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Abstract
The presence of prestrain can have a tremendous effect on the mechanical behav-
ior of slender structures. Prestrained elastic plates show spontaneous bending in
equilibrium—a property that makes such objects relevant for the fabrication of active
and functionalmaterials. In this paperwe studymicroheterogeneous, prestrained plates
that feature non-flat equilibrium shapes. Our goal is to understand the relation between
the properties of the prestrained microstructure and the global shape of the plate in
mechanical equilibrium. To this end, we consider a three-dimensional, nonlinear elas-
ticity model that describes a periodic material that occupies a domain with small
thickness. We consider a spatially periodic prestrain described in the form of a multi-
plicative decomposition of the deformation gradient. By simultaneous homogenization
and dimension reduction, we rigorously derive an effective plate model as a �-limit
for vanishing thickness and period. That limit has the form of a nonlinear bending
energy with an emergent spontaneous curvature term. The homogenized properties
of the bending model (bending stiffness and spontaneous curvature) are characterized
by corrector problems. For a model composite—a prestrained laminate composed of
isotropic materials—we investigate the dependence of the homogenized properties on
the parameters of the model composite. Secondly, we investigate the relation between
the parameters of the model composite and the set of shapes with minimal bending
energy. Our study reveals a rather complex dependence of these shapes on the com-
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posite parameters. For instance, the curvature and principal directions of these shapes
depend on the parameters in a nonlinear and discontinuous way; for certain parameter
regions we observe uniqueness and non-uniqueness of the shapes. We also observe
size effects: The geometries of the shapes depend on the aspect ratio between the plate
thickness and the composite period. As a second application of our theory, we study
a problem of shape programming: We prove that any target shape (parametrized by
a bending deformation) can be obtained (up to a small tolerance) as an energy mini-
mizer of a composite plate, which is simple in the sense that the plate consists of only
finitely many grains that are filled with a parametrized composite with a single degree
of freedom.

Keywords Dimension reduction · Homogenization · Nonlinear elasticity · Bending
plates · Prestrain · Spontaneous curvature
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Fig. 1 Design and experimentally observed cylindrical, equilibrium shapes of 3d-printed composite bilayer
plates. Reproduced from Ge et al. (2013), with the permission of AIP Publishing

1 Introduction

General motivation.Natural and synthetic elastic materials often are prestrained. For
slender structures, the presence of prestrain may have a huge impact on the mechan-
ical behavior: Plates and films with prestrain often exhibit a complex equilibrium
shape due to spontaneous bending, wrinkling and symmetry breaking (Klein et al.
2007; Ware et al. 2015; van Manen et al. 2018). Prestrain can be the result of differ-
ent physical mechanisms, e.g., swelling or de-swelling of gels (Ionov 2013; Tanaka
and Fillmore 1979), thermal expansion (Sigmund and Torquato 1997; Gibiansky and
Torquato 1997), or the nematic-elastic coupling in liquid crystal elastomers (Warner
and Terentjev 2007), and can be triggered by different stimuli—a property that makes
such materials interesting for the fabrication of functional materials with a controlled
shape change; see (vanManen et al. 2018) for a review. Newmanufacturing techniques
such as additive manufacturing even enable the design of microstructured, prestrained
materials whose functionality results from a complex interplay between the geometry,
thematerial properties, and the prestrain distribution on a small length scale. An exam-
ple is a self-assembling cube shown in Ge et al. (2013), whose functionality is due to
a sandwich-type prestrained composite plate designed with a fibred microstructure,
see Fig. 1.

The development of reliable models and simulation methods that are able to predict
the macroscopic behavior based on the specification of the material on the small scale
is an important part of understanding such materials and subject of ongoing research.
Scope and main results of the paper. In this paper we are interested in the effective
elastic behavior of prestrained composite plates. In particular, we seek to understand
the microstructure–shape relation, i.e., the relation between the mechanical properties
and prestrain distribution of the plate on the small length scale, and the emergent
macroscopic equilibrium shape. The starting point of the analysis is the following
energy functional of three-dimensional, nonlinear elasticity:

Eε,h(v) := 1

h

ˆ
�h

Wε

(
x,∇v(x) A−1

ε,h(x)
)
dx, �h := S ×

(
− h

2 , h
2

)
. (1)

Here, �h denotes the reference configuration of the three-dimensional plate, S ⊂ R
2

is the midsurface, 0 < h � 1 denotes the plate thickness, and v : �h → R
3 is the

deformation of the plate. The stored energy density function Wε(x, F) is assumed to
be frame indifferent with a single, non-degenerate energy well at SO(3) for almost
all x ∈ �h . It describes a heterogeneous composite with a microstructure that oscil-
lates locally periodically in in-plane directions on a length scale 0 < ε � 1 (see
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Sect. 2.1 for details). In addition, (1) models a microheterogeneous prestrain based on
a multiplicative decomposition of the deformation gradient ∇v with the matrix field
Aε,h : �h → R

3×3 as in, e.g., (Bauer et al. 2020, Section 2.1). Like the stored energy
function Wε itself, we assume that Aε,h oscillates in in-plane directions.

As explained in (van Manen et al. 2018), there are two different mechanisms for
prestrain-induced shape changes of plates, namely, the “buckling strategy” and the
“bending strategy”. In this paper, we are interested in the latter. As is well known,
bending of plates can be driven by gradients of the prestrain along the thickness of
the plate with a magnitude comparable to the thickness. Therefore, we assume that
Aε,h = I3×3 + h Bε,h with ‖Bε,h‖L∞(�h) � 1 uniformly in ε and h.

The first mathematical problem that we address is the rigorous derivation of a
homogenized, nonlinear plate model with an effective prestrain as a �-limit of Eε,h

when both parameters ε and h tend to 0 simultaneously (Theorem 2.8). In the special
case of a globally periodic microstructure, the derived model is given by a bending
energy with an effective prestrain:

Iγ
hom : H2

iso(S;R
3) → R, Iγ

hom(v) =
ˆ

S
Qγ

hom

(
IIv(x ′) − Bγ

eff

)
dx ′, x ′ := (x1, x2). (2)

Here, H2
iso(S;R

3) is the nonlinear space of bending deformations, i.e., the set of
all v ∈ H2(S;R

3) satisfying the isometry constraint (∇′v)
∇′v = I2×2 where
∇′ := (∂1, ∂2). We denote by IIv := ∇′v
∇′(∂1v ∧ ∂2v) the second fundamental
form associated with v and note that it captures the curvature of the deformed plate.
The effective bending moduli are described by means of a positive-definite quadratic
form Qγ

hom : R
2×2
sym → [0,∞), and the effective prestrain of the two-dimensional plate

is described by a matrix Bγ
eff ∈ R

2×2
sym . Both Qγ

hom and Bγ
eff can be derived from Wε

and Aε,h by homogenization formulas that require to solve certain corrector problems.
These corrector problems are the equilibrium equations of linear elasticity posed on a
representative volume with periodic boundary conditions, see Proposition 2.25.

It turns out that the precise form of the limiting energy Iγ
hom is sensitive to the

relative scaling of the plate thickness h and the size ε of the microstructure: In order
to capture this size effect we introduce the parameter γ ∈ (0,∞) and we shall assume
that h

ε
→ γ as (ε, h) → 0. As indicated by the notation, γ enters the formulas for the

effective quantities Qγ
hom and Bγ

eff . We remark that our result, Theorem 2.8, includes
the more general case of a locally periodic composite (defined in Assumption 2.5
below), which leads to a x ′-dependence of Qγ

hom and Bγ
eff . Furthermore, we discuss

displacement boundary conditions in Theorem 2.13.
The standard theoryof�-convergence implies that (almost)minimizers of the scaled

global energy 1
h2
Eε,h converge (up to subsequences) to minimizers of the plate energy

Iγ
hom. The minimizers of the latter thus capture the effective equilibrium shapes of the

three-dimensional plate for 0 < ε, h � 1. In Sect. 5 we investigate the minimizers of
Iγ
hom and their dependence on the three-dimensional composite, i.e., on Wε and Bε,h .

Understanding this relation can be seen as two steps:

(a) (Microstructure–properties relation). In Sect. 4 we first investigate the map
(Wε, Bε,h) �→ (Qγ

hom, Bγ
eff), which for each composite requires to solve a set
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Fig. 2 Shapes with minimal energy predicted by our theory. A composite plate with prestrained fibres in
one of the layers is considered. The design parameters are the volume fraction of the fibres and the angle
that they form with the longitudinal axis of the strip. See Sect. 6.1 for details.

of three corrector problems of the type (20). While this can be done numerically
(as we plan to do in a forthcoming paper), here we focus mostly on analytic results:
In Lemma 4.2 we prove that isotropic composites with isotropic prestrain and a
reflection symmetric geometry lead to orthotropic Qγ

hom and diagonal Bγ
eff . More-

over, in Lemma 4.5 we obtain explicit formulas for Qγ
hom and Bγ

eff in the case of
a parametrized, isotropic laminate, see Fig. 4 for a schematic visualization.

(b) (Properties–shape relation). Once the effective coefficients of Qγ
hom and Bγ

eff are
known, minimizing the energy functional (2) determines the equilibrium shape of
the plate. In the general case, there is no hope for explicit formulas for theminimiz-
ers. However, when Qγ

hom and Bγ
eff are independent of x ′ ∈ S, then freeminimizers

correspond to cylindrical shapes with constant fundamental form. In this case, the
minimization of the functional Iγ

hom simplifies to an algebraic minimization prob-
lem (53), which can be solved without the need for solving a nonlinear partial
differential equation. Lemma 4.3 establishes a trichotomy result for the set of
minimizers in the case when Qγ

hom is orthotropic and yields a way to evaluate
minimizers algorithmically.

By combining both steps we recover the desired microstructure–shape relation. In
Sects. 4 and 5 we illustrate this procedure on the level of a parametrized, isotropic,
two-component laminate. InSect. 4we focus on themicrostructure–properties relation.
We obtain explicit formulas that relate the parameters of the composite (in particular,
the volume fractions of the components, the stiffness contrast, and the strength of the
prestrain) to the effective quantities (Qγ

hom, Bγ
eff). Based on this, in Sect. 5, we explore

the parameter dependence of the geometry of shapes with minimal bending energy;
see Fig. 2 for an example.

Our detailed parameter study shows that the geometries of shapes with minimal
bending energy depend on the parameters in a rather complex, and partially counter-
intuitive way. In particular, we observe a discontinuous dependence of the geometry
on the parameters: E.g., the bending direction and the sign of the curvature may jump
when perturbing the volume fraction of the components of the composite. We also
observe a size effect: Qualitative and quantitative properties of the set of shapes with
minimal energy depend on the scale ratio γ . Furthermore, we observe a break of sym-
metry: By changing the volume fraction we may transition from a situation where the
set of shapes with minimal energy are a rotationally symmetric one-parameter family
to a situation where the set consists of a unique shape.

In Sect. 6 we turn to the problem of shape programming: In Theorem 6.6 we prove
that, in a nutshell, any shape that can be parametrized by a bending deformation
v ∈ H2

iso(S;R
3) can be approximated by low energy deformations of a prestrained,

123



22 Page 6 of 90 Journal of Nonlinear Science (2023) 33 :22

three-dimensional composite plate with a simple design. Here, simple means that the
plate is partitioned into finitely many grains and each grain is filled by realizations of
a prescribed, one-parameter family of a periodic, prestrained composite.
Abrief survey of themethods and previous results.Our�-convergence result, The-
orem 2.8, is concerned with simultaneous dimension reduction and homogenization in
nonlinear elasticity. The asymptotics h → 0 correspond to the derivation of a bending
plate energy in the spirit of the seminal papers (Friesecke et al. 2002, 2006). Our anal-
ysis heavily relies on the geometric rigidity estimate of Friesecke et al. (2002) and the
corresponding method to prove compactness for sequences of 3d-deformations with
finite bending energy.On the other hand, the limit ε → 0 describes the homogenization
of microstructure. For the analysis of the simultaneous �-limit (ε, h) → 0 we follow
the general strategy introduced by the second author in the case of rods (Neukamm
2010, 2012). It relies on the fact that to leading order, the nonlinear energy can be writ-
ten as a convex, quadratic functional of the scaled nonlinear strain. This allows using
methods from convex homogenization, in particular, the notion of two-scale conver-
gence (Nguetseng 1989; Allaire 1992; Visintin 2007), and a representation of effective
quantities with the help of corrector problems. Results on simultaneous homogeniza-
tion and dimension reduction for plates in the von-Kármán and bending regimes have
been obtained by the second author together with Velčić and Hornung in Neukamm
and Velčić (2013); Hornung et al. (2014), see also (Neukamm and Olbermann 2015;
Cherdantsev and Cherednichenko 2015; Bukal and Velčić 2017; Hornung et al. 2018)
for related works.

Extending these ideas, in the present paper we consider materials with a micro-
heterogeneous prestrain, whose magnitude scales with the thickness h of the plate.
The derivation of bending theories for prestrained plates (without homogenization)
has first been studied bySchmidt (2007a, b); for related results in the context of nematic
plates see (Agostiniani et al. 2017; Agostiniani and DeSimone 2017, 2020). In these
works (as in our paper) the prestrain is modeled by a multiplicative decomposition
FelA−1 of the deformation gradient Fel with a factor A that is close to identity, i.e.,
A = I + h B. As a consequence, admissible plate deformations of the limiting model
are isometries for the Euclidean metric, and the multiplicative prestrain turns into
a linearized, additive one. While the prestrain in Schmidt (2007b) is a macroscopic
quantity, in the present paper we consider a microheterogeneous prestrain leading to
an effective, homogenized prestrain in the limit model. A similar extension has been
considered by the second author in Bauer et al. (2020) for the case of nonlinear rods.
In contrast to previous results on dimension reduction for plates, our derivation, which
invokes homogenization, requires a precise characterization of two-scale limits of the
scaled nonlinear strain along sequences with finite bending energy. This is achieved
in Proposition 3.2, which, in particular, affirmatively identifies the two-scale limits of
the nonlinear strain in flat regions—a problem that remained open in Hornung et al.
(2014). The proof of Proposition 3.2 is based on a wrinkling ansatz introduced by the
third author in Padilla-Garza (2022).

Minimizers of bending energies for plates with prestrain have been studied first in
the spatially homogeneous case with 2d-prestrains that are multiples of the identity
matrix (Schmidt 2007a). In particular, Schmidt (2007a, Lemma 3.1) contains the con-
venient observation that in the homogenous case, free minimizers are cylindrical. As
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usual in homogenization, non-isotropy of effective quantities typically emerges even
for composites consisting of isotropic constituents materials. For the model (2) this
means that the quadratic form Qγ

hom is typically not isotropic, and that Bγ
eff is not

a multiple of the identity. Therefore, compared to Schmidt (2007a), in our case the
structure of minimizers is considerably richer. In particular, with Lemma 5.3 we clas-
sify the sets of minimizers into three families. In the spatially heterogeneous case or in
the case of prescribed displacement boundary conditions, bending deformations with
minimal energy are not necessarily cylindrical and explicit formulas are not available.

The numericalminimization of the energy (2) is highly nontrivial.Mostworks in the
literature consider only the case without prestrain, i.e., Bγ

eff = 0. The first difficulty is
the discretizationof the space H2

iso(S;R
3)of bending isometries, i.e., of deformationsv

in H2 satisfying (∇′v)
∇′v = I2×2. No fully conforming discretizations seem to exist
in the literature. Nonconforming discretizations based on the MINI- and Crouzeix–
Raviart elements have been proposed in Bartels (2013b). Alternative discretizations
using discrete Kirchhoff triangles or Discontinuous Galerkin (DG) finite elements
appear in Bartels (2013a); Rumpf et al. (2021) and Bonito et al. (2021b), respectively.
An approach using spline functions (which are in H2(S;R

3), but are not pointwise
isometries) appears in Mohan et al. (2022). Convergence results are given, e.g., in
Bartels et al. (2017).

Prestrain is included in a few models, but the attention has been restricted so far
only to the isotropic case, where Qγ

hom(G) = |G|2 and Bγ
eff = ρ I for some ρ ∈ R,

see (Bonito et al. 2021a, 2022; Bartels et al. 2017). In Bartels et al. (2022), a model
with a more general effective prestrain has been considered in the context of liquid
crystal elastomer plates.

The second difficulty is the minimization of the non-convex energy functional (2),
which is a challenge even without the prestrain. The works of Bartels use different
numerical gradient flows together with linearizations of the isometry constraint (Bar-
tels 2013a, b; Bartels et al. 2017; Bonito et al. 2021b). This leads to a (controllable)
algebraic violation of the constraints beyond the one introduced by the discretization.
Rumpf et al. (2021) use a Lagrange multiplier formulation and a Newton method
instead, and preserve the exact isometry constraints at the grid vertices. Note that we
do not numerically minimize (2) in the present manuscript. Situations requiring such
approaches will be the subject of a later paper.

Finally, we remark that prestrained plates have also been intensively studied from
the perspective of non-Euclidean elasticity, see (Bhattacharya et al. 2016; Lewicka and
Pakzad 2011; Lewicka and Lučić 2020; Lewicka et al. 2010a, b, 2011, 2017; Lewicka
2020). In this context, the reference configuration is assumed to be a Riemannian
manifold and the factor A in the decomposition FelA−1 is viewed as the square root of
the metric. As observed in Bhattacharya et al. (2016) there is an interesting interplay
between the critical scaling of the energy with respect to the thickness of the plate
h and the curvature of the metric

√
A. More specifically, the minimum energy (per

volume) is of order at most h2 (as in our case) if and only if there exists an isometric
immersion with finite bending energy of the metric

√
A. Recent works have also

considered scaling regimes different from the bending one. For instance, scaling by
h4 leads to von-Kármán plate models, see (de Benito Delgado and Schmidt 2021,
2020). We note that the condition that the minimum energy scales at most like h4 is
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intimately linked to the structure of the Riemann curvature tensor of the metric
√

A.
Moreover, the membrane scaling has been considered in Plucinsky et al. (2018a) and
Plucinsky et al. (2018b) with applications to nematic liquid crystal elastomer plates
and nonisometric origami.
Organization of the paper. In Sect. 2.1 we introduce the three-dimensional model.
In Sect. 2.2 we present the limit plate model and state the �-convergence result. Sec-
tion 2.3 contains the definition of the effective quantities via homogenization formulas
and their characterization with the help of correctors. Section 3 establishes a charac-
terization of the two-scale structure of limits of the nonlinear strain and establishes
strong two-scale convergence for the nonlinear strain for minimizing sequences. Sec-
tion 4 is devoted to the study of the microstructure–properties relation, and Sect. 5
to the properties–shape and microstructure-shape relations. In Sect. 6 we present our
result on shape programming. All proofs are presented in Sect. 7. In the appendix,
in Appendix 8.1 and 8.2 we discuss various properties of two-scale convergence for
grained microstructures—a variant of two-scale convergence that we introduce in this
paper.

2 Setup of theModel and Derivation of the Prestrained Plate Model

We derive the plate model by simultaneous homogenization and dimension reduction
of a three-dimensional model. The proofs for all results stated in this section are
collected in Sect. 7.

2.1 The Three-Dimensional Model and Assumptions on theMaterial Law and
Microstructure

We denote by �h := S × (− h
2 , h

2 ) the reference configuration of a three-dimensional
platewith thickness h > 0,where S ⊂ R

2 is an open, bounded and connectedLipschitz
domain. We call � := S × (− 1

2 ,
1
2 ) the corresponding domain of unit thickness. We

use the shorthand notation x = (x ′, x3) with x ′ := (x1, x2) and denote the scaled
deformation gradient by ∇h := (∇′, 1

h ∂3
)
where ∇′ := (∂1, ∂2). Moreover, we write

Id×d to denote the unit matrix in R
d×d .

By rescaling (1) and specializing to the case

A−1
ε,h(x ′, hx3) = I3×3 − h Bε,h(x)

(i.e., Aε,h ≈ I + h Bε,h) we obtain the energy functional Iε,h : L2(�;R
3) →

[0,+∞],

Iε,h(v) :=
⎧
⎨

⎩

1

h2

ˆ
�

Wε

(
x,∇hv(x)(I3×3 − h Bε,h(x))

)
dx if v ∈ H1(�;R

3),

+∞ otherwise.
(3)

We shall study the �-limit of Iε,h as both small parameters ε and h converge to 0
simultaneously, and as already mentioned in the introduction, it turns out that the
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obtained �-limit will depend on the limit of the ratio h/ε. To capture this size effect,
we make the following assumption:

Assumption 2.1 (Relative scaling of h and ε) There exists a number γ ∈ (0,∞)

and a monotone function ε : (0,∞) → (0,∞) such that limh↓0 ε(h) = 0 and
limh↓0 h

ε(h)
= γ .

The case γ � 1 corresponds to the situation of a plate that is thin compared to
the typical size of the microstructure, while γ � 1 corresponds to the case of a
microstructure that is very fine not only compared to the macroscopic dimensions of
the problem, but also to the small thickness of the plate. Note that Assumption 2.1
excludes the extreme cases γ = 0 (i.e., h � ε � 1) and γ = ∞ (i.e., ε � h � 1).
We comment on these cases in Remark 2.10.

Next, we state our assumptions on the material law, the microstructure of the
composite, and the microstructure of the prestrain. Following (Bauer et al. 2020)
we describe prestrained elastic materials by combining

• a geometrically nonlinear, stored energy function that describes a non-prestrained,
elastic material with a stress-free, nondegenerate reference state at SO(3),

with

• a multiplicative decomposition of the deformation into an elastic part and a pre-
strain that is of the order of the plate’s thickness h and locally periodic (in in-plane
directions) on the scale ε.

In Eckart (1940); Lee (1969); Kröner (1959), such a multiplicative decomposition of
the deformation has been introduced in the context of finite strain elastoplasticity.

The stored energy functions we consider have to have certain standard properties.
We collect appropriate functions and their linearizations in so-called material classes:

Definition 2.2 (Nonlinear material class) Let 0 < α ≤ β,ρ > 0, and let r : [0,∞) →
[0,∞] denote a monotone function satisfying limδ→0 r(δ) = 0.

• The class W(α, β, ρ, r) consists of all measurable functions W : R
3×3 →

[0,+∞] that
(W1) are frame indifferent: W (RF) = W (F) for all F ∈ R

3×3, R ∈ SO(3);
(W2) are non-degenerate:

W (F) ≥ α dist2(F,SO(3)) for all F ∈ R
3×3,

W (F) ≤ β dist2(F,SO(3)) for all F ∈ R
3×3 with dist2(F,SO(3)) ≤ ρ;

(W3) are minimal at I3×3: W (I3×3) = 0;
(W4) admit a quadratic expansion at I3×3: For each W there exists a quadratic form

Q : R
3×3 → R such that

|W (I3×3 + G) − Q(G)| ≤ |G|2r(|G|) for allG ∈ R
3×3.
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• The class Q(α, β) consists of all quadratic forms Q on R
3×3 such that

α| sym G|2 ≤ Q(G) ≤ β| sym G|2 for all G ∈ R
3×3,

where sym G := 1
2 (G + G
) is the symmetric part of G. We associate with

each Q ∈ Q(α, β) the fourth-order tensor L ∈ Lin(R3×3, R
3×3) defined by the

polarization identity

LF : G := 1

2

(
Q(F + G) − Q(F) − Q(G)

)
, (4)

where : denotes the standard scalar product in R
3×3.

Properties (W1)–(W4) are standard assumptions in the context of dimension reduc-
tion. In particular, stored energy functions of classW(α, β, ρ, r) can be linearized at
the identity (see, e.g., Padilla-Garza 2022; Müller and Neukamm 2011; Gloria and
Neukamm 2011; Neukamm 2010) and the elastic moduli of the linearized model are
given by the quadratic form Q of (W4). Furthermore, for any stored energy function
W we have by (Neukamm 2012, Lemma 2.7)

W ∈ W(α, β, ρ, r) �⇒ Q ∈ Q(α, β),

(which motivates the definition of the class Q(α, β)), and thus Q is a bounded and
positive definite quadratic form on symmetric matrices in R

3×3.
For the plate model we consider particular stored energy functions that are elements

of W .

Assumption 2.3 (Nonlinear material) For all ε > 0 and α, β, ρ, r as in Definition 2.2,
the elastic energy density Wε : � → [0,+∞] of (3) is a Borel function such that
Wε(x, ·) ∈ W(α, β, ρ, r) for almost every x ∈ �.

Additionally, we shall assume that the microstructure of the composite is locally
periodic, that is, we consider countably many open subsets S j , called “grains” that
partition S up to a null set, and assume that on each S j × (− 1

2 ,
1
2 ) ⊂ � the composite

features a laterally periodic microstructure, possibly with a different reference lattice
in each grain (Fig. 3). This leads to the following definition:

Definition 2.4 (�-periodicity, grain structure, local periodicity)

(i) Let � ∈ R
2×2 be invertible. A measurable function ϕ : R

2 → R is called
�-periodic if ϕ(· + τ) = ϕ(·) for all τ ∈ �Z

2.
(ii) A grain structure is a finite or countable family {S j ,� j } j∈J consisting of open,

disjoint subsets S j of S and matrices � j ∈ R
2×2 such that S \ (

⋃
j∈J S j ) is a

null set and

1

CJ
≤ �


j � j ≤ CJ in the sense of quadratic forms, (5)

for all j ∈ J with a constant CJ > 0 independent of j ∈ J .

123



Journal of Nonlinear Science (2023) 33 :22 Page 11 of 90 22

Fig. 3 Schematic picture of a microstructure with a different reference lattice and composite in each grain

(iii) A measurable function ϕ : � × R
2 → R is called locally periodic (subordinate

to the grain structure {S j ,� j } j∈J ), if

∀ j ∈ J : ϕ(x, ·) is � j -periodic for a.e. x ∈ S j × (− 1
2 ,

1
2 ). (6)

Note that by (5) the geometry of the local lattices of periodicity is uniformly controlled.
Our core assumption on the composite’s microstructure is now that Wε describes a
composite that is locally periodic on scale ε > 0. Likewise, we shall assume that the
prestrain is locally periodic and satisfies a smallness condition.

Assumption 2.5 (Local periodicity of the composite and prestrain) Let {S j ,� j } j∈J

be a grain structure as in Definition 2.4. Let Assumption 2.3 be satisfied and suppose
that there exists Q : � × R

2 × R
3×3 → R with Q(x, y, ·) ∈ Q(α, β) for a.e. x ∈ �,

y ∈ R
2, such that the following properties hold:

(i) (Local periodicity of Q). The map L associated with Q via (4) is locally periodic
subordinate to {S j ,� j } j∈J , and for each grain S j , j ∈ J , the map S j � x ′ �→
L(x ′, ·) ∈ L∞((− 1

2 ,
1
2 ) × R

2;R
3×3×3×3

)
is continuous.

(ii) (Strong two-scale approximation of Qε). The quadratic term Qε(x, ·) in the expan-
sion of Wε(x, ·) (cf. (W4) of Definition 2.2) satisfies

lim sup
ε→0

ess sup
x∈S j×(− 1

2 ,
1
2 )

max
G∈R3×3

|G|=1

∣
∣Qε(x, G) − Q(x, x ′

ε
, G)
∣
∣ = 0 for all j ∈ J .

Furthermore, we suppose that for all ε, h > 0 the prestrain Bε,h : � → R
3×3
sym of (3)

is measurable and we suppose that there exists a Borel function B : �×R
2 → R

3×3
sym

such that:

(iii) (Local periodicity of B). The function B is locally periodic subordinate to
{S j ,� j } j∈J , and

∑

j∈J

ˆ
S j

 
�� j

|B(x ′, x3, y)|2d(x3, y)dx ′ < ∞,
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where �� j := (− 1
2 ,

1
2 ) × Y� j and Y� j := � j [− 1

2 ,
1
2 )

2. Moreover, we writeffl
�� j

:= 1
|�� j |

´
�� j

for the integral mean.

