · · · , k
(3.5)

with constants β1 > 0, · · · , βk−1 > 0, such that

V̇k−1 ≤ −(n − k + 2)
∑k−1

j=1 ξ
2rn/rj

j

+ξ
(2rn−τ)/rk−1−1
k−1 (xk − x∗

k). (3.6)

Obviously, (3.6) reduces to the inequality (3.4) when k = 2.
We claim that (3.6) also holds at step k. To prove the

claim, we consider the Lyapunov function

Vk(x1, · · · , xk) = Vk−1 +
rk

(2rn − τ)
ξ
(2rn−τ)/rk

k . (3.7)

The derivative of the Lyapunov function Vk is

V̇k ≤ −(n − k + 2)
k−1∑
j=1

ξ
2rn/rj

j + ξ
2rn−τ
rk−1

−1

k−1 ξk

+ξ
2rn−τ

rk
−1

k

(
xk+1 + φk(·) −

k−1∑
l=1

∂x∗
k

∂xl
ẋl

)
.(3.8)

Next we estimate each term in the right hand side of
(3.8). First, it follows from Young Inequality (p = 2rn −
τ − rk−1 = 2rn − rk, q = rk) that for a constant ck > 0

ξ
(2rn−τ)/rk−1−1
k−1 ξk ≤ 1

2
ξ

2rn
rk−1
k−1 + ξ

2rn
rk

k ck. (3.9)

By Lemma 2.3, Assumption 3.1 can be rewritten as

|φk| ≤ c
k∑

j=1

|ξj − ξ

rj
rj−1
j−1 βj−1|

rk+τ

rj ≤ c̄k

k∑
j=1

|ξj |
rk+τ

rj ,(3.10)

for a constant c̄k.

The last term in (3.8), namely
∑k−1

l=1

∂x∗
k

∂xl
ẋl, can be

estimated as the following proposition whose proof is
included in the Appendix.

Proposition 3.1: There is a constant c̃k such that∣∣∣∣∣
k−1∑
l=1

∂x∗
k

∂xl
ẋl

∣∣∣∣∣ ≤ c̃k

(
|ξ1|(rk+τ)/r1 + · · · + |ξk|(rk+τ)/rk

)
.

Hence, combining (3.10) and Proposition 3.1 yields

ξ
2rn−τ

rk
−1

k

(
φk(·) −

k−1∑
l=1

∂x∗
k

∂xl
ẋl

)

≤ ξ
(2rn−τ)/rk−1
k (c̄k + c̃k)

k∑
l=1

|ξl|(rk+τ)/rl

≤ 1
2

k−1∑
l=1

ξ
2rn/rl

l + ξ
2rn/rk

k ĉk (3.11)

where ĉk is a constant. Note that the last inequality follows
from Lemma 2.4.
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Substituting (3.9) and (3.11) into (3.8) yields

V̇k ≤ −(n − k + 1)
∑k

j=1|ξj |
rk+τ

rj

+ξ
(2rn−τ)/rk−1
k

(
xk+1 + (ck + ĉk)ξrk+1/rk

k

)
.

Observe that a virtual controller of the form

x∗
k+1 = −ξ

rk+1/rk

k βk = −ξ
rk+1/rk

k [n − k + 1 + ck + ĉk] ,
(3.12)

renders
V̇k ≤ −(n − k + 1)

∑k+1
j=1 |ξj |(rk+τ)/rj

+ξ
(2rn−τ)/rk−1
k (xk+1 − x∗

k+1).
This completes the inductive proof.

The inductive argument shows that (3.6) holds for k =
n + 1 with a set of virtual controllers (3.5). Hence,

u = x∗
n+1 = −ξ(rn+τ)/rn

n βn, for a constant βn > 0,(3.13)

yields V̇n ≤ −
(
ξ
2rn/r1
1 + · · · + ξ

2rn/rn
n

)
< 0, ∀x �= 0

where Vn(x1, · · · , xn) is a positive definite and proper
Lyapunov function of the form (3.7). As a result, (1.1)–
(3.13) is globally asymptotically stable.

