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A Homotopy Approach to the Feedback Stabilization
of Linear Systems
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and
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Constant-gain, fixed-order controllers for linear time-invariant systems are considered. A closed-form
necessary and sufficient condition for the stabilizability of such a system by a controller of chosen order is

established. This criterion is obtained by solving a constrained optimization problem and results in a system of

nonlinear matrix equations. A method based on homotopy is proposed and studied to solve this system of
nonlinear equations. The numerical implementation of the homotopy is discussed and various properties of the

optimizing feedback control as a function of the homotopy parameter are established.

Introduction

R ICHARD Bellman often talked of "the curse of dimen-
sionality." In the same spirit, we can identify "the curse

of modern control theory." The most general and powerful
modern control design methods, the linear-quadratic theory
and the pole placement methods, require knowledge of the full
state; in most cases, this implies using a full-order observer or
filter in real-time operation—something that can easily invoke
a curse of dimensionality on such designs. This is in stark con-
trast to classical design methods having low-dimensional
controllers.

There is a need for effective fixed-order controller design
methods to obtain controllers of prescribed intermediate
dimension that can obtain some of the advantages of modern
control theory without incurring the full-dimensionality
"curse." One way to pose such problems is to consider the
linear system with a quadratic cost problem, but to add the
stipulation that the control must be obtained from the
measurements via a dynamic feedback system whose dimen-
sion is prescribed in advance. Considerable attention has
been given to this problem over the years and a few of the
papers are cited here.1'10 Reference 1 presents a fairly com-
prehensive overview of the possible ways in which the
quadratic cost, fixed-order controller problem can be posed.
It also gives the first simple treatment of the finite-time ver-
sions of these problems. Extensive use of the design ap-
proach has been made by Ly2 employing his computer pro-
gram SANDY. Hyland and Bernstein7'10 showed that the
necessary conditions for optimality of a fixed-order con-
troller are an elegant generalization of the well-known LQG
design procedure obtained by introducing optimal oblique
projections. Their results led to new computational pro-
cedures8'10 and extensions to stochastic systems.11

Experience with fixed-order controller design has shown
that often there is surprisingly little penalty paid for using
controllers of dimension less than that of the system. Also,
there are some indications that the lower-dimension con-
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trollers can be more robust than their full-order counter-
parts. However, the design of these controllers can be dif-
ficult, being plagued with problems of local minima and in-
volving use of a gradient method that can have painfully
slow convergence.

A still more fundamental difficulty occurs in designing
controllers for unstable systems. To start the iterations of the
gradient method, it is necessary to prescribe a starting value
for the controller parameters that succeeds at stabilizing the
system; otherwise, the gradient equations are invalid. Ex-
perience has shown that it can be very difficult to discover
an initial stabilizing controller.

The primary purpose of this paper is to examine the fun-
damental question of existence of a stabilizing controller of
specified order for a given system. This question is answered
by the closed-form criterion of theorem 1. This result is ob-
tained by solving a constrained optimization problem. The
criterion requires solving a system of nonlinear matrix equa-
tions. The secondary purpose of the paper is to study a
homotopy method for solving this system of nonlinear
matrix equations. The homotopy is performed on the param-
eter a when the system matrix A is replaced by A + ol. The
numerical implementation of the homotopy is discussed and
various properties of the optimizing feedback controller as a
function of the homotopy parameter are established.

Problem Formulation and Preliminary Results
We consider a finite-dimensional linear time invariant sys-

tem with minimal representation

xs=Asxs+Bsu

y=csxs (i)

where #5€ \R"s is the system state vector, u£ \Rm* the input
vector, y^ \RP* the output vector, and As> Bs, Cs real
matrices of appropriate dimensions, Bs and C5 having full
rank. The controller has the form

xc=Acxc+Bcy

(2)

where jcc€ \Rnc is the controller state vector and Ac, Bc, Cc,
Dc real matrices of appropriate dimensions. The order nc of
the controller ranges from 0 for direct output feedback to ns

for full-order controller.



