
Mathematical Programming manuscript No.
(will be inserted by the editor)

A Homogeneous Interior-Point Algorithm for
Nonsymmetric Convex Conic Optimization

Anders Skajaa · Yinyu Ye

Received: date / Accepted: date

Abstract A homogeneous infeasible-start interior-point algorithm for solving
nonsymmetric convex conic optimization problems is presented. Starting each
iteration from the vicinity of the central path, the method steps in the ap-
proximate tangent direction and then applies a correction phase to locate the
next well-centered primal-dual point. Features of the algorithm include that it
makes use only of the primal barrier function, that it is able to detect infeasi-
bilities in the problem and that no phase-I method is needed. We prove con-
vergence to ε-accuracy in O(

√
ν log (1/ε)) iterations. To improve performance,

the algorithm employs a new Runge-Kutta type second order search direction
suitable for the general nonsymmetric conic problem. Moreover, quasi-Newton
updating is used to reduce the number of factorizations needed, implemented
so that data sparsity can still be exploited. Extensive and promising com-
putational results are presented for the p-cone problem, the facility location
problem, entropy problems and geometric programs; all formulated as non-
symmetric convex conic optimization problems.

Keywords Convex Optimization · Nonsymmetric Conic Optimization ·
Homogeneous Self-dual Model · Infeasible-start · Interior-point Algorithm

Anders Skajaa
Department of Informatics and Mathematical Modelling
Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
E-mail: andsk@imm.dtu.dk

Yinyu Ye
Department of Management Science and Engineering
Stanford University, CA 94305-4121, USA.
E-mail: yinyu-ye@stanford.edu

2 Anders Skajaa and Yinyu Ye

1 Introduction

This paper is concerned with conic optimization problem pairs of the form

Primal

minx c
Tx

s.t. Ax = b
x ∈ K

Dual

maxy,s b
T y

s.t. AT y + s = c
s ∈ K∗, y ∈ Rm

(pd)

where x, c ∈ Rn, A ∈ Rm×n, b ∈ Rm, K ⊂ Rn is a proper cone (i.e. it is convex,
pointed, closed and has nonempty interior) and K∗ = {s ∈ Rn : sTx ≥ 0, ∀x ∈
K} is its dual cone, which is also proper. We are further assuming that m ≤ n
and that rank(A) = m.

If K is the positive orthant Rn+, then (pd) is a linear programming (lp)
problem in standard form and its dual. Solution methods for lp have been
studied for long in different settings and until the emergence of interior-point
methods (ipms), the most prominent method was the simplex method, devel-
oped by Dantzig in the 1940s. The introduction of ipms is usually ascribed to
Karmarkar [10] in 1984 and since then, research in the area has been extensive.

In [17], it was studied how to extend the ideas of ipms to the nonlinear
case. If K admits a self-scaled barrier function F : K◦ 7→ R, problems of the
type (pd) are efficiently solvable using long-step symmetric primal-dual ipms
[18,19]. The practical efficiency of these algorithms has been widely verified,
see e.g. [1,2,25].

In [9], Güler demonstrated that self-scaled cones are identical to those that
are symmetric; a class that encompasses just five cones of which only three
are interesting for optimization. These cones are the positive orthant (leading
to lp), the Lorentz cone (leading to quadratic cone programming which gen-
eralizes quadratic programming and second order cone programming) and the
positive semidefinite cone (leading to semidefinite programming).

Although these three self-scaled cones allow for modelling of a great variety
of constraints [4], many important types of constraints do not fall in this class.
Examples include entropy type constraints: x log x ≤ t, p-cone constraints:
‖x‖p ≤ t, and constraints arising in geometric programming [5]. Some of these
constraints can be modelled using self-scaled cones, but this usually requires
the introduction of many extra variables and constraints [4].

Theoretically, one can solve problems involving any convex constraint using
a purely primal short-step barrier method and still obtain an algorithm with
the best-known worst-case computational complexity. Such an algorithm is,
however, known to be practically inefficient compared to a long-step primal-
dual ipm. Other approaches are also possible and special algorithms for certain
sub-classes of problems exist [27,30]. An approach known to be effective for
general convex problems is to solve the monotone complementarity problem,
see for example [3].

It may be beneficial to model nonsymmetric constraints more directly using
non-self-scaled cones (nonsymmetric cones) such as the power cone or the ex-
ponential cone. This approach was employed by Nesterov in [16]. He proposed
a method that mimics the ideas of a long-step primal-dual ipm for symmetric

A Homogeneous Nonsymmetric IPM 3

cones by splitting each iteration into two phases. First, a pure primal correc-
tion phase is used to find a primal central point x and a scaling point w. These
points are used to compute a feasible dual point s such that an exact scaling
relation is satisfied: s = ∇2F (w)x. Second, a truly symmetric primal-dual step
in the approximate tangent direction is taken (a prediction step). This algo-
rithm, however, assumes the existence of a strictly feasible primal-dual point
and requires a strictly feasible initial primal point to start.

If knowledge of both the primal and the dual barrier function, their gradi-
ents and Hessians is assumed, truly primal-dual symmetric search directions
can be constructed. This approach was used in [20] to solve a homogenous
model of the general convex conic problem (pd). This leads to a method with
some desirable properties but at the same time two crucial disadvantages:
Firstly, the linear systems that must be solved in each iteration are twice
the size compared to algorithms for self-scaled cones therefore increasing to-
tal computation time by a factor of 23 = 8 for problems of equal dimension.
Secondly, it can be difficult or impossible to find an expression for the dual
barrier and its derivatives.

Building on the algorithms of [16] and [20], we present in this paper an
infeasible-start primal-dual interior-point algorithm for a homogeneous model
of (pd). This approach has proven successful for self-scaled cones [29,2,24]
because it implies several desirable properties, among which are the ability
to detect infeasibility in the problem pair and the ease of finding a suitable
starting point, eliminating the need for a phase-I method. Unlike the algorithm
in [20], our algorithm uses only the primal barrier function and therefore our
linear systems are no larger than those appearing in ipms for self-scaled cones.

In addition to the advantages induced by using a homogeneous model, we
suggest the following improvements to reduce computational load. The Meho-
tra second order correction [12] is known to significantly improve practical
performance of ipms for linear and quadratic conic problems [12,2,25]. With
the same goal in mind, we suggest a new way to compute a search direction
containing second order information for the general (possibly non-self-scaled)
conic problem. This search direction is inspired by Runge-Kutta methods for
ordinary differential equations. Further, we employ bfgs-updating of the Hes-
sian of the barrier function to reduce the number of full matrix factorizations
needed. It is shown how this can be done in a way retaining the possibility to
exploit sparsity in A.

For all problems that we consider, K will have the form K = K1×· · ·×KK
where each Kj is either a three-dimensional proper cone or R+. We assume that
a logarithmically homogeneous self-concordant barrier function F for K, its
gradient∇F and its Hessian∇2F are available and can be efficiently computed
for all x in the interior of K. Such a barrier function has many useful properties,
some of which we have listed in appendix A.

This paper is organized in two main parts. In the first, which consists
of Sections 2 through 4, we discuss theoretical issues, present our algorithm
and prove that the method converges in O(

√
ν log (1/ε)) iterations. We state

all theoretical results in the main text, emphasizing asymptotic complexity

4 Anders Skajaa and Yinyu Ye

behavior, but divert all proofs to the appendix to keep the main text clean
and free of technical details. Sections 5 and 6 make up the second part. Here, we
present and discuss details related to the implementation of our algorithm. We
introduce heuristic methods to increase convergence speed and then present
an extensive series of computational results substantiating the effectiveness
and practical applicability of our algorithm. We finally draw conclusions in
Section 7.

2 Homogeneous and self-dual model

If there exist x ∈ K◦ such that Ax = b and s ∈ (K∗)◦, y ∈ Rm such that
AT y+ s = c, then strong duality holds for the primal-dual problem pair (pd).
In this case, any primal optimal x and dual optimal (y, s) must satisfy

Ax− b = 0
−AT y − s+ c = 0

xT s = 0
x ∈ K, s ∈ K∗, y ∈ Rm

(1)

We propose solving a homogeneous model of problems (pd). We therefore
introduce two extra non-negative scalar variables τ and κ and seek to find
x, τ, y, s, κ such that

minimize 0
subject to Ax −bτ = 0

−AT y +cτ −s = 0
bT y −cTx −κ = 0

(x, τ) ∈ K × R+, (s, κ) ∈ K∗ × R+, y ∈ Rm

 (hsd)

The motivation for doing this is summarized in the following two lemmas.

Lemma 1 Assume (x, τ, y, s, κ) solves (hsd). Then

1. (x, τ, y, s, κ) is complementary. That is: xT s+ τκ = 0.
2. If τ > 0 then (x, y, s)/τ is optimal for (pd).
3. If κ > 0 then one or both of bT y > 0 and cTx < 0 hold. If the first

holds, then (pd) is primal-infeasible. If the second holds, then (pd) is dual-
infeasible.

Proof See appendix B.1.

Lemma 1 shows that any solution to (hsd) with τ + κ > 0 provides either
an optimal solution to our original problems (pd) or a certificate of infeasibility
of (one of) the original problems. See [11] for further details.

The lemma below shows that there is another desirable feature of the ho-
mogeneous model (hsd):

Lemma 2 The optimization problem (hsd) is self-dual.

A Homogeneous Nonsymmetric IPM 5

Proof See appendix B.2.

