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As a method for increasing throughput and improving reliability of routing, network coding has been widely used in decentralized
IoT systems. When 
les are shared in the system, network coding signature techniques can help authenticate whether a modi
ed
packet in 
les is injected or not. However, in an IoT system, there are o�en multiple source devices each of which has its own
authentication key,where existing single-source network coding signature schemes cannotwork. In this paper, we study the problem
of designing secure network coding signatures in the network with multiple sources and propose the multisource homomorphic
network coding signature. We also give construction and prove its security.

1. Introduction

With the rapid development of Internet and communication
technologies, the Internet of 	ings (IoT) has emerged as
a leading technology that brings convenience to our daily
lives. More and more smart terminals are connected on the
Internet, and 
les, logs, and other real-time contents are
shared among these terminals all the times. According to a
report of International Data Corporation (IDC), there will be
nearly 28 billion installed IoT devices by 2020.

Considering the scale of IoT’s expansion, it is very essen-
tial to increase its throughput in such a huge decentralized
network. When a source device transmits a 
le to a set of
target receivers, an e�ective way is to split the 
le into �
data packets and send them to its neighbouring nodes by
using the network coding technique. In the network coding,
each intermediate node linearly combines packets rather
than simply storing and forwarding the incoming packets.
In other words, an intermediate node that receives a set
of packets from its incoming links can modify them and
send the modi
cations to other nodes through its outgoing
edges. In some applications, either an ad hoc node or an
intermediate device can play a role of an intermediate node.

	is linear network coding allows receivers to recover the
original information with high probability if they collect
suciently many correct packets. 	us, the throughput for
sharing real-time contents in IoT is increased.

However, security is one of the most important require-
ment of IoT systems, and IoT devices o�en interact with
third-party applications. Without authenticate mechanisms,
the inherent �aw of linear network coding would be dis-
turbed by invalid packets injected by third-party applications.
Intermediate nodes can later use the invalid incoming vectors
in its output, which means that the errors are propagated
subsequently and data receivers will not obtain the original
information. As a result, adversaries could easily initiate a
Denial of Service (DoS) attack to prevent the original 
le
from being recovered. 	e main idea to mitigate attacks is to
provide a way to authenticate valid packets, and Catalano et
al. [1] proposed an ecient network coding signature scheme
as a solution of the authentication problem. By verifying a
modi
ed signature of the corresponding modi
ed packet,
any device can easily know whether this packet is valid.

Unfortunately, in an IoT system, origin data are usually
collected from various sources (e.g., sensors) each of which
could have its own signature for authentication. It is required
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that any (intermediate) receiver can perform the combination
of incoming packets which are signed by di�erent keys. As
a drawback, trivially adopting the existing network coding
has to generate signatures are linear in the number � of the
sources, and thus the signatures cannot be directly combined
when packets are modi
ed. Motivated by this problem, in
this paper, we propose a multisource linearly homomorphic
network coding signature scheme. 	e proposed scheme
is extended from our previous work [2] and enables a
multilayers routing network rather than a 3-layer one, which
can be used to implement authentication for transmitting 
les
in the IoT system.

	e rest of this paper is organized as follows. Section 2
presents some related works. Section 3 overviews some
de
nitions. In Section 4, we describe ourmultisource linearly
homomorphic network coding signature scheme. Section 5
analyzes the correctness and security of the proposed scheme.
In Section 6 we summarize the paper.

2. Related Works

In the traditional network routing, every node simply receives
packets and forwards them to neighbour nodes. A rout-
ing method called network coding [3, 4] is proposed and
developed for increasing throughput in the network. In the
network coding, intermediate nodes combine received data
packets and transit them and the data receiver still obtains
the original data. 	is technique can be used in IoT appli-
cations and cloud systems for broadcast and transmission
[5–19].