(iv) (Strong two-scale approximation and boundedness of Bε(h),h). We have

lim sup
h→0

ˆ
�

∣
∣∣Bε(h),h(x) − B

(
x, x ′

ε(h)

)∣∣∣
2
dx = 0 and lim sup

h→0

√
h‖Bε(h),h‖L∞(�) < ∞,

where ε(·) is as in Assumption 2.1.

The main reason for considering not only the Z
2-periodic case but the more general

and flexible structure of Assumption 2.5 is our application to shape programming
presented in Sect. 6. Note that by Assumption 2.5 we do not assume that Wε is itself
locally periodic. We only suppose that the quadratic term Qε in the expansion of Wε

is close to a locally periodic quadratic form (scaled by ε).

Remark 2.6 (Examples for locally periodic composites)

(a) (Z2-periodic case). A special case of a locally periodic composite in the sense
of Assumption 2.5 is the Z

2-periodic case, where the partition consists of the
single grain S and the lattice of periodicity is everywhere the same and given
by � = I2×2. More explicitly, in this case, we may consider a Borel function
W : (− 1

2 ,
1
2 ) × R

2 × R
3×3 → [0,∞] such that W (x3, y, ·) ∈ W(α, β, ρ, r) for

a.e. y ∈ R
2, x3 ∈ (− 1

2 ,
1
2 ), and R

2 � y → W (x3, y, F) is Z
2-periodic for a.e.

x3 ∈ (− 1
2 ,

1
2 ) and all F ∈ R

3×3. Then the family of scaled stored energy functions

Wε(x ′, x3, F) := W (x3,
x ′
ε
, F) satisfiesAssumption 2.5. Note that in this example

Wε(x ′, x3, F) is itself εZ
2-periodic w.r.t. x ′ ∈ R

2.
(b) A simple example of a composite that is locally periodic subordinate to a grain

structure {S j ,� j } j∈J is givenbyWε(x ′, x3, F) :=∑ j∈J 1S j (x ′)W (x3,�
−1
j

x ′
ε
, F)

where W is as above. Then the family Wε satisfies Assumption 2.5.

Remark 2.7 (Examples of prestrains)

(a) Under reasonable assumptions, polymer hydrogels, i.e., networks of hydrophilic
rubber molecules, can be modeled by considering a prestrain of the form B =
λ−1

h I3×3, where λ is a material parameter depending on the free swelling factor
(Flory and Rehner Jr 1943).

(b) Nematic liquid crystal elastomers are materials consisting of a polymer network
inscribed with liquid crystals. These materials feature a coupling between the
liquid crystal orientation and elastic properties that can be modeled by considering
a prestrain of the form B = r( 13 I3×3 − n ⊗ n), where n : S → R

3 is a unit vector
field describing the local orientation of the liquid crystals, and r is a material
parameter (see Warner and Terentjev 2007).

(c) In finite-strain thermoelasticity (see Vujošević and Lubarda 2002), prestrains of
the form B = (β − α)n0 ⊗ n0 − β I3×3 are considered to describe materials that
(after a change of temperature) stretch in a direction n0 : S → S2 with factor α,
and contract in directions orthogonal to n0 with factor β.
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2.2 The Limit Model and Convergence Results

We now discuss the model that results from letting (ε, h) → 0 simultaneously. The
limit energy can be written as the sum of two contributions. The first one is a homoge-
nized bending energy Iγ

hom : L2(S;R
3) → [0,∞] that includes an effective prestrain

Bγ
eff ∈ L2(S;R

2×2
sym ) that captures the impact of the prestrain B on the macroscale:

Iγ
hom(v) :=

{´
S Qγ

hom(x ′, IIv − Bγ
eff(x ′))dx ′ if v ∈ H2

iso(S;R
3),

+∞ else,
(7)

where
IIv := ∇′v
∇′bv and bv := (∂1v ∧ ∂2v)

denote the second fundamental form (expressed in local coordinates) of the surface
parametrized by v and the surface normal, respectively. Above, the quadratic form
Qγ

hom describes the homogenized elastic moduli of the composite. The second contri-
bution Iγ

res (defined inDefinition 2.22 below) is a residual energy that is independent of
the deformation u, and is quadratic in the prestrain B. Both effective quantities—the
quadratic form Qγ

hom describing the homogenized elastic moduli of the composite,
and the effective prestrain Bγ

eff—only depend on the linearized material law Q, the
prestrain B, and the scale ratio γ . More specifically,

• Qγ
hom(x ′, ·) : R

2×2
sym → R is a positive definite quadratic form given by the homog-

enization formula of Definition 2.17 below,
• Bγ

eff(x ′) ∈ R
2×2
sym is given by the averaging formula of Definition 2.22 below,

• Iγ
res(B) ≥ 0 is defined in Definition 2.22.

Both Qγ
hom and Bγ

eff can be evaluated for any x ′ ∈ S by solving linear corrector
problems. In Sect. 2.3 we present an algorithm to evaluate these quantities, and we
show numerical experiments in Sect. 4.

Our first result establishes �-convergence for (h, ε) → 0:

Theorem 2.8 (�-convergence) Let Assumptions 2.1 and 2.5 be satisfied. Then the
following statements hold:

(a) (Compactness). Let (vh) ⊂ L2(�;R
3) be a sequence with equibounded energy,

i.e.,
lim sup

h→0
Iε(h),h(vh) < ∞. (8)

Then

lim sup
h→0

1

h2

ˆ
�

dist2
(∇hvh(x),SO(3)

)
dx < ∞, (9)

and there exists v ∈ H2
iso(S;R

3) and a subsequence (not relabeled) such that

vh −
 

�

vhdx → v in L2(�), (10a)
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and

∇hvh → (∇′v, bv) in L2(�). (10b)

Here and below, bv := ∂1v ∧ ∂2v is the surface normal vector, and ∧ denotes the
vector product.

(b) (Lower bound). If (vh) ⊂ L2(�;R
3) is a sequence with vh − ffl

�
vhdx → v in

L2(�), then
lim inf

h→0
Iε(h),h(vh) ≥ Iγ

hom(v) + Iγ
res(B).

(c) (Recovery sequence). For any v ∈ H2
iso(S;R

3) there exists a sequence (vh) ⊂
W 1,∞(�;R

3) with vh → v strongly in H1(�;R
3) such that

lim
h→0

Iε(h),h(vh) = Iγ
hom(v) + Iγ

res(B), (11)

and, in addition,

lim sup
h→0

h
1
2 ‖∇hvh − (∇′v, bv)‖L∞(�) = 0. (12)

(See Sects. 7.2, 7.3, and 7.4 for the proof of (a),(b), and (c), respectively.)

Remark 2.9 (Identification of functions defined on S with their canonical extension to
�) In the paper we tacitly identify functions defined on S, say v : S → R

3, with their
canonical extension to �, namely, � � (x ′, x3) �→ v(x ′). This clarifies the meaning
of statements such as (10).

The main points of Theorem 2.8 are the parts (b) and (c). The implication (9) �⇒
(10), which is the main point of Part (a), has already been proven by Friesecke et al.
(2002) using their celebrated geometric rigidity estimate.

Remark 2.10 (The cases γ = ∞ and γ = 0) In Theorem 2.8 we assume that γ ∈
(0,∞), which means that h and ε(h) converge to 0 with the same order. The result
changes for γ = ∞ and γ = 0, respectively. We note that Theorem 2.8 can be
extended to the case γ = ∞ (i.e. when ε � h) based on the methods developed in
this paper and Hornung et al. (2014). In contrast, the case γ = 0, which corresponds
to h � ε, is more subtle. Even in the case without prestrain (i.e., B = 0) it is not
fully understood, and the resulting �-limit can be qualitatively different depending
on the relative scaling between h2 and ε: The cases h2 � ε � h and ε � h2 are
treated in Cherdantsev and Cherednichenko (2015) and Velčić (2015), respectively.
The sequential limit ε → 0 after h → 0 is discussed in Neukamm and Olbermann
(2015).

We also establish a variant of the theorem for plates with displacement boundary
conditions on straight parts of the boundary. For the precise formulation of the result-
ing two-dimensional model we introduce a set ABC of bending deformations with
the appropriate boundary conditions. Note that the following definition introduces
additional assumptions on the geometry of S:
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Definition 2.11 (Two-dimensional displacement boundary conditions) Let S be a
convex and bounded Lipschitz domain with piece-wise C1-boundary. We consider
kBC ∈ N relatively open, non-empty lines segments Li ⊂ ∂S and a reference isome-
try vBC ∈ H2

iso(S;R
3) such that for i = 1, . . . , kBC (the trace of) ∇′vBC is constant

on Li ∩ ∂S. We introduce a space of bending deformations that satisfy the following
displacement boundary conditions on the line-segments:

ABC :=
{
v ∈ H2

iso(S;R
3) : v = vBC and ∇′v = ∇′vBC on L1 ∪ . . . ∪ LkBC

}
.

We shall see that the boundary conditions of Definition 2.11 emerge from sequences
of 3d-deformations (vh) with finite bending energy that satisfy boundary conditions
of the form

vh = (1− hδ)vBC + hx3bvBC on (L1 ∪ . . . ∪ LkBC ) ×
(
− 1

2
,
1

2

)
, (13)

where δ ∈ R denotes a fixed parameter. More precisely, we recall the following
extension of the compactness part (a) of Theorem 2.8, proved in (Bartels et al. 2022,
Theorem 2.9 (a)):

Lemma 2.12 (Emergence of two-dimensional boundary conditions) Let S andABC be
as in Definition 2.11. Consider a sequence (vh) ⊂ H1(�;R

3) satisfying (9) and (13)
for some fixed δ ∈ R. Then there exists a subsequence (not relabeled) and v ∈ ABC

such that vh → v in L2(�) and ∇hvh → (∇′v, bv) in L2(�).

We finally show that we can construct recovery sequences that feature the boundary
conditions (13):

Theorem 2.13 (Recovery sequences subject to displacement boundary conditions)
Consider the setting of Theorem 2.8 and assume boundary conditions as in Defi-
nition 2.11. If additionally

CB := sup
j∈J

ess sup
x ′∈S j

 
�� j

|B(x ′, x3, y)|2d(x3, y) < ∞, (14)

then there exists δ > 0 (only depending on CB) such that for any v ∈ H2
iso(S;R

3) there
exists a sequence (vh) ⊂ H1(�;R

3) with vh → v strongly in H1(�;R
3) satisfying

(11), (12), and the displacement boundary conditions (13).

(See Sect. 7.4 for the proof.)
The argument for Theorem 2.13 is based on recent results obtained by us together

with Bartels et al. (2022). In particular, there we prove for S and ABC as in Defini-
tion 2.11 the approximation property

ABC ∩ C∞(S̄;R
3) is dense in (ABC , ‖ · ‖H2(S;R3)), (15)

see (Bartels et al. 2022, Proposition 2.11). It extends previous results by Pakzad
(2004) and Hornung (2011) on the approximation of isometries by smooth isometries
to the case of affine boundary conditions on line segments.
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Remark 2.14 (Convergence of almost minimizers) Theorem 2.8 together with Theo-
rem 2.13 and Lemma 2.12 implies that the sequence of functionals

Ih : L2(�;R
3) → [0,∞], Ih(v) :=

{
Iε(h),h(v) if v satisfies(13),

+∞ else,

�-converges in L2(�) for h → 0 to the functional

I : L2(�;R
3) → [0,∞], I(v) :=

{
Iγ
hom(v) + Iγ

res(B) if v ∈ ABC ,

+∞ else.

Thanks to the boundary condition and strict convexity of (7) viewed as a function
of IIv , the limit functional admits a minimizer in the set ABC . Furthermore, by the
imposed boundary conditions, the sequence (Ih) is equicoercive in L2(�;R

3), and
thus standard arguments from the theory of �-convergence imply that any sequence
of almost minimizers (vh), i.e., functions for which

Ih(vh) ≤ inf Ih + h,

converges (modulo a sub-sequence, not relabeled) to v∗, a minimizer of Iγ
hom in the

set ABC . In view of the compactness part (a) of Theorem 2.8 we even get

∇hvh → (∇′v∗, bv∗) strongly in L2(�).

Furthermore, in Sect. 3.2 below we shall also see that the associated sequence of
nonlinear strains strongly two-scale converges to a limit that is completely determined
by v∗, cf. Remark 3.5 in connection with Proposition 3.4.

2.3 The Homogenization Formula and Corrector Problems

This section presents the definitions of the homogenized quadratic form Qγ
hom, the

effective prestrain Bγ
eff , and the residual energy Iγ

res. The definition of Qγ
hom(x ′, ·) and

Bγ
eff(x ′) for a fixedmaterial point x ′ ∈ S, only depends on the quadratic energy density

(
− 1

2
,
1

2

)
× R

2 × R
3×3 � (x3, y, G) �→ Q(x ′, x3, y, G)

and the prestrain tensor

(
− 1

2
,
1

2

)
× R

2 � (x3, y) �→ B(x ′, x3, y)

of Assumption 2.5—both only at the position x ′. In view of this, we first present a
local definition of the effective quantities for x ′ ∈ S fixed, and discuss their continuity
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properties. Secondly, we present the global definition of the effective quantities and
of the residual energy Iγ

res, see Definition 2.27 below.
Local definition of the effective quantities. For the local definition it is useful to
introduce the following terminology:

Definition 2.15 (�-periodic, admissible quadratic form and prestrain) Let� ∈ R
2×2

be invertible and 0 < α ≤ β < ∞.

(i) ABorel function Q : (− 1
2 ,

1
2 )×R

2×R
3×3 → R is called a�-periodic, admissible

quadratic form, if Q(x3, y, ·) is a quadratic form of classQ(α, β) for a.e. (x3, y) ∈
(− 1

2 ,
1
2 ) × R

2, and Q(x3, ·, G) is �-periodic for all G ∈ R
3×3 and a.e. x3.

(ii) A Borel function B : (− 1
2 ,

1
2 ) × R

2 → R
3×3
sym is called a �-periodic, admissible

prestrain, if B is square integrable and B(x3, ·) is �-periodic for a.e. x3.

Note that in this definition, the variable y lives in the space R
2 where the periodic

microstructure is defined, and not in the macroscopic space S ⊂ R
2. In the following

we frequently use the notation �� = (− 1
2 ,

1
2 ) × Y� and Y� = �[− 1

2 ,
1
2 )

2 that we
introduced in Assumption 2.5 (iii). By�-periodicity, Q and B can be restricted to��

without loss of information.

Remark 2.16 (Reference cell of periodicity and representative volume element) If we
consider Q : �×R

2×R
3×3 → R and B : �×R

2 → R
3×3
sym fromAssumption 2.5, then

the functions Q(x ′, ·) and B(x ′, ·) are �-periodic and admissible in the sense of Def-
inition 2.15. (More precisely, we have to choose � = � j if x j ∈ S j for some j ∈ J ).
The set Y� is the reference cell of periodicity, see Appendix 8.1. From the perspective
of homogenization, the set �� can be viewed as a three-dimensional representative
volume element that is attached to a (macroscopic) position x ′ in the midsurface S—
the restriction of Q(x ′, ·, G) and B(x ′, ·) to �� represents the microstructure of the
composite at position x ′.

We start by presenting a variational definition for the effective quantities Qγ
hom and

Bγ
eff of Theorem 2.8 associated to a general �-periodic and admissible quadratic form

Q and prestrain B. After that, we shall establish a representation of these quantities
based on correctors. This yields a convenient computational scheme for evaluating
Qγ

hom and Bγ
eff , see Proposition 2.25 below. We then show that the effective quantities

Qγ
hom and Bγ

eff continuously depend on Q and B.
The definition of the homogenized quadratic form involves the function space

H1
γ (��;R

3), which consists of all local H1-functions ϕ : (− 1
2 ,

1
2 ) × R

2 → R
3

that are �-periodic in the second argument (the y-variable); see (130) for the precise
definition.

Definition 2.17 (Homogenized quadratic form) Given a �-periodic, admissible
quadratic form Q, we define the associated homogenized quadratic form Qγ

hom :
R
2×2
sym → [0,∞) as

Qγ
hom(G) := inf

M,ϕ

 
��

Q
(
x3, y, ι(x3G + M) + sym∇γ ϕ

)
d(x3, y), (16)
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where the infimum is taken over all M ∈ R
2×2
sym and ϕ ∈ H1

γ (��;R
3), and where

∇γ := (∇y,
1
γ
∂3). Above, we denote by ι(G) the unique 3 × 3-matrix whose upper-

left 2× 2-block is equal to G ∈ R
2×2 and whose third column and row are zero.

Remark 2.18 (Special cases) For� = I2×2 we recover the knowncase of aZ
2-periodic

composite. In that situation, Qγ
hom(G) coincides with the formula derived in Hornung

et al. (2014). In the spatially homogeneous case where Q is independent of x3 and y,
we recover the formula of Friesecke et al. (2002),

Qγ
hom(G) = 1

12
min
d∈R3

Q
(
ι(G) + d ⊗ e3

)
.

Next, we turn to the definition of the effective prestrain Bγ
eff . We adapt the scheme in

Bauer et al. (2020), which is based on orthogonal projections in the Hilbert space of
functions G : (− 1

2 ,
1
2 ) × R

2 → R
3×3
sym , (x3, y) �→ G(x3, y) that are �-periodic in y

and square integrable on��. Specifically, let L2(�;R
3×3
sym ) be the space of�-periodic

functions in L2
loc(R

2;R
3×3
sym ), see Appendix 8.2, and consider the Hilbert space

H� := L2((− 1
2 ,

1
2 ); L2(�;R

3×3
sym )
)
,
(

G, G ′)

�
:=

 
��

LG : G ′d(x3, y).

Note that the induced norm satisfies

‖G‖2� =
 

��

Q(x3, y, G)d(x3, y). (17)

We further consider the subspaces

Hγ
rel,� :=

{
ι(M) + sym∇γ ϕ : M ∈ R

2×2
sym , ϕ ∈ H1

γ (��;R
3)
}

and

Hγ
� :=
{
ι(x3G) + χ : G ∈ R

2×2
sym , χ ∈ Hγ

rel,�

}

and note that they are closed subspaces ofH�. Here and below, we understand ι(x3G)

as the map in H� defined by (x3, y) �→ ι(x3G). The closedness of the subspaces
can be seen by using Korn’s inequality in form of Lemma 8.5 in combination with
Poincaré’s inequality. We denote by Hγ,⊥

rel,� the orthogonal complement of Hγ
rel,� in

Hγ
�, and write Pγ,⊥

rel,� for the orthogonal projection from H� onto Hγ,⊥
rel,�. Similarly,

we write Pγ
� for the orthogonal projection from H� onto Hγ

�.

Remark 2.19 (Interpretation of Hγ
rel,� and Hγ

�) Note that we have the orthogonal
decomposition

H� = Hγ
� ⊕ (Hγ

�

)⊥ = Hγ
rel,� ⊕Hγ,⊥

rel,� ⊕ (Hγ
�

)⊥
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The spaces Hγ
rel,� and Hγ

� naturally show up in the two-scale analysis of the non-
linear strain: Indeed, as we shall prove below in Proposition 3.2, when considering a
sequence of deformations (vh) in H1(S;R

3) with finite bending energy and limit v ∈
H2
iso(S;R

3), the associated sequence of nonlinear strains Eh(vh) :=
√
∇hv
h ∇hvh−I3×3

h
weakly two-scale converges (up to a subsequence) to a limit E , and for a.e. x ′ ∈ S,
the limiting strain takes the form E(x ′, ·) = ι(x3IIv(x ′)) + χ for some χ ∈ Hγ

rel,�.
The field χ can be interpreted as a corrector that captures the oscillations on the
scale ε(h) that emerge along the selected subsequence of

(
Eh(yh)

)
. Note that in

the definition of the effective quadratic form Qγ
hom we relax the local energy by

infinimizing over all ι(M) + sym∇γ ϕ = χ ∈ Hγ
rel,�, see (16). With help of the

scalar product (·, ·)�, the infimization can be rephrased as an orthogonal projection:
Qγ

hom(G) = ‖Pγ,⊥
rel,�ι(x3G)‖2�.

Next, we turn to the definition of the effective prestrain Bγ
eff . We first note that B

can be decomposed into two parts: Pγ
� B (the orthogonal projection of B onto Hγ

�),
and the orthogonal complement, (I − Pγ

�)B. The energy contribution of the latter is
captured by the residual energy introduced below. As we shall see, only Pγ

� B interacts
with the deformation. We define Bγ

eff in such a way that we can express the energy
contribution associated with Pγ

� B in the form Qγ
hom(Bγ

eff). For this purpose, in the
following lemma, we introduce an operator Eγ

�.

Lemma 2.20 Let γ ∈ (0,∞), and let Q be �-periodic and admissible in the sense of
Definition 2.15. Then the map

Eγ
� : R

2×2
sym → Hγ,⊥

rel,�, Eγ
�(G) := Pγ,⊥

rel,�

(
ι(x3G)

)

is a linear isomorphism, and

√
α
12 |G| ≤

( 
��

|Eγ
�(G)|2

) 1
2 ≤
√

β
12 |G|,

for all G ∈ R
2×2
sym .

(See Sect. 7.1 for the proof.)

Remark 2.21 In view of the definition of Eγ
� and of Qγ

hom in Definition 2.17, we have
Qγ

hom(G) = ffl
��

Q(x3, y,Eγ
�(G))d(x3, y) for all G ∈ R

2×2
sym . Furthermore, the proof

of Lemma 2.20 reveals that

α

12
|G|2 ≤ Qγ

hom(G) ≤ β

12
|G|2 for all G ∈ R

2×2
sym . (18)

Definition 2.22 (Effective prestrain) Let γ ∈ (0,∞), and let Q, B be �-periodic and
admissible in the senseofDefinition2.15.Wedefine the effective prestrain Bγ

eff ∈ R
2×2
sym

associated with Q and B by

Bγ
eff := (Eγ

�)−1
(

Pγ,⊥
rel,�(sym B)

)
. (19)
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Next, we represent Qγ
hom and Bγ

eff by means of three corrector problems. These are
linear Korn-elliptic partial differential equations with domain �� subject to peri-
odic boundary conditions in the y-variable. The weak formulation (20) (below) of
these corrector problems can be phrased as a variational problem in the Hilbert space
H1

γ (��;R
3) (defined in (130)), and the coefficients are given by L, the symmetric

fourth-order tensor obtained in (4) from Q via polarization.

Lemma 2.23 (Existence of a corrector) Let Q and B be �-periodic and admissible
in the sense of Definition 2.15, and assume that 1

C�
≤ �
� ≤ C�. Let G ∈ R

2×2
sym .

Then there exists a unique pair

MG ∈ R
2×2
sym , ϕG ∈ H1

γ (��;R
3) with

ˆ
��

ϕGd(x3, y) = 0,

solving the corrector problem

ˆ
��

L
(
ι(x3G + MG) + sym(∇γ ϕG)

) : (ι(M ′) + sym(∇γ ϕ′)
)
d(x3, y) = 0 (20)

for all ϕ′ ∈ H1
γ (��;R

3) and M ′ ∈ R
2×2
sym . Moreover, there exists a constant C =

C(α, β, γ, C�) such that

|MG |2 +
 

��

|∇γ ϕG |2d(x3, y) ≤ C |G|2. (21)

We call (MG , ϕG) the corrector associated with G.

(See Sect. 7.1 for the proof.)

Remark 2.24 We note that (20) is the Euler–Lagrange equation of the minimization
problem in the definition of Qγ

hom(G) in (16). In particular, (MG, ϕG) is the unique
minimizer of (16) (modulo an additive constant for ϕG).

Proposition 2.25 (Representation via correctors) Let Q and B be �-periodic and
admissible in the sense of Definition 2.15, and assume that 1

C�
≤ �
� ≤ C�. Let

G1, G2, G3 be an orthonormal basis of R
2×2
sym and denote by (MGi , ϕGi ) the corrector

associated with Gi in the sense of Lemma 2.23.

(a) (Representation of Qγ
hom). The matrix Q̂ ∈ R

3×3 defined by

Q̂ik :=
 

��

L
(
ι(x3Gi + MGi ) + sym(∇γ ϕGi )

) : ι(x3Gk)d(x3, y)

is symmetric and positive definite, and we have

α

12
I3×3 ≤ Q̂ ≤ β

12
I3×3, (22)
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in the sense of quadratic forms. Moreover, for all G ∈ R
2×2
sym we have the repre-

sentation

Qγ
hom(G) =

3∑

i, j=1

Q̂i j Ĝi Ĝ j ,

where Ĝ1, Ĝ2, Ĝ3 are the coefficients of G with respect to the basis G1, G2, G3.
(b) (Representation of Bγ

eff). Define B̂ ∈ R
3 by

B̂i :=
 

��

L
(
ι(x3Gi + MGi ) + sym(∇γ ϕGi )

) : Bd(x3, y), i = 1, 2, 3.

Then we have Bγ
eff =
∑3

i=1

(
Q̂−1 B̂

)
i Gi .

(See Sect. 7.1 for the proof.)
The following lemma shows that the correctors and the effective quantities associ-

ated with an admissible pair (Q, B) continuously depends on (Q, B):

Lemma 2.26 (Continuity) Consider a sequence of �-periodic and admissible pairs
(Qn, Bn), n ∈ N ∪ {∞}, and assume that for n → ∞,

Qn(x3, y, G) → Q∞(x3, y, G) for all G ∈ R
3×3 and a.e. (x3, y),

Bn → B∞ strongly in L2(��).

Denote by Qγ
hom,n, Bγ

hom,n, and (Mn,i , ϕn,i ) the effective quantities and correctors
associated with (Qn, Bn) in the sense of Proposition 2.25. Then for n → ∞,

Qγ
hom,n(G) → Qγ

hom,∞(G) for all G ∈ R
2×2
sym , (23)

Bγ
eff,n → Bγ

eff,∞ in R
2×2
sym , (24)

Mn,i → M∞,i in R
2×2
sym , (25)

ϕn,i → ϕ∞,i strongly in H1
γ (��;R

3). (26)

(See Sect. 7.1 for the proof.)
Global definition of the effective quantities.We present the global definition of the
effective quantities and introduce the residual energy associatedwith a locally periodic
composite:

Definition 2.27 (Homogenized coefficients, effective prestrain and residual energy)
For (Q, B) as in Assumption 2.5 define the homogenized quadratic form Qγ

hom :
S × R

2×2
sym → [0,∞) and the effective prestrain Bγ

eff : S → R
2×2
sym as follows: For all

x ′ ∈ S j , j ∈ J , we define Qγ
hom(x ′, G) and Bγ

eff(x ′) by (16) and (19) applied with
� = � j , Q = Q(x ′, ·), and B = B(x ′, ·). Furthermore, define the residual energy as

Iγ
res(B) :=

∑

j∈J

ˆ
S j

 
�� j

Q
(

x ′, x3, y, (I − Pγ
� j

)(sym B(x ′, ·))
)
d(x3, y)dx ′. (27)
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Remark 2.28 (Regularity in x ′) Assumption 2.5 (i) in connection with Lemma 2.26
implies that Qγ

hom(·, G) is continuous in each of the grains S j , j ∈ J , and that
Bγ
eff is measurable. In particular, we deduce that the integral in Iγ

hom (which requires
measurability of the integrand) is well-defined.