Lemma 2 implies that we can apply a primal-dual interior-point algorithm to
the problem (hsd) without doubling the dimension of the problem — i.e. there
is no need to handle and store variables from the dual of (hsd) since they are
identical to those of the primal.

The advantages of solving the homogeneous and self-dual model (hsd)
therefore include

– It solves the original primal-dual problem pair (pd) without assuming any-
thing concerning the existence of optimal or feasible solutions.

– The dimension of the problem is not essentially larger than that of the
original primal-dual pair (pd).

– If the original primal-dual pair (pd) is infeasible, a certificate of this infea-
sibility is produced.

– As we shall see, the algorithm to solve (hsd) can be initialized in a point
not necessarily feasible w.r.t. the linear constraints of (hsd).

3 Nonsymmetric path following

Path following methods are usually motivated by considering a family of bar-
rier problems parametrized by µ > 0:

min
x

cTx+ µF (x), s.t. Ax = b, x ∈ K◦. (2)

The Karush-Kuhn-Tucker (KKT) conditions of this problem are: If x ∈ K◦ is
optimal for (2), then there exist s ∈ (K∗)◦ and y ∈ Rm so that

Ax− b = 0
−AT y − s+ c = 0
s+ µ∇F (x) = 0

x ∈ K, s ∈ K∗, y ∈ Rm
(3)

The points that satisfy (3) are known as the primal-dual central path. Let us
denote a point in this set by u(µ) = (x(µ), y(µ), s(µ)). It is easy to see that
they satisfy cTx − bT y = xT s = νµ. The idea of a path-following method is
to loosely track u(µ) towards u(0), thus obtaining a point eventually being
approximately optimal for (pd), compare (3) to (1).

Experience shows that it is most efficient to take steps that are combina-
tions of two directions: 1. The direction approximately tangent to the central
path (the predictor direction), that is, the direction u′(µ) and 2. the direction
pointing towards the central path as the current iterate may not be exactly on
the central path. This correction direction is the Newton step for the equations
(3), we will denote it p(µ). The reason for using this combination is that along
u′, the function xT s decreases fast thus bringing the iterate closer to optimal-
ity. In order to maintain centrality, i.e. not drift to far away from u(µ), the
correction direction is included as a component in the final search direction.

6 Anders Skajaa and Yinyu Ye

If the iterate is not exactly on the central path, the search direction u′(µ)
can still be computed so that it is symmetric. Here symmetric refers to the
search direction (and thus the iterates) being the same regardless of whether
the roles of the primal and dual problems in (pd) are interchanged [26]. Thus
no particular emphasis is put on either the primal or the dual problem, which
is a desireable feature of an algorithm. If K is self-scaled, a symmetric u′(µ)
can be computed using the known scaling point [18,19]. If the cone is not self-
scaled (nonsymmetric), a symmetric u′(µ) can be computed by using both the
Hessian of the primal and the dual barrier. As discussed in the introduction,
this, however, leads to an algorithm that must solve linear systems double the
size of those occuring in a symmetric ipm. If the iterate is sufficiently close
to the central path, Nesterov showed in [16] that a scaling point determined
during a centering (correction) procedure can be used to compute a symmetric
search direction u′(µ).

To present this conceptual algorithm in more detail, we need to introduce
a measure of how close an iterate is to the central path. For this purpose, [16]
uses the following proximity measure:

Ψ(x, y, s) = F (x) + F ∗(s) + ν ln
xT s

ν
+ ν

which is ≥ 0 and = 0 only if (x, y, s) is on the central path. Here, F ∗ denotes
the dual barrier of F , see appendix A for properties of these two functions.

The general algorithm can then be outlined as below. Assume we start
with an initial point (x, y, s) ∈ K × Rm ×K∗ with Ψ(x, y, s) < η. Then

Repeat

1. (x, y, s) := (x, y, s) + αu′(µ)
µ = xT s/µ.

2. while Ψ(x, y, s) > η
(x, y, s) := (x, y, s) + ᾱp(µ)

end while

where α in step 1 is chosen so that Ψ(x, y, s) < β after step 1 and ᾱ is chosen
to be λ/(1 + λ), where λ is the Newton decrement.

By computing a symmetric u′(µ) using both the Hessian of the primal and
the dual barriers, [20] proves that with appropriate choices of η, β and α, the
above algorithm converges in O(

√
ν log (1/ε)) iterations when applied to the

homogeneous model (hsd). By computing u′(µ) using the scaling point found
iteratively during step 2, [16] proves the same worst-case complexity estimate
when the above algorithm is applied directly to (pd), i.e. not a homogenized
version. It uses only the Hessian of the primal barrier thus not suffering from
much inflated linear systems. However, a two serious practical drawbacks of
the latter method are that it assumes that the original problems are strictly

A Homogeneous Nonsymmetric IPM 7

feasible and that it requires a strictly feasible initial primal point to start
therefore needing a phase-I method.

Notice that we could, with an appropriate redefinition of A, b, c and K also
directly write (hsd) as a purely primal problem similar to the primal part of
(pd) and then apply the algorithm from [16]. This would again result in an
algorithm with the standard O(

√
ν log (1/ε)) iteration complexity. However,

such a redefinition would also result in an algorithm using the Hessians of the
primal and the dual barrier again making such an algorithm impractical.

Our goal in this paper is to construct an efficient algorithm utilizing the
main ideas of [16] and [20], but adapted to be efficient for the homogeneous
model (hsd) without using the Hessians of the primal and the dual barrier.

We are also aware of the apparent gap between ipm complexity theory
and state-of-the-art implementations, see e.g. the introduction of [16] for a
discussion about this issue in the case of convex conic programming. In the
realm of interior-point algorithms, it is often the case in practice that methods
with inferior complexity estimates convincingly outperform algorithms with
best-known complexity estimates. See e.g. [1,25] for implementations of such
fast algorithms for the case of self-scaled cones. Furthermore, in industry-
standard software, heuristic techniques to speed up convergence rates are often
employed, although they invalidate the proofs of convergence in the purely
theoretical sense. A standard example of such a practice is pdipms for linear
programming in which it is common to use different primal and dual step
lengths. Since a similar discrepancy between theory and practice might be
present for the case of a nonsymmetric cone, we expect to be able to improve
the performance of our algorithm by employing techniques similar to those
used to accelerate the fastest pdipms for self-scaled problems.

4 Homogeneous algorithm

4.1 Notation

To simplify notation, we will make the following redefinitions:

New notation Old meaning New notation Old meaning

x (x, τ) K K × R+

s (s, κ) K∗ K∗ × R+

F (x) F (x)− log τ ν ν + 1
F ∗(s) F ∗(s)− log κ

We will aggregate all variables as z = (x, y, s) ∈ F where F := K × Rm ×K∗
and define the complementarity gap of z by µ(z) := (xT s)/ν. We will write
gx = ∇F (x) and Hx = ∇2F (x) and make use of the following local norms:

‖u‖x = ‖H1/2
x u‖, ‖s‖∗x = ‖H−1/2

x s‖

8 Anders Skajaa and Yinyu Ye

where ‖ · ‖ is a norm. See also appendix A for more properties of these local
norms. In our new notation, we can write the homogeneous model simply as

G(y, x)− (0, s) = 0, z ∈ F (4)

where G is the skew-symmetric matrix

G :=

 0 A −b
−AT 0 c
bT −cT 0

 (5)

4.2 The central path in the homogeneous model

First, let us define

ψ(x, s, t) := s+ tgx
(18)
= s− tHxx. (6)

We initialize our algorithm in z0 ∈ F . Denote µ0 = µ(z0). Parametrized by
γ ∈ [0, 1], we define the central path of the homogenized problem (4) by the
points zγ that satisfy

G(yγ , xγ)− (0, sγ) = γ
(
G(y0, x0)− (0, s0)

)
(7)

ψ(xγ , sγ , γµ
0) = 0 (8)

In the homogeneous model, the central path connects the point z0 (at γ = 1)
with a solution of the problem (4) as γ → 0. Therefore, the main idea of the
algorithm, as in other path-following algorithms, is to approximately track the
central path towards a solution.

For a fixed parameter η ∈ [0, 1] to be chosen later, we will be using the set

N (η) = {z = (x, y, s) ∈ F : ‖ψ(x, s, µ(z))‖∗x ≤ ηµ(z)} (9)

which, in view of (8), can be considered a measure of the proximity to the
feasible central path — that is, the path that would arise from using z0 in
(7)–(8) such that G(y0, x0)− (0, s0) = 0.

In the case of lp with the usual barrier F (x) = −
∑
j log xj , we remark that

equation (8) is the same as the familiar Xs = γµ0e where X = diag(x) and
e = (1, . . . , 1). Similarly, the definition of N (η) in (9) reduces to ‖Xs− µe‖ ≤
ηµ(z).

4.3 Prediction

The direction z′ tangent to the central path (also called the predictor direction)
is determined by differentiating (7)–(8) with respect to γ. For equation (8),
this yields

s′γ = −µ0gxγ − γµ0Hxγx
′
γ

A Homogeneous Nonsymmetric IPM 9

and by (8), we have γ−1sγ = −µ0gxγ , which we insert and get

s′γ + γµ0Hxγx
′
γ = γ−1sγ .

The same operation on (7) gives the equations defining the direction z′:

G(y′, x′)− (0, s′) = − (G(y, x)− (0, s)) (10)

s′ + µ(z)Hxx
′ = −s (11)

where we have dropped the argument γ for readability and put µ(z)/µ0 = γ.
Notice also that we have rescaled the equations by −γ to make the notation
consistent with the general ipm litterature. This does not change the direction
z′, only its magnitude. Determining the direction z′ thus amounts to solving
the system of linear equations (10)–(11).