In the single-source scenario, some schemes were pro-
posed to make sure that there is always a recipient bound to
the corresponding for authentication. M. Krohn et al. intro-
duced the homomorphic hash function [20, 21] and extended
it to network coding. 	e linearly homomorphic signature
is a more e�ective authentication for the network coding.
Reference [22] proposed the 
rst linearly homomorphic
signature scheme. Reference [23–25] found some security
�aw and errors, and Yu et al. [26] gave a construction by
combining the RSA-based signature with the homomorphic
hash function. Reference [27, 28] designed signature schemes
for peer-to-peer networks and distributed contents respec-
tively. Reference [29, 30] proposed homomorphic network
coding signature schemes based on the bilinear mapping and
RSA assumption respectively. In [31], Boneh et al. designed
a signature scheme with the property of signing unlimited
number of messages. Based on the complexity of lattice
problems, [32] introduced the �-SIS problem and constructed
a signature scheme over binary 
elds. For a 
ne-grain access
control, [33, 34] proposed schemes based on the identity-
based signature. 	e schemes above are proven secure in the
random oracle model. In the standard model, some homo-
morphic network coding signature schemes were proposed
[1, 34–36]. 	e security of the scheme in [35] is based on the
discrete logarithm assumption. Independent of these works,
[37] proposed a method that transforms standard signature
schemes to linearly homomorphic signatures in the standard
model.

However, in amultisource case which is the common sce-
nario in the IoT system, there is still no linearly homomorphic
network coding signature scheme. Our goal is to design a
multisource linearly homomorphic network coding signature
scheme.

3. Preliminaries

	en, we show some de
nitions of the linearly homomorphic
network coding signature as follows.

De�nition 1 (linearly homomorphic network coding signa-
tures adapted from [1]). A linearly homomorphic network
coding signature schemeLS consists of a tuple of probabilis-
tic, polynomial-time algorithms (�����,����	
�,�����,����V��) with the following functionality.

NetKG(1�, �, �) → (��, ��). Given the security parameter �
and�, �, this algorithm outputs a key pair (��, ��), where ��
is the secret key and �� is the public veri
cation key. Note
that � is the dimension of the vector spaces and � + � is an
upper bound to the size of the signed vectors.

NetSign(��, ��, �) → �. 	e signing algorithm takes a secret
key ��, a 
le identi
er �� ∈ F� and a vector� ∈ F

�+�
� as input

and then outputs a signature �.
NetVer(��, ��, �, �) → ������. Given the public key ��, a

le identi
er ��, a vector � ∈ F

�+�
� , and a signature �, the

algorithm outputs a bit ������ represents accept or reject.
NetEval(��, ��, {(��, ��, ��)}��=1) → �. Given a public key��, a 
le identi
er ��, and a set of tuples (��, ��, ��), this
algorithm outputs a new signature � such that if each �� is
a valid signature on vector ��, then � is a valid signature for� obtained from the linear combination∑��=1 ����.

For correctness, it is required that if the key pair (��, ��)
is output by NetKG(1�, �, �), then

(i) let �� ∈ F� and � ∈ F
�+�
� ; if � ←NetSign(��, ��, �),

then NetVer(��, ��, �, �) = 1;
(ii) for all ��, any � > 0 and all sets of triples{(��, ��, ��)}��=1; if NetVer(��, ��, ��, ��) = 1

for all 	, then NetVer(��, ��, ∑��=1 ���� and

NetEkal(��, ��, {(��, ��, ��)}��=1)) = 1.
	e de
nition of unforgeability of linearly homomorphic

signature is presented as follows.

De�nition 2 (unforgeability adapted from [32]). For a linearly
homomorphic network coding signature scheme LS =(�����, ����	
�,�����,����V��), the following game is
considered.

Setup: 	e challenger runs �����(1�, �, �) to obtain(��, ��) and gives �� toA.
Queries: Proceeding adaptively,A speci
es a sequence of

data sets w�. For each 	, the challenger chooses ��� uniformly
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from F� and gives to A the tag ��� and the signatures ��� ←����	
�(��, ���, ���) for � = 1, . . . , �.
Output: A outputs a 
le identi
er ��∗, a message�∗, and a signature �∗. 	e adversary wins if�����(��, ��∗, �∗, �∗) = 1, and either (1) ��∗ ̸= ���

for all 	 or (2) ��∗ = ��� for some 	 but �∗ ∉ span(w�), where
span(w�) is the subspace generated by all w�.

	e advantage of A is de
ned to be the probability that
Awins the security game.LS is called unforgeable if for any
PPT adversary A, the advantage in the game is negligible in�.