Let us anticipate that in the �-convergence proof, we shall first obtain as a �-limit
the “abstract” functional Ĩγ : H2

iso(S;R
3) → R,

Ĩγ (v) := min
M,ϕ

∑

j∈J

ˆ
S j

 
�� j

Q
(

x ′, x3, y, ι(x3IIv + M)+ sym∇γ ϕ − B
)
d(x3, y)dx ′,

(28)
where the minimization is over all corrector pairs (M, ϕ) with M ∈ L2(S;R

2×2
sym ) and

ϕ ∈ L2
(
S; H1

γ,uloc

)
that are locally periodic in the sense of (6). The reason why the

relaxation w.r.t. M and ϕ occurs can be explained by means of the two-scale structure
of the limiting strain, which we analyze in Proposition 3.2 in the next section. The
following lemma, whose proof is based on the projection scheme introduced above,
shows that the abstract �-limit decomposes as claimed in Theorem 2.8:

Lemma 2.29 (Representation of the abstract �-limit) Let Assumption 2.5 be satisfied
and let Ĩγ : H2

iso(S;R
3) → R be defined by (28). Then

Ĩγ (v) = Iγ
hom(v) + Iγ

res(B),

with Iγ
hom and Iγ

res defined in (7) and (27), respectively.

(See Sect. 7.1 for the proof.)

3 Two-Scale Limits of Nonlinear Strain

As in previous works on simultaneous homogenization and dimension reduction
(Neukamm 2010, 2012; Hornung et al. 2014), it is crucial to have a precise under-
standing of the oscillatory behavior of the nonlinear strain

Eh(vh) :=
√

(∇hvh)
∇hvh − I3×3

h
(29)

for sequences of deformations (vh) ⊆ H1(�;R
3) with finite bending energy in the

sense of (9). In this section, we give a precise characterization of weak two-scale limits
of the nonlinear strain Eh along sequences of deformations with finite bending energy
(Proposition 3.2). Furthermore, we prove that Eh strongly two-scale converges along
sequences of deformations with converging energy (Proposition 3.4).

3.1 Characterization of Sequences with Finite Bending Energy

In Friesecke et al. (2002) it is shown that any sequence (vh) satisfying (9) admits a sub-
sequence (also called (vh)) such that there is a bending deformation v ∈ H2

iso(S;R
3)
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for which

vh −
 

�

vh → v strongly in L2(�), (30)

and vector fields M ∈ L2(S;R
2×2
sym ) and d ∈ L2(�;R

3) such that

Eh(vh)⇀ι(x3IIv + M) + sym(d ⊗ e3) weakly in L2(�). (31)

When adding homogenization to the game, the identification of the weak limit of the
nonlinear strain is not sufficient; we need to resolve the two-scale structure of (31).
For this we appeal to the following variant of two-scale convergence. It is a rather
straightforward extension of the notion introduced in Neukamm (2012, 2010) to the
locally periodic setting that we consider here. In the following definition, L2

uloc(R
2)

denotes the space of uniform locally p-integrable functions, see (127). Likewise,
L2(� j ) denotes the space � j -periodic functions in L2

loc(R
2), see Appendix 8.1. Also

recall the notation Y� j = � j [− 1
2 ,

1
2 )

2 and �� j = (− 1
2 ,

1
2 ) × Y� j .

Definition 3.1 (Two-scale convergence for locally periodic functions) Let {S j ,� j } j∈J

be a grain structure in the sense of Definition 2.4, and suppose that h �→ ε(h) satisfies
Assumption 2.1. We say that a sequence (ϕh) ⊂ L2(�) weakly two-scale converges
in L2 as h → 0 to a function ϕ ∈ L2(�; L2

uloc(R
2)) if (ϕh) is bounded in L2(�), and

(i) ϕ is locally periodic in the sense of (6), and
(ii) for all j ∈ J and ψ ∈ C∞

c

(
S j × (− 1

2 ,
1
2 );C(� j )

)
,

lim
h→0

ˆ
�

ϕh(x)ψ
(
x, x ′

ε(h)

)
dx =

ˆ
S j

 
�� j

ϕ(x ′, x3, y)ψ(x ′, x3, y)d(x3, y)dx ′.

Here the space of two-scale test-functions C∞
c

(
S j × (− 1

2 ,
1
2 );C(� j )

)
consists

of all smooth C(� j )–valued functions with support compactly contained in S j ×
(− 1

2 ,
1
2 ) where C(� j ) denotes the space of continuous, � j -periodic functions,

see Appendix 8.1.

We say that (ϕh) strongly two-scale converges to ϕ if additionally

ˆ
�

|ϕh |2dx →
∑

j∈J

ˆ
S j

 
�� j

|ϕ(x ′, x3, y)|2d(x3, y)dx ′.

We write ϕh
2
⇀ ϕ and ϕh

2−→ ϕ in L2 for weak and strong two-scale convergence
in L2, respectively.

Appendix 8.2 lists some properties of this notion of two-scale convergence. In particu-
lar, Proposition 8.3 in Appendix 8.2 shows that two-scale limits of bounded sequences
of scaled gradients∇hvh canbewritten in the form (∇′v(x ′), 0)+∇γ ϕ(x ′, x3, y)where
∇γ = (∂y1, ∂y2 ,

1
γ
∂3) with a macroscopic function v ∈ H1(S;R

3) and a correction
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ϕ that is a locally periodic function in L2(S; H1
γ,uloc); see (129) for the definition of

the space H1
γ,uloc (it contains all functions defined on (− 1

2 ,
1
2 )×R

2 with values in R
3

whose H1-norm on cubes (0, z) + (− 1
2 ,

1
2 )

3 can be bounded uniformly in z ∈ R
2).

This and further two-scale convergence methods are used to establish the next result,
which identifies the structure of two-scale limits of the nonlinear strain.

Proposition 3.2 (Characterization of the two-scale limiting strain) Let {S j ,� j } j∈J

be a grain structure in the sense of Definition 2.4, and suppose that ε(h) is as in
Assumption 2.1 for some γ ∈ (0,∞).

(a) Let (vh) ⊆ H1(�;R
3) be a sequence of finite bending energy, satisfying (9), with

limit v ∈ H2
iso(S;R

3) in the sense of (30). Then, up to a subsequence,

Eh(vh)
2
⇀ ι(x3IIv + M) + sym∇γ ϕ, (32)

for a matrix field M ∈ L2(S;R
2×2
sym ) and a corrector ϕ ∈ L2(S; H1

γ,uloc) that is
locally periodic in the sense of (6).

(b) For all v ∈ H2
iso(S;R

3), M ∈ L2(S;R
2×2
sym ), and any corrector ϕ ∈ L2(S; H1

γ,uloc)

satisfying (6), there exists a sequence (vh) in H1(�;R
3) such that

vh → v strongly in L2(�;R
3)

Eh(vh)
2−→ ι(x3IIv + M) + sym∇γ ϕ strongly two-scale in L2. (33)

Furthermore,

lim sup
h→0

h‖Eh(vh)‖L∞ = 0 and lim
h→0

‖ det(∇hvh) − 1‖L∞ = 0.

Finally, if v satisfies boundary conditions in the sense that v ∈ ABC (see Defini-
tion 2.11), and if

M(x ′) + δ I2×2 ≥ 0 in the sense of quadratic forms,

for some δ > 0 and a.e. x ′ ∈ S, then there exists a sequence (vh) satisfying (33)
and the boundary condition (13).

(See Sect. 7.5 for the proof.)
Proposition 3.2 is the key ingredient for determining the �-limit of Iε(h),h , cf. (3):

In the proof of Theorem 2.8, with help of Proposition 3.2 we shall first establish �-
convergence of Iε(h),h to the functional Ĩγ , whose definition (see (28)) is closely
related to (32). Indeed, the argument of the quadratic form under the integral in (28) is
precisely the difference of the right-hand side of (32) and the prestrain B. Furthermore,
Ĩγ (v) is then obtained byminimizing out M andϕ, i.e., the only terms of the right-hand
side of (32) that are not uniquely determined by the deformation v.

Proposition 3.2 extends a previous result in Hornung et al. (2014) in various direc-
tions: First, the construction of Part (b) takes boundary conditions of the form of
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Definition 2.11 into account. Secondly, “grained” composites, i.e., composites with
a periodic microstructure whose reference lattice changes from grain to grain, are
considered. Thirdly and most importantly, Proposition 3.2 closes a gap in the char-
acterization of the limiting strain on regions where the second fundamental form
vanishes. More precisely, Hornung et al. (2014) proves Part (a) in the single grain case
J = 1, �1 = I2×2, and establishes Part (b) only under the additional assumption that
the matrix M in (32) vanishes on all flat parts of the bending deformation u, i.e.,

M = 0 a.e. in
{

x ′ ∈ S : IIv(x ′) = 0
}
. (34)

This assumption is critical for the construction in Hornung et al. (2014). Nevertheless,
in the case without prestrain, the construction of Hornung et al. (2014) is sufficient
for deriving the �-limit. In contrast, when a prestrain is present, it is necessary to
treat the case where (34) is not satisfied to retrieve the �-limit. In the case without
homogenization, this has recently been achieved by the third author in Padilla-Garza
(2022) using a flexibility result for isometric immersions that was inspired by Lewicka
and Pakzad (2017). In our proof of Proposition 3.2(b), we combine this method with
the two-scale ansatz of Hornung et al. (2014) and thus give a complete characterization
of the two-scale limits of the nonlinear strain.

3.2 Strong Two-Scale Convergence of the Nonlinear-Strain for Almost-Minimizing
Sequences

Theorem 2.8 implies that a sequence of almost-minimizers (vh) converges (after pos-
sibly extracting a subsequence) to a minimizer of the limiting energy. The next result
shows that the nonlinear strain Eh(vh) defined in (29) strongly two-scale converges
along such a sequence to a two-scale strain that is uniquely determined by the sec-
ond fundamental form of the limiting deformation. More precisely, if the limiting
deformation is given by v∗ ∈ H2

iso(S;R
3), then the limiting strain takes the form

E∗(x, y) = ι
(
x3IIv∗(x ′) + M∗(x ′)

)+ sym∇γ ϕ∗(x, y), (35)

where

M∗ ∈ L2(S;R
2×2
sym ) and ϕ∗ ∈ L2(S; H1

γ,uloc

)

satisfy, for all j ∈ J and a.e. x ′ ∈ S j , the weak corrector problem

ˆ
�� j

L(x ′, ·)(ι(x3IIv∗(x ′) + M∗(x ′))

+ sym(∇γ ϕ∗(x ′, ·))) : (ι(M ′) + sym(∇γ ϕ′)
)
d(x3, y) = 0,

for all M ′ ∈ R
2×2
sym andϕ′ ∈ H1

γ (�� j ;R
3) (36)
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subject to the mixed boundary and zero-mean conditions

ϕ∗(x ′, ·) ∈ H1
γ (�� j ;R

3) and
 

�� j

ϕ∗(x ′, x3, y)d(x3, y) = 0.

Remark 3.3 (Corrector representation of E∗) By linearity of equation (36), for each
x ′ ∈ S we have the corrector representation

(
M∗(x ′), ϕ∗(x ′, ·)) =

3∑

i=1

ÎIv∗(x ′)i (Mi , ϕi ) ,

where the (Mi , ϕi ), i = 1, 2, 3 are the correctors of Proposition 2.25 (applied with
Q = Q(x ′, ·) and B = B(x ′, ·)), and where ÎIv∗(x ′) ∈ R

3 denotes the coefficient
vector of IIv∗(x ′) ∈ R

2×2
sym with respect to the basis G1, G2, G3 of Proposition 2.25.

Next, we establish strong two-scale convergence of the nonlinear strain for sequences
of deformations whose energy is converging. In particular, it applies to sequences of
(almost) minimizers.

Proposition 3.4 Let Assumptions 2.1 and 2.5 be satisfied. Consider a sequence (vh)

in H1(�;R
3) that strongly converges in L2(�) to some v∗ ∈ H2

iso(S;R
3). Assume

that the energy converges in the sense that

lim
h→0

Iε(h),h(vh) = Iγ
hom(v∗) + Iγ

res(B). (37)

Then
Eh(vh)

2−→ E∗ strongly two-scale in L2,

where E∗ is defined in (35).

Proposition 3.4, proved in Sect. 7.6, extends (Friesecke et al. 2002, Theorem 7.1),
where strong “single-scale” convergence of Eh(vh)was established in the casewithout
homogenization. Also related is Theorem 7.5.1 of Neukamm (2010), which shows the
result for two-scale homogenization and rods.

Remark 3.5 (Application to almost-minimizers) Proposition 3.4 applies in particular to
almost-minimizers:When (vh) is a sequence of almost-minimizers, that is, a sequence
such that

lim
h→0

(
Iε(h),h(vh) − inf

v∈H1(�;R3)
Iε(h),h(v)

)
= 0,

then Theorem 2.8 implies that a subsequence of (vh) converges strongly in H1 to a
minimizer of Iγ (·) + Iγ

res(B). Hence, Proposition 3.4 implies that (along the same

subsequence) Eh(vh)
2−→ E∗ strongly two-scale in L2.
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4 TheMicrostructure–Properties Relations

In this and the following section we investigate the relation between themicrostructure
of the composite material and the effective shape of the plate in equilibrium, i.e., we
want to predict the geometry of a minimizer v∗ ∈ H2

iso(S;R
3) of Iγ

hom based on
knowledge of the microstructure of the composite and of the prestrain. We focus here
on “free” minimizers, i.e., we do not take boundary conditions or external loads into
account. The relationship can then be split into two parts:

(Q1) How do the effective stiffness Qγ
hom and prestrain Bγ

eff depend on the microstruc-
ture of the composite and its prestrain?

(Q2) How do the minimizers of Iγ
hom depend on Qγ

hom and Bγ
eff ?

Note that in the general case, both problems can only be studied by numerical simula-
tions: Question (Q1) requires solving a system of linear PDEs that admits closed-form
solutions only in special cases. Question (Q2) is even more delicate since it generally
requires solving a nonlinear, singular PDE. Solving PDEs, however, can be mostly
avoided when studying the homogeneous case, i.e., when Qγ

hom and Bγ
eff are inde-

pendent of x ′ ∈ S. In this case it is known that free minimizers have a constant
second fundamental form; see (Schmidt 2007a) and Lemma 5.1 below. The problem
then reduces to an algebraic minimization problem. This is the case that the present
paper focuses on. The numerical investigation of Question (Q2) in the case of spatial
heterogeneity will be the subject of a further paper.

In this section we investigate Question (Q1), and thus study the connection between
the microstructure (the linearized elastic energy Q, and the prestrain B) and the effec-
tive properties of the thin plate (Qγ

hom and Bγ
eff ). In Sect. 4.1, we first introduce a class

of examples in which some symmetries of Qγ
hom and Bγ

eff can be deduced from the
symmetries of Q and B. Later, we further specialize that class to one for which explicit
formulas for Qγ

hom and Bγ
eff are available. Section 4.2 then numerically explores these

formulas. The discussion of Question (Q2) shall follow in Sect. 5.

4.1 The Case of Orthotropic Effective Stiffness

In this section we introduce a special class of composites that feature simplified for-
mulas for the effective quantities. We shall discuss a series of examples that become
progressively more specific. Our final example consists of a parametrized laminate
that is composed of two isotropic materials with zero-Poisson ratio. The upshot of
the example is that it features a closed-form expression for Qγ

hom and Bγ
eff that can

be evaluate at low computational cost — an advantage that we shall exploit in our
numerical studies.

In the following, we use the representation of a matrix G ∈ R
2×2
sym as

G =
3∑

i=1

Ĝi Gi , where G1 := e1⊗e1, G2 := e2⊗e2, G3 := 1√
2
(e1⊗e2+e2⊗e1),

(38)
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denotes the canonical orthonormal basis of R
2×2
sym . We call Ĝ1, Ĝ2, Ĝ3 ∈ R the coeffi-

cients of G. We start by introducing the following notion of orthotropocity for Qγ
hom,

and note that all examples in this section shall feature this material symmetry.

Definition 4.1 (Orthotropicity) We call a quadratic form Qγ
hom : R

2×2
sym → R

orthotropic, if there exist q1, q2, q12, q3 ∈ R such that

Qγ
hom(G) = (Ĝ2

1q1 + Ĝ1Ĝ2q12 + Ĝ2
2q2
)+ Ĝ2

3q3.

We call q1, q2, q12, q3 the coefficients of Qγ
hom.

In the rest of this section we consider composites that are �-periodic with � = I2×2.
For convenience we introduce for the representative volume element the shorthand
� := �� = (− 1

2 ,
1
2 ) × [− 1

2 ,
1
2 )

2. The following lemma yields a sufficient condition
on the quadratic form Q for orthotropicity.

Lemma 4.2 (A sufficient condition for orthotropicity) Let the quadratic form Q be
admissible in the sense of Definition 2.15, and assume that � = I2×2. Suppose that
Q is independent of y2 and takes the form

Q(x3, y, G) = λ(x3, y1)tr(G)2 + 2μ(x3, y1)| sym G|2 (39)

with Lamé coefficients λ, μ satisfying the symmetry conditions

λ(x3, y1) = λ(−x3, y1) = λ(x3,−y1) and μ(x3, y1) = μ(−x3, y1) = μ(x3,−y1)

for all x3 ∈ (− 1
2 ,

1
2

)
and a.e. y1 ∈ (− 1

2 ,
1
2 ). Then Qγ

hom associated with Q via
Definition 2.17 is orthotropic. Moreover, the corrector pair (Mi , ϕi ) associated with
Gi via (20) satisfies the following properties:

M1 = M2 = M3 = 0, (40)

and a.e. in �� we have,

∂y2ϕ1 = ∂y2ϕ2 = ∂y2ϕ3 = ϕ1 · e2 = ϕ2 · e2 = ϕ3 · e1 = ϕ3 · e3 = 0, (41)

L
(
ι(x3G3) + sym∇γ ϕ3

) : (e j ⊗ e j ) = 0 for j = 1, 2, 3. (42)

Above, we denote by e1, e2, e3 the canonical basis of R
3.

(See Sect. 7.7 for the proof.)
Next, we specialize the situation further to a class of examples for which we have

explicit solutions to the corrector problem (20): In addition to the assumptions of
Lemma 4.2, in the following result we consider a composite in which the elastic
law described by Q is additionally independent of x3 and thus describes a laminate.
Furthermore, we assume that the components of the composite have a Poisson ratio
that vanishes (i.e., λ = 0). We shall also derive simplified formulas for Bγ

eff in the case
of a prestrain B that is rotationally invariant, i.e., of the form B = ρ I2×2 for a scalar
function ρ.
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Lemma 4.3 (Laminate of isotropic materials with vanishing Poisson ratio) Let (Q, B)

be admissible in the sense of Definition 2.15, and assume that � = I2×2. Suppose
that Q takes the form

Q(x3, y, G) = 2μ(y1)| sym G|2,
and assume that μ(−y1) = μ(y1) for a.e. y1 ∈ (− 1

2 ,
1
2 ). We denote the harmonic and

arithmetic means of μ by

〈μ〉h :=
( ˆ 1

2

− 1
2

1

μ
dy1
)−1

and μ :=
ˆ 1

2

− 1
2

μ dy1, (43a)

respectively, and introduce for γ ∈ (0,∞) the following weighted average

μγ := min
w∈H

 
�

μ
((√

12x3 + ∂y1w
)2 +
(
1
γ
∂3w
)2)

d(x3, y), (43b)

where

H :=
{
w ∈ H1

γ (�;R) :
 

�
w = 0, ∂y2w = 0 a.e. in �

}
.

Let Qγ
hom and Bγ

eff denote the effective quantities associated with (Q, B) defined via
Definitions 2.17 and 2.22. Then the following properties hold:

(a) We have
〈μ〉h ≤ μγ ≤ μ for all γ ∈ (0,∞). (44)

Furthermore, the map (0,∞) � γ �→ μγ is continuous and monotonically
decreasing, and satisfies

lim
γ→0

μγ = μ and lim
γ→∞μγ = 〈μ〉h. (45)

Furthermore, if μ is non-constant, then γ �→ μγ is strictly monotone.
(b) Qγ

hom is orthotropic with coefficients

q1 = 1

6
〈μ〉h, q2 = 1

6
μ, q3 = 1

6
μγ , q12 = 0. (46)

(c) Assume that B(x3, y) = ρ(x3, y1)I3×3 for a scalar function ρ. Then the coeffi-
cients of Bγ

eff are given by

B̂γ
eff,1 = 12

 
�

ρ x3 d(x3, y), B̂γ
eff,2 =

12

μ

 
�

μρx3 d(x3, y), B̂γ
eff,3 = 0.

(47)

(See Sect. 7.7 for the proof.)

Remark 4.4 (Physical interpretation) The harmonic mean 〈μ〉h and the arithmetic
mean μ are typical averages in homogenization of laminates: By assumption, the
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y1
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x3

θ

ρ2

ρ1

ρ1

ρ(x3, y1)

θ

μ1

μ1

μ2

(a) Prestrain strength (b) Lamé parameter μ(x3, y1)

Fig. 4 Schematic view of the microstructure of Lemma 4.5

laminate under consideration oscillates in the y1-coordinate, while it is constant with
respect to y2. As a consequence, the corrector associated with G2 vanishes and leads
to the arithmetic mean for the effective coefficient q2. On the other hand, the corrector
associatedwithG1 oscillates and leads to the harmonicmean forq1. Furthermore, sinceffl
� |√12x3|2 d(x3, y) = 1, the quantity μγ is a weighted average that interpolates
between the arithmetic and harmonic mean.

We will now specialize the particular case of Lemma 4.3 even further: We divide
the representative volume element of the composite� = (− 1

2 ,
1
2 )×[− 1

2 ,
1
2 )

2 into two
regions in the x3-axis (top and bottom) and two regions in the y1-axis (middle and its
complement). The middle region has width θ . The remaining Lamé parameterμ takes
one value in the middle and another value in the complement region. The prestrain
strength ρ takes one value in the top, complement region, another value in the bottom,
middle region, and is 0 elsewhere. The setting is illustrated in Fig. 4, and formalized
in the following lemma.

Lemma 4.5 (A parametrized laminate) For parameters μ1 > 0, ρ1 ∈ R, θ ∈
[0, 1], θρ ∈ R, and θμ > 0, we consider the situation of Lemma 4.3 where ρ and μ

are defined by

ρ(x3, y1) :=

⎧
⎪⎨

⎪⎩

ρ1 if |y1| > θ
2 and x3 > 0,

ρ2 if |y1| < θ
2 and x3 < 0,

0 else,

and μ(x3, y1) :=
{

μ1 if |y1| > θ
2 ,

μ2 else,

where ρ2 := θρρ1 and μ2 := θμμ1. Then we have

q1 = μ1
θμ

6(θ + (1− θ)θμ)
, q2 = μ1

6

(
(1− θ) + θθμ

)
, (48)
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Table 1 Parameters for the
parametrized laminate
introduced in Lemma 4.5

θ : Volume fraction of the components

θμ : Stiffness ratio

θρ : Prestrain contrast

μ1 : Material stiffness

ρ1 : Strength of the isotropic prestrain

0.0 0.5 1.0 1.5 2.0 2.5 3.0
γ

0.190

0.195

0.200

0.205

q 3
(γ

) q1

q2 Parameters θμ θρ θ

2 2 1
2

Fig. 5 Numerical approximation of q3(γ ) = 1
6μγ

and

B̂γ
eff,1 =

3ρ1
2

(
1− θ(1+ θρ)

)
, B̂γ

eff,2 =
3ρ1
2

(
1− θ(1+ θμθρ)

1− θ + θθμ

)
, B̂γ

eff,3 = 0.

(49)

(See Sect. 7.7 for the proof.)

4.2 Numerical Computation of the Effective Quantities

In this section we answer Question (Q1) for the parametrized laminate introduced
in Lemma 4.5 by numerically exploring the parameter dependence of the effective
quantities Qγ

hom and Bγ
eff . Recall that by Lemma 4.5, Qγ

hom is orthotropic with coef-
ficients q1, q2 given by (48), q12 = 0, and q3(γ ) = 1

6μγ with μγ given by (43b).
The coefficients of Bγ

eff are given by (49). These coefficients (and thus Qγ
hom and Bγ

eff )
depend on the parameters of the model shown in Table 1. As can be seen by a close
look at the formulas for the coefficients, the following scaling properties hold:

Qγ
hom(G; θ, θμ, θρ, μ1, ρ1) = μ1Qγ

hom(G; θ, θμ, 1, 1, 1),

Bγ
eff(θ, θμ, θρ, μ1, ρ1) = ρ1Bγ=1

eff (θ, θμ, θρ, 1, 1). (50)

In particular, Qγ
hom does not depend on θρ and ρ1, and Bγ

eff does not depend onμ1 and
the scaling parameter γ . In view of this, we set μ1 = ρ1 = 1 in the following. With
the idea in mind that the volume fraction θ can be controlled during the fabrication of
the composite, we shall mainly focus on the functional dependence of Qγ

hom and Bγ
eff

on θ for various values of θμ and θρ .
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Fig. 6 Coefficients q1, q2 and the ratio q1/q2 as functions of the volume fraction θ of the constituents, for
different values of θμ

In view of the definition of the coefficients (cf. (48), (46), and (49)) all except
the coefficient q3(γ ) are given by explicit formulas, which can be evaluated without
computational effort. In contrast, for q3(γ ) we need to solve the Euler–Lagrange
equation for the minimization problem (43b). It is a two-dimensional, elliptic system
that we solve using a finite element method implemented in C++ using the Dune
libraries (Blatt et al. 2016; Sander 2020).We also note that q3(γ ) is the only coefficient
that depends on the scaling parameter γ . Figure 5 shows the value of q3(γ ) obtained
numerically for different values of the relative scaling parameter γ .We clearly observe
property (44), i.e., q1 < q3(γ ) < q2 for γ ∈ (0,∞), continuity and monotonicity of
γ �→ q3(γ ), and the asymptotic behavior

lim
γ→0

q3(γ ) = q2 and lim
γ→∞ q3(γ ) = q1, (51)

as predicted by Lemma 4.3. Furthermore, q3(γ ) appears to be a convex function with
a rapid decay for values of γ close to zero. Let us anticipate that in the next section we
shall appeal to the asymptotic behavior (51) to avoid the computational effort required
to solve (43b) numerically: in view of (51), in the extreme cases 0 < γ � 1 and
γ � 1, we may use q2 and q1 as approximations for q3(γ ), respectively.

Figure 6 shows the elastic moduli q1, q2, and their ratio q1
q2

as functions of the

volume fraction θ for different values of the stiffness ratio θμ. The ratio q1
q2

serves
as a measure for the in-plane anisotropy of the effective material. As expected from
(48) we observe a nonlinear dependence of q1 on the volume fraction θ , and a linear
dependence of q2 on θ . Note that for θμ = 1 the laminate reduces to a homogeneous
material. By increasing the stiffness ratio θμ, the slopes of q1 and q2 as functions
of θ increase while the ratio q1

q2
decreases. We note that as θμ increases, so does the

possible anisotropy. Additionally, for all θμ > 1 the ratio q1
q2

assumes its minimum at

θ = 1
2 . Next, we study the effective prestrain Bγ

eff and its dependence on the laminate
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Fig. 7 Effective prestrain components B̂γ
eff,1 (left) and B̂γ

eff,2 (right) for a fixed value of θμ = 2 with
different values of θρ

Fig. 8 Effective prestrain B̂γ
eff,2 for a fixed value of θρ = 2 with different values of θμ

parameters. Recall that B̂γ
eff,3 = 0 by Lemma 4.3. (Here and below,we use the notation

introduced in (38) for the coefficients of Bγ
eff .)