In the rest of this section, we will use the notation

z+ = (x+, y+, s+) = (x+ αx′, y + αy′, s+ αs′) = z + αz′

ψ = ψ(x, s, µ(z))
ψ+ = ψ(x+, s+, µ(z+))
z′ = solution of (10)–(11).

The next lemma explains how the linear residuals and the complementarity
gap are reduced along the predictor direction.

Lemma 3 The direction z′ satisfies

G(y+, x+)− (0, s+) = (1− α) (G(y, x)− (0, s))

µ(z+) = (1− α)µ(z) + (1− α)αν−1ψTx′

Proof See appendix C.1.

The first relation shows that the linear residuals are reduced by the factor 1−α
along the direction z′. The complimentarity gap µ is reduced in a slightly more
complicated way depending on the vector ψ. If z is precisely on the central
path, ψ = 0, so µ(z+) = (1 − α)µ(z) and also the complementarity gap is
reduced by the factor 1−α. As we shall see, we can, similarly to other interior-
point algorithms, choose α = Ω(1/

√
ν) so that µ(z+) ≤ (1 − Ω(1/

√
ν))µ(z).

Here, we use the “big-Ω”-notation meaning that α is asymptotically bounded
below by 1/

√
ν times a positive (possibly small) constant as ν →∞.

Lemma 4 Assume z ∈ N (η). Then we can choose α = Ω(1/
√
ν) so that

x+ ∈ K and s+ ∈ K∗

Proof See appendix C.3.

Lemma 5 Assume z ∈ N (η). If η ≤ 1/6, then we can choose α = Ω(1/
√
ν)

so that

z+ ∈ N (2η)

Proof See appendix C.4.

10 Anders Skajaa and Yinyu Ye

Algorithm 1 Nonsymmetric Predictor-Corrector Algorithm
Input: Barrier function F , η ≤ 1/6, and initial point z ∈ F ∩N (η).
ᾱ := 1/84
Repeat

Set µ := µ(z)
Stopping

If stopping criteria satisfied: terminate.
Prediction

Solve (10)–(11) for z′

Choose largest α so that z + αz′ ∈ F ∩N (2η)
Set z := z + αz′ and µ = µ(z).

Correction
Solve (13)–(14) for z̄
Set z := z + ᾱz̄
Solve (13)–(14) for z̄
Set z := z + ᾱz̄

End

4.4 Correction phase

Given a point z = (x, y, s) ∈ N (2η), the goal of the correction phase is to
find a new point z+ = (x+, y+, s+) which is close to the central path. That
is, we want to find z+ so that ‖ψ(x+, s+, µ(z))‖∗x ≤ ηµ(z). At the same time,
we would like that the linear residuals remain unchanged. To achieve this, we
apply Newton’s method to the equation

ψ(x, s, µ(z+)) = 0 (12)

G(y, x)− (0, s) = G(y+, x+)− (0, s+)

The Newton step (x̄, ȳ, s̄) for these of equations is

G(ȳ, x̄)− (0, s̄) = 0 (13)

s̄− µ(z)Hxx̄ = −ψ(x, s, µ) (14)

We then apply

z := z + ᾱz̄ (15)

recursively until ‖ψ(x, s, µ(z+))‖ ≤ ηµ(z+). The following Lemma shows that
this process terminates quickly.

Lemma 6 If η ≤ 1/6, then the correction process (15) terminates in at most
two steps.

Proof See appendix D.

A Homogeneous Nonsymmetric IPM 11

Algorithm 2 Aggresive step implementation
Input: Barrier function F , 0 < η ≤ β < 1, and initial point z ∈ F ∩N (η).

Repeat
Set µ := µ(z)
Stopping

If stopping criteria satisfied: terminate.
Prediction

Solve (10)–(11) for z′

Choose largest α so that z + αz′ ∈ F ∩N (β)
Set z := z + αz′ and µ = µ(z).

Correction
Repeat

Solve (13)–(14) for z̄
Choose ᾱ to approximately minimize ‖ψ‖∗x along z̄
Set z := z + ᾱz̄

Until z ∈ F ∩N (η).
End

4.5 Complexity of algorithm

From (12), we see that the linear residuals do not change during the correction
phase. We can now gather the pieces and prove the following theorem.

Theorem 1 Algorithm 1 terminates with a point z = (x, y, s) that satisfies

µ(z) ≤ εµ(z0) and ‖G(y, x)− (0, s)‖ ≤ ε‖G(y0, x0)− (0, s0)‖

in no more than O (
√
ν log (1/ε)) iterations.

Proof See appendix E.

We remark that we have emphasized only the asymptotic analysis. The tech-
nical details can be found in the proofs in the appendix. In several places,
it may be possible to improve the constants in the leading terms but as the
above analysis serves only to demonstrate asymptotic worst-case behavior,
this is of minor importance. As discussed in the introduction, the gap between
worst-case complexity analysis and actual performace of interior-point meth-
ods is often significant. In order for an interior-point method to be practical
and competitive, the implementation must deviate somewhat from the pure
theoretical algorithm. In the next section, we describe how such an efficient
algorithm can be implemented.

5 Implementation

Our implementation is outlined in Algorithm 2. As is common practice in im-
plementations of interior-point methods, we allow for a much longer prediction
step, for example β ≥ 0.80. This leads to faster convergence once we get close
to the optimal point. Indeed we do observe what appears to be superlinear
convergence in this region.

12 Anders Skajaa and Yinyu Ye

It should be noted, however, that we can no longer be certain that two
correction steps will be enough to reach a sufficiently centered point. Therefore,
we continue taking correction steps until the centrality condition ‖ψ‖∗x ≤ ηµ
is satisfied. As the computational experiments later show, for the problems
we have solved, rarely more than one or two correction steps are needed. We
can further reduce the cost of the correction phase by using quasi-Newton
updating as we explain in the next section.

5.1 Quasi-Newton updating in the correction phase

Solving either for a prediction or a correction step requires the factorization
of the sparse n × n matrix Hx and of the possibly sparse m × m matrix
Q = AH−1

x AT . To reduce the total number of factorizations needed in the
correction phase, we suggest taking J quasi-Newton steps for each normal
correction step.

Let us show how this can be done computationally efficient without de-
stroying sparsity in the KKT-system, which is an essential requirement in
practical applications.

Let B and M denote the current quasi-Newton approximation of the in-
verses of H and Q respectively. Conceptually, we update B to B+ using bfgs
updating (see e.g. [22]), a rank-2 updating scheme: B+ = B + k(v)vvT +
k(w)wwT . In order to keep the ability to exploit sparsity of A and Q, we do
not actually store B or M but simply the Cholesky factors of the most re-
cent H and Q and the sequence of bfgs update vectors. More specifically, for
q ≤ J , let B(q) be the q’th update of H−1, i.e.

B(q) = C−1C−T + ΨΛΨT

where Ψ = [v(1), . . . , v(q), w(1), . . . , w(q)], Λ = diag(k
(v)
1 , . . . , k

(v)
q , k

(w)
1 , . . . , k

(w)
q).

Then we compute products such as B(q)r by means of

B(q)r = C−1(C−T r) + Ψ
(
Λ(ΨT r)

)
.

For M , the situation is similar:

M (q) =
(
AB(q)AT

)−1

=
(
A(H−1 + ΨΛΨT)AT

)−1

=
(
Q+ ΦΛΦT

)−1

where Φ = AΨ . By the Sherman-Morrison-Woodbury formula, we get

M (q) = Q−1 −Q−1Φ
(
Λ−1 + ΦTQ−1Φ

)−1
ΦTQ−1.

A Homogeneous Nonsymmetric IPM 13

We can thus compute products like M (q)r by

M (q)r = Q−1
(
I − Φ

(
Λ−1 + ΦTQ−1Φ

)−1
ΦTQ−1

)
r

= D−1D−T
(
r − Φ

(
Λ−1 + ΦTD−1D−TΦ

)−1
ΦTD−1D−T r

)
where we remark that 1) only two columns are added to Φ in each iteration so
that only two new backsubstitutions in the operation D−TΦ are needed, 2) Λ
is diagonal and thus cheap to invert and 3) the matrix

(
Λ−1 + ΦTD−1D−TΦ

)
is only of size 2q × 2q and is therefore also cheap to invert.

We then alternate between taking J bfgs steps and one full Newton cor-
rection step, starting with bfgs steps and terminate when ‖ψ‖∗x ≤ ηµ. The
resulting bfgs search direction is a descent direction for the function ‖ψ‖, so
by using a backtracking line search along these directions, we can not make
the objective worse by proceding in this way. On the other hand, we have no
theoretical guarantee that bfgs steps improve the objective value. However,
as the computational experiments will demonstrate, it is often the case that
enough centrality can be achieved after just a few bfgs steps.

The norm ‖v‖∗x is computed as (vTH−1
x v)1/2. Computing this number re-

quires the evaluation and factorization of Hx. But since Hx is blockdiagonal,
this operation is cheap. In fact, it is possible simply to analytically compute
H−1
x at each x, since Hx is block diagonal with block sizes 3× 3.

We finally remark that whether or not it is beneficial to take bfgs steps,
and if it is, how many should be taken, depends on the cost of building and
Cholesky factorizing AH−1

x AT relative to the cost of subsequent backsubsti-
tutions, of which the needed amount is increased if bfgs steps are used. This
ratio depends on the dimension and sparsity pattern of A — quantities about
which we know nothing beforehand. However, since the dimension and sparsity
pattern of AH−1

x AT do not vary with x, it is possible to determine this ratio
at initialization time. Thus we can determine an upper bound on J before the
main loop of the algorithm.