Remark 3.1: In the case when τ is any nonnegative real
number, we are still able to design a homogenous con-
troller globally stabilizing the system (1.1) with necessary
modification to preserve the sign of function [·]ri/ri−1 .
Specifically, for any real number ri/ri−1 > 0, we define

[·]ri/ri−1 = sign(·)| · |ri/ri−1 . (3.14)

Moreover, it can be verified that the function [·]ri/ri−1

defined in (3.14) is C1. With the help of (3.14), we are
able to design the controller without requiring odd ri/ri−1.

IV. GLOBAL STABILIZATION OF (1.1) BY

HOMOGENEOUS OUTPUT FEEDBACK

In this section, we show that under Assumption 3.1, the
problem of global output feedback stabilization for system
(1.1) is solvable. This is accomplished by developing a
novel homogeneous observer which will be combined with
the homogeneous state feedback controller developed in
the preceding section. To be more specific, we will first
construct a homogeneous output feedback controller for the
nominal linear system

żi = zi+1, i = 1, · · · , n − 1, żn = v, y = z1. (4.1)

Then, based on this output feedback controller, we will
develop a scaled observer and controller to render the
system (1.1) globally asymptotically stable under the poly-
nomial growth condition (3.1).

A. Homogeneous Stabilizer of Nominal Linear System

In this subsection, we design a homogeneous output
feedback controller of degree τ for the nominal linear
system (4.1)

Theorem 4.1: There is a homogeneous output feedback
controller of degree τ rendering linear system (4.1) globally
asymptotically stable.

Proof. The construction of the homogeneous output feed-
back controller is accomplished by three steps. First, by
Theorem 3.1, a homogeneous state-feedback stabilizer is ex-
plicitly constructed. Then, we develop a novel homogeneous
observer whose construction is inspired by the one used
in [21], [22]. Our last step is to replace the unmeasurable
states with the estimates recovered from the observer. An
appropriate selection of the observer gain will render the
closed-loop system globally asymptotically stable.

For the simplicity, we also assume that ri is odd.
State Feedback Controller: For linear system (4.1), As-
sumption 3.1 is automatically satisfied since φi(·) is trivial.
Hence, by Theorem 3.1, there is a homogeneous (with re-
spect to the weight (3.2)) state feedback controller globally
stabilizing (4.1). Specifically, there exists

v∗(z) = −βnξ(rn+τ)/rn
n (4.2)

where

z∗1 = 0 ξ1 = z1 − z∗1 ,

z∗k = −ξ
rk/rk−1
k−1 βk−1 ξk = zk − z∗k, k = 2, · · · , n

(4.3)
with constants β1 > 0, · · · , βn > 0, such that

V̇n ≤ −∑n
j=1ξ

2rn/rj

j + ξ(2rn−τ)/rn−1
n (v − v∗(z)) (4.4)

where Vn is a positive definite and proper
Lyapunov function of the form Vn(z1, · · · , zn) =∑n

i=1
ri

(2rn−τ)ξ
(2rn−τ)/ri

i .
Homogeneous Observer Design: Next, we construct a
homogeneous observer inspired by the one used in [21]

η̇k = fn+k−1(z1, η2, · · · , ηk)
= −	n+k−1 [ηk + 	k−1ẑk−1]

rk/rk−1

ẑk = [ηk + 	k−1ẑk−1]
rk/rk−1 k = 2, · · · , n, ẑ1 = z1

(4.5)

with gains li > 0, 1 ≤ i ≤ n − 1 to be determined later.
Based on the estimated states, we design an output

feedback controller of the form

v(ẑ) = −βn[ẑn + βn−1[ẑn−1 + · · ·
+β2[ẑ2 + β1z

r2/r1
1 ]r3/r2 · · ·]rn/rn−1 ](rn+τ)/rn . (4.6)

For i = 2, · · · , n, we construct

Ui =
∫ z

2rn−ri
ri

i

(ηi+�i−1zi−1)

2rn−ri
ri−1

(
s

ri−1
2rn−ri − (ηi + 	i−1zi−1)

)
ds.