Figure 7 displays the effective prestrain coefficients B̂γ
eff,1 and B̂γ

eff,2 as functions
of the volume fraction θ for different values of the prestrain ratio θρ . Note that the
dependence of B̂γ

eff,1 on θ is linear, while the dependence of B̂γ
eff,2 on θ is nonlinear.

This is somewhat surprising, since the corrector associated to G1 is non-zero, while
the corrector associated to G2 is zero, cf. the proof of Lemma 4.3. Furthermore, note
that the effective prestrain is not zero if θ = 0, and the sign, as well as the slope of the
effective prestrain depends on the prestrain ratio θρ .

In a similar way, Fig. 8 shows the dependence of B̂γ
eff,2 on the volume fraction θ but

for different stiffness ratios θμ. Note that B̂γ
eff,1 is independent of θμ, see Lemma 4.5.

Again, the dependence of B̂γ
eff,2 on θ is nonlinear except for the homogeneous case

θμ = 1.0, where the dependence becomes affine.
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5 TheMicrostructure–Shape Relation

In this section, we investigate Question (Q2) and combine it with the results of Sect. 4
in order to explore the parameter-dependence of the shapes of free minimizers of
the homogenized energy functional Iγ

hom for the parametrized laminate material of
Lemma 4.5. Note that unless stated otherwise, with “minimizer” we always refer to a
global minimizer. As mentioned before, in the present paper, we restrict our analysis
to the spatially homogeneous case and thus assume that

Qγ
hom and Bγ

eff are independent of x ′ ∈ S. (52)

A sufficient condition for (52) is the global periodicity of the composite’s microstruc-
ture. Condition (52) allows to simplify the minimization of Iγ

hom drastically: Every
bending deformation that minimizes Iγ

hom has a constant fundamental form and
thus parametrizes a cylindrical surface with constant curvature. Note that for v ∈
H2
iso(S;R

3), thanks to the isometry constraint (∇′v)
∇′v = I2×2, we have

IIv(x ′) ∈ G := {G ∈ R
2×2
sym : det G = 0

}
for a.e. x ′ ∈ S.

Thus, under condition (52), minimization of the non-convex integral functional Iγ
hom

reduces to the following algebraic minimization problem:

S := argminG∈G Qγ
hom(G − Bγ

eff). (53)

More precisely, we recall the following result from Schmidt (2007a):

Lemma 5.1 (Schmidt 2007a, Theorem 3.2) In the situation of Theorem 2.8 suppose
that Qγ

hom and Bγ
eff are independent of x ′ ∈ S. Then v ∈ H2

iso(S;R
3) is a minimizer

of Iγ
hom, if and only if there exists G solving (53) such that IIv = G almost everywhere

in S, where IIv denotes the second fundamental form of v.

In view of this, we study the dependence of the solution set S on the effective coeffi-
cients of Qγ

hom and Bγ
eff . Having the parametrized laminate of Lemma 4.5 in mind, we

focus on the orthotropic case of Definition 4.1. In Sect. 5.1 we present a classification
result that describes S for a general orthotropic quadratic form and a general effective,
diagonal prestrain. In Sect. 5.2 we then explore the microstructure–shape relation by
analyzing the dependence ofS on the parameters of the parametrized laminatematerial
of Sect. 4.2.

Remark 5.2 (Cylindrical surfaces and their parametrization by angle and curvature)
The geometry of a cylindrical surface can be conveniently parametrized by an angle
and a scalar curvature. We shall use this parametrization in the characterization and
visualization of the set S in the upcoming section. Let us first fix our terminology:
Recall that v ∈ H2

iso(S;R
3) is called cylindrical if IIv is constant, i.e., if there exists

G ∈ G such that IIv = G a.e. in S. We note that for any G ∈ G there exists a
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deformation vG ∈ H2
iso(S;R

3) with IIvG = G. To see this, first note that any G ∈ G
can be represented as

G = κξ ⊗ ξ for some unique κ ∈ R and a vector ξ ∈ R
2 with |ξ | = 1. (54)

In the case G  = 0, the line spanned by ξ is uniquely determined by G.
A direct calculation shows that the map vG : S → R

3,

vG(x ′) :=
( ˆ x ′·ξ

0
cos(−κs) ds, x ′·ξ⊥,

ˆ x ′·ξ

0
sin(−κs) ds

)

, ξ⊥ :=

(
0 −1
1 0

)
ξ,

defines a bending deformation with its second fundamental form satisfying IIvG = G.
In fact, by the rigidity theorem for surfaces (see, e.g., (Ciarlet and Larsonneur 2002,

Theorem 3)), any parametrized surface v ∈ H2
iso(S;R

3) with IIv = G a.e. in S equals
vG modulo a superposition with a Euclidean transformation of R

3.
Geometrically, vG parametrizes a cylindrical surface, whose (nonzero) principal

curvature is given by κ and with associated principal direction (expressed in local
coordinates) ±ξ , see Fig. 9.

For κ < 0 the surface is bent in the direction of the surface normal ∂1v ∧ ∂2v.
For visualizations it is convenient to parametrize the set G \ {0} by associating to

each G = κξ ⊗ ξ ∈ G the curvature κ and the angle

α(G) :=
⎧
⎨

⎩
arctan

ξ · e2
ξ · e1

if ξ · e1  = 0,

π
2 else.

(55)

Note that the expression on the right-hand side is the same for ξ and −ξ and thus
α(G) is well-defined. Geometrically, α(G) is the angle required to rotate the line
spanned by e1 to the line spanned by ξ (in counterclockwise direction). The map
G \ {0} �→ (α, κ) ∈ (−π

2 , π
2 ] × R \ {0} is a bijection. It is even a homeomorphism if

we identify the end points of (−π
2 , π

2 ].

5.1 Classification ofS in the Orthotropic Case

We analyze the algebraic minimization problem (53) in the case of an orthotropic
quadratic form Qγ

hom and a diagonal prestrain Bγ
eff. For the upcoming discussion it

is not important that Qγ
hom and Bγ

eff are defined via the homogenization formulas of
Sect. 2.3. We rather consider a generic quadratic form and prestrain, which we denote
by Q and B to simplify the notation.

More precisely, with G1, G2, G3 the orthonormal basis ofR
2×2
sym introduced in (38),

let Q : R
2×2
sym → R be a positive definite quadratic form, B ∈ R

2×2
sym , and assume that

Q is orthotropic in the sense of Definition 4.1with coefficients q1, q2, q3, q12,
(56a)
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(a) α = 0, ξ =
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(b) α = π

2 , ξ =
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0
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(c) α = π

4 , ξ = 1√
2

(
1
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)

e1
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α
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α
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(d) Principal directions in local coordinates

Fig. 9 Deformations with constant second fundamental form II = κξ ⊗ ξ and |κ| = 2. Blue color corre-
sponds to positive values of the curvature κ and red to negative values of κ . The green vector shows (∇u)ξ

while the blue vector represents the surface normal ∂1v ∧ ∂2v

and

B is diagonal and invertible, i.e., det B  = 0. (56b)

We remark that in view of (56) the positive definiteness of Q is equivalent to

q1, q2, q3 > 0 and − 2
√

q1q2 < q12 < 2
√

q1q2. (57)

Our goal is to determine the set of minimizers

SQ,B := argminG∈G Q(G − B).

This is a quadratic minimization problem on the non-convex set G, and thus a rich
behavior can be expected. We first note that by the positive definiteness of Q and in
view of the assumption det B  = 0 we haveSQ,B  = ∅ and 0 /∈ SQ,B . Thus, minimizers
G ∈ SQ,B exist and correspond to non-flat, cylindrical surfaces.
Axial minimizers.An important role for the upcoming discussion is played by G ∈ G
with angle α(G) ∈ {0, π

2 }. Such G correspond to a cylindrical surface with a principal
direction that in local coordinates is parallel to one of the coordinate axes ofR2 (Fig. 9).
We call such matrices axial, and note that

G ∈ G \ {0} is axial ⇐⇒ G ∈ span{G1} ∪ span{G2}.

Since Q is positive definite, the restrictions of G �→ Q(G − B) to span{G1} or
span{G2} are strictly convex. They thus admit unique minimizers, which can be com-
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puted by elementary calculations. We obtain

{
G ∈ SQ,B : G is axial

} ⊆
{2q1 B̂1 + q12 B̂2

2q1
G1,

2q12 B̂1 + q2 B̂2

2q2
G2

}
, (58)

where B̂1, B̂2 denote the coefficients of B in the sense of (38).
As we shall see, for most choices of Q and B, every G ∈ SQ,B is axial. In this

case, SQ,B consists of at most two (global) minimizers, and to determine SQ,B we
only need to compare the energy values associated with the elements in the set on the
right-hand side in (58). However, we shall see that for certain choices of Q and B, the
set SQ,B contains two or even a one-parameter family of infinitely many non-axial
minimizers. In the following, we develop an algorithm to compute the set SQ,B in this
case.
Mirror symmetry of the solution set. Consider the bijective transformation

T : G → G,

(
a1 a3
a3 a2

)
�→
(

a1 −a3
−a3 a2

)
.

Then by orthotropicity of Q and diagonality of B we have Q(G − B) = Q(T G − B),
and thus

G ∈ SQ,B ⇐⇒ T G ∈ SQ,B . (59)

Geometrically, the transformation T is a reflection in the following sense: If G
describes a cylindrical surface with curvature κ and angle α ∈ (−π

2 , π
2 ), then T G

corresponds to a cylindrical surface with the same curvature κ but angle −α. From
(59) we conclude that

SQ,B = {G, T G : G ∈ S+
Q,B

}
,

where S+
Q,B := argminG∈G+ Q(G − B), G+ := {G ∈ G with G : G3 ≥ 0

}
.

(60)

Moreover, we note that for all G ∈ G \ {0}we have G = T G, if and only if G is axial.
Classification of minimizers. The set G+ can be conveniently parametrized by the
nonlinear, bijective transformation

� : G+
R2 → G+, �(a1, a2) := a1G1 + a2G2 +

√
2a1a2G3,

G+
R2 :=

{
a = (a1, a2) ∈ R

2 : a1a2 ≥ 0
}
.

We remark that the boundary ∂G+
R2 corresponds to axial G ∈ G+, i.e., �(∂G+

R2) =
{G ∈ G+ : G is axial}. In order to expressG+ � G �→ Q(G−B) in these coordinates,
we introduce the quadratic function

EQ,B : R
2 → R, EQ,B(a) := 1

2
a · Ha − 2a · Ab,
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where

H :=
(

2q1 q12 + 2q3
q12 + 2q3 2q2

)
, A :=

(
q1

q12
2q12

2 q2

)
, b := (B̂1, B̂2)


. (61)

One can easily check that for all a ∈ G+
R2 we have EQ,B(a) = Q(�(a) − B) + c for

a constant c that is independent of a. We thus conclude that

S+
Q,B = �

(
argmina∈G+

R2
EQ,B(a)

)
. (62)

The problem on the right-hand side is a quadratic minimization problem subject to
the nonlinear constraint a1a2 ≥ 0. Since q1, q2 > 0, the quadratic part of EQ,B is
elliptic, parabolic, or hyperbolic, if and only if det H > 0, det H = 0, or det H < 0,
respectively. In the case det H > 0 the minimizer of EQ,B is unique and given by

g∗ := 2H−1Ab. (63)

We can always compute g∗ in closed form using Cramer’s rule.
We obtain the following classification of the set of minimizers:

Lemma 5.3 (Trichotomy of minimizers) Let Q : R
2×2
sym → R be a positive definite

quadratic form that is orthotropic in the sense of Definition 4.1. Let further B ∈ R
2×2

be diagonal with det B  = 0. Then exactly one of the following three cases has to hold:

(a) (Axial minimizers). All minimizers G ∈ SQ,B are axial. Furthermore, SQ,B is
characterized as follows:

∅  = SQ,B ⊆
{2q1 B̂1 + q12 B̂2

2q1
G1,

2q12 B̂1 + q2 B̂2

2q2
G2

}
, (64)

and equality holds if and only if (B̂2)
2

q1
= (B̂1)

2

q2
.

(b) (Two non-axial minimizers). We have det H > 0 and g∗ defined in (63) is an
interior point of G+

R2 . Furthermore, SQ,B is characterized as follows:

SQ,B = {G, T G}, G := �(g∗).

(c) (One-parameter family of minimizers). We have det H = 0 and Ab ∈ range H.
Furthermore, SQ,B is characterized as follows:

SQ,B = {G, T G : G = �(a) for all a ∈ G+
R2 s.t. a · q∗ = s∗

}
,

where

q∗ := 1
√

(q12 + 2q3)2 + 4q2
2

(
q12 + 2q3

2q2

)
and s∗ := q∗ · Ab

q1 + q2
. (65)
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Case q1 q2 q12 q3 Bγ
eff,1 Bγ

eff,2
(a) 1.0 2.0 0 1.0 0 0.5
(b) 1.0 2.0 0 1.0 2.0 1.5
(c) 1.0 2.0 0.5 1.164 0.491 0.347

Fig. 10 Visualization of G+
R2 and the level lines of EQ,B with each subfigure (a–c) corresponding to one

Case of Lemma 5.3. The set of minimizers of EQ,B |G+
R2

is highlighted in blue. The table contains the

effective quantities rounded to 3 decimal places

(See Sect. 7.7 for the proof.)
In Fig. 10 we illustrate the three Case of Lemma 5.3 by visualizing the level lines

of EQ,B and its minimizers in G+
R2 for different choices of the coefficients.

Remark 5.4 (Qualitative properties of SQ,B)

(a) (Sufficient and necessary conditions). A sufficient condition for the axiality of
minimizers is det H = 4q1q2 − (q12 + 2q3)2 < 0, which is a condition only
depending on Q. Likewise, a necessary condition for two non-axial minimizers is
det H = 4q1q2 − (q12 + 2q3)2 > 0.

(b) (Stability with respect to perturbations of Q and B). In contrast to the case of a sin-
gle axial minimizer and the case of Lemma 5.3 (b), the condition in Lemma 5.3 (c)
is very sensitive with respect to perturbations of Q and B. In applications, we shall
evaluate Q and B numerically and thus case (c) can typically be neglected. The
same holds for the case of two global axial minimizers.
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(c) (One-parameter family). Figure 11 visualizes the one-parameter family SQ,B in
the case of Lemma 5.3 (c). In Fig. 12 that very same one-parameter family is
visualized as a subset of G+ and of G+

R2 . One can show that angles α(G) associated
with G ∈ SQ,B span the whole interval (−π/2, π/2]. Furthermore, one can show
that SQ,B is a one-dimensional compact manifold.

(d) (Continuous dependence). Lemma 5.3 reveals that minimizers may not depend
continuously on the prestrain B. For instance, even in the stable case (a), the
global minimizer may jump from an axial minimizer with angle α = 0 to one
with angle α = π

2 . On the other hand, in case (b), the two global minimizers
continuously depend on b ∈ 1

2 A−1H(G+
R2 \ ∂G+

R2).
(e) (Local minimizers). The same techniques can be used to handle local minimizers.

In the case of Lemma 5.3 (a) both axial matrices on the right-hand side of (64) turn
out to be local minimizers in the case det H > 0. In the case of Lemma 5.3 (b)
the two global minimizers are also the only local minimizers, and in the case of
Lemma 5.3 (c), the one-parameter families

Remark 5.5 (The case q12 = 0 and the isotropic case) In the case q12 = 0 we may
simplify the statement of Lemma 5.3 further. In particular, A is diagonal and the
following holds:

(a) In the case of Lemma 5.3 (a) we have

SQ,B ⊆ {B̂1G1, B̂2G2}

(b) Formula (63) for g∗ simplifies to

g∗ =
(

q1q2 B̂1 − q3q2 B̂2

q1q2 − q2
3

,
q1q2 B̂2 − q3q1 B̂1

q1q2 − q2
3

)
.

Furthermore, we note that if Q is isotropic, i.e., q1 = q2 = q3 and q12 = 0, and B is
a multiple of the identity, we are always in the case of Lemma 5.3 (c) and S consists
of all matrices of the form G = √

det B(ξ ⊗ ξ) with ξ ∈ R
2, |ξ | = 1.

5.2 Microstructure–Shape Relation for the Parametrized Laminate

We continue our study of the parametrized laminate considered in Sect. 4.2 (shown
in Fig. 4), and now focus on the microstructure–shape relation. We thus consider the
algebraicminimization problem (53)with Qγ

hom and Bγ
eff defined as in Lemma 4.5, and

study the dependence of the set of minimizers S on the parameters listed in Table 1.
Throughout this section we set μ1 = ρ1 = 1; the set S for other values can then be
easily obtained with the help of (50).
Visualization of S. Before we start our exploration, we briefly comment on how we
visualize the set S. As we shall see, except for the special case of a homogeneous
composite or for parameters (θ, θμ, θρ) in a small exceptional set, S consists of

one unique axial minimizer or two non-axial minimizers. (66)
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(a) Plot of SQ,B in (α, κ)-coordinates.

(b) α = −π
3 , κ ≈ 0.44 (c) α = 0, κ ≈ 0.58 (d) α = π

4 , κ ≈ 0.48

Fig. 11 Visualization of the one-parameter family of minimizers SQ,B in the case of Lemma 5.3 (c) with

parameters q1 = 1, q2 = 2, q12 = 1/2 and q3 = 1
2 (
√
4q1q2 − q12). Furthermore, we chose b = A−1q∗

in order to enforce the condition of Lemma 5.3 (c). Subfigures b–d show the deformations corresponding
to the points on SQ,B marked in Subfigure a

SQ,B ⊂ G+ ⊂ R
3

a1

−2 −1
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Φ−1 (SQ,B) ⊂ G+
R2 ⊂ R

2

Fig. 12 The one-parameter family SQ,B (orange) of Fig. 11 as a subset of G+ and of G+
R2

Hence, in view of (59) there exists a unique G∗ ∈ G+ such that S = {G∗, T G∗}; note
that G∗ = T G∗ if and only if G∗ is axial. This allows to visualize S by visualizing
G∗. We use the angle–curvature parametrization introduced in Remark 5.2, i.e., we
shall plot the angle α(G∗) and the curvature κ(G∗) as functions of the parameters
under consideration. In fact, the exceptional set of parameters (θρ, θμ, θ) that violate
condition (66) are precisely those that lead to minimizers of Case (c) of Lemma 5.3.
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In view of Remark 5.4, these exceptional parameters belong to a set of zero Lebesgue
measure and thus can be neglected in the following presentation.

Remark 5.6 (The homogeneous case: θ ∈ {0, 1} or θμ = 1) When θ ∈ {0, 1} or
θμ = 1, Condition (66) is not satisfied, and thus S cannot be visualized in terms of
the angle–curvature parametrization.

In the case θ ∈ {0, 1}, both the composite and the prestrain are homogeneous. In
the case θμ = 1 only the composite is homogeneous. In both cases we conclude that

q1 = q2 = q3, and B̂γ
eff,1 = B̂γ

eff,2,

and we are thus in the isotropic case of Remark 5.5. In particular, we deduce that
S = {κξ ⊗ ξ : ξ ∈ R

2, |ξ | = 1} with

κ :=

⎧
⎪⎨

⎪⎩

3
2ρ1 if θ = 0,
3
2θρρ1 if θ = 1,
3
2ρ1
(
1− θ(1+ θρ

)
if θμ = 1.

In the following discussion, we exclude the homogeneous case and focus on the
dependence of S on parameters (θρ, θμ, θ) in the set

P :=
⎧
⎨

⎩

⎛

⎝
θ

θμ

θρ

⎞

⎠ : θμ > 1, θμ  = 1 and θ ∈ (0, 1)

⎫
⎬

⎭
⊂ R

3. (67)

We note that parameters (θ, θμ, θρ)with θμ ∈ (0, 1) are also covered by the following
discussion: In view of the symmetry of the composite, the associated set S is obtained
by considering the parameters (1− θ, 1

θμ
, 1

θρ
) ∈ P .

Computation of S. The computation of the set of minimizers S associated with
Qγ

hom and Bγ
eff for prescribed parameters (θ, θμ, θρ) ∈ P uses Lemma 5.3 and the

simplifications in Remark 5.5. The resulting algorithm is summarized as a flow-chart
in Fig. 13. Recall that we denote by q1, q2, q12, q3 the coefficients of Qγ

hom as in
Definition 4.1, and by B̂γ

eff,1, B̂γ
eff,2, B̂γ

eff,3 the coefficients of Bγ
eff with respect to the

basis in (38).

Dependence of S on γ and the critical value γ∗. According to Lemma 4.3, Bγ
eff is

independent of γ , and the only coefficient of Qγ
hom that depends on γ is q3 = q3(γ ).

By (44) we have q1 < q3(γ ) < q2, and for (θ, θμ, θρ) ∈ P the map, γ �→ q3(γ ) is
continuous and strictly monotonically decreasing. Thus, in view of (45), we can find
a unique value γ∗ ∈ (0,∞) such that

q3(γ∗) = q∗
3 := √

q1q2.

We call γ∗ the critical value for the following reason: For γ < γ∗ we have det H <

0 and we are thus in Case (a) of Lemma 5.3, which, in particular, means that all
minimizers are axial. On the other hand, for γ > γ∗ we have det H > 0, which is
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Input:
θ, θμ, θρ, μ1, λ1, ρ1, γ

Compute via Lemma 4.5:

q1 =
1
6
〈μ〉h, q2 =

1
6
μ̄, q12 = 0,

q3 =

⎧⎪⎨
⎪⎩

q2 in the case 0 < γ � 1,

q1 in the case γ � 1,
1
6μγ else (this involves solving (43b)),

b = (B̂γ
eff,1, B̂

γ
eff,2)

�.

Assemble H and A according to (61).

det H > 0?
Compute

g∗ = 2H−1Ab

g∗ ∈ G+
R2 \∂G+

R2?

SQ,B = {G, TG}, G = Φ(g∗)

det H = 0?
Compute q∗, s∗

according to (65)
(Ab·q∗)q∗ = Ab?

SQ,B = {G, TG : G = Φ(a)
with a ∈ G+

R2 s.t. a · q∗ = s∗}

( ̂Bγ
eff,2)2

q1
=

( ̂Bγ
eff,1)2

q2
? SQ,B = {B̂1G1, B̂2G2}

Qγ
hom(B̂γ

eff,1G1−Bγ
eff)

>
Qγ

hom(B̂γ
eff,2G2−Bγ

eff)?
SQ,B = {B̂2G2}SQ,B = {B̂1G1}

Yes

No

Yes

YesNo

No

Yes

No

Yes

No

YesNo

Fig. 13 The algorithm for evaluating the set of minimizers S of the algebraic minimization problem (53)
in the case of the parametrized laminate of Lemma 4.5. Note that in the cases 0 < γ � 1 and γ � 1 we
use the approximation q3 = q2 and q3 = q1, respectively, see (45) for the justification

a necessary condition for the case (b). We conclude that non-axial minimizers may
only emerge for γ > γ∗. The critical condition γ = γ∗ is equivalent to det H = 0,
and therefore necessary for the case Lemma 5.3 (c), which is the only case where a
one-parameter family of minimizers may emerge.

In order to demonstrate the dependence of S on the relative scaling parameter γ

we show in Fig. 14 the angle α(G∗) and the curvature κ(G∗) as a function of γ .
The three columns of Fig. 14 feature different values of the prestrain ratio θρ , each
resulting in qualitatively different behavior: The angle α(G∗) and the curvature κ(G∗)
may increase, decrease or remain constant in γ . Furthermore, Fig. 14 also includes a
vertical dotted line to indicated the value of γ ∗. Recall that γ > γ ∗ is a necessary (but
not sufficient) condition for the existence of non-axial minimizers, while γ < γ ∗ is a
sufficient condition for axiality of minimizers. The curvature κ(G∗) remains constant
if γ < γ ∗. Finally, note that both the angle α(G∗) and the curvature κ(G∗) appear to
depend continuously on γ .

Dependence of S on θ, θμ and θρ . We investigate the dependence of S on the param-
eters (θ, θμ, θρ) ∈ P (see (67)). Since we shall consider a high number of sample
points in the parameter set P , we mostly focus on the extreme regimes 0 < γ � 1
and γ � 1. In these regimes, we can use the approximations q3 = q2 for 0 < γ � 1
and q3 = q1 for γ � 1 in order to avoid the high computational cost of solving (43b)
numerically, which would be required to evaluate q3(γ ) for γ ∈ (0,∞). Note that
the regimes 0 < γ � 1 and 1 � γ illustrate the possible range of behaviors, since
the behavior for 0 < γ < ∞ is a middle ground between these extreme cases. We
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Fig. 14 Angle α(G∗) (top) and curvature κ(G∗) (bottom) for different values of γ with θμ = 2, θ = 1
4 .

The three columns correspond to θρ = −1.0 (left), θρ = −0.75 (middle), and θρ = −0.7 (right). The
dotted line shows the critical value γ∗

illustrate this at the end of this section. Figure 15 visualizes G∗ in the extreme regimes
0 < γ � 1 and γ � 1 for 3003 uniformly spaced sample points in the parameter
set P . The transparent and blue regions in these plots corresponds to axial minimizers
with α(G∗) = π

2 and α(G∗) = 0, respectively. The region with α(G∗) = π
2 seems to

consist of two connected components that are divided by a region where α(G∗) takes
other values. We refer to that later region as the transition region.

We first discuss the regime 0 < γ � 1. In that case only angles 0 and π
2 appear,

which is in agreement with the trichotomy of minimizers, since 0 < γ � 1 is a
sufficient condition for Lemma 5.3 (a). We see that the angle has a discontinuity at
the boundary of the transition region. This means that minimizers may flip from one
axial state to the other when parameters close to the boundary of the transition region
are perturbed. Figure 16 (top, left) shows a cut through the diagram of Fig. 15 (top,
left) along the plane with θμ = 2. We see that the boundary of the transition is tilted
(left boundary) or curved (right boundary) with respect to the θ -axis. This means that
for certain values of θρ ∈ (−1,−0.5) ∪ (0,∞) the angle α(G∗) can be influenced
by changing the volume fraction θ . Figure 17 (top, left) visualizes the discontinuous
dependence of the angle on the prestrain ratio θρ for fixed parameters θμ and θ . The
marked points correspond to the boundary of the transition region. The bottom left
plots of Figs. 15, 16 and 17 visualize the curvature κ(G∗). Figure 16 (bottom, left)
suggests that the curvature is continuous as a function of θ in regions where the angle
α(G∗) is constant, while we observe a jump in the curvaturewhenever the angle jumps.
It would further be natural to expect that the curvature is monotone in θρ , but Fig. 17
(bottom, left) shows that this is not the case: The curvature jumps upwards at the first
point of discontinuity. This observation can be seenmore easily in Fig. 18 (left), where
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Fig. 15 The angle α(G∗) (top) and curvature κ(G∗) (bottom) as a functions of θρ , θμ and θ in the extreme
regimes 0 < γ � 1 (left) and γ � 1 (right). In the plots for the angle, transparent regions correspond to
the angle π

2

we consider the larger value θμ = 10. Next, we discuss the regime γ � 1. The phase
diagram in Fig. 15 (top, right) shows that in that regime the transition region features
non-axial minimizers. Again, this is in agreement with the trichotomy of minimizers,
since γ � 1 is a necessary condition for Case (b) of Lemma 5.3. The cut shown in
Fig. 16 (top, right) indicates that the transition on the left boundary of the transition
region is continuous, while the transition on the right boundary is not. In particular,
the plot suggests that for a fixed volume fraction θ ∈ (0, 1) we can obtain any angle
in [0, π

2 ] by choosing a suitable θρ ∈ [−1,−0.5]. This is even more visible in Fig. 17
(top, right), which shows the θρ-dependence of the angle. The marked points 1© and
3© correspond to the boundary of the transition region. Furthermore, we observe a
monotone behavior for θρ ∈ [−1,−0.5]. Finally, a close look at the isolines of Fig. 16
(top, right) shows that for θρ ∈ [−1,−0.5] the angle is monotone in the volume
fraction θ .