5.2 Higher order predictor direction

It is well known that the Mehrotra second order correction [12] term signifi-
cantly improves performance of interior-point methods for symmetric cones.
This technique is used in virtually all competitive industry standard interior-
point implementations. Hoping to achieve a similar improvement in perfor-
mace, we suggest computing a higher order prediction step as described in the
following.

Let us denote the central path point with complementarity gap µ by z(µ),
which corresponds to µ = γµ0 in equations (7)–(8). By an appropriate defi-
nition of a matrix K(z) and a vector u(z), dependent on the current iterate
z = (x, y, s), it is clear that the equations (10)–(11) defining z′ can be written

K(z)z′(µ) = u(z) or z′(µ) = K(z)−1u(z) =: f(z).

14 Anders Skajaa and Yinyu Ye

The central path is thus the solution of the ordinary differential equation
defined by z′(µ) = f(z). A step in the predictor direction, i.e. the direction
z′, is then the same as taking one Euler step for this ode. We can obtain a
direction that contains, for example, second order information by computing
a stage-2 Runge-Kutta direction d2, remembering that each evaluation of f
requires solving a system of the type Kz′ = u. Such a direction is defined by

d2 = h

(
1− 1

2θ

)
f(z) + h

1

2θ
f(ζ)

ζ = (ζx, ζy, ζs) = z(µ) + θhf(z)

where h is the stepsize possible in the direction f(z) and θ ∈ (0, 1] is a param-
eter. The choices θ = 1/2 and θ = 1 correspond to the classical midpoint and
trapezoidal rules respectively [6].

Our experience shows that this approach reduces the total number of it-
erations as well as the number of factorizations needed to reach an optimal
solution, even though two factorizations are needed to compute d2.

We can, however, restrict ourselves to just one factorization by using in
place of Hζx the bfgs update of Hx. In section 5.1, we showed how to imple-
ment such a procedure efficiently.

5.3 Initial point

The initial point z0 = (x0, y0, s0) is required to satisfy z0 ∈ F ∩ N (η). We
therefore choose some x0 ∈ K◦ and set s0 = −gx0 . We then get

νµ(z0) = (x0)T s0 = −(x0)T gx0

(19)
= ν

and hence µ(z0) = 1. Therefore, this z0 is exactly on the central path, i.e.
z0 ∈ N (0) ⊂ N (η).

5.4 Termination

A point (x, y, s) that satisfies the bounds in Theorem 1 solves to ε-accuracy the
homogeneous model (hsd). However, we are interesting in either a certificate
of infeasibility or a solution of (pd). Therefore, we need to use stopping criteria
able to detect one of these two situations. In this section we therefore briefly
return to the “extended” notation used prior to Section 4.1.

A Homogeneous Nonsymmetric IPM 15

Assume (x, τ, y, s, κ) is the current iterate and consider the following in-
equalities:

‖Ax− τb‖∞ ≤ ε ·max {1, ‖[A, b]‖∞} (p)

‖AT y + s− cτ‖∞ ≤ ε ·max {1,
∥∥[AT , I,−c]∥∥∞} (d)∣∣−cTx+ bT y − κ

∣∣ ≤ ε ·max {1, ‖
[
−cT , bT , 1

]
‖∞} (g)∣∣cTx/τ − bT y/τ ∣∣ ≤ ε · (1 +

∣∣bT y/τ ∣∣) (a)

τ ≤ ε · 10−2 ·max {1, κ} (t)

τ ≤ ε · 10−2 ·min {1, κ} (k)

µ ≤ ε · 10−2 · µ0 (m)

We then terminate and conclude as follows:

(opt) (p) ∧ (d) ∧ (a)⇒ Feasible and optimal solution found
(infeas) (p) ∧ (d) ∧ (g) ∧ (t)⇒ Problem primal or dual infeasible

(illp) (k) ∧ (m)⇒ Problem ill-posed

In case (opt), the optimal solution (x, y, s)/τ is returned. If we find (infeas),
the problem is dual infeasible if cTx < 0 and primal infeasible if bT y > 0. The
number ε > 0 is a user-specified tolerance.

6 Computational experiments

In this section we present results from running our algorithm, which we will
denote by npc, on different test problems. We first introduce the nonsymmetric
cones needed for our test problems and then present the test problems. Finally,
we include tables with numerical results and discussion.

6.1 Two three-dimensional nonsymmetric cones

In the rest of this paper, we will be considering problems involving the following
two nonsymmetric convex cones, both three dimensional.

The three-dimensional exponential cone is defined by

Kexp = closure {(x1;x2;x3) ∈ R× R+ × R++ : exp (x1/x3) ≤ x2/x3}

for which we are using the barrier function

Fexp(x) = − log (x3 log (x2/x3)− x1)− log x2 − log x3

with barrier parameter ν = 3.
The three-dimensional power cone is defined by

Kα =
{

(x1;x2;x3) ∈ R× R2
+ : |x1| ≤ xα2x1−α

3

}

16 Anders Skajaa and Yinyu Ye

where α ∈ [0, 1] is a parameter. Notice that K1/2 is the standard rotated
quadratic cone. For all other α ∈ (0, 1), Kα is not symmetric. In [7], it was
proved that the function

Fα(x) = − log (x2α
2 x2−2α

3 − x2
1)− (1− α) log x2 − α log x3

is a logarithmically homogeneous self-concordant barrier with parameter ν = 3
for Kα. It is this barrier function we are using in our experiments. Nesterov
proposed in [16] a barrier function for the three-dimensional power cone with
parameter ν = 4. Our computational experience shows that Fα is better in
practice which is in accordance with theory.

6.2 Test problems

In this section, e will denote the vector of all ones. The dimension of e will be
clear from the context.

6.2.1 p-cone problem

Given A ∈ RM×N and b ∈ RM , the p-cone problem is the problem

min
x

‖x‖p, s.t. Ax = b.

In [15], it is shown that this is equivalent to

min
x,y,t

t

s.t. Ax = b, eT y = t

(xj ; yj ; t) ∈ K(1/p), j = 1, . . . ,M.

6.2.2 Facility location problem

Given M points (locations) in RN : C(j), j = 1, . . . ,M , we want to find the
point z with the minimal sum of weighted distances to the locations C(j)

measured in pj-norms, pj ≥ 1. That is

min
z

M∑
j=1

aj‖z − C(j)‖pj (16)

where aj ≥ 0 are the weights. We can then formulate (16) in conic form:

min
z+,z−,v,w,u

M∑
j=1

aju
(j)
1

s.t. v(j) = z+ − z− − C(j) j = 1, . . . ,M

eTw(j) = u
(j)
1 , u

(j)
1 = u

(j)
2 = · · · = u

(j)
N j = 1, . . . ,M

(v
(j)
i ;w

(j)
i ;u

(j)
i) ∈ K1/pj j = 1, . . . ,M, i = 1, . . . , N

z+ ≥ 0, z− ≥ 0

A Homogeneous Nonsymmetric IPM 17

6.2.3 Geometric programming

This is a problem of the type

min
x

f (0)(x)

s.t. g(j)(x) = 1, j = 1, . . . ,M

f (j)(x) ≤ 1, j = 1, . . . , P

where g(j) are monomials and f (j) are posynomials:

g(x) = kjx
b(j)

, f (j)(x) =

Nj∑
i=1

dix
a

(j)
i

where we have used the notation

xv :=

n∏
i=1

xvii , xi > 0.

With the j’th posynomial f (j), we associate

– the matrix A(j) :=
(
a

(j)
1 ,a

(j)
2 , . . . ,a

(j)
Nj

)T
∈ RNj×N ,

– the vector d(j) = (d
(j)
1 , . . . , d

(j)
Nj

)T ∈ RNj×1 and

– the vector c(j) = log (d(j)) = (log (d1), . . . , log (dNj))
T ∈ RNj×1

Similarly, we associate with the j’th monomial g(j)

– the vector b(j)

– the scalar k(j)

– the scalar h(j) = log (k(j))

Using the change of variables ui = log (xi) ⇔ xi = exp(ui) for all i, we can
write the problem in conic form:

min
u+,u−,w,v,y,t(0)

t(0)

s.t.: B(u+ − u−) + h = 0

w(j) = A(j)(u+ − u−) + c(j) j = 0, . . . , P

eTv(j) = t(j), y(j) = e j = 0, . . . , P

u+,u−, t
(0) ≥ 0(

w
(j)
i ; v

(j)
i ; y

(j)
i

)
∈ Kexp j = 0, . . . , P, i = 1, . . . , Nj

where h = (h(1), . . . , h(M))T ∈ RM×1 and B =
(
b(1), . . . , b(M)

)T ∈ RM×N .

18 Anders Skajaa and Yinyu Ye

Table 1 Parameters used in computational experiments.

Parameter J θ η β ε
Value 3 0.70 0.50 0.80 10−6

6.2.4 Entropy maximization

Given A ∈ RM×N , b ∈ RM and d ∈ RN+ , the entropy maximization problem is

min
x

N∑
j=1

djxj log xj

s.t. Ax = b

xj ≥ 0, j = 1, . . . , N

which can be formulated as

min
x,u

− dTu

s.t. Ax = b, v = e

(uj ; vj ;xj) ∈ Kexp, j = 1, . . . , N.