By construction, it can be verified that Ui is C1. As a matter
of fact, we have the following

∂Ui

∂zi
=

2rn − ri

ri
z

2rn−2ri
ri

i

(
z

ri−1
ri

i − (ηi + 	i−1zi−1)
)

∂Ui

∂ηi
= −

(
z

2rn−ri
ri

i − (ηi + 	i−1zi−1)
2rn−ri

ri−1

)
,

∂Ui

∂zi−1
= −	i−1

(
z

2rn−ri
ri

i − (ηi + 	i−1zi−1)
2rn−ri

ri−1

)
.
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Hence, the derivative of Ui along (4.1)-(4.5) is

U̇i = zi+1
2rn − ri

ri
z

2rn−2ri
ri

i

(
z

ri−1
ri

i − (ηi + 	i−1zi−1)
)

−	i−1ei

(
z

2rn−ri
ri

i − ẑ
2rn−ri

ri
i

)

−	i−1ei

(
ẑ

2rn−ri
ri

i − (ηi + 	i−1zi−1)
2rn−ri

ri−1

)
(4.7)

where ei = zi − ẑi, i = 2, · · · , n, and zn+1 = v(ẑ).
In what follows, we estimate the terms in (4.7). First, by

Lemma 2.3 (|a − b|p ≤ 2p−1|ap − bp|)

−	i−1ei

(
z

2rn−ri
ri

i − ẑ
2rn−ri

ri
i

)
≤ −	i−1e

2rn
ri

i 2
2ri−2rn

ri . (4.8)

The remaining terms in (4.7) can be estimated using the
following propositions that are proven in the Appendix.

Proposition 4.1: For i = 2, · · · , n − 1

zi+1
2rn − ri

ri
z

2rn−2ri
ri

i

(
z

ri−1
ri

i − (ηi + 	i−1zi−1)
)

≤ 1
12

(
ξ
2rn/ri−1
i−1 + ξ

2rn/ri

i + ξ
2rn/ri+1
i+1

)
+αie

2rn/ri

i + gi(	i−1)e
2rn/ri−1
i−1 (4.9)

where αi is a constant and gi is a continuous function of
	i−1 with g2(·) = 0.

Proposition 4.2: For the controller v(ẑ) obtained by sub-
stituting estimated states ẑ into (4.2), we have

v(ẑ)rn

(
z

rn−1
rn

n − (ηn + 	n−1zn−1)
)

≤ 1
8

n∑
i=1

ξ
2rn/ri

i

+ᾱ
n∑

i=2

e
2rn/ri

i + gn(	n−1)e
2rn/rn−1
n−1 , for a constant ᾱ.(4.10)

Proposition 4.3: For i = 3, · · · , n

−	i−1ei

(
ẑ

2rn−ri
ri

i − (ηi + 	i−1zi−1)
2rn−ri

ri−1

)
≤ e

2rn/rr

i

+
1
16

ξ
2rn/ri

i + ξ
2rn/ri−1
i−1 + hi(li−1)e

2rn/ri

i−1 (4.11)

where hi(li−1) is a continuous function.
With the help of the above propositions, it can be shown

that the derivative of U =
∑n

i=2 Ui

U̇ ≤ 1

2

n∑
i=1

ξ
2rn
ri

i − (�12
2r1−2rn

r1 − α2 − ᾱ − g3(�2)

−h3(�2))e
2rn
r2

2 −
n−1∑
i=3

(�i−12
2ri−2rn

ri − αi − 1 − ᾱ

−gi+1(�i) − hi+1(�i))e
2rn/ri
i − (�n−1 − 1 − ᾱ)e2

n.(4.12)

Determination of the Observer Gain 	i: Due to the fact
that states z2, · · · , zn are not measurable, the controller
v = v(ẑ) results in a redundant term ξ

(2rn−τ)/rn−1
n (v(ẑ)−

v∗(z)) in (4.4). To deal with this term, we have the
following proposition.