SEPT.-OCT. 1987 FEEDBACK STABILIZATION OF LINEAR SYSTEMS 423

The problem is then to determine whether matrices Ac, Bc,
Cc, Dc exist in Eq. (2) to make the closed-loop of Eqs. (1)
and (2) asymptotically stable and, if they exist, to compute
them.

Let Onc, Inc denote the square zero and identity matrices
of order nc9 respectively, and let n = ns + nc, m = ms + nc, and
P=ps + nc. Define the matrices

A = block diag [As,Onc] € \Rnxn

£ = block diag [Bs,Inc]t \Rnxm

C=block diag [Cs,Inc] € \Rpxn

F=
DC Cc

Bc Ac

(3)

where, conveniently, all of the controller parameters have
been gathered in matrix F. It is easily checked that the
closed-loop equations are

x=(A+BFC)x (4)

and the problem can be reformulated as that of finding F to
make Eq. (4) asymptotically stable. This problem, together
with the kindred pole assignment problem has received atten-
tion in the literature, but no closed-form solution has been
given yet (see Refs. 12 and 13 and the references therein).

The questions of existence and computation of a stabiliz-
ing F in Eq. (4) will be answered by solving a subsidiary
reduced-order optimal control problem. The solution of the
following problem will be useful.

Problem P. Find a controller of the form of Eqs. (2) and
(3) for the system of Eq. (1) that minimizes

J= t r (F T MF) + E\\°° xTQxe2atdt]

=0; E[x(0)xT(0)] = (5)

with respect to F; the symmetric matrices X, Q, and M
satisfy X>0, g>0, and Af>0.

In problem P, the role of the parameter a is to ensure con-
vergence of the integral in Eq. (5). Notice that even if Eq. (4)
is unstable, choosing a negative and large enough will cause
Eq. (5) to converge. To solve problem P with a = 0, we will
track its solution for a negative and let a tend to zero.

Solution P. (See Ref. 1 for a detailed development.) The
necessary conditions for solving problem P are

(6)

(7)

—— - - = MF+BTKACT = 0
2 oF

(8)

(9)

where the square symmetric matrices K and A satisfy K>0
and A>0.

The usual gradient method for solving problem P consists
of starting with a stabilizing F, obtaining Ar from Eq. (6),
solving Eqs. (7) and (8) for K and A, and using the result to
find the cost gradient dJ/dF in Eq. (9); then let F be in-
cremented to decrease / along the gradient by adding
-cdJ/dF, where c>0 is adjusted to maintain convergence at
each step.

It is important to notice that in the context of this paper,
the solution of problem P does not constitute a control
design method per se. Problem P is only a tool to help us
answer the questions of existence and computation of a
stabilizing F in Eq. (4).

Stabilizability
If the dimension of the controller [Eq. (2)] for system of

Eq. (1) is too low, it is quite possible that there exists no
controller that can stabilize the system. This section is
devoted to establishing a closed-form necessary and suffi-
cient condition for the Stabilizability of the system of Eq. (1)
by a controller having the form of Eq. (2) with given dimen-
sion nc.

There is a basic theorem of Liapunov stating that a matrix
A corresponds to an asymptotically stable differential equa-
tion if and only if there exists a K>0 satisfying
ATK + KA+I=Q (or, if we wish, a A>0 satisfying
AA+AAT + 7=0). We can show the following stability result
reminiscent of the Liapunov result.

Theorem 1. The triple (AS,BS,CS) is stabilizable by a finite
linear feedback controller F of the form of Eqs. (2) and (3)
with dimension nc if and only if

S(K,A)=ATK+KA-CAKBK-KBKAC+I=0

admit a solution with K>Q and A>0. In this case,

F= -BTKACT

(10)

(11)

is a stabilizing solution. Matrix C=CTC, B = BBT, I is the
ns + nc identity matrix and A,B, C are given by Eq. (3).

Remark. Note that, if there is no control, we can set nc = 0
and B = Q and the above theorem then reduces to the cited
Liapunov result. As in the Liapunov result, the identity
matrices in Eqs. (10) can be replaced by any positive definite
matrices (not necessarily the same). Note also that the Ric-
cati equations are a generalization of the Liapunov equations
by including a quadratic term and that Eqs. (10) similarly
generalize the Liapunov equations by including cubic terms.