6.3 Computational results

The remaining tables in this section show the number of iterations (it), the
total number of factorizations made (ch), the average number of full correc-
tion steps per iteration (ce) and the termination status (st). opt means that an
optimal solution was found and ipr/idu means a primal/dual infeasibility cer-
tificate was found. For all computational experiments, we used the parameters
displayed in Table 1.

For entropy maximization problems and geometric programs, we compare
our algorithm to the purpose-built solvers in Mosek [13]. For p-cone prob-
lems, we compare our algorithm to SeDuMi (see [24]) when called through CVX

(see [8]). We intentionally compare only the number of Choleschy factoriza-
tions performed by each algorithm. This is to eliminate from the comparisons
the cpu-time consumed by software overhead. Therefore, it is reasonable to
measure only the dominating operations, i.e. the Choleschy factorizations.

6.3.1 p-cone problems

Table 2 shows results from solving a series of p-cone problems. The data A
and b are from the netlib collection of linear programs. We see that npc
performs very well compared to SeDuMi. CVX solves the problem by approxi-
mating the original p-cone problem by an approximately equivalent self-scaled
problem. The resulting self-scaled problem is then solved using SeDuMi. As

A Homogeneous Nonsymmetric IPM 19

Table 2 Computational results for p-cone problems. Data A ∈ RM×N and b from netlib.
sp(A) denotes the sparsity of A.

Problem npc CVX/SeDuMi

name & size p m n it ch ce st m n ch st

bandm 1.13 777 1416 9 19 1.1 opt 6913 14632 21 opt
M = 305 1.57 777 1416 11 23 1.1 opt 8801 18408 26 opt
N = 472 2.09 777 1416 14 29 1.1 opt 9745 20296 27 opt
sp(A) = 1.73% 4.71 777 1416 23 37 0.6 opt 10689 22184 26 opt

7.39 777 1416 24 43 0.8 opt 11633 24072 26 opt

blend 1.13 188 342 9 19 1.1 opt 1670 3534 21 opt
M = 74 1.57 188 342 9 20 1.2 opt 2126 4446 22 opt
N = 114 2.09 188 342 9 16 0.8 opt 2354 4902 20 opt
sp(A) = 6.19% 4.71 188 342 11 19 0.7 opt 2582 5358 20 opt

7.39 188 342 13 21 0.6 opt 2810 5814 21 opt

bore3d 1.13 565 1002 7 8 0.1 opt 4907 10354 6 opt
M = 231 1.57 565 1002 7 8 0.1 opt 6243 13026 6 opt
N = 334 2.09 565 1002 7 8 0.1 opt 6911 14362 6 opt
sp(A) = 1.87% 4.71 565 1002 7 8 0.1 opt 7579 15698 6 opt

7.39 565 1002 7 8 0.1 opt 8247 17034 6 opt

scagr25 1.13 1142 2013 11 18 0.6 opt 9865 20801 21 opt
M = 471 1.57 1142 2013 10 21 1.1 opt 12549 26169 21 opt
N = 671 2.09 1142 2013 11 21 0.9 opt 13891 28853 20 opt
sp(A) = 0.55% 4.71 1142 2013 10 16 0.6 opt 15233 31537 19 opt

7.39 1142 2013 10 21 1.1 opt 16575 34221 17 opt

sctap1 1.13 960 1980 10 21 1.1 opt 9540 20460 22 opt
M = 300 1.57 960 1980 10 20 1.0 opt 12180 25740 25 opt
N = 660 2.09 960 1980 9 22 1.4 opt 13500 28380 21 opt
sp(A) = 0.95% 4.71 960 1980 9 23 1.6 opt 14820 31020 18 opt

7.39 960 1980 9 20 1.2 opt 16140 33660 21 opt

share1b 1.13 370 759 10 21 1.1 opt 3659 7843 21 opt
M = 117 1.57 370 759 12 20 0.7 opt 4671 9867 26 opt
N = 253 2.09 370 759 13 24 0.8 opt 5177 10879 24 opt
sp(A) = 3.98% 4.71 370 759 13 23 0.8 opt 5683 11891 23 opt

7.39 370 759 13 24 0.8 opt 6189 12903 24 opt

share2b 1.13 258 486 9 20 1.2 opt 2364 5022 19 opt
M = 96 1.57 258 486 9 18 1.0 opt 3012 6318 20 opt
N = 162 2.09 258 486 9 16 0.8 opt 3336 6966 20 opt
sp(A) = 5.00% 4.71 258 486 11 22 1.0 opt 3660 7614 20 opt

7.39 258 486 11 20 0.8 opt 3984 8262 20 opt

stocfor1 1.13 282 495 9 16 0.8 opt 2427 5115 19 opt
M = 117 1.57 282 495 8 17 1.1 opt 3087 6435 20 opt
N = 165 2.09 282 495 9 19 1.1 opt 3417 7095 22 opt
sp(A) = 2.60% 4.71 282 495 18 30 0.7 opt 3747 7755 25 opt

7.39 282 495 22 29 0.3 opt 4077 8415 26 opt

discussed in the introduction, this modelling of a nonsymmetric problem by
symmetric cones requires the introduction of extra variables and constraints.
The table shows for each of the two solution methods, the number of rows
m and columns n of the final linear constraint matrix (corresponding to A
in (pd)). These results clearly demonstrate the advantage of modelling this
inherently nonsymmetric problem (the p-norm is not a self-dual norm when
p 6= 2) directly by using a nonsymmetric cone. As seen from the table, the size

20 Anders Skajaa and Yinyu Ye

of the problem built by CVX is much greater, in some instances by as much
as 17 times, than the size of the problem solved by npc. Notice also that the
latter problem, unlike the first, is independent of p.

In terms of iterations, npc uses about 40% less than SeDuMi. The total
number of factorizations for the two methods is about the same. However, as
described above, SeDuMi factorizes much larger matrices. Therefore we may
conclude for these problems, that the direct modelling method coupled with
a nonsymmetric solver like npc is clearly superior to CVX/SeDuMi.

6.3.2 Facility location problems

Table 3 shows the performances of our algorithm when run on random in-
stances of the facility location problem. For each pair (N,M), we generated
10 instances each with C(j) chosen at random from the standard normal distri-
bution. For each instance, M different pj were chosen as the maximum of 1.0
and a sample from a normal distribution with mean 2.0 and variance 0.25. The
aj were chosen randomly from a uniform distribution on [0, 1]. The column la-

belled p̄ shows the number M−1
∑M
j=1 pj averaged over the 10 instances. This

number should be close to 2.0.

We see that our algorithm uses in the region 10–20 iterations and the
number of Cholesky factorizations never exceeds 32. On average slightly more
than 0.50 full centering steps are needed in each iteration. These results can
be loosely compared with the computational results in [7, Table 4.1, page 142].
There, a dual variant of the algorithm of [16] is used to solve the same kind of
problem. Overall, our algorithm performs better, both in terms of iterations
and factorizations.

Table 3 Results for facility location problems. The algorithm always terminated after
reaching optimality as all problem instances were feasible by construction.

Problem npc

N M ν p̄ it ch ce

3 4 44 2.03 11.1 18.2 0.65
3 8 88 1.96 14.1 22.3 0.61
10 4 128 2.07 13.2 20.1 0.54
3 12 132 1.93 15.3 23.4 0.56
3 20 220 2.09 17.1 27.5 0.64
19 4 236 2.00 13.8 21.0 0.54
10 8 256 1.98 15.6 23.4 0.51
10 12 384 2.06 16.0 25.1 0.58
32 4 392 2.03 13.4 20.9 0.56
19 8 472 1.98 15.2 23.1 0.53
10 20 640 1.99 18.7 30.5 0.66
19 12 708 1.99 15.3 25.9 0.70
32 8 784 2.04 14.0 23.3 0.67
32 12 1176 2.05 16.4 27.0 0.65
19 20 1180 2.01 19.7 30.5 0.60
32 20 1960 1.98 17.7 31.5 0.79

A Homogeneous Nonsymmetric IPM 21

Table 4 Results for geometric programs.

Problem npc mskgpopt

name n dod it ch ce st ch st

beck751 7 10 16 30 0.9 opt 18 opt
beck752 7 10 15 29 0.9 opt 28 opt
beck753 7 10 13 27 1.1 opt 10 opt
bss2 2 1 9 13 0.4 opt 5 opt
car 37 104 15 28 0.9 opt 46 opt

demb761 11 19 12 22 0.8 ipr 10 opt
demb762 11 19 9 19 1.1 opt 11 opt
demb763 11 19 10 20 1.0 opt 11 opt
demb781 2 1 7 10 0.4 opt 7 opt
fang88 11 16 9 18 1.0 opt 11 opt
fiac81a 22 50 11 22 1.0 opt 16 opt
fiac81b 10 9 12 21 0.8 ipr 10 opt
gptest 4 1 8 12 0.5 opt 5 opt
jha88 30 274 17 34 1.0 opt 13 opt
mra01 61 844 16 30 0.9 opt 58 opt
mra02 126 3494 30 57 0.9 opt 53 opt

rijc781 4 1 8 12 0.5 opt 5 opt
rijc782 3 5 10 18 0.8 opt 8 opt
rijc783 4 7 12 23 0.9 opt 7 opt
rijc784 4 3 13 19 0.5 rnd 6 opt
rijc785 8 3 9 16 0.8 opt 9 opt
rijc786 8 3 9 16 0.8 opt 6 opt
rijc787 7 40 12 23 0.9 opt 36 opt

6.3.3 Geometric programs

Table 4 shows results from applying our algorithms to a set of geometric
programs supplied to us by Mosek. The column labelled dod denotes the
degree of difficulty of the problem [5]. For a particular problem instance j,
let IAj and CAj be the number of iterations and Choleschy factorization re-
spectively used by algorithm A to solve instance j and let us define the ra-
tio of sums S = (

∑
j C

npc
j)/(

∑
j C

npc
j). Further let Rit

j = Inpcj /IMosek
j and

Rch
j = Cnpc

j /CMosek
j . If we let an overbar denote arithmetic mean and a tilde

denote geometric mean over all j, we then find

(S, Rit, Rch, R̃it, R̃ch) = (1.3, 1.1, 1.9, 0.94, 1.7).