Proposition 4.4: There is a constant α̃ ≥ 0 such that

ξ
2rn−τ

rn
−1

n [v(ẑ) − v∗(z)] ≤ 1
4

n∑
i=1

ξ
2rn
ri

i + α̃
n∑

i=2

e
2rn
ri

i .(4.13)

Combining (4.12), (4.4) and (4.13) together yields

Ẇ ≤ −1

4

n∑
i=1

ξ
2rn
ri

i − (�12
2r1−2rn

r1 − α2 − α̃ − ᾱ − g3(�2)

−h3(�2))e
2rn
r2

2 −
n−1∑
i=3

(�i−12
2ri−2rn

ri − αi − 1 − α̃ − ᾱ

−gi+1(�i) − hi+1(�i))e
2rn
ri

i − (�n−1 − 1 − α̃ − ᾱ)e2
n (4.14)

where the Lyapunov function W = Vn + U .
Clearly, by choosing

	n−1 = 1
4 + 1 + α̃ + ᾱ, and for i = n − 1, · · · , 3

	i−1 = 2
2rn−2ri

ri

[
5
4 + αi + α̃ + ᾱ + gi+1(	i) + hi+1(	i)

]
	1 = 2

2rn−2r1
r1

[
1
4 + α2 + α̃ + ᾱ + g3(	2) + h3(	2)

]
,

(4.14) becomes

Ẇ ≤ −1
4

(
ξ
2rn/r1
1 +

∑n
j=2(ξ

2rn/rj

j + e
2rn/rj

j )
)

. (4.15)

Note that from the construction of W , it is not difficult to
verify that W is positive definite and proper with respect to

(z1, · · · , zn, η2, · · · , ηn)T =: Z. (4.16)

Similarly, from the construction of the ξi and ei, the right
hand side of (4.15) is negative definite. Therefore, the
closed-loop system is globally asymptotically stable.

Moreover, it is straightforward to verify that the closed-
loop system (4.1)-(4.5)-(4.6), which can be rewritten as the
following compact form

Ż = F (Z) = (z2, · · · , zn, v, fn+1, · · · , f2n−1)T , (4.17)

is homogeneous. In fact, choosing the dilation weight

∆ = (r1, r2, · · · , r2n−1) = (∆z, ∆η)
∆z = (1, τ + 1, · · · , (n − 1)τ + 1)
∆η = (1, τ + 1, · · · , (n − 2)τ + 1) (4.18)

it can be shown that (4.17) is homogeneous of degree τ .
In addition, W is homogeneous of degree 2rn − τ and the
right hand side of (4.15) is homogeneous of degree 2rn.

Remark 4.1: Note that the right hand side of (4.15) is
negative definite and homogenous of degree 2rn. Hence, it
can be concluded by Lemma 2.2 that there is a constant
c1 > 0 such that

∂W (Z)
∂Z F (Z) ≤ −c1‖Z‖2rn

∆ , ‖Z‖∆ =
√∑2n−1

i=1 ‖Zi‖2/ri

(4.19)

B. Global Output Feedback Stabilization for System (1.1)

With the help of the homogeneous controller and observer
established in the preceding sections, we are ready to use
the homogeneous domination approach to globally stabilize
nonlinear system (1.1) by its output feedback.
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Theorem 4.2: Under Assumption 3.1, the problem of
global output feedback stabilization of (1.1) can be solved.
Proof: Under the new coordinates zi = xi

Li−1 , i =
1, · · · , n, v = u

Ln with L > 1, the system (1.1) can be
rewritten as the following system

żi = Lzi+1 +
φi(·)
Li−1

, i = 1, · · · , n − 1

żn =
u

Ln−1
+

φn(·)
Ln−1

= Lv +
φn(·)
Ln−1

. (4.20)