Proof. If the equations have a solution K>Q, then
substitution of the given F into the K equation produces

(A+BFC)TK+K(A+BFC)+I=0

From the Liapunov result, this implies that Eq. (4) is asymp-
totically stable.

Conversely, if (AS,BS,CS) is stabilizable, then there exists
an F such that Eq. (4) is asymptotically stable. Choosing this
F will give the following cost a finite value:

xTxdt (12)

when the initial conditions of Eq. (4) are specified as
E[x0] =0 and E[xQx^] = /, In fact,

7=tr(FrF)

$ = f exp04r/) Qxp(At)dt (13)
J o

where the integral $ exists since A is asymptotically stable.
In addition, / diverges if F is not stabilizing.

The set of stabilizing controllers of order nc,Fnc is an open
set; thus, by the above, J is finite for all such controllers and
7^9° as F approaches the boundary of the closure of Fnc.
Within Fnc, J is a smooth function of F. To see this, note
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that the $ in J satisfies

or

[(A+BFC)T®I+I®(A+BFC)} = -col(7) (14)

where col($) is a column matrix of the rows of $ entered
row by row and ® denotes the Kronecker product.16 The
coefficient matrix is nonsingular since F is stabilizing and its
eigenvalues are X, + Xy for all tj where the X are eigenvalues
of A + BFC. Therefore, a minimum of / exists for some
FeFnc. This minimum must satisfy the necessary conditions
of Eqs. (7-9) with a=0, Q = /, X=I, and M=/. Solving Eq.
(9) for F gives the F of the theorem and substituting Eq. (9)
into Eqs. (7) and (8) produces Eqs. (10).

Theorem 1 is obtained by solving an optimization prob-
lem. It is well known that the minimum of a differentiate
convex function on a convex set is unique. As a point of in-
terest, note that the set of stabilizing controllers is not con-
vex. Let n = m=p = 29 Al=A-\-BFlC9 A2=A+BF2C, and
consider Aa=A+BFC for F=aFi + (l-ot)F2, 0<a<l.
Consider ,4 = 0, B = I, C = 7, and

-1 +2 + V31

-2.+ V3 0 J

making Al arid A2 stable, since their determinants are
positive and their traces negative.'If a. is set to !/2, Aa pro-
duces a matrix whose determinant is — V4, which indicates
instability.

Numerical Methods for
Obtaining Stabilizing Controllers

There are various possible approaches to obtaining a
stabilizing controller of a prescribed dimension. One ap-
proach is to use pole placement methods for fixed-order con-
trollers as discussed in Refs. 7 and 8. Another approach is to
use finite-time Liapunov equations in place of Eqs. (7) and
(8), since solutions then exist even in the unstable case and to
let the time tend to infinity during the solution process.2 In
this paper, we propose to compute positive definite solutions
of Eqs. (10) and obtain a stabilizing controller of Eq. (11).
We have tried several computational methods.

Newton's iteration

One possible way of solving Eqs. (10) is to use Newton's
iteration. If the (A,A) of Eqs. (10) are perturbed to

), the linearized equations in (dK,dA) are

(A - BKAC) TdK+bK(A - BKAC)

-(AC)T5K(KB)T-(KB)5K(AC)

-CdA(KBK) - (KBK)d(AC) = -$(K,A)

and

(A-BKAC)dA + dA(A-BKAC)T

- (KB)T5A(AC)T- (AC)dA(KB)

^BdK(ACA)-(ACA)dKB= -<8(K,A) (15)

The procedure.consists of picking K and A to be positive
definite, solving Eq. (15) for bK and 6A, incrementing (K,A)
by (dK,5A)9 and iterating until convergence. Unfortunately,
this method requires good initial guesses of K0, A0 and at
each step K and A are not guaranteed to remain positive
definite.