Figure 15 (bottom, right) visualizes the curvature in the regime γ � 1. The phase
diagram looks similar to the one in the regime 0 < γ � 1. However, the two are not
identical, as becomes apparent by comparing the plots in Fig. 17 (bottom). The bottom
right plots of Figs. 15, 16 and 17 suggest that also in the regime γ � 1, the curvature is
continuous at points where the angle is continuous, and jumps if and only if the angle
jumps. In particular, Fig. 17 (bottom, right) shows that the curvature as a function of
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Fig. 16 The angle α(G∗) (top) and curvature κ(G∗) (bottom) in the case 0 < γ � 1 (left) and γ � 1
(right) for points in the parameter set P , with θμ = 2

θρ has only a single discontinuity at the marked point 1©, which corresponds to the
right boundary of the transition region. In contrast to the regime 0 < γ � 1, we
observe in Fig. 17 (bottom, right) a monotone dependence on θρ .

So far we have only analyzed the extreme regimes 0 < γ � 1 and 1 � γ . We
now briefly consider the intermediate regime 0 < γ < ∞. We show these plots in
Fig. 19. We note that the region of θρ for which non-axial minimizers are observed is
largest at γ = ∞. This region gets progressively smaller as γ tends to 0, and finally
for values γ < γ ∗ it disappears and we observe a discontinuous transition between
two axial minimizers. If θμ = 10, this region appears to lie always between−1 and 0.
Discussion of the θρ-dependence. In the case θρ = 0 the prestrain is only active in
the top layer of the two-layer microstructure of Fig. 4. More precisely, the “fibres” in
the top layer want to expand isotropically by a factor ρ1 = 1 to gain equilibrium. In
view of this we expect that the plate bends downwards either in parallel or orthogonal
to the fibres. This corresponds to κ(G∗) > 0 and α(G∗) ∈ {0, π

2 }. Indeed, Figs. 16
and 19 show that this is indeed the case: Independently of γ , for θμ ∈ {2, 10} and
all θ ∈ (0, 1), we have α(G∗) = 0 and κ(G∗) > 0. This means that the plate bends
in a direction orthogonal to the fibres. For θρ  = 0 the prestrain is active in both
layers. For θρ < 0 the prestrain in the top and bottom layer have the opposite sign,
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Fig. 17 Angle α(G∗) (top) and curvature κ(G∗) (bottom) as a function of the prestrain ratio θρ with
0 < γ � 1 (left) and γ � 1 (right)
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Fig. 18 Curvature κ(G∗) as a function of the prestrain ratio θρ
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and thus “push” into the same direction. Hence, one could expect that the curvature
monotonically increases when θρ decreases. But in the regime 0 < γ � 1 we observe
a downwards jump of the curvature, see Fig. 17 (bottom, left). In the case θρ > 0 the
sign of the prestrain in the two layers is the same, and thus they are competing with
regard to energy minimization. We expect that for θρ sufficiently large the bending
induced by the fibres in the bottom layer dominate the behavior, whichwouldmean that
the plate bends “upwards”. Indeed, as shown by Fig. 16, for θρ above the threshold
(which decreases with the volume fraction θ ), the curvature changes its sign from
negative to positive. Surprisingly, at that point the angle jumps from α(G∗) = 0 to
α(G∗) = π

2 .

Conclusion. Our analysis shows that the parametrized, prestrained laminate features
a complex behavior. In particular, we make the following observations:

(a) Weobserve a discontinuous dependence of the set ofminimizers on the parameters.
(b) We observe non-uniqueness of the global minimizers: In the regime γ � 1 we

find parameters leading to non-axial minimizers. Those always come in pairs of
the form {G∗, T G∗}. Likewise, for the special cases of Remark 5.6 we have a
one-parameter family of minimizers.

(c) The mechanical system features a break of symmetry: For θμ = 1, which
corresponds to a homogeneous material, the set of minimizers is of the form
{κ(ξ ⊗ ξ) : ξ ∈ R

2, |ξ | = 1} and rotationally symmetric, while for θμ  = 1 the
set of minimizers degenerates to a set with one axial or two (possibly non-axial)
minimizers.

(d) The mechanical properties for 0 < γ � 1 and γ � 1 are qualitatively and
quantitatively different: In the former regime minimizers are always axial and
G∗ as a function of θρ is non-monotone and has two discontinuities, while the
latter regime features minimizers of arbitrary angle and G∗ as a function of θρ is
monotone and only has one discontinuity.

6 Shape Programming

This section is devoted to the problem of shape programming: given a target shape that
can be parametrized by a bending deformation with second fundamental form II∗, can
we construct a simple prestrained composite such thatminimizers of the corresponding
three-dimensional elastic energy approximate the target shape for (ε, h) → 0 ? If the
target shape is cylindrical the problem can be solved relatively easily with the help
of the parametrized laminate composite studied in Sect. 5. In the general case, the
problem is more complex and requires a composite whose microstructure changes
with the in-plane position. We first discuss the simpler case of a cylindrical target
shape in Sect. 6.1 and then turn to general target shapes in Sect. 6.2. That section
culminates in Theorem 6.6 which provides our analytical answer to the problem of
shape programming.
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6.1 The Case of a Cylindrical Shape and the Notion of a Composite Template

In the following we consider the problem of shape programming in the special case
of a cylindrical target shape, that is, we are looking for a deformation with second
fundamental form II∗ = κ∗(ξ∗⊗ξ∗) a.e. in S for some κ∗ ∈ R and a unit vector ξ∗ ∈ R

2.
Our task is to identify a composite such thatminimizers of the corresponding 3d-energy
“effectively” describe a surface that coincideswith the target shape.Here, “effectively”
means that we consider accumulation points of sequences of minimizers of the 3d
energy along the limit (ε, h) → 0. As we explain next, for the cylindrical shapes the
problem of shape programming can solved explicitly with the help of the parametrized
laminate considered in Lemma 4.5. Specifically, let W1, W2 be two isotropic stored
energy functions satisfying (W1) – (W4) with Lamé-parameters μ1 = 1, μ2 = 2,
and λ1 = λ2 = 0. We consider a � := I2×2-periodic laminate that is constant in
e2-direction and composed of the materials described by W1 and W2. We denote by
θ ∈ [0, 1] the volume fraction of the material described by W2, and we model the
parametrized composite by a stored energy function W (θ; ·) : R×R

3×3 → [0,+∞],
(y1, F) �→ W (θ; y1, F). We assume that W (θ; y1, F) is 1-periodic in y1, and

W (θ; y1, F) :=
{

W1(F) if |y1| > θ
2 ,

W2(F) else,
for y1 ∈ (− 1

2 ,
1
2 ], F ∈ R

3×3.

(By periodicity, W (θ; ·) is uniquely defined by this identity.) Let Q(θ; ·) be the
quadratic form associated with W (θ; ·). Furthermore, for ρ1 > 0 fixed, consider a
prestrain B that is � = I2×2-periodic and admissible in the sense of Definition 2.15,
and that satisfies

B(θ; x3, y) :=
{

ρ1 I3×3 if |y1| > θ
2 and x3 > 0,

0 else.

Then Q(θ; ·) and B(θ; ·) coincide with the parametrized laminate considered in
Lemma 4.5 with parameters μ1 = 1, θμ = 2, and θρ = 0. By Lemma 4.5, the
coefficients of the associated homogenized quadratic form Qγ

hom(θ; ·) and effective
prestrain Bγ

eff(θ) are given by

B̂γ
eff,1 =

3ρ1
2

(1− θ), B̂γ
eff,2 =

3ρ1
2

1− θ

1+ θ
, B̂γ

eff,3 = 0,

q1 = 1

3(2− θ)
, q2 = 1+ θ

6
, q12 = 0.

There is no explicit expression for q3(γ ), but we know that q1 ≤ q3(γ ) ≤ q2 by (44).
In the following we fix an arbitrary value for γ ∈ (0,∞). For any θ ∈ (0, 1] one can
check (with help of a computer algebra system and only using q1 ≤ q3(γ ) ≤ q2) that
for this specific composite Case of (a) of Lemma 5.3 always applies. In view of this,
Lemma 5.3 implies that the algebraic minimization problem

min
G∈R2×2

det G=0

Qγ
hom

(
θ;G − Bγ

hom(θ)
)
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admits a unique axial minimizer, which is given by

κ(θ)e1 ⊗ e1, where κ(θ) = 3ρ1
2

(1− θ).

In the following let Iε,h(θ; ·) denote the 3d-energy defined by (3) with Wε(x, F) :=
W (θ; x1

ε
, F) and Bε,h(x) = B(θ; x1

ε
). Also, let Iγ

hom(θ; ·) denote the bending energy
defined by (7) with Qγ

hom and Bγ
eff replaced by Qγ

hom(θ; ·) and Bγ
eff(θ), respectively.

Finally, let (vh) in H1(�;R
3) be an arbitrary sequence of almost minimizers for

Iε(h),h(θ; ·). From Theorem 2.8 we conclude that any accumulation point v of
(
vh −ffl

�
vh
)
for h → 0 is a bending deformation that minimizes the energy Iγ

hom(θ; ·).
Furthermore, with the help of Lemma 5.1 we conclude that IIv = κ(θ)e1 ⊗ e1. We
may summarize this observation by saying that the composite described by W (θ; ·)
and B(θ; ·) effectively programs the target shape II∗ = κ(θ)(e1 ⊗ e1).

Since the map (0, 1] � θ �→ κ(θ) ∈ [0, 3ρ1
2 ) is a homeomorphism, we can program

any target shape II∗ = κ∗(e1⊗e1)with κ∗ in the range [0, 3ρ1
2 )—we just need to make

an appropriate choice of θ∗ ∈ (0, 1]. Moreover, a non-positive target curvature κ∗ in
the range (− 3ρ1

2 , 0] can be obtained by considering the reflected prestrain (x3, y) �→
B(θ;−x3, y). For a general unit vector ξ∗ ∈ R

2 we can recover target shapes of
the form II∗ = κ∗(ξ∗ ⊗ ξ∗) by introducing a rotation of the laminate microstructure
such that the direction of the rotated laminate is given by ξ∗; this is made precise
by the transformation rule of Corollary 6.3 below. In conclusion, with help of the
parametrized, two-phase laminate introduced above, we can program any cylindrical
shape with curvature κ∗ ∈ K := (− 3ρ1

2 ,
3ρ1
2 ) by an appropriate choice of the volume

fraction θ and the laminate direction. Since the map θ �→ κ(θ) is bijective, we may
consider directly κ ∈ K (instead of θ ) as the design parameter of the composite.

Figure 20 illustrates some examples of cylindrical deformations of a strip obtained
with a two-phase laminate. Similarly, Fig. 1 shows cylindrical shapes which were
experimentally observed for 3d–printed, two–layer composite plates with a laminar
microstructure consisting of prestrained fibres. As in our analysis, the orientation and
the volume fraction of the fibres are design parameters. Qualitatively, our analysis
reproduces the relation between these parameters and the geometry of the strip.

The two-phase laminate discussed above is an example of what we call a composite
template:

Definition 6.1 (Composite template) Let γ ∈ (0,∞), � ∈ R
2×2 be invertible, and let

K ⊂ R be an open interval. The one-parameter family (W̄ (κ, ·), B̄(κ, ·))κ∈K is called
a composite template, if the following properties hold:

(i) For all κ ∈ K the energy density W̄ (κ; ·) : (− 1
2 ,

1
2 ) × R

2 × R
3×3 → [0,+∞]

is a Borel function, and W̄ (κ; x3, y, ·) ∈ W(α, β, ρ, r) for a.e. (x3, y) ∈
(− 1

2 ,
1
2 )×R

2. Furthermore, Q̄(κ; ·) and B̄(κ; ·) are �-periodic and admissible
in the sense of Definition 2.15, and

 
��

|B̄(κ; x3, y)|2d(x3, y) ≤ CB,

for a constant CB that is independent of κ .
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(a)

(b)

κ(θ) = 0.3 κ(θ) = 0.5 κ(θ) = 0.6

(c)

Fig. 20 Cylindrical shapes programmed via a two-phase laminate composite. a shows the reference con-
figuration S = (0, 10) × (0, 1) of a composite plate. The plate is filled with the parametrized composite
of Lemma 4.5 with fixed parameters μ1 = 1, θμ = 2, λ1 = λ2 = 0, θρ = 0, and ρ1 > 0. The volume
fraction θ and the rotation angle α are considered as design parameters. We use the same color coding as
in Fig. 4a: yellow refers to the material with energy W1 and no prestrain, while red refers to the prestrained
material with energy W2. b shows global minimizers of the effective energy for the case when α = 0; from
left to the right the value of θ decreases. Specifically, θ is chosen such that κ(θ) ∈ {0.3, 0.5, 0.6}. c shows
(from left to right) the global minimizers of the effective energy for α ∈ {15◦, 30◦} and a choice of θ with
κ(θ) = 1.5

(ii) For any sequence κ j → κ in K, we have

Q̄(κ j ; x3, y, G) → Q̄(κ; x3, y, G) for allG ∈ R
3×3 and a.e. (x3, y),

B̄(κ j ; ·) → B̄(κ; ·) strongly in L2(��;R
3×3).

(iii) For all κ ∈ K the matrix κ(e1⊗e1) is a unique global minimizer of the algebraic
minimization problem

min
G∈R2×2

det G=0

Q̄γ
hom

(
κ;G − B̄γ

eff(κ)
)
,

where Q̄γ
hom(κ; ·) and B̄γ

eff(κ) are the effective quantities associatedwith Q̄(κ; ·)
and B̄(κ; ·) by Definitions 2.17 and 2.22, respectively.

With a composite template we can directly program shapes of the form II∗ =
κ(e1⊗ e1) for any κ ∈ K. As already indicated, by combining the composite template
with an in-plane rotation we can also program shapes with arbitrary bending direction.
This can be seen from the following two transformation results:

Lemma 6.2 (Transformation of microstructures) Let �, T ∈ R
2×2 be invertible, and

let (Q, B) be �-periodic and admissible in the sense of Definition 2.15. Consider the
transformation

Q̃(x3, y, G̃) := Q(x3, T−1y, T̂
G̃T̂ ),

B̃(x3, y) := T̂−
B(x3, T−1y)T̂−1, T̂ :=
(

T
1

)
.
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Then (Q̃, B̃) is �̃ := T �-periodic and admissible. Furthermore, for all G̃ ∈ R
2×2
sym

we have
Q̃γ

hom(G̃) = Qγ
hom(T
G̃T ) and B̃γ

eff = T−
Bγ
effT

−1.

Above, Qγ
hom, Q̃γ

hom, Bγ
eff , and B̃γ

eff are associated with Q,Q̃, B, and B̃ via Defini-
tions 2.17 and 2.22, respectively.

(See Sect. 7.8 for the proof.)
As a corollary of Lemma 6.2 we obtain the following transformation rule for min-

imizers of the algebraic minimization problem (53). Roughly speaking, it states that
the transformation by an in-plane rotation and the passage to the effective quantities
commute.

Corollary 6.3 (Rotation of microstructure of a composite template) Let
(
W̄ (κ; ·),

B̄(κ; ·))
κ∈K be a composite template as in Definition 6.1. For R ∈ SO(2) and

R̂ := diag(R, 1) consider the transformation

W (R, κ; x3, y, F) := W̄ (κ; x3, R
y, F R̂), B(R; κ; x3, y) := R̂ B̄(κ; x3, R
y)R̂
.

Then:

(a) For all R ∈ SO(2) the transformed composite
(
W (R, κ; ·), B(R, κ; ·))

κ∈K satis-
fies Properties (i) and (ii) of Definition 6.1.

(b) For all R ∈ SO(2) and κ ∈ K we have

Qγ
hom(R, κ;G) = Q̄γ

hom(κ; R
G R) for all G ∈ R
2×2
sym and Bγ

eff(R, κ) = R B̄γ
eff (κ)R
.

Here, Qγ
hom(R, κ; ·) and Bγ

eff(R, κ) denote the effective quantities associated with(
W (R, κ; ·), B(R, κ; ·)). Likewise, Q̄γ

hom(κ; ·) and B̄γ
eff(κ) denote the effective

quantities associated with
(
W̄ (κ; ·), B̄(κ; ·)).

(c) For all G ∈ R2×2
sym the map

SO(2) ×K � (R, κ) �→
(

Qγ
hom(R, κ;G), Bγ

eff(R; κ)
)

is continuous.
(d) For all R ∈ SO(2) and κ ∈ K the matrix κ(Re1 ⊗ Re1) is the unique minimizer

of the algebraic minimization problem

min
G∈R2×2

det G=0

Qγ
hom

(
R, κ;G − Bγ

eff(R; κ)
)
.

(See Sect. 7.8 for the proof.)

6.2 The General Case

We turn to the shape programming problem for surfaces parametrized by general
bending deformations.More precisely, given a second fundamental form II∗ associated
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with a bending deformation v∗ ∈ H2
iso(S;R

3), the task is to identify a simple composite
such that any accumulation point v ∈ H2

iso(S;R
3) of a sequence of almost minimizers

for the associated 3d-energy, parametrizes a surface that coincides with the target
shape in the sense that IIv = II∗. The problem is trivial if we allow arbitrarily complex
composites. Instead, we shall only consider a restricted class of composites that are
simple in the following sense:

• We assume that the 3d-plate is finitely structured in the sense that � is partitioned
into finitely many “grains” of the form S j × (− 1

2 ,
1
2 ), j ∈ J (cf. Assumption 2.4).

• A composite template
(

W (κ; ·), B(κ; ·)
)

κ∈K shall be given and each grain is filled

with the composite template, possibly rotated in–plane.

We formalize this concept in the following definition:

Definition 6.4 (Structured composite) Let (W̄ (κ, ·), B̄(κ, ·))κ∈K be a composite tem-
plate. Let {S j } j∈J denote a partition of S as in Assumption 2.4. A structured composite
(based on the composite template and subordinate to the partition) is a pair (W , B) con-
sisting of Borel functions W : �×R

2 ×R
3×3 → [0,+∞] and B : �×R

2 → R
3×3

such that for all j ∈ J there exists a rotation R j ∈ SO(2) and a parameter κ j ∈ K
such that for all x ′ ∈ S j ,

W (x ′, x3, y, F) = W̄ (κ j , x3, R

j y, F R̂ j ),

B(x ′, x3, y) = R̂ j B̄(κ j ; x3, R

j y)R̂


j , where R̂ j :=
(

R j

1

)
.

If J is finite, then (W , B) is called a finitely structured composite.

Remark 6.5 Note that a structured composite is a special case of a prestrained com-
posite satisfying Assumption 2.5. Specifically, if (W , B) is a structured composite,
then Wε(x, F) := W (x, x ′

ε
, F) and Bε(h),h(x) := B(x, x ′

ε(h)
) satisfy Assumption 2.5.

Also note that once the composite template (W̄ , B̄) is fixed, the structured composite
is fully characterized by the partition {S j } j∈J , the parameters {κ j } j∈J ⊆ K, and the
rotations {R j } j∈J ⊆ SO(2).

For an example of a composite template and a schematic picture of an associated
finitely structured composite, see Fig. 21 below. The following main result states that
any target shape (satisfying a certain restriction on its curvature, see (68) below) can
effectively be approximated by almost–minimizers of a 3d-energy associated with a
finitely structured composite.

Theorem 6.6 (Shape programming) Let Assumption 2.1 be satisfied. Let (W̄ (κ; ·),
B̄(κ; ·))κ∈K be a composite template, and let II∗ be the second fundamental form of a
bending deformation in H2

iso(S;R
3) such that

II∗(x ′) ∈ {κ(ξ ⊗ ξ) : κ ∈ K, ξ ∈ R
2, |ξ | = 1

}
for a.e. x ′ ∈ S. (68)
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Then for all δ > 0, there exists a finitely structured composite (W , B) (based on the
composite template and subordinate to a finite partition of S that depends on δ) such
that the following holds: Consider the functional

Ih(v) := 1

h2

ˆ
�

W
(

x, x ′
ε(h)

,∇hv(x)
(
I3×3 − h B

(
x, x ′

ε(h)

)))
dx,

and let (vh) denote a sequence with
ffl
�

vh dx = 0 that satisfies Ih(vh) ≤ inf Ih + h.
Then any accumulation point v of (vh) (viewed as a sequence in L2(�;R

3)) is a
bending deformation, i.e., v ∈ H2

iso(S;R
3), and satisfies

‖IIv − II∗‖L2(S) ≤ δ. (69)

(See Sect. 7.8 for the proof.)
Condition (68) is a restriction on the curvature of the target shape. In view of

Definition 6.1 (iii), the set K is the curvature range that can be recovered by the
composite template under consideration. For example, if we consider the model com-
posite of Sect. 6.1 as a composite template, then (68) takes the form of the restriction
|II∗(x ′)| <

3ρ1
2 . We see that the range of admissible shapes increases for larger values

of the parameter ρ1, which in the model composite is the magnitude of the prestrain.
In a nutshell our result is: For any composite template and any target shape satisfying

the constraint on the curvature (68), we can find a partition and a subordinate, finitely
structured composite that programs the target shape up to a tolerance that is quantified
by the parameter δ. As shall become clear from the proof of Theorem 6.6, in order to
decrease δ one needs to refine the partition. We note that the proof of Theorem 6.6
yields a partition of S into dyadic squares and a boundary layer.

An illustration of a finitely structured composite designed to approximate a coni-
cally deformed strip is shown in Fig. 21. Figure 21a shows an isometrically deformed
paper strip glued to the surface of a symmetric cone. The associated reference domain
S = (0, 4)×(0, 1) is shown in Fig. 21a. The asymptotic lines of the deformed strip are
indicated in blue. The deformation is affine along these lines. Since the deformed strip
lies on a cone, these lines intersect in a single point. The principal curvature curves of
the strip are shown in red. In the conical setting, the curves lie on circles whose center
is given by the intersection point of the blue lines. The mean curvature is constant
along these red curves. Moreover, we note that the curvature increases when moving
along the blue lines (from lower–left to upper–right).

As indicated in Fig. 21b, the reference domain S is equipartitioned into small
squares {S j } j∈J . An example of a finitely structured composite can be defined by
filling each 3d-cube S j × (− 1

2 ,
1
2 ), j ∈ J , with a rotated instance of the composite

template introduced in Sect. 6.1. It is based on the parametrized laminate shown in
Fig. 4 and features the volume fraction θ as a parameter. In order to obtain a finitely
structured composite that leads to an approximation of the deformed strip, in each box
S j × (− 1

2 ,
1
2 ) the rotation of the composite template needs to be chosen according to

the direction of the asymptotic (blue) line in S j , and the parameter θ needs to be chosen
in dependence of the curvature in S j . The two schematic drawings in Fig. 21c illustrate
this: The left drawing is the parametrized composite in the lower–left square of S and
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(a)

(b) (c)

Fig. 21 A finitely structured composite designed for a conically deformed strip. a shows a conically
deformed strip. b shows the reference domain S= (0, 4)× (0, 1) of the strip. The blue lines are asymptotic
lines of the deformed strip and the red curves are integral curves of the principal direction along which the
strip curved. c illustrates the specific composite template that is assigned to the lower-left and upper-right
subsquares of S

the right drawing is the parametrization in the upper–right square. In Fig. 21c the
yellow color refers to the domain occupied by the material with energy W1 (where no
prestrain is present), while the red color refers to the prestrained material with energy
W2.We see that the laminate direction is alignedwith the asymptotic line. Furthermore,
we see that in the composite assigned to the lower-left square, the volume fraction
of the prestrained material is smaller than in the composite assigned with the upper–
right square. This corresponds to the fact that the curvature in the lower-left square is
smaller than the curvature in the upper–right one.

The idea of the proof of Theorem 6.6 is as follows: Similarly to Sect. 6.1, by the
properties of the composite template and with the help of the transformation rule
for in-plane rotations of Corollary 6.3, we find parameter fields κ : S → K and
R : S → SO(2) such that for each x ′ ∈ S the composite template with parameter
κ(x ′) and in-plane rotation R(x ′) leads to an algebraic minimization problem

min
G∈R2×2

det G=0

Qγ
hom

(
R(x ′), κ(x ′);G − Bγ

eff

(
R(x ′), κ(x ′)

))

which is uniquely minimized by G = II∗(x ′); see Corollary 6.3 for the definition of
Qγ

hom(R, κ; ·) and Bγ
eff(R, κ). In particular, we shall see that the associated bending

energy is minimized by bending deformations v ∈ H2
iso(S;R

3) satisfying IIv = II∗. In
order to obtain a finitely structured composite, we approximate the parameter fields
(R, κ) by fields (κn, Rn) that are piecewise constant subordinate to a finite partition of
S, and we shall prove that minimizers of the bending energy associated with (κn, Rn)

converge to a minimizer of the bending energy associated with (κ, R). For this we
use the following approximation result for bending energies. It shows that pointwise
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convergence of the quadratic form and of the prestrain implies �-convergence of the
bending energy.

Lemma 6.7 (�-convergence of parametrized bending energies) For n ∈ N ∪ {∞}
consider a Borel function Qn : S × R

2×2
sym → R such that

α|G|2 ≤ Qn(x ′, G) ≤ β|G|2 for a.e. x ′ ∈ S and all G ∈ R
2×2
sym , (70)

where 0 < α ≤ β are independent of n. Moreover, let Bn ∈ L2(S;R
2×2
sym ). Consider

the functional

In : H2
iso(S;R

3) → R, In(v) :=
ˆ

S
Qn(x ′, II(x ′) − Bn(x ′)) dx ′.

Suppose that for n → ∞,

Qn(·, G) → Q∞(·, G) a.e. in S and for all G ∈ R
2×2
sym ,

Bn → B∞ strongly in L2(S).

Then:

(a) (Equicoercivity). Let (vn) have equibounded energy, i.e., lim sup
n→0

In(vn) < ∞.

Then there exists v ∈ H2
iso(S;R

3) with
ffl

S v dx ′ = 0 such that

vn −
 

S
vn dx ′⇀v weakly in H2(S;R

3),

for a subsequence.
(b) (�-convergence). For n → ∞, the functional In �-converges to I∞ with respect

to weak convergence in H2(S;R
3).

(c) (Strong convergence of minimizers). Let (vn) ⊂ H2
iso(S;R

3) be a sequence such
that for all n ∈ N, vn is a minimizer of In subject to

ffl
S vn = 0. Then, up to

extraction of a subsequence, we have vn → v∞ strongly in H2(S;R
3) where v∞

is a minimizer of I∞.

(See Sect. 7.8 for the proof.)

Remark 6.8 Convergence of minimizers in the weak topology of H2(S;R
3) follows

directly from the general theory of�-convergence. The upgrade to strong convergence
requires an additional argument that exploits the fact that In(v) is quadratic when seen
as a function IIv , see Step 3 in the proof of Lemma 6.7.

7 Proofs

In the following we present the proofs of our results. We start in Sect. 7.1 to prove
results concerning the definition of the effective quantities (Qγ

hom, Bγ
eff) and their rep-

resentation via correctors. In Sects. 7.2–7.4 are devoted to the proofs of Theorems 2.8
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and 2.13. Our results on the two-scale structure of the nonlinear strain are proven in
Sect. 7.5. In Sect. 7.6 we present the argument for the results on the microstructure–
properties–shape relation and in Sect. 7.8 we prove the results on shape programming.