Next, we construct an observer with a scaling gain L

η̇k = Lfn+k−1(z1, η2, · · · , ηk)
= −L	n+k−1 [ηk + 	k−1ẑk−1]

rk/rk−1

ẑk = [ηk + 	k−1ẑk−1]
rk/rk−1 k = 2, · · · , n, ẑ1 = z1

(4.21)

where 	i, i = 1, · · · , n − 1 are the gains selected by (4.14)
in Theorem 4.1. In addition, we design v using the same
construction of (4.6). Using the same notations (4.16) and
(4.17), the closed-loop system (4.20)-(4.21)-(4.6) can be
written as

Ż = LF (Z) + (φ1(·), φ2(·)
L

, · · · φn(·)
Ln−1

, 0 · · · , 0)T . (4.22)

Note that the F (Z) in (4.22) has the exactly same structure
as (4.17) due to the use of same gains 	i and βi. Hence,
adopting the same Lyapunov function W (Z) used in pre-
ceding subsection, it can be concluded from Remark 4.1
that

Ẇ |(4.20)−(4.21)−(4.6) ≤ −Lc1‖Z‖2rn

∆

+
∂W (Z)

∂Z (φ1(·), φ2(·)
L

, · · · φn(·)
Ln−1

, 0 · · · , 0)T . (4.23)

Under the changes of coordinates xi = Li−1zi and u =
Lnv, we deduce the following from Assumption 3.1

|φi(t, x, u)| ≤ c
∑i

l=1|Ll−1zl|
iτ+1

(l−1)τ+1 .

Due to the fact that L > 1, we can conclude that∣∣∣∣φi(t, x, u)
Li−1

∣∣∣∣ ≤ cL1− 1
(i−1)τ+1

∑i
j=1|zj |

ri+τ

rj . (4.24)

Recall that for i = 1, · · · , n−1, ∂W/∂Zi is homogeneous
of degree 2rn − τ − ri. By Lemma 2.1, we know that∣∣∣∣∂W

∂Zi

∣∣∣∣ (
|z1|

ri+τ

r1 + |z2|
ri+τ

r2 + · · · + |zi|
ri+τ

ri

)
(4.25)

is homogeneous of degree 2rn.
With (4.24) and (4.25) in mind, by Lemma 2.2 we can

find a constant ρi such that

∂W

∂Zi

φi(·)
Li−1

≤ ρiL
1− 1

(i−1)τ+1 ‖Z‖2rn

∆ . (4.26)

Substituting (4.26) into (4.23) yields

Ẇ ≤ −L(c1 −
∑n

i=1ρiL
− 1

(i−1)τ+1 )‖Z‖2rn

∆ . (4.27)

Apparently, when L is large enough the right hand side of
the (4.27) is negative definite. Consequently, the closed-loop
system is globally asymptotically stable.

The homogeneous domination approach is a systematic
design method and provides us a new perspective to deal
with nonlinear output feedback stabilization. With the help
of Theorem 4.2, we are able to provide a systematic design
method for the global output feedback stabilization of
uncertain nonlinear systems with higher-order unmeasur-
able states, which was previously considered to be almost
impossible to be globally stabilizable via output feedback.
For instance, the motivating example (1.2) now can be
globally stabilized via output feedback since its higher-
order nonlinearities satisfy the growth condition (3.1). As
a matter of fact, by choosing τ = 2, it can be verified that
|d(t)x3 ln(1 + x2

3)| ≤ c1|x3|7/5 and |d(t)x3
2 + x2

2 sin x4| ≤
c2(|x2|9/3 + |x4|9/7).

V. EXTENSIONS

In this section, we show that the homogeneous domina-
tion approach can be further extended to solve the global
output feedback stabilization problem of more general non-
linear systems than those discussed in Section IV.

A. Non-Triangular Systems

In this subsection, we consider the problem of global
output feedback stabilization of a more general class of
nonlinear systems which are not necessarily bounded by
a triangular form.