Let � : G × G

 → GT be a bilinear map, where G,G


and G� are bilinear groups of prime order �. In [38], Boneh
and Boyen introduced the de
nition of the "-Strong Die-
Hellman Assumption (q-SDH for short).

De�nition 3 ("-SDH assumption [38]). Let � ∈ N be the

security parameter, � > 2� be a prime, and G,G
,GT be
bilinear groups of prime order�. Let
be a generator ofG and

 be a generator of G
, respectively. 	en we say that the "-
SDHAssumption holds inG,G
,GT if for any PPT algorithm
A and any " = poly(�), the following probability is negligible
in �:

Pr [A (
, 
�, 
�2 , . . . , 
�� , 

, (

)�) = (�, 
1/(�+))]
≤ negl (�) (1)

4. The Proposed Scheme

4.1. Architecture. Consider an application in practical. A log
report of some intelligent terminals is supposed to be jointly
published via the linear network coding. To prevent the
injection of invalid data packets and make the transmission
reliable, each data packet should be suxed with a valid
recipient before forwarding. A network coding signature
scheme can help to meet this requirement when all terminal
devices have the same key used for signing packets. However,
if each device has its own key, a group of signatures cannot
be directly combined for the corresponding packets. As
a solution for the veri
cation problem, we present this
homomorphic network coding signature scheme formultiple
sources.

An architecture is shown in Figure 1. A terminal device
can be seen as a source, while the receiver wants to get the log
report with a correct recipient. Each entity in the scheme is
described as follows:

(i) Source nodes. A�er some parameters are generated
as public information, the 	th source node generates
its own key pair (���, ���) for signing and verifying.
Each node has a part of the original 
le, and the part
can be seen as a data packet. To obtain a signature�, the 	th node signs its packet that belongs to the

le with an identi
er �� using ���. 	en, it sends the
signed tuple (��,w, �) on its outgoing edges.

(ii) Intermediate nodes. When an intermediate node
receives some packets with the corresponding signa-
tures, it checks whether any one is not valid. 	en,

Receiver

Intermediate nodes

Receiv

Source

Source

Figure 1: Architecture of the proposed scheme.

it selects / coecients for the rest valid packets
w1, . . . ,w�, and combines the packets and their sig-
natures, respectively. Finally, the combined tuple is
forwarded on the outgoing edges.

(iii) Receiver. Once the receiver has collected �� 
le’s
packets signed by using all � secret keys, it checks the
validity and recovers the original 
le if the check is
passed.

4.2. Scheme Description. In this section, we present our
construction of the multisource homomorphic network cod-
ing signature scheme. 	ere are � devices as source nodes,
any number of intermediate nodes, and several receivers.
For simplicity, we assume that each source node holds and
forwards a packet of a 
le. 	e whole 
le can be represented
as a augmented vector set w = {w1, . . . ,w�}, of which the 	th
packet can be represented asw(�) = (3(�)1 , . . . , 3(�)� , V(�)1 , . . . , V(�)� ).
Each packet belongs to a 
le with the ID �� and some of the
packets are encoded together with the same ��.

As described above, each source node has its own key pair
in the system. For the 	th source, its private key is used to sign
w(�) so that the signed packets can be veri
ed by intermediate
nodes which receive the signatures. A�er receiving several
input packets, an intermediate node 
rstly checks each packet
and discards all the packets that cannot pass the check.
With a signature �, the corresponding packet can be veri
ed
even though it is linear combinations of vectors originated
from di�erent sources. 	en, using random or established
coecients, the node makes linear combinations of the
remaining data packets and produces a signature for the
encoded packet based on the received signatures without
accessing the private keys. Brie�y, an adversary’s attack is
successful if it can generate a forged data packet (��∗,w∗, �∗)
that makes veri
cation algorithm output 1 using public keys,
while either ��∗ is an invalid 
le ID or ��∗ is valid but w∗ is
not in the domain of 
les.
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	en, we describe the algorithms of a multisource homo-
morphic network coding signature scheme based on the
signature scheme CFW in [1] as follows:

Public System Parameters(�) → ����. Choose a bilinear
map �: G × G


 → GT , where G,G
,GT are bilinear groups

of prime order � > 2�, while 
 is a generator of G

and 

 is a generator of G

. Randomly choose elementsℎ, ℎ1, . . . , ℎ�, 
1, . . . , 
� from G. 	e algorithm outputs sys-

tem parameters ���� = (�, 
, 

, ℎ, ℎ1, . . . , ℎ�, 
1, . . . , 
�)
as public.

NetKG(	, �, �) → (���, ���). 	is algorithm is run by each	th source node for setting up its own key pair.	e 	th source
node randomly chooses �� ∈ F� to set its private key as ��� = ��
and public key as �� = 5� = (

)�� . 	e algorithm outputs the
key pair (���, ���).
NetSign(���, ��,w(�)) → �. Each 	th source node signs its
data packet as if in the single-source signature scheme CFW,

but their secret key is di�erent. For the packet vector w(�) =(3(�)1 , . . . , 3(�)� , V(�)1 , . . . , V(�)� ) ∈ F
�+�
� , the 	th source computes its

signature as follows:

(i) Let �� ∈ F
∗
� and �� ∈ F�;

(ii) Compute 6� = (ℎ��∏��=1ℎ��� ∏��=1
V�
� )1/(��+��) and

output its signature � = (6(1), . . . , 6(i), . . . , 6(�), �),
where6(��) = 1 for each 	
 ̸= 	.

Note that, for the 	th source node, the rest packets in w ={w(1), . . . ,w(�)} other thanw(�) are all set as zero vectors before
forwarding.

NetEval(��, {w�, ��, ��}��=1) → �. If an intermediate node has

received / valid packet sets w� = (3(�)�,1, . . . , 3(�)�,�, V(�)�,1, . . . , V(�)�,�)
from the same ��, of which signature is �� =(6(1)� , . . . , 6(�)� , ��). Each coecient �� ∈ F� is determined by

the intermediate node. 	e combined signature of this node

is also a � + 1-dimension vector � = (6(1), . . . , 6(�), �), where� = ∑��=1∑��=1 ����mod� and each 6(�) = ∏��=1(6(�)� )�� .
	is algorithm outputs the combined signature �. 	en, the
modi
ed packet w is forwarded to other nodes along with its
signature �.
NetVer({���}��=1, ��,w, �) → ������. Taking public keys{���}��=1, 
le ID ��, data packet w, and the corresponding
signature � as input, the veri
cation algorithm outputs

1, if ∏��=1�(6(�), 5�(

)��) = �(ℎ�∏��=1ℎ��� ∏��=1
V�
� , 

) and

0, otherwise.

5. Analysis

5.1. Correctness. According to the de
nition in Section 3, we
analyze the correctness of the proposed scheme.

�eorem 4. �e proposed multisource homomorphic network
coding signature scheme is correct.

Proof. For each 	 ∈ {1, . . . , �}, the 	th original vector is

denoted as w(�) = (3(�)1 , . . . , 3(�)� , V(�)1 , . . . , V(�)� ) ∈ F
�+�
� .

	ere is ∏��=1�(6(�), 5�(

)��) = �(6(�), 5�(

)��) =�((ℎ��∏��=1ℎ��� ∏��=1
V�
� )1/(��+��), (

)��+��) =�(ℎ�∏��=1ℎ��� ∏��=1
V�
� , 

). 	us, the veri
cation result on

a valid original signature � is 1.
On the other hand, in a modi
ed packet, w = ∑��=1 ��w�

and � = ∑��=1∑��=1 ����mod�.	ere is∏��=1�(6(�), 5�(

)��) =∏��=1�((ℎ��∏��=1ℎ��� ∏��=1
V�
� )1/(��+��), (

)��+��) =�(ℎ�∏��=1ℎ��� ∏��=1
V�

� , 

). 	us, 	e veri
cation result

on a combined signature � is 1.
	erefore, algorithms in the proposed is correct.