For these problems we therefore conclude that our algorithm performs some-
what inferiorly to Mosek, using less iterations but cummulatively 30% more
Choleschy factorization than Mosek.

6.3.4 Entropy problems

Table 5 shows results from solving a set of real-world entropy problems sup-
plied to us by Mosek. Generally the problems have many variables compared
to the number of constraints resulting in a very “fat” constraint matrix A.
For these problems we compare our algorithms to the commercial solver from

22 Anders Skajaa and Yinyu Ye

Table 5 Computational results for entropy problems.

Problem npc mskenopt

name N M it ch ce st ch st

prob 17 15 9 15 0.7 opt 8 opt
prob2 18 14 9 18 1.0 opt 8 opt
ento46 130 21 25 50 1.0 opt 42 opt
ento47 255 21 23 49 1.1 opt 54 opt
ento28 740 16 38 78 1.1 opt 63 opt
ento30 740 21 38 84 1.2 opt 55 opt
ento31 740 21 38 84 1.2 opt 55 opt
ento22 794 28 28 60 1.1 ipr 14 ipr
ento21 931 28 55 112 1.0 ipr 18 ipr
a tb 1127 25 38 87 1.3 opt 97 opt

ento23 1563 28 34 73 1.1 ipr 14 ipr
ento20 1886 28 41 94 1.3 opt 21 ipr
a 12 2183 37 46 104 1.3 opt 47 opt

ento12 2183 37 26 60 1.3 ipr 13 ipr
a 13 3120 37 44 99 1.2 ipr 20 ipr
a 23 3301 37 31 86 1.8 ipr 20 ipr
a 34 3905 37 36 83 1.3 ipr 17 ipr
a 14 3986 37 47 109 1.3 ipr 20 ukn
a 35 4333 37 43 90 1.1 ipr 18 ipr
a bd 4695 26 44 102 1.3 opt 78 opt
ento2 4695 26 44 102 1.3 opt 78 opt
a 24 5162 37 36 90 1.5 ipr 23 ipr
ento3 5172 28 49 126 1.6 opt 146 opt
ento50 5172 28 49 126 1.6 opt 146 opt
a 15 5668 37 84 176 1.1 opt 34 ipr
a 25 6196 37 61 137 1.2 opt 122 opt
a 36 7497 37 40 99 1.5 ipr 18 ipr
a 45 7667 37 54 120 1.2 opt 23 ipr

ento26 7915 28 43 107 1.5 opt 131 opt
a 16 8528 37 89 204 1.3 opt 135 opt
a 26 9035 37 39 108 1.8 opt 113 opt

ento45 9108 37 51 128 1.5 opt 149 opt
a 46 9455 37 40 102 1.6 ipr 20 ipr
a 56 9702 37 65 158 1.4 opt 123 opt

ento25 10142 28 116 250 1.2 opt 149 opt
entodif 12691 40 50 130 1.6 opt 155 opt
ento48 15364 31 16 52 2.2 opt 47 opt

Mosek, which solves the monotone complementarity problem [3] correspond-
ing to the entropy problem. We see that, except for a few of the problems,
our algorithm compares somewhat infavorably to Mosek. With the notation
defined in Section 6.3.3, we find

(S, Rit, Rch, R̃it, R̃ch) = (1.6, 1.2, 2.8, 0.93, 2.1).

That is, although npc uses fewer iterations, it uses cummulatively about 60%
more Choleschy factorizations to solve the entire set of problems when com-
pared to Mosek.

We remark that the solvers from Mosek for entropy problems and geo-
metric programs are two different solvers, each purpose-built to solve those
particular problems. Our algorithm, on the other hand, is a general purpose
algorithm with no tuning of parameters to a particular problem. From sim-
ple experiments we know that tuning the parameters η and β for each type

A Homogeneous Nonsymmetric IPM 23

of problem, we could improve the computational performance of our algo-
rithm. However, since we believe in the importance of practical applicability
we choose to fix the parameters and instead let our algorithm enjoy a very
high degree of versatility. In that light, and considering the fact that Mosek
is an industry-grade implementation, we believe our algorithm compares very
well.

7 Conclusions

In this paper, we have presented a homogeneous primal-dual interior-point
algorithm for nonsymmetric convex conic optimization. Unlike previous work
solving the homogenized convex conic problem, our algorithm makes use only
of the primal barrier function thus making the algorithm widely applicable.
We have proven the standard O(

√
ν log (1/ε)) worst-case complexity result and

adapted to the nonsymmetric case techniques known to significantly improve
efficiency of algorithms for self-scaled cones. These include quasi-Newton up-
dating to reduce computational load and a Runge-Kutta type second order
search direction. We demontrated how to efficiently implement these tech-
niques without loosing the ability to exploit sparsity in the data matrix A.
Finally we have presented extensive computational results that indicate the
algorithm works well in practice.

By inspecting the tables in Section 6.3, we see that

– The performance of the algorithm depends a lot on the type of problem.
– For the p-cone problems, our algorithm superior in performance to SeDuMi

called via CVX. These experiments clearly show the potential advantage of
directly modelling nonsymmetric problems by using nonsymmetric cones.

– For the facility location problems, our algorithm compares favorably to an
algorithm [7], which is a dual variant of the one presented in [16].

– For geometric programs, our algorithm compares somewhat infavorably to
Mosek.

– For entropy maximization problems, our algorithm again compares some-
what infavorably to Mosek.

The computational results comparing our algorithm to Mosek should, how-
ever, be seen in the light of the comments in Section 6.3.4 on page 23.

Comparing the kind of algorithm we have presented with a primal-dual ipm
for self-scaled cones, we see that the major difference is the need for a seperate
correction phase. Nesterov remarks in [16] that this process can be seen as
the process of finding a scaling point, i.e. a point w such that x = Hws.
It seems reasonable that this is a more complex problem when the cone is
not symmetric. We can not compute it analytically, so we need an iterative
procedure.

This difference is interesting theoretically as well as practically. For the
problems we have considered, the centering problem certainly is a relatively
easy problem compared to the full problem, in the sense that we do not need

24 Anders Skajaa and Yinyu Ye

a very accurately centered point. We have seen in our experiments with our
algorithm that rarely more a couple of correction steps are needed, some of
which may be comparably inexpensive quasi-Newton steps.

Acknowledgements The authors thank Erling D. Andersen and Joachim Dahl of Mosek
ApS for lots of insights and for supplying us with test problems for the geometric programs
and the entropy problems.

A Properties of the barrier function

Here we list some properties of logarithmically homogeneous self-concordant barriers (lhscb)
that we use in this paper. Many more properties and proofs can be found in [18,19].

Let K◦ denote the interior of K. We assume that F : K◦ 7→ R is a lhscb for K with
barrier parameter ν. This means that for all x ∈ K◦ and t > 0,

F (tx) = F (x)− ν log t.

It follows that the conjugate of F , denoted F ∗ and defined for s ∈ (K∗)◦ by

F ∗(s) = sup
x∈K
{−sT x− F (x)}

is a lhscb for the dual cone K∗. Similarly to the notation used in [18,19], we write the local
Hessian norms on K and K∗ as:

‖g‖x = ‖H1/2
x g‖, for x ∈ K◦

‖h‖∗s = ‖(H∗s)1/2g‖, for s ∈ (K∗)◦

‖h‖∗x = ‖H−1/2
x h‖, for x ∈ (K)◦,

where H∗s = ∇2F ∗(s). Notice the different definitions of ‖ · ‖∗y depending on whether y is in

K or K∗. Using this convention and that −gx ∈ (K∗)◦ and H∗−gx
= H−1

x , we see that

‖s‖∗−gx
= ‖(H∗−gx

)−1/2s‖ = ‖H1/2
x s‖ = ‖s‖∗x (17)

For x ∈ K◦, F satisfies

Hxx = −gx (18)

xT gx = −ν (19)

‖x‖2x = ν. (20)

The Dikin ellipsoids are feasible [4]. That is:

x ∈ K◦ ⇒ W (x) = {u, ‖u− x‖x ≤ 1} ⊆ K (21)

s ∈ (K∗)◦ ⇒ W ∗(s) = {h, ‖h− s‖∗s ≤ 1} ⊆ K∗. (22)

B The homogeneous and self-dual model

B.1 Optimality and infeasibility certificate

Let G be defined by (5) and notice that G is skew-symmetric: G = −GT .

A Homogeneous Nonsymmetric IPM 25

1. Observe that we can write (hsd) as G(y, x, τ)T − (0, s, κ)T = 0. Pre-multiplying this
equation by (y, x, τ)T gives xT s+ τκ = 0.

2. τ > 0 implies κ = 0 and hence bT (y/τ)− cT (x/τ) = 0 and therefore xT s = 0. Dividing
the two first linear feasibility equations of (hsd) by τ , we obtain the linear feasibility
equations of (1). Thus (x, y, s)/τ is optimal for (pd).