Assumption 5.1: For i = 1, · · · , n, there is a constant
µi > 0 such that∣∣∣∣φi(t, x, u)

Li−1

∣∣∣∣ ≤ cL1−µi

(
n∑

l=1

|zl|
iτ+1

(i−1)τ+1 + |v| iτ+1
nτ+1

)
, (5.1)

where xk = Lk−1zk, u = Lnv and L ≥ 1 is an arbitrary
real number.

By the relation (4.24), it is obvious that Assumption
5.1 includes Assumption 3.1 as its specifical case. The
following theorem is a more general result on the global
output feedback stabilization of the non-triangular systems.

Theorem 5.1: Under Assumption 5.1, the problem of
global output feedback stabilization of non-triangular sys-
tem (1.1) can be solved by a homogeneous output feedback
controller of the form (4.21)-(4.6).
Proof. We use the exactly same observer (4.21) and the
controller (4.6). Although the nonlinear function is not in
the triangular form, Assumption 5.1 will directly lead to
relation (4.26).

Example 5.1: Consider a non-triangular system

ẋ1 = x2, ẋ2 = x3 + x2 ln(1 + x2
4)

ẋ3 = x4, ẋ4 = u + d(t)x3
2, y = x1, (5.2)

where d(t) is a bounded disturbance. Apparently, φ4(·)
satisfies Assumption 3.1 which is a special case of As-
sumption 5.1. However, φ2(x2, x4) = x2 ln(1 + x2

4) cannot
be bounded by a lower-triangular function and therefore
doesn’t satisfy Assumption 3.1. Hence, Theorem 4.2 is
inapplicable to (5.2). On the other hand, it can be verified
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that there is a constant c̄ such that |x2 ln(1 + x2
4)| ≤

c̄|x2x
2/7
4 |. Then, letting x2 = Lz2, x4 = L3z4 we have

L−1 |φ2(x2, x4)| ≤ c̄L1−1/7
(
|z2|5/3 + |z4|5/7

)
,

which implies that Assumption 5.1 holds. Therefore, by
Theorem 5.1, there is an output feedback controller globally
stabilizing the system (5.2).

B. Nonlinear Systems without Controllable Linearization

The homogeneous domination approach can also be ex-
tended to nonlinear systems without controllable/observable
linearization. One interesting new result achieved in this
subsection is based on a recent result on the output feedback
stabilization of a chain of power integrators [24]. Partic-
ularly, we consider a class of nonlinear systems without
controllable/observable linearization.

ẋi = xp
i+1 + φi(t, x, u), i = 1, · · · , n − 1

ẋn = u + φn(t, x, u), y = x1, (5.3)

where p ≥ 1 is an odd real number.
In this paper, we show that the homogeneous domination

approach allows us to achieve, by using a relatively simpler
design procedure, the global output feedback stabilization
of (5.3) under a weaker condition as follows.

Assumption 5.2: There are constants c ≥ 0 and µi > 0,
i = 1, · · · , n such that

L
− 1+p+···+pi−2

pi−1 |φi(t, x, u)| ≤ L1−µic(
∑n

l=1|zl|p + |v|)
where x1 = z1, xi = ziL

(1+p+···+pi−2)/pi−1
, i =

2, · · · , n, u = vL(1+p+···+pn−1)/pn−1
for L ≥ 1.

Theorem 5.2: Under Assumption 5.2, there is an output
feedback controller of the form
˙̂z1 = L [ẑp

2 + 	1(x
p
1 − ẑp

1)]
...

˙̂zn−1 = L [ẑp
n + 	n−1 · · · 	1(xp

1 − ẑp
1)]

˙̂zn = L [− (bnẑn + · · · + b1ẑ1)
p + 	n · · · 	1(xp

1 − ẑp
1)]

u = −L(1+p+···+pn−1)/pn−1
[bnẑn + · · · + b2ẑ2 + b1ẑ1]

p

globally stabilizing (5.3).
The proof of Theorem 5.2 is very similar to the proofs

used in the preceding sections and hence is omitted.
Example 5.2: Consider a high-order nonlinear system