Differential Equation

There is another possible method for solving Eqs. (10).
One way to solve the algebraic Riccati equation is to in-
tegrate the Riccati differential equation from any positive
definite initial condition until the solution reaches steady
state. One wonders whether the same approach would work
for solving our coupled third-degree "Riccati" equations.

k=ATK+KA-CAKBK-KBKAC+I

A=AA + AAT-BKACA-ACAKB + I (16)

Starting from zero initial conditions, numerical experiment
with this algorithm indicates that sometimes it converges and
other times does not. If the method is to succeed, there must
be an asymptotically stable positive definite equilibrium solu-
tion to Eqs. (16) and the initial conditions must be within the
domain of attraction. We can establish two properties of the
method.

First, if K(tQ)>0 and A(*Q)^6 for some t0, then K(t)>0
and A(/) >0 for all t>t0, so that solutions can never escape
from the positive semidefinite domain. If K (or A) were to
leave the set of positive definite matrices, at the point of
departure, one of its eigenvalues would be zero; call it v and
let x be the associated eigenvector of unit length. Taking the
product with XT from the left and x on the right of each side
of the K equation in Eq. (16) produces xTKx=xTx= 1, using
Kx = Q. But xTKx=v so that v=l. Therefore, if K ever
reaches the boundary of the positive definite region, it can-
not cross the boundary. The result for A is similar.

In order to gain some insight into the stability or lack of
stability of the positive definite equilibrium solutions to Eqs.
(16), consider the following. Replace the unit matrices in
Eqs. (16) by e/, where e>0 is a small parameter [recall that
in Eqs. (10), as in Liapunov's criterion, the identity matrices
can be replaced by any positive definite matrices, ho matter
how small]. When e = 0, the equilibrium conditions are
satisfied by K=A = 0 and, therefore, we expect a nearby
solution when e is a small positive number. For sufficiently
small e, this solution should be obtainable from

(17)

To establish the stability of an equilibrium solution of a
nonlinear equation, one can linearize about the equilibrium.
If the linearized equations are asymptotically stable
(unstable), then the equilibrium solution of the nonlinear
equation is asymptotically stable (unstable). The linearized
equations have the form

6*
.

6X

where k and X are vectors of order n2 containing the
elements of K and A; dk and 6X similarly contain the pertur-
bation of K and A. Recognizing that K and A are of order e,
matrix & can be written in the form

[AT®I+I®A 0

L 0 A®I+I®AT

and for sufficiently small e, the eigenvalues of (2 will be ar-
bitrarily close to those of the first term on the right-hand
side. But the eigenvalues of this are just those of Eqs. (17),
which are /*, + /*, for all ij where the ]ik are eigenvalues of
A. Therefore, an unstable system matrix A can produce an
unstable equilibrium solution to Eqs. (16) for sufficiently
small e.
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The a-Homotopy

As a third method for solving Eqs. (10), we tried a
homotopy method. Homotopy methods have been increas-
ingly used in control14 and are based on the following idea.
(See Refs. 14 and 15 for details.) Consider the differentiate
function F: Rn-+Rn: £^F(£) and suppose we want to solve
the system of nonlinear equations F(£) = 0. Assume We are
able to find a differentiate function G: R"x[a0,al]:
(£,or)^G(£,a) such that G(^,a1)=F(J) and the equation
G(£,a0) = 0 has a known solution £0. The idea is then to
track the solution of the equation

(18)

as a function of a€ [ f f 0 » a i l > starting at £ = £0 f°
r ^=^0 anci

ending at £*, the solution of our problem for a =al. One
way to track the solution of Eq. (18) is to solve the differen-
tial equation with the initial conditions

da

dG A
= 0

(19)

which is obtained by differentiating-Eq. (18) with respect to
a. Equation (19) has solutions satisfying G(£,a) = const, in-
dicating that if during the course of integrating Eq. (19)
numerical errors cause G(£,a);*0, these errors will not be
eliminated. As a consequence, because of numerical errors, a
better way to track the solution of Eq. (18) is to integrate

(20)

which has a solution satisfying G(£,a) = G(£0,a0)e~/3(a~ao),
indicating that if in the course of integration numerical er-
rors cause G(£,a) 5^0, the term /3G in Eqs. (20) will tend to
eliminate these errors. This stabilization procedure is similar
to one used by Baumgarte to simulate dynamical systems
with constraints.17