7.1 Homogenization Formula: Proofs of Lemmas 2.20, 2.29, 2.23,
Proposition 2.25, and Lemma 2.26

Proof of Lemma 2.20 We first note that since Q ∈ Q(α, β) (see Definition 2.2), it
suffices to prove

α

 
��

|ι(x3G)|2 ≤ ‖Pγ,⊥
rel,�(ι(x3G))‖2� ≤ β

 
��

|ι(x3G)|2.

Since Pγ,⊥
rel,� is a projection, we have

‖Pγ,⊥
rel,�(ι(x3G))‖2� ≤ ‖ι(x3G)‖2�,

and thus the upper bound follows. For the lower bound note that by definition ofHγ
rel,�

we have ‖Pγ,⊥
rel,�(ι(x3G))‖2� = inf

M,ϕ
‖ι(x3G) + ι(M) + sym∇γ ϕ‖2�, (71)

where the infimum is taken over all M ∈ R
2×2
sym and ϕ ∈ H1

γ (��;R
3). Since Q ∈

Q(α, β), we have for all M ∈ R
2×2
sym and ϕ ∈ H1

γ (��;R
3),

‖ι(x3G)+ι(M)+sym∇γ ϕ‖2� ≥ α

 
��

|ι(x3G)+ι(M)+sym∇γ ϕ|2 ≥ α

 
��

|ι(x3G)|2, (72)

where the last inequality holds thanks to the orthogonality 
��

ι(x3G) : (ι(M) + sym∇γ ϕ) = 0,

which can be checked by a direct computation. In combination with (71), the lower
bound follows. &'
Proof of Lemma 2.29 For the argument, fix j ∈ J , x ′ ∈ S j , and note that for all
χ ∈ Hγ

rel,� j
we have

 
�� j

Q
(

x ′, x3, y, ι(x3IIv(x ′))) + χ − B(x ′, x3, y)
)
d(x3, y)

= ‖ι(x3IIv(x ′)) + χ − Pγ
� j

(sym B(x ′, ·))‖2� j
+ ‖(I − Pγ

� j
)(sym B((x ′, ·))‖2� j

,

where I denotes the identity operator on H� j . Moreover, by Lemma 2.20, Defini-
tion 2.22, and Definition 2.17,

inf
χ∈Hγ

rel,� j

‖ι(x3IIv(x ′)) + χ − Pγ
� j

(sym B(x ′, ·)))‖2� j
= ‖Pγ,⊥

rel,� j

(
ι(x3(IIv(x ′) − Bγ

eff (x ′)))
)
‖2� j

= Qγ
hom(x ′, IIv(x ′) − Bγ

eff (x ′)).
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Now, the claim follows by combining the previous two identities, integration over
S j and summation in j ∈ J . &'
Proof of Lemma 2.23 and Proposition 2.25
Step 1 (Representation of Hγ

rel,�) We claim that for all χ ∈ Hγ
rel,� there exists a

unique pair (M, ϕ) with M ∈ R
2×2
sym and ϕ ∈ H1

γ (��;R
3) such that

χ = ι(M) + sym∇γ ϕ and
 

��

ϕ = 0, (73)

and

|M |2 +
 

��

|ϕ|2 + |∇γ ϕ|2 ≤ C‖χ‖2�, (74)

for a constant C only depending on α, γ and C�.
Here comes the argument: The existence of (M, ϕ) is clear by definition. Moreover

we have
ffl
��

ι(M) : sym∇γ ϕ = 0, since ϕ is in-plane periodic. Combined with the
Korn inequality in Lemma 8.5 and the Poincaré–Wirtinger inequality, the bound (74)
follows. Uniqueness of the representation is a consequence of (74).

Step 2 (Proof of Lemma 2.23)
Let G ∈ R

2×2
sym . Let χG ∈ Hγ

rel,� denote the unique minimizer to

‖ι(x3G) + χG‖2� = min
χ∈Hγ

rel,�

‖ι(x3G) + χ‖2�,

and note that χG is characterized by the variational problem

(
ι(x3G) + χG, χ

)
�
= 0 for all χ ∈ Hγ

rel,�, (75)

with
(·, ·)

�
denoting the inner product of H�. Since projections are contractions and

Q ∈ Q(α, β), we have

‖χG‖� ≤ ‖ι(x3G)‖� ≤
√

β
12 |G|. (76)

For future reference, we also note that we have the identity

ι(x3G) + χG = Pγ,⊥
rel,�(ι(x3G)) = Eγ

�(G). (77)

Now, let (MG, ϕG) denote the unique pair associated with χG via (73). Then, we
deduce from (75) that (MG, ϕG) is characterized by (20), and we obtain (21) from
(76) and (74).

Step 3 (Proof of Proposition 2.25 (a))
First, we recall that the definition of Qγ

hom can be rephrased as Qγ
hom(G) =

‖Pγ,⊥
rel,�(ι(x3G))‖� for all G ∈ R

2×2
sym . Using the orthonormal basis G1, G2, G3, we
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write G = Ĝi Gi , where here and below we appeal to Einstein’s summation con-
vention. By (77) and linearity we have Pγ,⊥

rel,�(ι(x3G)) = Ĝi (ι(x3Gi ) + χGi ), and
thus

Qγ
hom(G) = Ĝi Ĝk

(
ι(x3Gi ) + χGi , ι(x3Gk) + χGk

)

�

= Ĝi Ĝk

(
ι(x3Gi ) + χGi , ι(x3Gk)

)

�
= Ĝi Ĝk Q̂ik,

where the last two identities hold thanks to (75) and the definition of Q̂, respectively.
The identity shows that Q̂ is symmetric. The bound (22) is a direct consequence of
(18).

Step 4 (Proof of Proposition 2.25 (b))
Set B̃ :=∑3

i=1

(
Q̂−1 B̂

)
i Gi . In view of the definition of Bγ

eff , cf. (19), and since Eγ
�

is injective, it suffices to show that

Eγ
�(B̃) = Pγ,⊥

rel,�(sym B). (78)

Since Pγ,⊥
rel,� is a projection onto Hγ,⊥

rel,�, and since the latter is spanned by the fields
ι(x3Gi ) + χGi , the above identity is equivalent to

(
Eγ

�(B̃), ι(x3Gi ) + χGi

)
�
= ( sym B, ι(x3GGi ) + χGi

)
�

(79)

for all i = 1, 2, 3. By definition, the right-hand side is equal to B̂i . On the other hand,
by (77) and linearity, we have Eγ

�(B̃) =∑3
k=1

(
Q̂−1 B̂

)
k(ι(x3Gk)+χGk ). Thus, (79)

is equivalent to
(
Q̂−1 B̂

)
i = B̂i , and we conclude (78). &'

Proof of Lemma 2.26 It suffices to prove (25) and (26). The other statements then fol-
low with help of Proposition 2.25.

We first note that there exists M̃ and ϕ̃ such that for a subsequence (not relabeled)
we have

Mn,i → M̃ and ϕn,i⇀ϕ̃ weakly in H1
γ (��;R

3). (80)

Indeed, this follow from (21), the variant of Korn’s inequality of Lemma 8.5 and
weak compactness of bounded sequences in Hilbert spaces. Thanks to the assumed
convergence of (Qn), we may pass to the limit in the corrector equation (20) for
(Mn,i , ϕn,i ) and deduce that

ˆ
��

L∞
(
ι(x3Gi + M̃) + sym(∇γ ϕ̃)

) : (ι(M ′) + sym(∇γ ϕ′)
) = 0

for all test functions M ′ and ϕ′. Above, L∞ denotes the fourth-order tensor asso-
ciated with Q∞ via the polarization identity (4). By uniqueness of the corrector
(see Lemma 2.23), we conclude that M̃ = M∞,i and ϕ̃ = ϕ∞,i , and thus the con-
vergence (80) holds for the entire sequence. It remains to show that ϕn,i → ϕ∞,i

strongly in H1. In view of Korn’s inequality, cf. Lemma 8.5, it suffices to show that
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‖ sym∇γ ϕn,i − sym∇γ ϕ∞,i‖L2(��) → 0. Since Qn ∈ Q(α, β) and by appealing to
the corrector equations (20) for ϕn,i and ϕ∞,i , we have

α

 
��

| sym∇γ ϕn,i − sym∇γ ϕ∞,i |2

≤
 

��

Ln

(
ι(Mn − M∞) + sym∇γ (ϕn,i − ϕ∞,i )

)
:

(
ι(Mn − M∞) + sym∇γ (ϕn,i − ϕ∞,i )

)

=
 

��

(L∞ − Ln)
(
ι(x3Gi + M∞) + sym∇γ ϕ∞,i )

)
:

(
ι(M∞ − Mn) + sym∇γ (ϕn,i − ϕ∞,i )

)
.

Note that the last integral converges to 0, since we have (L∞−Ln)
(
ι(x3Gi + M∞)+

sym∇γ ϕ∞,i )
)
→ 0 strongly in L2, and ι(M∞ − Mn) + sym∇γ (ϕn,i − ϕ∞,i )⇀0

weakly in L2. &'

7.2 Compactness: Proof of Theorem 2.8 (a)

Proof of Theorem 2.8(a) By the triangle inequality and Young’s inequality, for all F ∈
R
3×3 and h > 0, we have

1

2
dist(F,SO(3)) ≤ dist

(
F(I3×3 − h Bε(h),h),SO(3)

)
+ 1

2
h2|Bε(h),h |2 + h|Bε(h),h |

(81)
almost everywhere in�. Together with Assumption 2.5 (iv) this yields the implication

lim sup
h→0

Iε(h),h(vh) < ∞ ⇒ lim sup
h→0

1

h2

ˆ
�

dist2(∇hvh(x),SO(3))dx < ∞.

Hence, the statement of Theorem 2.8 (a) follows from (Friesecke et al. 2002, Theo-
rem 4.1). &'

7.3 Lower Bound: Proof of Theorem 2.8 (b)

We only need to consider the case when (8) is satisfied since otherwise, the claim
is trivial. We note that by Theorem 2.8 (a) we have v ∈ H2

iso(S;R
3). In view of

Lemma 2.29 it suffices to prove that

lim inf
h→0

Iε(h),h(vh) ≥ Ĩγ (v),

where Ĩγ is defined in (28). For the proof we modify the argument in (Neukamm
2012, Proof of Theorem 3.3 (Lower bound)) as follows: Without loss of generality,
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we may assume that

lim inf
h→0

Iε(h),h(vh) = lim
h→0

Iε(h),h(vh) < ∞.

Hence, by Theorem 2.8 (a), (vh) is a sequence of finite bending energy in the sense of
(9). By appealing to Proposition 3.2 (a) we can pass to a subsequence (that we do not
relabel) such that

Eh(vh)
2
⇀ E := ι(x3IIv + M) + sym∇γ ϕ, (82)

for some M ∈ L2(S;R
2×2
sym ) and ϕ ∈ L2(S; H1

γ,uloc) that is locally periodic in the
sense of (6). Set

θh(x) :=
{
1 if dist(∇hvh(x),SO(3)) ≤ h1/2,

0 else,
(83)

and note that (9) yields

lim sup
h→0

1

h

ˆ
�

|1− θh | ≤ lim sup
h→∞

1

h2

ˆ
�

dist2(∇hvh(x),SO(3))dx < ∞. (84)

By polar factorization (of∇hvh(x) for x ∈ {θh = 1}) and byAssumption 2.5 (iv), there
exists a rotation field Rh : � → SO(3) such that θh∇hvh = θh Rh

(
I3×3 + hEh(vh)).

Thus, θh∇hvh(I3×3 − h Bε(h),h) = θh Rh(I3×3 + hGh) where

Gh := 1

h

(
(I3×3 + hθh Eh(vh))(I3×3 − hθh Bε(h),h) − I3×3

)
→ 0 uniformly in �.

(85)
Frame-indifference (W1) and the natural state condition (W3) thus yield

θh

h2 Wε(h)(x,∇hvh(I3×3 − h Bε(h),h)) = 1

h2 Wε(h)(x, I3×3 + hGh(x)).

Combined with (W4) and (85), we get

lim sup
h→0

∣∣∣
1

h2

ˆ
�

θh Wε(h)(x,∇hvh(I3×3 − h Bε(h),h))dx

−
ˆ

�

Qε(h)

(
x, θh
(
Eh(vh) − Bε(h),h

))
dx
∣∣∣ = 0, (86)

and thus (by non-negativity of Wε(h),h),

lim inf
h→0

Iε(h),h(vh) ≥ lim inf
h→0

ˆ
�

Qε(h)

(
x, θh
(
Eh(vh) − Bε(h),h

))
dx . (87)
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By appealing to Assumption 2.5 (i) and Assumption 2.5 (iv) , the right-hand side is
equal to

lim inf
h→0

ˆ
�

Q
(

x, x ′
ε(h)

, θh
(
Eh(vh) − B(x, x ′

ε(h)
)
))
dx . (88)

We claim that

θh
(
Eh(vh) − B(x, x ′

ε(h)
)
) 2

⇀ E − B weakly two-scale in L2, (89)

where E is defined in (82). For the argument, we first note that Eh(vh)− B
(

x, x ′
ε(h)

)

weakly two-scale converges to the right-hand side thanks to (82) and Assump-
tion 2.5 (iv). The left-hand side of (89) converges to the same limit, since (θh) is
bounded in L∞ and θh → 1 in L1 by (84).

In view of (87), (88), (89), and (82), the two-scale lower semicontinuity result
Lemma 8.4 yields the lower bound

lim inf
h→0

Iε(h),h(vh) ≥
∑

j∈J

ˆ
S j

 
�� j

Q(x, y, ι(x3IIv+M)+sym∇γ ϕ−B)d(x3, y)dx ′.

In view of the definition of Ĩ γ (see (2.29)) the claim follows by taking the infimum
on the right-hand side over M and ϕ. &'

7.4 Recovery Sequence: Proofs of Theorem 2.8 (c) and Theorem 2.13

We only discuss the proof of Theorem 2.13, since, in comparison to Theorem 2.8 (c),
it features the additional difficulty to take care of the clamped boundary conditions
(13).

Proof of Theorem 2.13 Step 1 (A priori estimate on M and choice of δ)
Let ṽ ∈ H2

iso(S;R
3). Set ĨI := IIṽ , and denote by (M̃, ϕ̃) the associated pair of

correctors satisfying

Iγ
hom(ṽ) =

∞∑

j=1

ˆ
S j

 
�� j

Q(x ′, x3, y, ι(x3ĨI + M̃) + sym∇γ ϕ̃ − B̃)d(x3, y)dx ′,

where
B̃(x ′, ·) := Pγ

� j
(sym B(x ′, ·)) for x ′ ∈ S j and j ∈ J . (90)

We claim that there exists a constant C = C(α, β, γ, CJ , CB) such that

|M̃(x ′)|2 ≤ C(|ĨI(x ′)|2 + 1). (91)

Before we prove this estimate, we note that this implies that

M̃(x ′) + δ I2×2 ≥ 0 a.e. in {ĨI = 0}, (92)
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for a constant δ = δ(α, β, γ, CJ , CB) ≥ 0 that is independent of the specific isometry
ṽ. We now prove (91) and first argue that for all j ∈ J ,

 
�� j

|B̃(x ′, x3, y)|2d(x3, y) � 1 for a.e. x ′ ∈ S j ; (93)

where here and below, � means ≤ up to a multiplicative constant that only depends
α, β, γ, CJ , CB . Indeed, since Q(x, y, ·) ∈ Q(α, β), and since Pγ

� j
is a projection

(adapted to Q(x ′, ·)), we have
 

�� j

|B̃(x ′, x3, y)|2d(x3, y) �
 

�� j

Q(x ′, B̃(x ′, x3, y))d(x3, y)

�
 

�� j

Q(x ′, sym B(x ′, x3, y))d(x3, y)

�
 

�� j

| sym B(x ′, x3, y)|2d(x3, y),

and thus the claim follows from (14). Next, we note that by orthogonality,

|M̃(x ′)|2 ≤
 

�� j

|ι(x3ĨI+ M̃) + sym∇γ ϕ̃|2

≤ 2
 

�� j

|ι(x3ĨI+ M̃) + sym∇γ ϕ̃ − B̃|2 + 2
 

�� j

|B̃|2.

With (93) and since Q ∈ Q(α, β), we conclude

|M̃(x ′)|2 �
 

�� j

Q(x ′, x3, y, ι(x3ĨI+ M̃) + sym∇γ ϕ̃ − B̃)d(x3, y) + 1.

Since (M̃(x ′), ϕ̃(x ′, ·)) is the corrector pair, we conclude that

|M̃(x ′)|2 � Qγ
hom(x ′, ĨI(x ′)) + 1 � |ĨI(x ′)|2 + 1,

as claimed.

Step 2 (Construction in the smooth case)
Let δ ≥ 0 be as in (92) and denote by

Ah
BC := {vh ∈ H1(�;R

3) : vh satisfies (13)},

the space of deformations that satisfy the 3d-boundary conditions. We claim that for
all ρ > 0 there exists vρ ∈ ABC ∩ C∞(S̄;R

3) with

‖vρ − v‖L2(S) + |Iγ
hom(vρ) − Iγ

hom(v)| ≤ ρ, (94)
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and a recovery sequence (vh,ρ)with vh,ρ ∈ Ah
BC satisfying the claim of Theorem 2.13

with v replaced by vρ . Here comes the argument: First, since Iγ
hom is continuous

w.r.t. strong convergence in H2(S;R
3) and in viewof the approximation result (15),we

can find vρ such that (94) holds. Let (Mρ, ϕρ) denote the pair of correctors associated
with vρ , that is,

Iγ
hom(vρ) =

∞∑

j=1

ˆ
S j

 
�� j

Q(x ′, x3, y, ι(x3IIvρ + Mρ)+ sym∇γ ϕρ − B̃)d(x3, y)dx ′,

where B̃ is defined in (90). By (92) we have Mρ +δ I2×2 ≥ 0 on {IIvρ = 0}. Therefore,
we can apply Proposition 3.2 to obtain a recovery sequence vh,ρ ∈ Ah

BC such that
vh,ρ → vρ in L2(�),

Eh(vh,ρ)
2−→ ι(x3IIvρ + Mρ) + sym∇γ ϕρ strongly two-scale,

and in addition

lim sup
h→0

h‖Eh(vh,ρ)‖L∞ = 0 and lim
h→0

‖ det(∇hvh,ρ) − 1‖L∞ = 0.

Note that the latter implies that (for h sufficiently small) there exists a rotation field
Rh,ρ ∈ L∞(�;SO(3)) such that

∇hvh,ρ(I3×3 − h Bε(h),h) = Rh,ρ(I3×3 + hEh(vh,ρ))(I3×3 − h Bε(h),h).

Moreover, with Assumption 2.5 (iv),

∇hvh,ρ(I3×3 − h Bε(h),h) = Rh,ρ(I3×3 + hGh + hoh), Gh = Eh(vρ,h)− Bε(h),h,

for some remainder oh : � → R
3×3 and h(‖Gh‖L∞(�) + ‖oh‖L∞(�)) → 0. We thus

conclude by frame-indifference and a Taylor expansion at I3×3 of Wε(h) that

lim sup
h→∞

Iε(h),h(vρ,h) = lim sup
h→∞

ˆ
�

Qε(h)(x, Gh(x))dx .

In view of Assumption 2.5 (ii), we have

lim sup
h→∞

ˆ
�

Qε(h)(x, Gh(x))dx = lim sup
h→∞

ˆ
�

Q(x ′, x3,
x ′

ε(h)
, Gh(x))dx, (95)

and in view of Assumption 2.5 (iv), we have

Gh
2−→ ι(x3IIvρ + Mρ) + sym∇γ ϕρ − B strongly two-scale in L2.
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By the continuity of the convex functional on the right-hand side of (95) w.r.t. strong
two-scale convergence, cf. Lemma 8.4, we conclude that

lim sup
h→∞

Iε(h),h(vρ,h)

=
∞∑

j=1

ˆ
S j

 
�� j

Q(x ′, x3, y, ι(x3IIvρ + Mρ) + sym∇γ ϕρ − sym B)d(x3, y)dx ′

= Iγ
hom(vρ) + Iγ

res(B),

see Lemma 2.29. This concludes the argument.

Step 3 (Extraction of a diagonal sequence)
Consider

ch,ρ := |Iε(h),h(vh,ρ) − (Iγ
hom(v) + Iγ

res(B))| +
ˆ

�

|vh,ρ − v|2.

Step 2 yields lim sup
h→0

lim sup
ρ→0

ch,ρ = 0, and thus there exists a diagonal sequence

h �→ ρ(h) such that ch,ρ(h) → 0. Hence, vh := vh,ρ(h) defines the recovery sequence
(vh) we were looking for. &'

7.5 Characterization of the Limiting Strain: Proof of Proposition 3.2 and
Lemma 2.29

We start with the proof of Proposition 3.2 (a), which is almost a direct consequence of
(Hornung et al. 2014, Proposition 3.2), where the “single-grain” case with � j = I2×2
is considered.

Proof of Proposition 3.2(a) By Lemma 8.2 (a) we may pass to a subsequence (not rela-
beled) such that

Eh(vh)
2
⇀ E weakly two-scale in L2,

where E ∈ L2(�; L2
uloc(R

2;R
3×3
sym )). In view of Lemma 8.1, it suffices to show that

for all j ∈ J , we have (after possibly passing to a further subsequence)

Eh(vh)
2
⇀ ι(x3II+ M j ) + sym∇γ ϕ j ,

weakly two-scale in the sense of (128) for some M j ∈ L2(S j ;R
2×2
sym ) and ϕ j ∈

L2(S j ; H1
γ (�� j ;R

3)). In the case � j = I2×2, (128) directly follows from (Hornung
et al. 2014, Proposition 3.2). With help of Proposition 8.3 and the variant of Korn’s
inequality Lemma 8.5, the argument of (Hornung et al. 2014, Proposition 3.2) extends
verbatim to the case of general invertible � j ∈ R

2×2. &'
We turn to the proof of Proposition 3.2 (b). We only discuss the construction in the

case with prescribed boundary data, since this adds an additional layer of difficulties.
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The construction is based on the density ofABC ∩C∞(S̄;R
3) inABC , see (15), and a

“single-scale” approximation result that we recently obtained together with M. Griehl
et al. in Bartels et al. (2022). We recall it in the following (slightly weaker) form:

Proposition 7.1 (cf. Bartels et al. 2022, Proposition 4.4) Let v ∈ H2
iso(S;R

3) ∩
C∞(S;R

3), M ∈ L2(S;R
2×2
sym ), d ∈ L2(�;R

3) and assume that there exists δ ≥ 0
such that

M + δ I2×2 ≥ 0 a.e. in {IIv = 0}.
Then there exists a sequence (vh) ⊆ C∞(�̄;R

3) such that

vh → v uniformly in �,

Eh(vh) → ι(x3II+ M) + sym(d ⊗ e3) strongly in L2(�),

lim sup
h→0

h‖Eh(vh)‖L∞(�) = 0 and lim
h→0

‖ det(∇hvh) − 1‖L∞(�) = 0. (96)

Furthermore, if Assumption 2.11 is satisfied and v ∈ ABC ∩C∞(S;R
3), then we may

additionally enforce the clamped, affine boundary condition (13).

Proof of Proposition 3.2 (b) By (15), for any ρ there exists vρ ∈ ABC ∩ C∞(S̄;R
3)

such that
ˆ

S
|v − vρ |2 + |IIv − IIvρ |2 + |(∇′v, bv) − Rρ |2 ≤ ρ, where Rρ := (∇′vρ, bvρ ).

We claim that there exists a sequence (ṽh,ρ) ⊂ C1(�̄;R
3) that satisfies the clamped

boundary conditions (13) and

ṽh,ρ → vρ uniformly in �, (97a)

Eh(ṽh,ρ)
2−→ ι(x3IIvρ + M) + sym∇γ ϕ strongly two-scale in L2(�), (97b)

lim sup
h→0

h‖Eh(ṽh,ρ)‖L∞(�) = 0 and lim
h→0

‖ det(∇h ṽh,ρ) − 1‖L∞(�) = 0. (97c)

Before we prove this claim we note that with the sequence (ṽh,ρ) at hand, the searched
for sequence is obtained (similar to Step 3 in the proof of Theorem 2.13) as a diagonal
sequence , i.e., vh = ṽh,ρ(h) for a suitable function h �→ ρ(h) (note that the notion
of strong two-scale convergence is metrizable). We leave the details to the reader
and turn to the construction of (ṽh,ρ): By Proposition 7.1 we can associate with vρ

a sequence (vh,ρ) ⊆ C1(�̄;R
3) that satisfies (96) with d = 0 and the clamped

boundary conditions (13). Furthermore, by Proposition 8.3 there exists a sequence

(ϕh) ⊆ C∞
c (�) such that ∇hϕh

2−→ ∇γ (Rρϕ), and

h‖ϕh‖L∞(�) + h‖∇hϕh‖L∞(�) → 0.

We now define
ṽh,ρ := vh,ρ + hϕh .
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Obviously, ṽh,ρ satisfies the clamped boundary conditions (13) (since ϕh is com-
pactly supported in �). Statements (97a) and (97c) are also obvious by construction.
It remains to prove (97b). To that end, we first note that by (96), for h > 0 sufficiently
small, we have det(∇hvh,ρ(x)) > 0 for all x ∈ �. Thus, by the polar factorization,
there exists a unique rotation field Rh,ρ : � → SO(3) such that

∇hvh,ρ = Rh,ρ(I3×3 + hEh(vh,ρ)), (98)

and thus

∇h ṽh,ρ = Rh,ρ

(
I3×3 + hGh

)
, Gh := Eh(vh,ρ) + R


h,ρ∇hϕh .

By construction, we have h‖Gh‖L∞(�) → 0, and thus a Taylor expansion yields

√
(∇h ṽh,ρ)
∇h ṽh,ρ =

√
I3×3 + 2h sym Gh + h2G


h Gh = I3×3 + h sym Gh + hoh

with a remainder oh : � → R
3×3 satisfying ‖oh‖L∞(�) → 0. Thus, in order to prove

(97b), we only need to show that

sym Gh = Eh(vh,ρ) + sym
(
R


h,ρ∇hϕh
)

2−→ ι(x3IIvρ + M) + sym∇γ ϕ strongly two-scale in L2.

In view of (96), it suffices to show that RT
h,ρ∇hϕh

2−→ ∇γ ϕ. We first note that

Rh,ρ → Rρ in L2(�), since the left-hand side of (98) converges in L2(�) to Rρ . We

therefore concludewith help ofLemma8.2 (c) that R

h,ρ∇hϕh

2
⇀ R


ρ (Rρ∇γ ϕ) = ∇γ ϕ

weakly two-scale. On the other hand, the norm converges:

‖R

h,ρ∇hϕh‖2L2(�)

= ‖∇hϕh‖2L2(�)
→
∑

j∈J

ˆ
S j

 
�� j

|∇γ ϕ|2d(x3, y)dx ′,

since |R

h,ρ(x ′)∇hϕh(x)| = |∇hϕh(x)| (recall R


h,ρ(x) ∈ SO(3)), and because

∇hϕh,ρ
2−→ Rρ∇γ ϕ. This completes the proof of (97b). &'
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7.6 Strong Two-Scale Convergence of the Nonlinear Strain: Proof of
Proposition 3.4

For brevity we only present the proof in the single-grain case, i.e. we assume that
Y j = Y1 for all j ∈ J . The argument extends without larger modifications to the
general case.

Step 1 (Reduction of the problem) We first note that

Iγ
hom(v∗) + Iγ

res(B) =
ˆ

S

 
��1

Q(x, y, E∗(x, y))d(x3, y)dx ′

= min
(M,ϕ)

ˆ
S

 
��1

Q(x, y, ι(x3IIv∗ + M) + sym∇γ ϕ − B)d(x3, y)dx ′,

where the minimum runs over all M ∈ L2(S;R
2×2
sym ) and ϕ ∈ L2(S; H1

γ (��1;R
3)),

see Lemma 2.29. With help of Theorem 2.8 (c) we choose a recovery sequence (ṽh)

for v∗ satisfying
lim

h→∞ Iε(h),h(ṽh) = Iγ
hom(v∗) + Iγ

res(B).