ẋ1 = x3
2 + d(t)x1x2x3, ẋ2 = x3

3 + x3
2 sin x2

ẋ3 = u, y = x1, (5.4)

where |d(t)| ≤ 1 is a bounded disturbance. Apparently, even
when d(t) is known, φ1(t, x1, x2, x3) doesn’t satisfy condi-
tions in [24] due to the non-triangular structure. On the other
hand, by choosing z1 = x1, z2 = x2/L1/3, z3 = x3/L4/9,
it can be easily verified that |φ1(·)| ≤ L1−2/9|z1z2z3| ≤
L1−2/9

(|z1|3 + |z2|3 + |z3|3
)
. Similarly, L−1/3|φ2(x2)| ≤

L−1/3|x3
2| = L1−1/3|z2|3. Therefore, Assumption 5.2 holds

and there exists a global output feedback stabilizer for (5.4).

APPENDIX

In this appendix, we collect some technical details of the
proofs. Throughout the appendix we use a generic constant
c which stands for any finite constant value and may be
implicitly changed in different places. Nevertheless, the
constant c is always independent of 	i.
Proofs of Proposition 3.1: By definition of x∗

k, it can be
shown that for l = 1, · · · , k − 1

∂x∗
k

∂xl
ẋl = cξ

τ/rk−1
k−1 · · · ξτ/rl

l (xl+1 + φl(·)) .

This, together with (3.10)∣∣∣∣∂x∗
k

∂xl
ẋl

∣∣∣∣ ≤ c|ξτ/rk−1
k−1 · · · ξτ/rl

l |∑l+1
j=1 |ξj |(rl+τ)/rj

By Young’s Inequality and the fact that (k−l)τ+rl = rk,∣∣∣∣∂x∗
k

∂xl
ẋl

∣∣∣∣ ≤ c
l+1∑
j=1

|ξj |(rk+τ)/rj , for l = 1, · · · , k − 1. (A.1)

Clearly, Proposition 3.1 follows immediately from (A.1).
Proof of Proposition 4.1: By the definition of ẑi, it can be
shown that

zi+1
2rn − ri

ri
z

2rn−2ri
ri

i

(
z

ri−1
ri

i − (ηi + �i−1zi−1)

)

= czi+1z
2rn−2ri

ri
i

[
z

ri−1
ri

i − [zi − ei]
ri−1

ri − �i−1ei−1

]
(A.2)

Note that ri−1/ri ≤ 1. By (2.5) with p = ri/ri−1∣∣∣∣z
ri−1

ri
i − (zi − ei)

ri−1
ri

∣∣∣∣ ≤ 21− ri−1
ri |ei|

ri−1
ri . (A.3)

On the other hand,

|zi| ≤ |ξi|+βi−1|ξi−1|ri/ri−1 , |zi+1| ≤ |ξi+1|+βi|ξi|ri+1/ri

With these in mind, we have

(A.2) ≤ c

[
|ξi−1|

2rn−ri−1
ri−1 + |ξi|

2rn−ri−1
ri + |ξi+1|

2rn−ri−1
ri+1

]

×
[
c|ei|

ri−1
ri + 	i−1|ei−1|

]
.

Applying Young’s Inequality to each terms in the above
relation will lead to (4.9). In the case when i = 2, e1 = 0
since ẑ1 := z1. Hence, we can simply set g2 = 0.
Proof of Proposition 4.2: Similar to (A.2) and (A.3),

v(ẑ)rn

(
z

rn−1
rn

n − (ηn + 	n−1zn−1)
)

≤ c|v(ẑ)|
(

2
1−rn−1

rn |en|
rn−1

rn + 	n−1|en−1|
)

.(A.4)

By the homogeneity of v,

|v(ẑ)| ≤ c ‖ẑ‖rn+τ
∆z

≤ c ‖z‖rn+τ
∆z

+ c ‖e‖rn+τ
∆z

(A.5)

where ‖ẑ‖∆z
=

(∑n
i=1 |ẑi|2/ri

)1/2
, ∆z = (r1, · · · , rn).
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In addition, by the definition of the homogeneous norm,