In the context of Eqs. (10), we used a homotopy on the
parameter a when A is replaced by A + al. Choose a0 such
that A + a0I is asymptotically stable. Problem P can then be
solved using the first-order gradient method with Q=X=I,
resulting in K09AQ. The solution of the equations

) 4 (A+aI)TK+K(A+aI)-CAKBK-KBKAC+I=Q

<3(K,A,a)=(A+aI)A+A(A+aI)T-BKACA--ACAKB+I=Q

(21)

are then tracked as functions of a starting at (K,A) =
(AT0,A0) for cr = a0 and ending at the solution of Eqs. (10) for
a = 0.

In the following, we will develop numerical approaches to
handling the homotopy, develop some theoretical properties
of the homotopy, and evaluate its behavior and its potential
for tracking difficulties by means of studying simple ex-
amples in detail.

Numerical Implementation of the a Homotopy
There are various ways of tracking the solutions of Eqs.

(21) as functions of a. The simplest way from a program-
ming standpoint is to increment a by a small step, use the K
and A as a-starting value at the new a, and apply a gradient

or Newton method, the latter of which might be preferable
because of its convergence properties in the neighborhood of
a solution.

However, a more sophisticated approach is to develop and
use a differential equation similar to Eq. (20) that tracks the
solution from a = a0 to a = 0,

(A + al- BKAC) TK + K (A + al- BKAC)

- (AC)TK(KB)T- (KB)K(AC)-CA(KBK)

-(KBK)AC=-2K-l3$(K,A,a) (22a)

(A + al- BKAC)A+ A(A + al- BKAC)

- (KB)TA(KC)T- (AC)A(KB) -BK(ACA)

- (ACA)KB= -2A- (22b)

where K = dK/da\ A=dA/da, $(K,A,a) and Q(K,A,a) are
defined in Eqs. (21), and /3 is a convergence factor that can
be adjusted for stability of tracking.

This a-homotopy tracking procedure has the desirable prop-
erties that-sophisticated numerical integration packages with
self-adjusting step sizes can be used for accurate tracking and
they have the stability factor j8 to correct accumulated
numerical errors. Note that there are some differentia]
equation solving routines that dp not require isolation of £
and A and hence might be applied directly to Eq. (22).

In the event that one wishes to start at a0 = - oo from the
known unique solutions # = 0 and A = 0 (obtained below),
one can change variables from a to t= -(a— I)"1 and solve
the differential equations from / = 0 to 1. Starting with
t%(K,A,(t-1/0=0 and tQ(K,\,(e- l/t) =0, differen-
tiating with respect to t, and introducing a stabilizing factor
/3 as before produces

2(t- 1)K+t[ (A -BKAC)TK+K(A -BKAC)

-(AC)TK(KB)T-(KB)K(AC)-CA(KBK)

-(KBK)AC] = -(l + t0)[(A-BKAC)TK

+ K(A~BKAC)+I+2K]+2$K (23a)

[(A-BKAC)A + A(A-i

- (KB)TA(AC)T- (AC)A(KB) -BK(ACA)

-(ACA)KB] = -(l + t$)[(A-BKAC)A

+ A(A-BKAC)T + I+2A] +2j8A (23b)

where K=dK/dt and A = dA/dt.

The Optimal Cost along the a Homotopy

As the first of several properties of the a homotopy to be
established, let us consider the optimal cost as a function of
a. The cost for any stabilizing F and a for problem P with
M=7 and X-I is given by

J(F,a)=tr(FTF)+tr(K)

T(F,K,a)=(A + aI+BFC)TK(F,a)
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Then, dJ= (dJ/da)da+tt[ (dJ/dF)TdF] . For the optimal F
at any a, 8J/dF=Q, which implies

d<7

d.7*

do

where the asterisk on / signifies optimality and the partial
derivative signifies a derivative with respect to explicit
dependence on a, i.e., through K, not through F. Appending
the constraint F = 0 to the optimal cost using Lagrange multi-
pliers A, J' (F,o) =tr(FTF) + tr#+ tr(AT) and differentiating
produces dJ' /da = tr(AK +KA) or