Note that the recovery sequence constructed in Theorem 2.8 (c) additionally satisfies

Eh(ṽh)
2−→ E∗ strongly two-scale in L2. (99)

We claim that the statement of the Proposition 3.4 follows from the following two
claims:

lim sup
h→0

ˆ
�

Q
(

x,
x ′

ε(h)
, θh Eh(vh) − Eh(ṽh)

)
dx = 0, (100)

lim sup
h→0

ˆ
�

(1− θh)|Eh(vh)|2dx = 0, (101)

where θh is the indicator function defined in (83). Indeed, since Eh(vh) and Eh(ṽh)

are symmetric and since Q ∈ Q(α, β), the combination of both statements, implies
that Fh := Eh(vh)− Eh(ṽh) → 0 strongly in L2(�), and thus also strongly two-scale

in L2. In view of (99), this implies that Eh(vh) = Eh(ṽh) + Fh
2−→ E∗ strongly

two-scale in L2, which is the claim of the Proposition 3.4.
We shall prove (100) and (101) in Steps 3 and 4, respectively.

Step 2 (Weak two-scale convergence towards E∗)
For brevity set Bh(x) := B(x, x ′

ε(h)
). We claim that

Eh(vh)
2
⇀ E∗ weakly two-scale in L2, (102)

θh(Eh(vh) − Bh)
2
⇀ E∗ − sym B weakly two-scale in L2, (103)

lim
h→0

1

h2

ˆ
�

θh Wε(h)(x,∇hvh(I3×3 − h Bε(h),h))dx
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= lim
h→0

ˆ
�

Q
(

x, x ′
ε(h)

, θh(Eh(vh) − Bh)
)
dx

= Iγ
hom(v∗) + Iγ

res(B). (104)

Here comes the argument: By compactness, see Proposition 3.2 (a), we have (for a
subsequence)

Eh(vh)
2
⇀ ι(x3IIv∗) + M + sym∇γ ϕ weakly two-scale in L2,

for some corrector pair (M, ϕ). Moreover, we may additionally assume that´
S |
´
��1

ϕ| = 0. Next, we recall from Step 1 in the proof of Theorem 2.8 part (b)

(cf. (86), (87) and (88)) that

lim inf
h→0

Iε(h),h(vh) ≥ lim inf
h→0

1

h2

ˆ
�

θh Wε(h)(x,∇hvh(I3×3 − h Bε(h),h))dx

≥ lim inf
h→0

ˆ
�

Q
(

x, x ′
ε(h)

, θh(Eh(vh) − Bh)
)
dx

≥
ˆ

S

 
��1

Q(x ′, x3, y, ι(x3IIv∗ + M) + sym∇γ ϕ − B)d(x3, y)dx ′

≥ Iγ
hom(v∗) + Iγ

res(B).

In view of the convexity of Q and assumption (37), we can upgrade this lower bound
to identity (104) as claimed. Furthermore, with Lemma 2.29 we conclude that (M, ϕ)

are minimizers of the functional in the second last line, and we conclude that M = M∗
and ϕ = ϕ∗ (that is, E = E∗). Thus, (102) holds not only for the subsequence, but the
entire sequence. Moreover, (103) then follows from (89).

Step 3 (Proof of (101))
For brevity set wh(x) := 1

h2
Wε(h)(x,∇hvh(x)(I3×3 − h Bε(h),h(x))). By assumption

we have
´
�

wh(x)dx = Iε(h),h(vh) → Iγ
hom(v∗) + Iγ

res(B), and by (104) we have´
�

θhwhdx → Iγ
hom(v∗) + Iγ

res(B). Hence, since wh is non-negative, we conclude
that ˆ

�

(1− θh)|wh | =
ˆ

�

wh −
ˆ

�

θhwh → 0.

On the other hand, from the elementary, pointwise bound |Eh(vh)| ≤ 1
h2

dist2(∇hvh,

SO(3)), (81), and ((W1)), we conclude that

α

ˆ
�

(1− θh)|Eh(vh)|2 ≤
ˆ

�

(1− θh)
(|wh | + 1

2
h2|Bε(h),h(x)|4 + |Bε(h),h |2

)
.

Thus, it remains to show that
´
�
(1−θh)|Bε(h),h |2 → 0. The latter is a consequence of´

�
(1− θh)|Bε(h),h |2 ≤ ‖1− θh‖L1(�)‖Bε(h),h‖2L∞(�), (84), and Assumption 2.5 (iv).

Step 4 (Proof of (100))
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By adding and subtracting Bh := B(x, x ′
ε(h)

), and by expanding the square, we have

ˆ
�

Q
(

x, x ′
ε(h)

, θh Eh(vh) − Eh(ṽh)
)
dx

=
ˆ

�

Q
(

x, x ′
ε(h)

, θh Eh(vh) − Bh

)
dx −

ˆ
�

Q
(

x, x ′
ε(h)

, Eh(ṽh) − Bh

)
dx

+2
ˆ

�

L(x, x ′
ε(h)

)(Eh(ṽh) − Bh) : (Eh(ṽh) − θh Eh(vh))dx .

It suffices to show that the right-hand side converges to 0 for h → 0. The first integral
converges by (104), while the second integral converges to the same limit, since ṽh is
a recovery sequence. Thus, it remains to show that the third integral vanishes. Note

that Eh(ṽh) − θh Eh(vh)
2
⇀ 0 weakly in L2, since (103) and since ṽh is a recovery

sequence. Since L(x, x ′
ε(h)

)(Eh(ṽh) − Bh) is strongly two-scale convergent in L2, we
may pass to the limit by appealing to Lemma 8.2 (c). We thus conclude that

lim
h→0

ˆ
�

L(x, x ′
ε(h)

)(Eh(ṽh) − Bh) : (Eh(ṽh) − θh Eh(vh))dx = 0.

&'

7.7 Formulas for the Orthotopic Case: Proofs of Lemmas 4.2, 4.3, 4.5

Throughout this section we use the shorthand notation � := (− 1
2 ,

1
2 ) × (− 1

2 ,
1
2 )

2.

Proof of Lemma 4.2 Step 1 (Symmetry properties) For i = 1, 2, 3 define P(i) ∈ R
3×3

and π(i) : � → � by

P(i) :=

⎧
⎪⎨

⎪⎩

diag(−1, 1, 1) i = 1,

diag(1,−1, 1) i = 2,

diag(1, 1,−1) i = 3,

π(i)(x3, y1, y2) :=

⎧
⎪⎨

⎪⎩

(x3,−y1, y2) i = 1,

(x3, y1,−y2) i = 2,

(−x3, y1, y2) i = 3,

and remark that thanks to the symmetries and isotropy of Q we have

Q(x3, y, F) =Q
(
π(i)(x3, y), F

) = Q
(
x3, y, P(i)F P(i)), (105)

for all F ∈ R
3×3
sym , a.e. (x3, y) ∈ �, and i = 1, 2, 3. As a consequence of these

symmetries, we obtain for all G ∈ R
2×2
sym , M ∈ R

2×2
sym , and ϕ ∈ H1

γ (�;R
3) the identity

ˆ
�

Q
(
x3, y, ι(x3G) + ι(M) + sym∇γ ϕ

)

=

⎧
⎪⎪⎨

⎪⎪⎩

ˆ
�

Q
(
x3, y, P(i)ι(x3G)P(i) + ι(M̃ (i)) + sym∇γ ϕ̃(i)) for i = 1, 2,

ˆ
�

Q
(
x3, y, ι(−x3G) + ι(M) + sym∇γ ϕ̃(3)) for i = 3,
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(106)

where

ϕ̃(i) := P(i)ϕ ◦ π(i), M̃ (i) :=
{
diag(−1, 1)Mdiag(−1, 1) for i = 1,

diag(1,−1)Mdiag(1,−1) for i = 2.
(107)

Indeed, this follows by a direct calculation using (105) and the identities

∇γ ϕ̃(i) = P(i)(∇γ ϕ ◦ π(i))P(i), P(3)ι(x3G + M)P(3) = ι(x3G + M).

Step 2 (Symmetries of the corrector)
Let G ∈ R

2×2
sym and let (MG, ϕG) denote the associated corrector in the sense of

Lemma 2.23. We claim that

MG = 0 and ϕG =

⎧
⎪⎨

⎪⎩

P(i)ϕG ◦ π(i) if i = 1, 2 and G is diagonal,

−P(i)ϕG ◦ π(i) if i = 1, 2 and G vanishes on the diagonal,

−P(3)ϕG ◦ π(3) if i = 3.

(108)

The proof is as follows: Identity (106) with i = 3 in combination with the
characterization of the corrector as a minimizer (see Remark 2.24) implies that
(−MG,−P(3)ϕG ◦ π(3)) is also a corrector associated with G. By uniqueness of
the corrector, we especially conclude that MG = −MG . Hence, MG = 0 and (40)
follow. Likewise, we conclude that ϕG = −P(3)ϕG ◦π(3). By the same argument and
by using that for i = 1, 2 and all G ∈ R

2×2
sym we have

P(i)ι(x3G)P(i) =
{

ι(x3G) ifG is diagonal,

ι(−x3G) ifG vanishes on the diagonal,

the remaining identities follow. Since Q is independent of y2 we conclude that ∂y2ϕG =
0 and ϕG ◦ π2 = ϕG . Combined with (108), we deduce that

ϕG = (ϕG,1, 0, ϕG,3) ifG is diagonal,

ϕG = (0, ϕG,2, 0) ifG vanishes on the diagonal. (109)

In particular, (41) follows.

Step 3 (Conclusion)
To prove that Qγ

hom is orthotopic, by Proposition 2.25 and since MG3 = 0, it suffices
to show that for i = 1, 2 we have

ˆ
�

L(x3, y1)(ι(x3G3) + sym∇γ ϕG3) : ι(x3Gi ) = 0. (110)
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For the argument, note that in view of (39) we have

L(x3, y1)G = λ(x3, y1)(trG)I3×3 + 2μ(x3, y1) sym G.

Furthermore, from (109) and the fact that ϕG3 is independent of y2, we conclude that
all diagonal entries of ι(x3G3)+sym∇γ ϕG3 vanish a.e. in�. We conclude (110) (and
thus orthotropicity) and the identity (42). &'
Proof of Lemma 4.3 Throughout the proof, we will use the shorthand notation ϕi,3 =
∂3ϕ · ei and ϕi, j = ∂y j ϕ · ei for i = 1, 2, 3 and j = 1, 2. Since the setting under
consideration is a special case of Lemma 4.2, we conclude that Qγ

hom is orthotropic.
Hence, it suffices to prove the formulas for the coefficients q1, q2, q3, q12 and the
properties of the map γ �→ μγ .

Step 1 (Correctors for i = 1, 2 and coefficients q1, q2, q12)
Consider the following subspace of H1

γ (�;R
3),

Hdiag :=
{
ϕ ∈ H1

γ (�;R
3) : ϕ1,2 = ϕ3,2 = ϕ2 = 0 a.e. in �, and

ˆ
�

ϕ1 =
ˆ

�
ϕ3 = 0

}
,

and note that by (41) we have ϕG1 , ϕG2 ∈ Hdiag. Since MGi = 0 by Lemma 4.2, and
in view of the characterization of the corrector as a minimizer, we obtain for i = 1, 2
the identity

q1 = Qγ
hom(Gi ) =

 
�

Q
(
x3, y1, ι(x3Gi ) + sym∇γ ϕGi

)

= min
ϕ∈Hdiag

 
�

μ( 1
γ
ϕ1,3 + ϕ3,1)

2 + 2μ( 1
γ
ϕ3,3)

2

+ 2μ(δi1x3 + ϕ1,1)
2 + 2μδi2x23 ,

where δi j = 1 for i = j and δi j = 0 for i  = j . Based on this identity, one can check
that for i = 1 we have ϕG1 = (x3w, 0, W ) with

w(y1) :=
ˆ y1

− 1
2

( 〈μ〉h
μ

− 1
)
ds, W (y1) := − 1

γ

(ˆ y1

− 1
2

w(s)ds −
ˆ 1

2

− 1
2

ˆ t

− 1
2

w(s)dsdt
)
.

We compute

∇γ ϕG1 =
( 〈μ〉h

μ
− 1
)
ι(x3G1) (111)

and conclude that q1 = Qγ
hom(G1) = 1

6 〈μ〉h as claimed. Similarly, for i = 2, we get
ϕG2 = 0 and thus q2 = Qγ

hom(G2) = 1
6μ. Combined with (111) and Proposition 2.25,

we further conclude that

q12 =
 

�
L(ι(x3G1 + MG1) + sym∇γ ϕG1) : ι(x3G2)

=
 

�
2μ
(
ι(x3G1) +

( 〈μ〉h
μ

− 1
)
ι(x3G1)

)
: ι(x3G2) = 0,
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since ι(x3G1) : ι(x3G2) = 0.

Step 2 (Corrector for i = 3, coefficient q3, and properties of μγ )
For the argument it is convenient to introduce for γ ∈ (0,∞) the functional

Eγ : H → R, Eγ (w) :=
 

�
μ
(
(
√
12x3 + ∂y1w)2 + (

1

γ
∂3w)2

)
.

We note that by construction, we have μγ = min Eγ where μγ is defined by (43b).
Moreover, by (41) in Lemma 4.2 we have ϕG3 = (0, w∗, 0) for some w∗ ∈ H. As in
the previous step we thus conclude that

q3 = Qγ
hom(G3) = min

w∈H

 
�

μ
(
(
√
2x3 + ∂y1w)2 + (

1

γ
∂3w)2

)
= 1

6
min
w∈H

Eγ (w),

(112)
and thus the identity for q3 in (46) follows.

Substep 2.1 (Proof of (44)). Taking w = 0 as a test function in (112), we obtain
1
6μγ ≤ ffl

� 2μx23 = 1
6μ. On the other hand,

〈μ〉h = min
w∈H

 
�

μ
(√

12x3 + ∂y1w
)2 ≤ min

w∈H

 
�

μ
(
(
√
12x3 + ∂y1w)2 + (

1

γ
∂3w)2

)
= μγ ,

and thus (44) follows.

Substep 2.2 (Continuity of μγ ). Let (γn) be a sequence that converges to γ ∈ (0,∞).
It is straightforward to check that Eγn �-converges to Eγ w.r.t. weak convergence inH,
where we consider H as a closed subspace of H1

γ (�;R). Hence, standard arguments
from the theory of �-convergence show that min Eγn → min Eγ and we conclude that
γ �→ μγ is continuous.

Substep 2.3 (Asymptotic behavior of μγ ). We show that limγ→∞ μγ = 〈μ〉h. Since
the map γ �→ μγ is monotone and bounded by (44), the limit limγ→∞ μγ exists.
To identify the limit, consider w∞(x3, y) := √

12x3
´ y1
− 1

2
(
〈μ〉h
μ(s) − 1)ds and note that

we have w∞ ∈ H and 〈μ〉h = limγ→∞ Eγ (w∞). Combined with the lower bound
Eγ (w∞) ≥ μγ ≥ 〈μ〉h, we get 〈μ〉h ≥ lim

γ→∞μγ ≥ 〈μ〉h, and thus the claim follows.

Next, we prove lim
γ→0

μγ = μ. As above, by monotonicity, the limit exists. Let

wγ ∈ H be a minimizer of Eγ . By (44) we have 〈μ〉h ≤ Eγ (wγ ) ≤ μ, and thus
lim supγ→0

ffl
� |∂y1wγ |2 + | 1

γ
∂3wγ |2 < ∞. Hence, (wγ ) is bounded in H and we

can pass to a subsequence (not relabeled) such that wγ ⇀w0 weakly in H, where w0
satisfies ∂3w0 = 0. By weak lower semicontinuity of convex functionals and sinceffl
� μ
(√

12x3 + ∂y1wγ

)2 ≤ Eγ (wγ ) = μγ ≤ μ, we conclude

 
�

μ
(√

12x3 + ∂y1w0
)2 ≤ lim inf

γ→0

 
�

μ
(√

12x3 + ∂y1wγ

)2 ≤ lim
γ→0

Eγ (wγ ) ≤ μ.
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On the other hand, since
ffl
� μ

√
12x3∂y1w0 = 0, we have 

�
μ
(√

12x3 + ∂y1w0
)2 =

 
�

μ(
√
12x3)

2 +
 

�
μ(∂y1w0)

2 ≥ μ. (113)

We conclude that limγ→0 μγ = μ.

Substep 2.4 (Strict monotonicity of μγ ). It suffices to prove that if μγ is not strictly
monotone, then μ is constant. For the argument, suppose that μγ is not strictly mono-
tone. Since μγ is monotone, there exist γ1 < γ2 such that (γ1, γ2) � γ �→ μγ is
constant. Hence d

dγ
Eγ (wγ ) = 0 for all γ ∈ (γ1, γ2), where wγ denotes the minimizer

of Eγ . By combining the latter with the Euler–Lagrange equation for wγ , i.e.,

 
�

μ
(
(
√
12x3 + ∂y1wγ )∂y1η + 1

γ 2 ∂3wγ ∂3η
)
= 0 for all η ∈ H, (114)

we find that −2γ−3
ffl
� μ(∂3wγ )2 = 0. Hence, wγ is independent of x3, and thus

Eγ (wγ ) = μ+ffl
� μ(∂y1wγ )2. Sincewγ minimizes Eγ , we conclude thatwγ = 0 and

thus (114) reduces to
ffl
� μ(

√
12x3)∂y1η = 0, which especially holds for test-functions

of the form η(x3, y1) = x3η̃(y1). We thus conclude that μ = ffl
ω

μ a.e. in � and the
claim follows.

Step 3 (Evaluation of effective prestrain)
From Proposition 2.25 (b) we recall the definition of B̂ ∈ R

3, which we combine with
(111), the identity ϕG2 = 0, and (42). We get

B̂1 = 2〈μ〉h
 

�
ρx3d(x3, y), B̂2 = 2

 
�

μρx3d(x3, y), B̂γ
3 = 0.

Furthermore, we recall from Proposition 2.25 that B̂γ
eff = Q̂−1 B̂ and note that we

have Q̂ = 1
6diag(〈μ〉h, μ, μγ ) by Step 1 and Step 2. Now, (47) follows from a short

calculation. &'
Proof of Lemma 4.5 This follows from Lemma 4.3 and direct computations. &'
Proof of Lemma 5.3 The proof is based on case discrimination depending on the sign
of det H .
Step 1 (Case (a) and its logical complement)
By the invariance property (59) and identity (62) we have

Case (a) ⇔ argmin
a∈G+

R2

EQ,B(a) ⊂ ∂G+
R2 . (115)

Suppose (a). Then the inclusion of SQ,B claimed in (a) follows from (58). On the other
hand, if (a) does not hold, then by (115), EQ,B admits a local minimizer in the interior
of G+

R2 , and thus there exists a ∈ G+
R2 \ ∂G+

R2 such that ∇EQ,B(a) = 0 and ∇2EQ,B(a)

is positive semi-definite. Since ∇2EQ,B = H and trace(H) = 2(q1 + q2) > 0 (by
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positive definiteness of Q), we have det H ≥ 0. Thus, to conclude the trichotomy, it
suffices to show

(¬(a) and det H > 0
)⇔ (b), (116)

(¬(a) and det H = 0
)⇔ (c). (117)

Step 2 (Case (b) and proof of (116))
Suppose det H > 0. Then EQ,B is strictly convex and g∗ is the unique minimizer of
EQ,B on R

2 as can be seen by checking the identity ∇EQ,B(g∗) = 0. In view of (115),
the equivalence (b) follows. Furthermore, if (b) holds, then argminG+

R2
EQ,B = {g∗}

and the characterization of SQ,B claimed in (b) follows from (60).

Step 3 (Case (c) and proof of (117))
Let det H = 0. Since trace(H) = 2(q1 + q2) > 0, H is positive semi-definite and
thus EQ,B is convex. Therefore, any critical point of EQ,B is a minimizer of EQ,B (in
R
2). Furthermore, we have H = 2(q1 + q2)q∗ ⊗ q∗.
Now assume that (a) is not valid. Then by the argument of Step 1, EQ,B admits a

critical point a ∈ G+
R2 \ ∂G+

R2 , and thus 0 = ∇EQ,B(a) = Ha − 2Ab. We conclude
that 2Ab ∈ range H , and thus (c) holds.

On the other hand, if (c) holds, then 2Ab = (2Ab ·q∗)q∗, and thus H(s∗q∗) = 2Ab.
Hence, g∗ = s∗q∗ is a critical point. In fact, every point on the lineL := {a ∈ R

2 : a ·
q∗ = s∗} is a critical point and thus aminimizer of EQ,B . In order to conclude¬(a) (and
thus the validity of (117)), we only need to show thatL∩ (G+

R2 \∂G+
R2)  = ∅. The latter

can be seen as follows:WeparametrizeL by � : R → R
2, �(t) := s∗q∗+t(−q∗,2, q∗,1)

and consider the function ϕ(t) := (s∗q∗,1 − tq∗,2)(s∗q∗,2 + tq∗,1). By construction
we have �(t) ∈ G+

R2 \ ∂G+
R2 if and only if ϕ(t) > 0. It is easy to see that ϕ is concave.

We claim that
ϕ(0) = s2∗q∗,1q∗,2 > 0. (118)

Indeed, combining (57) with the identity 0 = det H = 4q1q2− (q12+2q3)2 yields
q12 + q3 > 0 and thus 2q2(q12 + 2q3) > 0. In view of the definition of q∗ and the
property s2∗ > 0 (which follows from b  = 0), we obtain (118). Since ϕ is concave
and continuous, we conclude from (118) that {t ∈ R : ϕ(t) ≥ 0} is an interval with
non-empty interior, and thusL∩G+

R2 \∂G+
R2  = ∅ follows. This completes the argument

for (116). Furthermore, the above argument proves the characterization of SQ,B stated
in (c). &'

7.8 Shape Programming: Proofs of Lemma 6.2, Corollary 6.3, Lemma 6.7, and
Theorem 6.6

Proof of Lemma 6.2 For convenience set � := �� and �̃ := ��̃.

Step 1 (Reduction using linearity)
We first note that the map

� : H�̃ → H�, �(F̃) := F, where F(x3, y) := T̂
 F̃(x3, T y)T̂ ,
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is an isometric isomorphism. In particular, for all F̃, G̃ ∈ H�̃ we have

 
�̃

Q̃(x3, y, F̃) =
 

�
Q(x3, y,�(F̃)),

 
�̃

L̃F̃ : G̃ =
 

�
L�(F̃) : �(G̃).

Furthermore, the map

H1
γ (��;R

3) → H1
γ (��̃;R

3), ϕ �→ ϕ̃, ϕ̃(x3, y) = T̂−
ϕ(x3, T−1y),

defines an isomorphism satisfying �
(
sym∇γ ϕ̃

) = sym∇γ ϕ. With help of this iden-
tity it is easy to check that �(Hγ

rel,�̃
) = Hγ

rel,� and �(Hγ

�̃
) = Hγ

�.

Step 2 (Reduction using projections)
We claim that

�(Pγ

�̃
B̃) = Pγ

� B. (119)

Indeed, by the definition of B̃ and the properties of �, we have for all F ∈ Hγ
�,

 
�

L
(
�(Pγ

�̃
(sym B̃) − sym B

) : F =
 

�̃
L̃
(
Pγ

�̃
(sym B̃) − sym B̃

) : �−1(F) = 0,

where the last identity holds, since �−1(F) ∈ Hγ

�̃
and because Pγ

�̃
is the orthogonal

projection onto Hγ

�̃
.

Step 3 (Conclusion)
Let G̃ ∈ R

2×2
sym . Then by Step 1,

Q̃γ
hom(G̃) = inf

χ̃∈Hγ

rel,�̃

 
�̃

Q̃(x3, y, ι(x3G̃) + χ̃ ) = inf
χ̃∈Hγ

rel,�̃

 
�

Q
(

x3, y,�
(
ι(x3G̃) + χ̃

))

= inf
χ∈Hγ

rel,�

 
�

Q
(

x3, y, ι(x3T
G̃T ) + χ
)
= Qγ

hom(T
G̃T ),

as claimed. Similarly,

Q̃γ
hom(G̃ − B̃γ

eff ) +
 

�̃
Q̃(x3, y, (I − Pγ

�̃
)(sym B̃))

= inf
χ̃∈Hγ

rel,�̃

 
�̃

Q̃(x3, y, ι(x3G̃) + χ̃ − B̃) = inf
χ∈Hγ

rel,�

 
�

Q
(

x3, y, ι(x3T
G̃T ) + χ − B
)

= Qγ
hom(T
G̃T − Bγ

eff ) +
 

�
Q(x3, y, (I − Pγ

�)(sym B)).

From (119) and the properties of �, we deduce that on both sides the second integrals
are equal, and thus

Q̃γ
hom(G̃ − B̃γ

eff) = Qγ
hom(T
G̃T − Bγ

eff).
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Since this is true for arbitrary G̃ ∈ R
2×2
sym , we conclude that B̃γ

eff = T−
Bγ
effT

−1 as
claimed. &'
Proof of Corollary 6.3 Note that for all G ∈ R

3×3 we have by frame indifference

W (R, κ; x3, y, I3×3 + G) = W̄ (κ; x3, R
y, I3×3 + R
G R).

Thus, the quadratic forms associated with W (R, κ; ·) and W̄ (κ; ·) transform as in
Lemma 6.2, that is,

Q(R, κ; x3, y, G) = Q̄(κ; x3, R
y, R
G R).

With help of Lemma 6.2 it is straightforward to check the claims of the corollary. &'
Proof of Lemma 6.7 Step 1 (Proof of (a))
W.l.o.g. we may assume

´
S vn = 0. From (70) we get

α

2

ˆ
S
|IIvn |2 ≤ In(vn) + α‖Bn‖2L2(S)

,

and thus we have ‖IIvn‖2L2(S)
< ∞. Since |IIvn |2 = |∇′∇′vn|2, the Poincaré–Wirtinger

inequality implies that lim supn→∞ ‖vn‖H2(S;R3) < ∞. Therefore, we may pass to a
subsequence that weakly converges in H2(S;R

3) to some limit v. Since H2
iso(S;R

3)

is weakly closed, we conclude that v ∈ H2
iso(S;R

3).

Step 2 (Proof of (b))
We first note that the construction of a recovery sequence (vn) for v ∈ H2

iso(S;R
3) is

trivial, since we just may consider the constant sequence vn = v. To prove the lower
bound part of �-convergence, consider a sequence (vn) ⊂ H2

iso(S;R
3) that weakly

converges in H2 to some v∞ ∈ H2(S;R
3). We need to show that

lim inf
n→∞ In(vn) ≥ I∞(v∞).

For the argument set Fn := IIvn − Bn (for n ∈ N ∪ {∞}) and note that we have

Fn⇀F∞ weakly in L2. (120)

By expanding the square and by positivity of Qn , we have

ˆ
S

Qn(x ′, Fn) =
ˆ

S
Qn(x ′, F∞) + Qn(x ′, Fn − F∞) + Ln(x ′)F∞ : (Fn − F∞)

≥
ˆ

S
Qn(x ′, F∞) + Ln(x ′)F∞ : (Fn − F∞).