3. If κ > 0 then τ = 0 so Ax = 0 and AT y + s = 0. Further cT x − bT y = −κ < 0 so not
both cT x and −bT y can be non-negative. Assume −bT x < 0. If (pd) is primal-feasible
then there exists x̄ ∈ K such that Ax̄ = b. But then 0 > −bT y = −x̄TAT y = x̄T s ≥ 0,
a contradiction. We can argue similarly if cT x < 0,

and this completes the proof of Lemma 1.

B.2 Self-duality

The problem (hsd) can be written in the form

minx̄,x̄f c̄T x̄+ c̄Tf x̄f
s.t. Āx̄+ Āf x̄f = b̄

x̄ ∈ K̄, x̄f free.

(23)

where

c̄ = 0, c̄f = 0, b̄ = 0
x̄ = (x, τ, s, κ), x̄f = y
K̄ = K× R+ ×K∗ × R+

, Ā =

 A −b
c −I

−cT −1

 , Āf =

 0
−AT

bT


The dual of (23) problem is

max
ȳ,s̄

b̄T ȳ

s.t. ĀT ȳ + s̄ = c̄ (24)

ĀT
f ȳ = c̄f (25)

s̄ ∈ (K̄)∗, ȳ free. (26)

Let us split the variables in parts: s̄ = (s̄1, s̄2, s̄3, s̄4) and ȳ = (ȳ1, ȳ2, ȳ3). We can then write
(24) as:

s̄1 +AT ȳ1 − cȳ3 = 0

s̄2 − bT ȳ1 + cT ȳ2 = 0

s̄3 − ȳ2 = 0, s̄4 − ȳ3 = 0 (27)

From (27), we can immediately eliminate ȳ2 and ȳ3 since they are equal to s̄3 and s̄4
respectively. The constraint (25) is equivalent to As̄3 − bs̄4 = 0 and (26) is the same as

(s̄1, s̄2, s̄3, s̄4) ∈ K∗ × R+ ×K× R+

We now see that we are left with the dual problem

maximize 0
subject to As̄3 −bs̄4 = 0

−AT ȳ1 +cs̄4 −s̄1 = 0
bT ȳ1 −cT s̄3 −s̄2 = 0

(s̄3, s̄4) ∈ K × R+, (s̄1, s̄2) ∈ K∗ × R+, ȳ1 ∈ Rm

This problem is clearly equivalent to the problem (hsd) through this identification of vari-
ables:

s̄1 ∼ s, s̄2 ∼ κ, s̄3 ∼ x, s̄4 ∼ τ, ȳ1 ∼ y

and this proves Lemma 2.

26 Anders Skajaa and Yinyu Ye

C Prediction

The direction z′ is defined by

G(y′, x′)− (0, s′) = − (G(y, x)− (0, s)) (28)

s′ + µHxx
′ = −s (29)

C.1 Reduction of residuals

We first show:

1. sT x′ + xT s′ + xT s = ψ(z)T x′ (30)

2. (x+ x′)T (s+ s′) = 0 (31)

3. (x′)T s′ = −ψ(z)T x′. (32)

1. We get sT x′ + xT s′ + xT s
(29)
= sT x′ + xT (−s − µHxx′) + xT s, which, after reduction,

gives (x′)T (s− µHxx) = ψ(z)T x′.
2. Equation (28) is equivalent to G(y + y′, x + x′) − (0; s + s′) = 0. Pre-multiplying this

equation by (y + y′, x+ x′) gives (31).
3. Follows from expanding (31) and using (30).

Now the lemma follows readily: We simply note that the first equation follows directly from
elementary linear algebra. To show the second:

νµ(z+) = (x+ αx′)T (s+ αs′)

= xT s+ α(sT x′ + xT s′) + α2(x′)T s′

(30)–(32)
= xT s+ α(−xT s+ ψ(z)T x′) + α2(−ψ(z)T x′)

= (1− α)xT s+ α(1− α)ψ(z)T x′

which after division by ν proves Lemma 3.

C.2 Bounds on s, s′ and x′

Assume ‖ψ‖∗x ≤ ηµ. By definition, ψ = s−µHxx, which after left-multiplication by H
−1/2
x ,

taking norms and squaring both sides gives

(‖s‖∗x)2 = (‖ψ‖∗x)2 + µ2‖x‖2x + 2µxTψ

= (‖ψ‖∗x)2 + 2 + µ2ν

≤ µ2(ν + η2)

‖s‖∗x ≤ µ
√
η2 + ν (33)

where we used (20) and xTψ = 0.

This bound allows us to obtain bounds on x′ and s′: Left-multiplying (29) by H
−1/2
x ,

taking norms and squaring both sides gives

(‖s′‖∗x)2 + µ2‖x′‖2x = (‖s‖∗x)2 − 2µ(x′)T s′
(32)
= (‖s‖∗x)2 + 2µ(x′)Tψ

≤ (‖s‖∗x)2 + 2µ‖x′‖x‖ψ‖∗x

A Homogeneous Nonsymmetric IPM 27

by Cauchy-Schwarz inequality. Therefore

µ2‖x′‖2x ≤ (‖s‖∗x)2 + 2µ‖x′‖x‖ψ‖∗x

Now subtracting 2µ‖x′‖x‖ψ‖∗x and adding (‖ψ‖∗x)2 to both sides, we get(
µ‖x′‖x − ‖ψ‖∗x

)2 ≤ (‖s‖∗x)2 + (‖ψ‖∗x)2

or

‖x′‖x ≤ µ−1

(
‖ψ‖∗x +

√
(‖s‖∗x)2 + (‖ψ‖∗x)2

)
≤ µ−1(ηµ+

√
µ2(η2 + ν) + η2µ2)

= kx := η +
√
η2 + ν. (34)

For s′, we similarly have

(‖s′‖∗x)2 ≤ (‖s‖∗x)2 + 2µ‖x′‖x‖s′‖∗x
(‖s′‖∗x − µ‖x′‖x)2 ≤ (‖s‖∗x)2 + µ2‖x′‖2x

‖s′‖∗x ≤ kxµ+
√
µ2(η2 + ν) + k2

xµ
2

= ksµ (35)

where ks := kx +
√

(η2 + ν) + k2
x.

C.3 Feasibility of z+.

Define α1 := k−1
x = Ω(1/

√
ν). Then for any α ≤ α1, we have

‖x− (x+ αx′)‖x = α‖x′‖x
(34)

≤ αkx ≤ 1

and so from (21), we conclude x+ αx′ = x+ ∈ K.
Now, define α2 := (1− η)k−1

s = Ω(1/
√
ν). Then for α ≤ α2, we have

µ−1‖s+ + µgx‖∗−gx
= µ−1‖s+ αs′ + µgx‖∗−gx

= µ−1‖ψ + αs′‖∗−gx

(17)

≤ µ−1‖ψ‖∗x + µ−1α‖s′‖∗x
(35)

≤ η + αks ≤ 1.

Since −gx ∈ K∗, we have by (22) that µ−1s+ ∈ K∗ and therefore s+ ∈ K∗. Therefore,
Lemma 4 holds with α = min{α1, α2} = Ω(1/

√
ν).

C.4 Bound on ψ+.

First, let us repeat the general definition (6) of the function ψ:

ψ(x, s, t) = s+ tgx.

28 Anders Skajaa and Yinyu Ye

Consider for a fixed v0 the function

Φt(x) = xT v0 + tgx

which is self-concordant with respect to x. Define its Newton step by nt(x) := −∇2Φt(x)∇Φt(x).
Define also m = ‖nt2 (x)‖x. From the general theory of self-concordant functions, the fol-
lowing inequality holds. If m ≤ 1, then

‖nt2 (x2)‖x2 ≤
(

m

1−m

)2

. (36)

For a proof of this relation, see e.g. Theorem 2.2.4 in [23].
With v0 = s+, t2 = µ+ and x2 = x+, the inequality (36) is

‖ψ+‖∗
x+ ≤ µ+

(
m

1−m

)2

. (37)

where µ+m = ‖H−1
x (s+ + µ+gx)‖x = ‖s+ + µ+gx‖∗x. From Lemma 3 and (34), we have

|µ− µ+| = | − αµ+ α(1− α)ν−1ψT x′|

≤ µα
(
1 + (1− α)ηkxν

−1
)
. (38)

By the assumption ‖ψ‖∗x ≤ ηµ combined with (34), we have ψT x′ ≥ −ηkxµ. Therefore

µ+ = (1− α)µ+ α(1− α)ν−1ψT x′

≥ µ(1− α)(1− αηkxν−1)

µ/µ+ ≤ (1− α)−1(1− αηkxν−1)−1 (39)

Let us now obtain a bound on m.

µ+m = ‖s+ + µ+gx‖∗x (40)

= ‖ψ − (µ− µ+)gx + αs′‖∗x
≤ ‖ψ‖∗x + |µ− µ+|‖gx‖∗x + α‖s′‖∗x
≤ ηµ+ µα

(
1 + (1− α)ηkxν

−1
)√

ν + αksµ

≤ µ
(
η + αks + α(1 + (1− α)ν−1ηkx)

√
ν
)

m ≤ (µ/µ+)(η + α(
√
ν + ks + ηkx))

≤ (1− α)−1(1− αηkxν−1)−1(η + α(
√
ν + ks + ηkx))

where we used (35), (38), (39) and the assumption ‖ψ‖∗x ≤ ηµ. Now the reader can verify
that for η ≤ 1/6 and ν ≥ 2, we have the implication

α ≤ α3 :=
1

11
√
ν

= Ω(1/
√
ν) ⇒ m2/(1−m)2 ≤ 2η ≤ 1/3 (41)

Then by (37), we see that (41) implies ‖ψ+‖∗
x+ ≤ 2ηµ+ and hence z+ ∈ N (2η) which

finishes the proof of Lemma 5.