(24)

where A and K are optimal for each a.
We will show that this expression implies that the optimal

cost is a monotonically nondecreasing function of a and
that, if Q>0 or X>0, the optimal cost is monotonically in-
creasing. To do so we need the following properties for sym-
metric matrices A and B: 1) if A >0 and £>0 with B&Q or
if A>0 and J9>0 with A&Q, then tr(A0)>0; and 2) if
A >0 and £>0, then tr(AB) >0. To prove this, note that the
characteristic equation of a matrix, and hence its trace which
gives the second coefficient, is invariant under a similarity
transformation. Let II be a unitary matrix that diagonalizes
A, nMn = /x = diag(/z1,...,AtJ, and UTBR = B = [5/7]. Then,

tr(AB) =

If £>0, then xTBx>0 for all jt^O. and yTUTBUy=yTBy>0
for all ^ = 0, and choosing y as columns of the identity
matrix establishes that 5|7>0. This makes tr(A5)>0 if
A>Q, B>Q, since this implies ̂  > 0 and 5|7>0. If A>Q and
B>0 with A&Q, then all ^>0 and 5//>0 with some ji/^0,

L.fe.S.

11

which implies tr (AB) >0. Since tr(,4£) = tr(BTAT), the same
proof can be used to establish the first half of property 1 .

Theorem 2. If Ar + ol of Eq. (6) is asymptotically stable,
the optimal cost J* for problem P has the following mono-
tonicity properties as a function of a:

2) If Q>0 or if X>0, then d/Vda = 2tr(AAT) >0.
Proof. Since Ar + ol is asymptotically stable, by

Liapunov's theorem positive semidefiniteness (positive
definiteriess) of Q or X implies positive semidefiniteness
(positive definiteness) of K or A, respectively.

Properties of the Optimal Dynamic Controllers as a Function of a

Various characteristics of the optimal controller (for prob-
lem P with M=7) as a function of a can be developed
analytically when the controller is a compensator, i.e.,
«c>0. In this case, Q and X have the form Q = block
diag[Q5,Owc] , X^ block diag [ Xs, Onc ] where Qs and Xs cor-
respond to xs. The optimal K and A satisfy Eqs. (6-9). By
making a change of variables to t- - I/a, we can study the
behavior of the solutions as a— '— oo by letting tlO+ . The
equations become

t[(A-BKAC)TK+K(A-BKAC)

2A = 0 (25)

At £ = 0, we conclude that K=A = 0. Such a result might be
intuitively reasonable because the system transients die away
with an infinitesimal time constant and there is thus no need
for the feedback control to exert effort to get the state to
zero.

To study the solution in the neighborhood of £ = 0, dif-
ferentiate Eq. (25) to obtain the following differential
equations:

- 2AT+ (A -&KAC)T(K+ tK) + (K+ tK) (A -BKAC) + Q

-t[C(KA+KA)TBK+KB(KA+KA)C} =0 (26a)

(26b)-t[B(KA+KA)CA + AC(KA + KA)TB]=

b)

Fig. 1 Solutions to Eq. (32) by finding the intersections of the
graphs of the right- and left-hand sides (R.H.S. and L.H.S).

[Note that these same differential equations in t should be
obtainable from the differential equations in a presented in
Eqs. (22) (with ^ and 9 estimated from the right-hand side
since they are zero along the optimal solution) by sub-
stituting a= -1/7, but that in order to obtain the behavior
near zero by this approach one must eliminate various terms
using ^ = 0 and 8 = 0.] Setting J = 0, #(0) = A(0) = 0 in Eqs.
(26) gives *

(27)

Then, for small t, K(t)**K(0) + K(0)t=l/2Qt and A ( / ) »
l/2Xt, in which case K(t)~(t/2) diag(Q5,O/7C) and
A(0 « (t/2) diag(Xs,Onc). Substituting such a form into Eq.
(9) for the controller parameters F establishes that the parti-
tions Cc and Ac are zero [see Eq, (2)], which means that the
controller is a direct output feedback one.