‖z‖∆z
=

(
|ξ1|2/r1 +

n∑
i=2

|ξi − βi−1ξ
ri/ri−1
i−1 |2/ri

)1/2

≤ c
(∑n

i=1|ξi|2/ri

)1/2

= c‖ξ‖∆z
. (A.6)

This, together with (A.5), implies that

|v(ẑ)| ≤ c ‖ξ‖rn+τ
∆z

+ c ‖e‖rn+τ
∆z

. (A.7)

Applying (A.7) to (A.4) yields,

v(ẑ)rn

(
z

rn−1
rn

n − (ηn + 	n−1zn−1)
)

≤ c
(
‖ξ‖rn+τ

∆z
+ ‖e‖rn+τ

∆z

)(
c|en|

rn−1
rn + 	n−1|en−1|

)
≤ 1

8

n∑
i=1

ξ
2rn/ri

i + ᾱ
n∑

i=1

e
2rn/ri

i + gn(	n−1)e
2rn/rn−1
n−1

for a constant ᾱ > 0. The last relation is obtained by
applying Lemma 2.4 to each individual terms in the above
inequality.
Proof of Proposition 4.3: By definition of ẑi we have

−�i−1ei

(
ẑ

2rn−ri
ri

i − (ηi + �i−1zi−1)
2rn−ri

ri−1

)
≤ �i−1|ei| ×∣∣∣∣(ηi + �i−1ẑi−1)

2rn−ri
ri−1 − (ηi + �i−1ẑi−1 + �i−1ei−1)

2rn−ri
ri−1

∣∣∣∣
By Lemma 2.5 (p = 2rn−ri

ri
> 1), we have

−�i−1ei

(
ẑ

2rn−ri
ri

i − (ηi + �i−1zi−1)
2rn−ri

ri−1

)
≤ c�2i−1|eiei−1|

×
∣∣∣∣z

2rn−ri−ri−1
ri

i + e

2rn−ri−ri−1
ri

i + [�i−1ei−1]
2rn−ri

ri−1
−1

∣∣∣∣
≤ c|ei−1|�2i−1|ei|

∣∣∣∣∣ξ
2rn−ri−ri−1

ri
i + cξ

2rn−ri−ri−1
ri−1

i−1

+e

2rn−ri−ri−1
ri

i + [�i−1ei−1]
2rn−ri

ri−1
−1

∣∣∣∣ .

By using Young’s inequality to each terms in above
relation, one can prove

−	i−1ei

(
ẑ

2rn−ri
ri

i − (ηi + 	i−1zi−1)
2rn−ri

ri−1

)
≤ e

2rn/rr

i

+
1
16

(
ξ
2rn/ri

i + ξ
2rn/ri−1
i−1

)
+ hi(li−1)e

2rn/ri

i−1

for a polynomial function hi(	i−1).
Proof of Proposition 4.4: Since v is C1, we expand the
function as

v(ẑ) − v∗(z) =
n∑

i=2

ei

∫ 1

0

∂v(X)
∂Xi

∣∣∣∣
X=z−λe

dλ. (A.8)

By the homogeneity of v∗(z) whose degree is rn + τ ,
∂v(X)
∂Xi

is homogeneous of degree rn+τ−ri. This, together

with (A.6), yields

∂v(X)
∂Xi

|X=z−λe ≤ c‖ξ‖rn+τ−ri

∆z
+ c‖e‖rn+τ−ri

∆z
.

Therefore, by Young’s inequality

ξ
2rn−τ

rn
−1

n (v(ẑ) − v∗(z)) ≤ c|ξ(2rn−τ)/rn−1
n |∑n

i=2|ei|

× (‖ξ‖rn+τ−ri

∆z
+ ‖e‖rn+τ−ri

∆z

) ≤
n∑

i=1

ξ
2rn
ri

i

4
+ α̃

n∑
i=2

e
2rn
ri

i

for a constant α̃ ≥ 0.
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