D Correction phase

Assume ‖ψ(x, s, µ)‖∗x ≤ βµ where µ := µ(z) with z = (x, y, s). The equations defining the
correction step (x̄, ȳ, s̄) are

G(ȳ, x̄)− (0, s̄) = 0 (42)

s̄− µHxx̄ = −ψ(x, s, µ) (43)

A Homogeneous Nonsymmetric IPM 29

and the next point is then (x+, y+, s+) := (x, y, s) + ᾱ(x̄, ȳ, s̄). Left-multiplying (42) by
(ȳ, x̄)T , we get x̄T s̄ = 0. From (43), we then have

(‖s̄‖∗x)2, µ2‖x̄‖2x ≤ (‖s̄‖∗x)2 + µ2‖x̄‖2x = (‖ψ(x, s, µ)‖∗x)2 ≤ β2µ2

and therefore

‖x̄‖x ≤ β, ‖s̄‖∗x ≤ βµ (44)

From (43), we also have

‖ψ(x, s, µ) + ᾱs̄‖∗x = ‖(1− ᾱ)ψ(x, s, µ)− ᾱµHxx̄‖∗x
≤ (1− ᾱ)‖ψ(x, s, µ)‖∗x + ᾱµ‖x̄‖x
≤ (1− ᾱ)βµ+ ᾱµβ = βµ (45)

Where we used (44). Now define m = (µ+)−1‖s+ + µ+gx‖∗x. Then estimating similarly to
(40), we get

µ+m ≤ ‖ψ(x, s, µ) + (µ+ − µ)gx + ᾱs̄‖∗x
≤ βµ(1 + ᾱ(βν−1/2 + 1))

and similarly to the computation in (39), we therefore find

µ/µ+ ≤ (1− ᾱν−1β2)−1

so that alltogether

m ≤ β(1− ᾱν−1β2)−1(1 + ᾱ(βν−1/2 + 1)). (46)

Now we can apply the theorem (36) with v0 = s+, t = µ and x2 = x+:

‖ψ(x+, s+, µ+)‖∗
x+ ≤ µ+

(
m

1−m

)2

(47)

The reader can verify that for ᾱ ≤ 1/84, ν ≥ 2, β ≤ 2η ≤ 1/3, the bound (46) implies that
when recursively using (47) twice, we obtain

‖ψ(x+, s+, µ+)‖∗
x+ ≤

1

2
β ≤ η

and therefore z+ ∈ N (η) which proves Lemma 6.

E Algorithm complexity

From Lemma 3, we have that the linear residuals G(y, x) − (0, s) are reduced by a factor
(1−α) in each iteration. Since we can always take α = Ω(1/

√
ν), we see that G(y, x)− (0, s)

decreases geometrically with a rate of (1−Ω(1/
√
ν)) which implies that

‖G(y, x)− (0, s)‖ ≤ ε‖G(y0, x0)− (0, s0)‖

in O(
√
ν log (1/ε)) iterations.

To see that the same holds for µ(z), let us briefly use the following notation: z is the
starting point, z+ is the point after prediction and z(j) is the point after applying j correction
steps starting in z+. Then from Lemma 3 and (34), we have

µ(z+) ≤ (1− α)µ(z) + α(1− α)ν−1µηkx

≤ µ(z)(1− α)(1 + αηkxν
−1)

= µ(z)(1−Ω(1/
√
ν)) (48)

30 Anders Skajaa and Yinyu Ye

Since x̄T s̄ = 0, we see from (43) that

(x+)T s̄ = µ(z+)x̄T gx+ = x̄Tψ(x+, s+, µ(z+))− x̄T s+ (49)

Therefore

νµ(z(1)) = (x+ + ᾱx̄)T (s+ + ᾱs̄)
(49)
= (x+)T (s+) + ᾱx̄Tψ(x+, s+, µ(z+))

≤ νµ(z+) + ᾱβ2µ(z+)

= νµ(z+)(1 + ᾱβ2ν−1)

and hence

µ(z(2)) ≤ µ(z+)(1 + ᾱβ2ν−1)2

(48)

≤ µ(z)(1−Ω(1/
√
ν))(1 + ᾱβ2ν−1)2

= µ(z)(1−Ω(1/
√
ν))

which shows that also µ(z) is decreased geometrically with a rate of (1−Ω(1/
√
ν)). Therefore

µ(z) ≤ εµ(z0)

in O(
√
ν log (1/ε)) iterations, finishing the proof of Theorem 1.

References

1. Andersen, E. D., Andersen, K. D.: The MOSEK interior point optimization for linear
programming: an implementation of the homogeneous algorithm. In: Frenk, H., Roos, K.,
Terlaky, T., Zhang, S.: High Performance Optimization, 197–232. Kluwer, Boston (1999).

2. Andersen, E. D., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point
method for conic quadratic optimization. Math. Program. 95(2), 249–277 (2003).

3. Andersen, E. D., Ye, Y.: On a homogeneous algorithm for the monotone complementarity
problem. Math. Program. 84(2), 375–399 (1999).

4. Ben-Tal, A., Nemirovski, A. S.: Lectures on Modern Convex Optimization: Analysis,
Algorithms and Engineering Applications. SIAM, Philadelphia (2001).

5. Boyd, S., Kim, S. J., Vandenberghe, L., Hassibi, A.: A Tutorial on Geometric Program-
ming. Optim. Eng. 8, 67–127 (2007).

6. Butcher, J. C.: Numerical Methods for Ordinary Differential Equations. Wiley, 2nd
edition (2008).

7. Chares, P. R.: Cones and Interior-Point Algorithms for Structured Convex Optimization
involving Powers and Exponentials. PhD thesis, Uni. Catholique de Louvain, 2009.

8. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version
1.21. http://cvxr.com/cvx, October 2010.

9. Güler, O.: Barrier Functions in Interior Point Methods. Math. Oper. Res. 21, 860–885
(1996).

10. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combina-
torica 4, 373–395 (1984).

11. Luo, Z. Q., Sturm, J. F., Zhang, S.: Conic convex programming and self-dual embedding.
Optim. Method. Softw. 14, 169–218 (2000).

12. Mehrotra, S.: On the Implementation of a Primal-Dual Interior Point Method. SIAM
J. Optim. 2, 575–601 (1992).

13. MOSEK Optimization Software: Developed by MOSEK ApS. See www.mosek.com.
14. Nemirovski, A. S., Todd, M. J.: Interior-point methods for optimization. Acta Numerica

17, 191–234 (2008).
15. Nesterov, Y. E.: Constructing self-concordant barriers for convex cones. CORE Discus-

sion Paper (2006/30).

A Homogeneous Nonsymmetric IPM 31

16. Nesterov, Y. E.: Towards Nonsymmetric Conic Optimization. Optim. Method. Softw.
27, 893–917 (2012).

17. Nesterov, Y. E., Nemirovski, A. S.: Interior-Point Polynomial Algorithms in Convex
Programming. SIAM (1994).

18. Nesterov, Y. E., Todd, M. J.: Self-Scaled Barriers and Interior-Point Methods for Convex
Programming. Math. Oper. Res. 22, 1–42 (1997).

19. Nesterov, Y. E., Todd, M. J.: Primal-Dual Interior-Point Methods for Self-Scaled Cones.
SIAM J. Optim. 8, 324–364 (1998).

20. Nesterov, Y. E., Todd, M. J., Ye, Y.: Infeasible-Start Primal-Dual Methods and In-
feasibility Detectors for Nonlinear Programming Problems. Math. Program. 84, 227–267
(1999).

21. Netlib repository: Collection of linear programs. See www.netlib.org/lp/.
22. Nocedal, J., Wright, S. J.: Numerical Optimization. Springer, 2nd edition (2006).
23. Renegar, J.: A Mathematical View of Interior-Point Methods in Convex Optimization.

SIAM, Philadelphia (1987).
24. Sturm, J. F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric

cones. Optim. Method. Softw. 12, 625–653 (1999).
25. Sturm, J. F.: Implementation of Interior Point Methods for Mixed Semidefinite and

Second Order Cone Optimization Problems. Optim. Method. Softw. 17, 1105–1154 (2002).
26. Tuncel, L.: Primal-Dual Symmetry and Scale Invariance of Interior-Point Algorithms

for Convex Optimization. Math. Oper. Res. 23, 708–718 (1998).
27. Tuncel, L.: Generalization Of Primal-Dual Interior-Point Methods To Convex Opti-

mization Problems In Conic Form. Found. Comput. Math. 1, 229–254 (2001).
28. Wright, S. J.: Primal-Dual Interior-Point Methods. SIAM (1987).
29. Xu, X., Hung, P. F., Ye, Y.: A simplified homogeneous and self-dual linear programming

algorithm and its implementation. Ann. Oper. Res. 62, 151–171 (1996).
30. Xue, G. Ye, Y.: An Efficient Algorithm for Minimizing a Sum of p-Norms. SIAM J.

Optimiz. 10, 551–579 (1999).
31. Ye, Y.: Interior Point Algorithms: Theory and Analysis. Wiley (1997).