We conclude that when a is sufficiently negative, there is a
unique solution to the necessary conditions [Eqs. (6-9)] and
that this solution is of the form of a direct output feedback
controller. No fixed-order controllers of prescribed dimen-
sion nc>0 are optimal for such a—the mathematics can
generate controller dynamics of this dimension, but the con-
troller state is unobservable in the control signal and,
therefore, the optimal fixed-order controller generates the
same control signal as the direct output feedback one.
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a) For a=-0.3,
the intersections
are solutions
A,B,C.

b) For a = 0.5,
the intersections
are so lu t ions
D,E,F.

Fig. 2 Check to determine the number of possible solutions.

Equations (7) and (8) define K and A as implicit functions
of a. The left-hand sides of these equations are polynomials
in the unknown components and are infinitely continuously
differentiable. Therefore, K and A can be expressed as func-
tions of a that are again infinitely continuously differentiable
in the neighborhood of every point where the gradient of the
left-hand side of Eqs. (7) and (8) with respect to K and A is
nonsingular.

As a result, the differential equation (26) that tracks the
values of K and A as functions of a, starting from the unique
initial value of interest when a— -oo, will satisfy a unique-
ness theorem for this solution on any interval in a until a
value a is reached where Eqs. (26) cannot be uniquely solved
for K and A. At such a a, it is possible to have a bifurcation
of the solution that emanated from the given initial
conditions.

Let us examine the nature of the solution between — oo
and a. Assume that M=diag(M1,M2), where Ml is nsxns

and M2 is ncxnc, and examine problem P using the dif-
ferential equations (26). Let K and A be partitioned as

where

K=
KT

A =
A3

r A2

(23)

We will demonstrate that if K and A have the form
A'=diag(^1,0) and A = diag(A!,0) for some o(Kl and Aj are
ncxnc) and we know this holds as a-*—oo, then the form
will be maintained for all larger a until such a point as a oc-
curs. In other words, the unique solution starting at a-* -oo
remains a direct output feedback solution until a reaches a,
at which point a bifurcation of solutions may occur. The
new solution can introduce a controller of dimension «c>0,
while the original branch can maintain the direct output
feedback structure. Of course, as the new solution is tracked
as a function of a, a new point such as d may be en-
countered, allowing another increase in the dimension of the
optimal controller.

To demonstrate that the forms of K and A are maintained
until reaching a, substitute such forms into Eqs. (26) and ex-
amine the four partitions of the resulting equations. The first
partition produces equations of exactly the same form as
Eqs. (26), except that all of the matrices have been replaced
by their upper left-hand partitions. The other equations yield

Rewriting the second pair of equations gives

r «„»/„,  aw®/*, j  r coi(*3)I

L «21 ®/32 a22®Ins \ |_ col(A3) J
(29)

where the col(K3) operation enters the elements of K3 into a
column proceeding row by row. For all a until a a is reached
at which the matrix of coefficients is singular, the only solu-
tion to these equations is K3=Q, A 3 =0 and K2=Q, A2 = 0.
Therefore, the solution remains a direct output feedback
solution until reaching a.

It would be of interest to know whether all of the optimal
controllers of all possible dimensions nc are generated from
the given initial conditions at a— — oo by the process of the
(repeated) bifurcations described above or whether other
positive (semi) definite solutions can perhaps appear spon-
taneously at some point or can come in from infinity,
perhaps entering the positive (semi) definite region at some a
and developing into valid solutions. It would also be of in-
terest to understand how the solutions can disappear. For ex-
ample, do solutions have to disappear by leaving the
positive definite region? Some of these questions we can
answer and the examples in the next section shed some light
on the others.

Consider the question of whether solutions of Eqs. (6-9)
associated with stabilizing controllers, so that K>Q and
A>0, can leave the region of positive (semi) definiteness and
therefore disappear as valid solutions/First, treat direct out-
put feedback controllers. If K (or A) is on the boundary of
the positive definite region, then there is a zero eigenvalue
with an associated eigenvector x satisfying Kx = Q (Axr = 0).
Forming a quadratic form with this x from Eqs. (25) gives

A2 = = t(x
T
Xx)=0

(30a)

(30b)
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which forms a contradiction since Q>0 and X=XS>Q for
nc = 0. Therefore, no solution can leave the positive definite
region for nc = 0.