Thanks to the convergence of Qn we have
´

S Qn(x ′, F∞) → ´
S Q∞(x ′, F∞) =

I∞(v∞). Moreover, the assumption on Qn implies that Ln(x ′)F∞ → L∞(x ′)F∞
strongly in L2(S). Together with (120) this yields

´
S Ln(x ′)F∞ : (Fn − F∞) → 0.
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Step 3 (Proof of (c))
Standard arguments from the theory of �-convergence imply that we have vn⇀v∞
weakly in H2 (up to extraction of a subsequence) where v∞ ∈ H2

iso(S;R
3) is a

minimizer of Iγ
hom,∞. In the following we explain how to upgrade this to vn → v∞

strongly in H2. Note that it suffices to show

‖IIvn − IIv∞‖L2(S) → 0. (121)

Indeed, thanks to the identity |IIvn |2 = |∇′∇′vn|2, (121) implies ‖∇′∇′vn‖L2(S) →
‖∇′∇′v‖L2(S), and thus ∇′∇′vn → ∇′∇′v strongly in L2. To see (121) we argue that

ˆ
S

Qn(x ′, IIvn − IIv∞) → 0.

The latter can be seen as follows: By adding and subtracting Bn , and by expanding
the square, we get

ˆ
S

Qn(x ′, IIvn − IIv∞ )

=
ˆ

S
Qn(x ′, IIvn − Bn) −

ˆ
S

Qn(x ′, IIv∞ − Bn) + 2
ˆ

S
Ln(x ′)(IIv∞ − Bn) : (IIv∞ − IIvn ).

Since (vn) is a sequence of minimizers, and since v∞ is a minimizer of the �-limit,
we have

´
S Qn(x ′, IIvn − Bn) → ´

S Q∞(x ′, IIv∞ − B∞). Similarly, the second term´
S Qn(IIv∞ − Bn) converges to the same limit, since Qn and Bn converge by assump-

tion. It remains to show that the last term converges to 0. This is the case, since
Ln(IIv∞ − Bn) strongly converges in L2, and IIvn ⇀IIv∞ weakly in L2. &'
Proof of Theorem 6.6 Step 1 (Approximation of II∗)
We claim that there exist sequences (κn) ⊂ L2(S) and (Rn) ⊂ L2(S;SO(2)) such
that

κn(Rne1 ⊗ Rne1) → II∗ strongly in L2,

(κn), (Rn) strongly converge in L2,

and for each n ∈ N, the functions κn, Rn are piecewise constant functions subject to a
partition of S (up to a null-set) into finitely many open, mutually disjoint sets; (in fact,
the argument below yields a specific partition of S into equally sized lattice-squares
contained in S and a remaining set close to the boundary of S). We prove this claim in
two steps. In the first step, we establish the representation II∗ = κ(Re1 ⊗ Re1) with
κ ∈ L2(S) and R : S → SO(2) measurable. In the second step, we approximate κ

and R by functions κn : S → R and Rn : S → SO(2) that are piecewise constant
subordinate to a finite partition of S. The approximation κn can be easily obtained,
e.g., by an L2-projection of κ onto the piecewise constant functions. On the other
hand, the construction of Rn is a bit more delicate, since the target manifold SO(2) is a
non-convex subset ofR

2×2. Therefore, in the first step we additionally show that the R
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in the representation of II∗ can be chosen to be locally Lipschitz. For the construction
of (κn, Rn) it is convenient to consider a dyadic decomposition of S: Below, we denote
byQdyadic := {2−n(Z2 + [− 1

2 ,
1
2 )

2) : n ∈ N} the set of dyadic squares in R
2, and by

x� ∈ 2−n
Z
2, n ∈ N, the center point of the cube � := x� + 2−n[− 1

2 ,
1
2 )

2 ∈ Qdyadic.

Substep 1.1. (Representation of II∗). We claim that there exist κ ∈ L2(S), R : S →
SO(2)measurable, and a partition {�}�∈Q of S into (at most countably many) dyadic,
mutually disjoint squares � ∈ Q ⊂ Qdyadic such that

II∗ = κ(Re1 ⊗ Re1) almost everywhere in S, (122)

and for all � ∈ Q the restriction R|� is Lipschitz with

Lip(R|�) ≤ C dist(�, R
2 \ S)−1, (123)

for a universal constant C . For the argument letQ denote a dyadic Whitney covering,
that is, Q is a countable family of mutually disjoint, dyadic squares of the form
� ∈ 2−n(Z2 + [− 1

2 ,
1
2 )

2), n ∈ N, such that

S =
⋃

�∈Q
�, ∀� ∈ Q : 1

30
dist(�, R

2 \ S) ≤ diam(�) ≤ 1

10
dist(�, R

2 \ S).

Let � ∈ Q. By construction there exists a ball B such that � ⊂ B ⊂ 2B ⊂ S. Thus,
we may apply (Neukamm and Olbermann 2015, Lemma 8) to obtain a Lipschitz
field ξ : � → S1 such that II∗(x ′) ∈ span(ξ(x ′) ⊗ ξ(x ′)) for a.e. x ′ ∈ �, and
Lip(ξ) ≤ 2

diam(�)
. Since SO(2) � R �→ Re1 ∈ S1 is a diffeomorphism, we find a

Lipschitz field R : � → SO(2) such that ξ = Re1 and Lip(R) ≤ C dist(�, R
2\S)−1.

The representation (122) (on �) then follows by setting κ := II∗ : (Re1⊗ Re1). Since
this can be done for all � ∈ Q, the claim follows.

Substep 1.2. (Conclusion). We only explain the construction of (Rn), since the “linear”
construction of κn is easier. Here comes the argument: For n ∈ N set Sn := ⋃{� :
� ∈ Q with diam(�) ≥ 2−n }. By construction, this is a finite union of squares in
Q and we have Sn ↑ S for n → ∞. We partition Sn into (finer) dyadic squares with
diameter 2−2n . To that end setQn := {� ∈ Qdyadic : diam(�) = 2−2n and � ⊆ Sn }.
We now define the piecewise constant approximation Rn : S → SO(2) as

Rn(x ′) :=
{

R(x�) if x ′ ∈ � for some � ∈ Qn,

I2×2 else.

(Recall that x� denotes the center point of �). We claim that Rn(x ′) → R(x) for
all x ′ ∈ S (and thus strongly in L2 by the dominated convergence theorem). For the
argument let x ′ ∈ Sn and choose n ∈ N large enough such that x ′ ∈ Sn . Then there
exists � ∈ Qn with x ′ ∈ � and �′ ∈ Q with � ⊂ �′ and diam(�′) ≥ 2−n . Hence,
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by (123)

|Rn(x ′) − R(x ′)| = |R(x�) − R(x ′)| ≤ diam(�)Lip(κ|�′) ≤ C2−2n2n,

and thus Rn(x ′) → R(x ′) for n → ∞.

Step 2 (Definition of a sequence of structured composites and its limit)
For n ∈ N we define, as in Corollary 6.3,

Wn(x, y, F) := W̄ (κn(x ′); x3, Rn(x ′)
y, F R̂n(x ′)),
Bn(x, y) := R̂n(x ′)B̄(κn(x ′); x3, Rn(x ′)
y)R̂


n (x ′),

and note that (Wn, Bn) is a structured composite. (We remark that (Wn, Bn) is Borel
measurable, since (W̄ , B̄) ismeasurable and (κn, Rn) is piecewise constant subordinate
to a finite partition of S into measurable sets). By Theorem 2.8, the functionals Ih

n :
H1(�;R

3) → [0,∞],

Ih
n (v) := 1

h2

ˆ
�

Wn(x, x ′
ε(h)

,∇hv(x)(I3×3 − h Bn(x, x ′
ε(h)

)))dx .

�-converge for h → 0 to a functional of the form Iγ
hom,n(·) + Iγ

res(Bn) with

Iγ
hom,n(v) =

{´
S Qγ

hom,n(x ′, IIv − Bγ
eff,n(x ′))dx ′ for v ∈ H2

iso(S;R
3),

∞ else.

Since (Wn, Bn) is defined by locally rotating the building block (W̄ , B̄), we deduce
with help of Corollary 6.3 that

Qγ
hom,n(x ′, G) = Qγ

hom(κn(x ′); Rn(x ′)
G Rn(x ′)),
Bγ
hom,n(x ′) = Rn(x ′)B̄γ

eff(κn(x ′))Rn(x ′)
.

Furthermore, from the pointwise convergence of (κn, Rn) we infer that for a.e. x ′ ∈ S
and G ∈ R

2×2
sym we have

Qγ
hom,n(x ′, G) → Qγ

hom(x ′, G) := Qγ
hom(κ(x ′); R(x ′)
G R(x ′)),

Bγ
eff,n(x ′) → Bγ

eff(x ′) := R(x ′)B̄γ
eff(κ(x ′))R(x ′)
,

as n → ∞. Hence, Lemma 6.7 implies that Iγ
hom,n �-converges for n → ∞ to the

functional

Iγ
hom(v) =

ˆ
S

Qγ
hom(x ′, IIv(x ′) − Bγ

eff(x ′))dx ′.

In view of the definition of (Qγ
hom, Bγ

eff) and the identity II∗ = κ(Re1 ⊗ Re1), the
algebraic minimization problem R

2×2
sym � G �→ Qγ

hom(x ′, G − Bγ
eff(x ′)) subject to

det G = 0 is uniquely minimized by G = II∗(x ′) for a.e. x ′ ∈ S. We thus conclude
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that the minimizer of Iγ
hom is unique in the sense that any minimizer v∗ ∈ H2

iso(S;R
3)

of Iγ
hom satisfies

IIv∗ = II∗ a.e. in S. (124)

Step 3 (Convergence of minimizers as n → ∞)
We consider

�n := sup{‖IIv∗ − II∗‖L2(S) : v∗ ∈ argmin Iγ
hom,n},

and claim that lim
n→∞�n = 0. For the argument, we choose vn ∈ argmin Iγ

hom,n withffl
S vn = 0 such that

�n ≤ ‖IIvn − II∗‖L2(S) +
1

n
. (125)

By passing to a subsequence (not relabeled) we may assume that lim sup
n→∞

�n =
lim

n→∞�n and that vn⇀v∞ weakly in H2(S;R
3) for some v∞ ∈ H2

iso(S;R
3). An

application of Lemma 6.7 shows that v∞ ∈ argmin Iγ
hom, and thus IIv∞ = II∗ in view

of (124). Moreover, the lemma implies that vn → v∞ strongly in H2(S;R
3), and thus

we conclude that IIvn ) → IIv∞ = II∗ strongly in L2(S), which in combination with
(125) implies �n → 0.

Step 4 (Conclusion)
By Step 3 we may choose n large enough such that

sup{‖IIv∗ − II∗‖L2(S) : v∗ ∈ argmin Iγ
hom,n} ≤ δ. (126)

We claim that (Wn, Bn) is the sought after finitely structured composite. Indeed,
if (vh) ⊂ H1(�;R

3) is an almost minimizing sequence with
ffl
�

vh = 0, then
Theorem 2.8 (a) implies that from any subsequence we can extract a subsequence
that converges in the sense of (10) to a limit v∗ ∈ H2

iso(S;R
3). Since Ih

n →
Iγ
hom,n + Iγ

res(Bn) in the sense of �-convergence, we conclude that v∗ is a mini-
mizer of the limiting energy and thus of Iγ

hom,n . Finally, ‖IIv − II∗‖L2(S) ≤ δ follows
from (126). &'
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8 Appendix

8.1 Spaces of3-Periodic Functions

In this section we introduce various function spaces for periodic functions. Unless
stated otherwise, in this section, � denotes a matrix in R

2×2 such that �
� > 0.
The column–vectors of � generate a Bravais lattice and we consider functions that
are periodic w.r.t. this lattice. From Definition 2.4 (i) we recall that u : R

2 → R is
called �-periodic, if u(y + τ) = u(y) for all τ ∈ �Z

2 and almost every y ∈ R
2. We

associate with � the parallelogram Y� := �[− 1
2 ,

1
2 )

2. It represents the reference cell
of �-periodicity. We denote by

C(�) := {u ∈ C(R2) : u is �-periodic. },

the space of continuous, �-periodic functions; it is a Banach space when endowed
with the norm ‖u‖L∞(Y�). We denote by

L p(�) := {u ∈ L p
loc(R

2) : u is �-periodic. },

the space of �-periodic L p-functions; it is a Banach space when endowed with the
norm of L p(Y�). We denote by

H1(�) := {u ∈ H1
loc(R

2) : u is �-periodic., }

the space of �-periodic H1-functions; it is a Hilbert space when endowed with the
norm of H1(Y�).

In this paper, we simultaneously have to deal with L2-functions that are periodic
w.r.t. different lattices. Therefore, for the analysis, it is convenient to introduce the
common superspace

L2
uloc(R

2) := {u ∈ L2
loc(R

2) : ‖u‖L2
uloc

< ∞},
‖u‖L2

uloc
:= sup

z∈R2
‖u(· + z)‖L2((− 1

2 , 12 )2), (127)

which is a Banach space. We note that L2(�) is a closed subspace of L2
uloc(R

2). In
particular, given a family {� j } j∈J ⊂ R

2×2 satisfying (5), then there exists a constant
C only depending on C� of (5), such that for all j ∈ J and u ∈ L2(� j ) we have

1

C
‖u‖L2(� j )

≤ ‖u‖L2
uloc

≤ C‖u‖L2(� j )
.

8.2 Two-Scale Convergence for Grained Structures

In this section discuss the notion of two-scale convergence for grained microstruc-
tures introduced in Definition 3.1. It is a slight variant of the notion introduced in
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Neukamm (2010). Throughout the section we suppose that {� j } j∈J and {S j } j∈J are
as in Assumption 2.4, and h �→ ε(h) satisfies Assumption 2.1. The notion of two-scale
convergence of Definition 3.1 is tailored made to keep track of locally periodic struc-
tures that frequently appear in this paper. In particular, within this notion, sequences
of the form

ϕh(x) := ϕ(x, x ′
ε(h)

),

strongly two-scale converge to ϕ, if the function ϕ(x, y) (next to integrability proper-
ties) is locally periodic in the sense of (6).

Note that the elastic tensorL associated with Q in Assumption 2.5 and the prestrain
tensor B of Assumption 2.5 (iii) satisfy this periodicity assumption. In the single grain
case (when the lattice of periodicity is everywhere the same in S, i.e. � j = �), the
two-scale limit of a sequence in L2 is given by a function in L2(�; L2(�)). In the
multiple grain case, the lattice of periodicity changes from grain to grain, and thus the
family of spaces L2(� j ) ⊂ L2

uloc(R
2), j ∈ J , needs to be considered.

A simple, yet useful, observation is that a sequence (uh) ⊂ L2(�) two-scale con-
verges in the sense of Definition 3.1, if and only if for all j ∈ J the restrictions uh |S j

two-scale converge in the usual sense:

Lemma 8.1 Let (uh) be a sequence in L2(�) and u ∈ L2(�; L2
uloc(R

2)). The following
are equivalent

(a) uh
2
⇀ u weakly two-scale in L2 (in the sense of Definition 3.1).

(b) For all j ∈ J we have u|
S j×(− 1

2 ,
1
2 )×R2 = u j where u j ∈ L2(S j ×

(− 1
2 ,

1
2 ); L2(� j )) is the weak two-scale limit of uh, j := uh |S j×(− 1

2 ,
1
2 )

in the

usual sense, that is, (u j ) is bounded in L2(S j × (− 1
2 ,

1
2 )) and

ˆ
S j×(− 1

2 ,
1
2 )

uh, j (x)ϕ(x, x ′
ε(h)

)dx →
ˆ

S j

 
�� j

u j (x, y)ϕ(x, y)d(x3, y)dx ′,

(128)
for all ϕ ∈ C∞

c (S j × (− 1
2 ,

1
2 );C(� j )).

With help of this lemma we can lift various properties of two-scale convergence (in
the usual sense) to the variant introduced in Definition 3.1:

Lemma 8.2 (a) (Compactness). Let (uh) ⊂ L2(�) be a bounded sequence. Then there

exists a subsequence and u ∈ L2(�; L2
uloc(R

2)) satisfying (6) such that uh
2
⇀ u

weakly two-scale in L2.
(b) (Lower semicontinuity of the norm). Let (uh) ⊆ L2(�) weakly two-scale converge

to u. Then

lim inf
h→0

ˆ
�

|uh |2dx ≥
∑

j∈J

ˆ
S j

 
�� j

|u|2d(x3, y)dx3.
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(c) (Strong times weak). Let (uh) ⊆ L2(�)and u ∈ L2(�; L2
uloc(R

2)). Then uh
2−→ u

strongly two-scale, if and only if

ˆ
�

uh(x)ϕh(x)dx →
∑

j∈J

ˆ
S j

 
�� j

u(x, y)ϕ(x, y)d(x3, y)dx3

for all weakly two-scale converging sequences (ϕh) ⊂ L2(�) with limit ϕ.
(d) (Approximation of two-scale limits). Let u ∈ L2(�; L2

uloc(R
2)) satisfy (6). Then

there exists a sequence (uh) ⊂ C∞
c (�) such that uh

2−→ u strongly two-scale in
L2.

For the proof we refer to Neukamm (2010, 2012), where the single-grain case (i.e.,
� j = I2×2) is discussed. The extension to the above setting is obvious and left to the
reader.

In the context of dimension reduction we are especially interested in two-scale
limits of sequences of scaled gradients ∇huh of displacements (uh) ⊂ H1(�;R

3).
As we shall see, a two-scale limit in L2 of such a sequence is a vector field F ∈
L2(�; L2

uloc(R
2);R

3×3) that satisfies (6) and that can be represented with a help of
potential ϕ in the sense that

F = ∇γ ϕ, ∇γ = (∇y,
1

γ
∂3).

For the precise statement we need to introduce the Banach space

H1
γ,uloc :=

{
u ∈ H1

loc((− 1
2 ,

1
2 ) × R

2;R
3) : ‖u‖H1

γ,uloc
< ∞},

‖u‖2
H1

γ,uloc
:= sup

z∈R2

ˆ
(− 1

2 , 12 )3
|u(x3, y + z)|2 + |∇γ u(x3, y + z)|2d(x3, y),(129)

and the subspace of � j -periodic functions,

H1
γ (�� j ;R

3) := H1
γ,uloc ∩ L2((− 1

2 ,
1
2 ); L2(� j ;R

3)),

‖u‖2H1
γ (�� j )

:=
 

�� j

|u|2 + |∇γ u|2d(x3, y).
(130)

Note that H1
γ (�� j ) is a closed subspace of H1

γ,uloc((− 1
2 ,

1
2 ) × R

2), and we have

1

C
‖ · ‖H1

γ (�� j )
≤ ‖ · ‖H1

γ,uloc
≤ C‖ · ‖H1

γ (�� j )
, (131)

for some C = C(γ, C�).

Proposition 8.3 (Two-scale limit of scaled gradients)
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(a) Let (uh) ⊂ H1(�;R
3) be a sequence and suppose that (∇huh) ⊆ L2(�;R

3×3)

is bounded. Then there exists u ∈ H1(S;R
3) and ϕ ∈ L2(S; H1

γ,uloc) that satisfies
(6) such that

∇huh
2
⇀ (∇′u, 0) +∇γ ϕ weakly two-scale in L2.

(b) Let ϕ ∈ L2(S; H1
γ,uloc) satisfy (6). Then there exists a sequence (ϕh) ⊂

C∞
c (�;R

3) such that

∇hϕh
2−→ ∇γ ϕ strongly two-scale in L2,

and
lim
h→0

√
h(‖ϕh‖L∞(�) + ‖∇hϕh‖L∞(�)) = 0.

Proof With help of Lemma 8.1 the argument of (Neukamm 2010, Section 6.3) easily
extends to the case of grained two-scale convergence, see also (Neukamm 2012). &'
Lemma 8.4 ((Lower semi-)continuity of convex functionals) Let Q be as in Assump-
tion 2.5 and let G ∈ L2(�; L2

uloc(R
2;R

3×3)). Then:

(a) Let (Gh) ⊂ L2(�;R
3×3) be a sequence that weakly two-scale converges to G.

Then

lim inf
h→0

ˆ
�

Q(x, x ′
ε(h)

, Gh(x))dx ≥
∑

j∈J

ˆ
S j

 
�� j

Q(x, y, G(x, y))d(x3, y)dx ′.

(b) Let (Gh) ⊂ L2(�;R
3×3) be a sequence that strongly two-scale converges to G.

Then

lim
h→0

ˆ
�

Q(x, x ′
ε(h)

, Gh(x))dx =
∑

j∈J

ˆ
S j

 
�� j

Q(x, y, G(x, y))d(x3, y)dx ′.

Proof With help of Lemma 8.1 the argument of (Neukamm 2010, Section 3.2) easily
extends to the case of grained two-scale convergence. &'
Lemma 8.5 (Korn’s inequality for scaled gradient) Let γ ∈ (0,∞) and C̄ > 0. Then
there exists a constant C = C(γ, C̄) such that for all � ∈ R

2×2 with 1
C̄
≤ �
� ≤ C̄

the following Korn’s inequality holds: For all ϕ ∈ H1
γ (��;R

3), we have

 
��

|∇γ ϕ|2 ≤ C
 

��

| sym∇γ ϕ|2. (132)

Proof In the following we write � if ≤ holds up to a multiplicative constant only
depending on γ and C̄ . We consider the scaled function

ϕ̃(x3, y) := 1

γ
ϕ(x3, γ y), �̃ := 1

γ
�, Ỹ := Y�̃.
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Then ϕ̃ ∈ H1
γ ((− 1

2 ,
1
2 ) × �̃;R

3) and ∇ϕ̃(x3, y) = ∇γ ϕ(x3, γ y), and thus (132) is
equivalent to  

(− 1
2 ,

1
2 )×Y

�̃

|∇ϕ̃|2 ≤ C
 

(− 1
2 ,

1
2 )×Y

�̃

| sym∇ϕ̃|2. (133)

Thus, it suffices to prove (133) for all ϕ̃ ∈ H1
γ ((− 1

2 ,
1
2 )× �̃;R

3). In order to see that

the constant can be chosen only depending on γ and C̄ , we first note that there exists
two concentric cubes Qi := �i [− 1

2 ,
1
2 )

2 such that

Q1 ⊂ Ỹ ⊂ Q2 and C̃ := |Q2|
|Q1| � 1.

Thus, we have  
(− 1

2 , 12 )×Ỹ
|F |2 �

 
(− 1

2 , 12 )×Q2

|F |2, (134)

for all F ∈ L2((− 1
2 ,

1
2 ) × Q2;R

3×3). Furthermore, by exploiting �̃-periodicity, we
see that  

(− 1
2 , 12 )×2Q2

|F |2 �
 

(− 1
2 , 12 )×Ỹ

|F |2 (135)

for all �̃-periodic functions F ∈ L2((− 1
2 ,

1
2 ) × �̃;R

3×3).
By the standard Korn’s inequality there exists K ∈ R

3×3
skw such that

 
(− 1

2 , 12 )×2Q2

|∇ψ − K |2 �
 

(− 1
2 ,

1
2 )×2Q2

| sym∇ψ |2, (136)

for all ψ ∈ H1((− 1
2 ,

1
2 ) × 2Q2;R

3). In particular, we may apply this estimate to the
scaled function ϕ̃. Combined with (134) and (135) we get

 
(− 1

2 ,
1
2 )×Ỹ

|∇ϕ̃ − K |2 �
 

(− 1
2 , 12 )×2Q2

|∇ϕ̃ − K |2 �
 

(− 1
2 , 12 )×2Q2

| sym∇ϕ̃|2

�
 

(− 1
2 , 12 )×Ỹ

| sym∇ϕ̃|2.

In order to conclude (133), we need to estimate |K |. To that end let �̃1 and �̃2 denote
the first and second column vector of �̃, respectively. Consider

u(x3, y) := ϕ̃(x3, y) − K

(
y
x3

)
.

Then, by �̃-periodicity of ϕ̃, we have for a.e. (x3, y) ∈ (− 1
2 ,

1
2 ) × R

2,

K

(
�̃i

0

)
= u(x3, y + �̃i ) − u(x3, y) =

ˆ 1

0
∇′u(x3, y + s�̃i ) · �̃ids.
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Taking the square, integration w.r.t. y, and Jensen’s inequality yield

|K
(

�̃i

0

)
|2 ≤ |�̃i |2

ˆ 1

0

 
(− 1

2 , 12 )×Q2

|∇′u(x3, y + s�i )|2dydx3ds

�
 

(− 1
2 , 12 )×2Q2

|∇u(x3, y)|2dydx3,

where for the last estimate, we used that y+ s�i ∈ 2Q2 for all y ∈ Q2 and s ∈ (0, 1).
Hence, combined with (136) and the definition of u, we get

∑

i=1,2

|K
(

�̃i

0

)
|2 �

 
(− 1

2 , 12 )×2Q2

|∇ϕ̃ − K |2 �
 

(− 1
2 , 12 )×Ỹ

| sym∇ϕ̃|2.

Moreover, by skew symmetry, we have |K |2 �
∑

i=1,2 |K
(

�̃i

0

)
|2, and thus,

 
(− 1

2 ,
1
2 )×Ỹ

|∇ϕ̃|2 � |K |2 +
 

(− 1
2 ,

1
2 )×Ỹ

|∇ϕ̃ − K |2 �
 

(− 1
2 , 12 )×Ỹ

| sym∇ϕ̃|2.

&'
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Lewicka, M., Lučić, D.: Dimension reduction for thin films with transversally varying prestrain: oscillatory

and nonoscillatory cases. Commun. Pure Appl. Math. 73(9), 1880–1932 (2020)
Lewicka, M., Pakzad, M.R.: Scaling laws for non-euclidean plates and the W 2,2 isometric immersions of

Riemannian metrics. ESAIM Control Optim. Calc. Var. 17(4), 1158–1173 (2011)
Lewicka, M., Pakzad, M.R.: Convex integration for the Monge-Ampère equation in two dimensions. Anal.

PDE 10(3), 695–727 (2017)
Lewicka, M., Mahadevan, L., Pakzad, M.R.: The Föppl-von Kármán equations for plates with incompatible

strains. Proc. R. Soc. A Math. Phys. Eng. Sci. 467(2126), 402–426 (2010a)
Lewicka, M., Mora, M.G., Pakzad, M.R.: Shell theories arising as low energy γ -limit of 3d nonlinear

elasticity. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 9(2), 253–295 (2010b)
Lewicka, M., Mora, M.G., Pakzad, M.R.: The matching property of infinitesimal isometries on elliptic

surfaces and elasticity of thin shells. Arch. Ration. Mech. Anal. 200(3), 1023–1050 (2011)
Lewicka,M., Raoult, A., Ricciotti, D.: Plates with incompatible prestrain of high order. Annales de l’Institut

Henri Poincaré C, Analyse non linéaire 34(7), 1883–1912 (2017)
Mohan, P., Yip, N.K., Yu, T.: Minimal energy configurations of bilayer plates as a polynomial optimization

problem. Nonlinear Anal. 113034 (2022)

123



22 Page 90 of 90 Journal of Nonlinear Science (2023) 33 :22

Müller, S., Neukamm, S.: On the commutability of homogenization and linearization in finite elasticity.
Arch. Ration. Mech. Anal. 201(2), 465–500 (2011)

Neukamm, S.: Homogenization, linearization and dimension reduction in elasticity with variational meth-
ods. PhD thesis, Technische Universität München (2010)

Neukamm, S.: Rigorous derivation of a homogenized bending-torsion theory for inextensible rods from
three-dimensional elasticity. Arch. Ration. Mech. Anal. 206(2), 645–706 (2012)

Neukamm, S., Olbermann, H.: Homogenization of the nonlinear bending theory for plates. Calc. Var. Partial.
Differ. Equ. 53(3–4), 719–753 (2015)
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