5.2. Security. 	en, we give the proof that the signatures
in the scheme is unforgeable according to the de
nition in
Section 3.

�eorem 5. �e proposed multisource homomorphic network
coding signature scheme is secure under the "-SDHassumption.

Proof. If an adversary has a PPT algorithm B
∗ which can

forge the valid signature for a data packet,B∗ can be used to
construct an ecient algorithm B to forge valid signatures
the CFW signature scheme.

	e public system parameters are chosen as follows:

G,G
,GT are bilinear groups of prime order � > 2� and �
is a bilinear map:G×G
 → GT ; 
 is a generator ofG and 

 is
a generator ofG
; ℎ, ℎ1, . . . , ℎ�, 
1, . . . , 
� are random factors.

	e algorithm B
∗ takes the public system parameters����, the public keys {���} a valid identi
er ��, and each

packetw with its signature as input. According to the received
data signed packets (��, {w�, ��, ��}��=1), algorithm B

∗ tries

to output a forged signed packet (��∗, {�∗� },w∗, �∗) which
makes veri
cation algorithmoutput 1.	at is, either ��∗ ̸= ��
or ��∗ = �� and w∗ ̸= ∑ �∗�w�.

	en, based on B
∗ algorithm, we construct another

PPT algorithm B which can produce a forged signature for
packets in the CFW signature scheme.

We assume that the 
rst-source node uses (�, 5) as its
private and public keys, i.e., ��1 = � and ��1 = 5. Other � − 1
source nodes whose private and public keys are generated as
follows:

(i) Randomly select � − 1 numbers from F�: 81, . . . , 8�−1;
(ii) Set the private key of the 	th source �� = 8�−1(�+��)−�� and its public key 5� = (

)�� ;
Using the NetSign algorithm, each source node outputs

its signature.
A forged signature packet (��∗, {�∗� },w∗, �∗) for CFW

is output, where �∗ = (6(1)∗, . . . , 6(�)∗, �∗) and �∗ =∏��=1�∗� �∗� mod�.
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It is easy to get

�( �∏
�=1

6�∗, 5 ⋅ (

)��)
= �((6(1)∗) �∏

�=2
(6(�)∗)�∗� ��−1 , 5 ⋅ (

)��)

= � ((6(1)∗)�∗1 , 5 ⋅ (

)��)
⋅ �( �∏
�=2

(6(�)∗)�∗� ��−1 , 5 ⋅ (

)��)
= � ((6(1)∗)�∗1 , 5 ⋅ (

)��)

⋅ � (∏��=2 (6(�)∗)�∗� , 5 ⋅ (

)��)��−1
= � ((6(1)∗)�∗1 , 5 ⋅ (

)��)

⋅ �( �∏
�=2

(6(�)∗)�∗� , (5 ⋅ (

)��)��−1)
= � ((6(1)∗)�∗1 , 5 ⋅ (

)��)

⋅ �( �∏
�=2

(6(�)∗)�∗� , (

)��+��)
= � ((6(1)∗)�∗1 , 5 ⋅ (

)��)

⋅ �( �∏
�=2

(6(�)∗)�∗� , 5� ⋅ (

)��)
= �( �∏

�=1
(6(�)∗)�∗� , 5� ⋅ (

)��)

= �(ℎ�∗ �∏
�=1

ℎ��� �∏
�=1


V�
� , 

) .

(2)

Since either ��∗ ̸= ��, or w∗ ̸= ∑ �∗�w�, the forged

signature is valid.
However, the CFW signature scheme is secure under

q-SDH assumption. 	erefore, the proposed multisource
homomorphic network coding signature scheme is secure
under the "-SDH assumption.

6. Conclusion

In this paper, to give a solution for authentication of network
coding, we propose the multisource homomorphic network
coding signature in the standard model and show that
the signature scheme is security under "-SDH assumption
holds. 	e proposed scheme can e�ectively guarantee the
availability in a multisource IoT system.
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