For nc7*Q, consider K>0, A>0 valid for some t. For
problem P with Q = block diag[Qs,Onc] , X = block
diag[Xs,Onc], and Q5>0, Jf5>0, Eqs. (30) imply that
eigenvector x satisfying Kx=0 must have the form XT =
[QT,x%] . The rate of change of the eigenvalue X is given by
xT(t)K(t)x(t)=\(t), assuming x is normalized. Let N(t)
be the matrix of eigenvectors of K(t) with N~l =A^ and let
it be arranged so that the last column of N is x. Taking the
product of Eqs. (26) by N? from the left and N from the
right and looking at the (n,n) element after freely inserting
NN7* as needed gives

Starting with the zero-order controller, Eqs. (6-9) give

[txT[(A-BKAC)T+(A-BKAC)]x-2}\ = (31)

This indicates that, if there is an eigenvalue X reaching
zero, X = 0 and, hence, stays zero, never allowing K to leave
the region of positive semidefiniteness — provided X does not
become zero at a point where the coefficient above happens
to be simultaneously zero. With this exception, we conclude
that positive definite solutions never leave the region of
positive (semi) definiteness as t progresses. Furthermore, the
arguments hold with t running backward, from which we
conclude that valid stabilizing controller solutions cannot ap-
pear at some / by crossing into the positive definite region,
unless the coefficient in Eq. (31) is zero when X is zero.

Examples
This section is devoted to solving Eqs. (6-9) for K and A

as a function of a for several examples. We do not limit our
search to positive definite solutions and track all solutions as
a changes in order to get an understanding of the range of
phenomena occurring. Solutions that are not positive
definite are tracked with the idea that any unusual behavior
they exhibit might be revealed by the positive definite solu-
tions of interest in some other problem.

In order to simplify the search for solutions to Eqs. (6-9),
system matrices are chosen that have the properties that
AT=A,B = C, and Q=X. This makes Eq. (8) obtainable
from Eq. (7) by interchanging the roles of K and A. We will
make this assumption, in which case only one nonlinear
matrix equation (7) needs to be solved.

The range of problem treated is somewhat more general
than it might first appear. In each case, an As is given and
the behavior studied as a changes an A + a/, including both
negative and positive a. If the a is changed to a = a* + A(j,
then A + al becomes (A + a*/) + Aa/. For direct output feed-
back controllers, A = (A + a/) represents a valid system
matrix as well and, hence, the results obtained here apply as
well to a problem with A as the system matrix by shifting the
zero point of the o axis by a* units.

Example 1

1) Consider first the optimization with respect to the cost
function of problem P with M=7, Qs = 1, and Xs = 1 for the
first-order system

xs = asx+u

y = x

when controlled either by a direct output feedback controller
u = hy or a first-order controller

xc=acxc dc cc

bc ac

Taking the difference of these equations shows that either
(as + a)— A:11X11=0, which results in the contradiction 1=0
when substituted above, or kn =XH (so that in this case we
did not have to assume K- A). Then,

-V2=Q or kn = (32)

This equation appears repeatedly. The nature of its solutions
can be understood by examining the second form of the
equation and finding intersections of the graphs of the right-
and left-hand sides as in Fig. 1. For (a5 + a)<0, there is
always one real solution and it is positive. When (as + a) >0,
which will happen for a<0 when the uncontrolled system is
unstable, the one positive solution remains and there can be
two additional solutions that are negative and hence do not
correspond to solutions of the original optimization prob-
lem.

Now consider a first-order controller. Under the assump-
tion that AT=A, Eqs. (6-9) produce

[ k22k\2 .= 0 (33)

[ (as + 2a) -2(k2
n + k2

22

[2k\2-o}k22 + [knk\2] =0

= 0  (34)

(35)

We now attempt to find all solutions to these equations.
From Eq. (34), either &12 = 0 or the term in square brackets
is zero. The &12 = 0 choice reduces Eq. (33) to Eq. (32),
which we have already solved. It reduces Eq. (35) to
(k22-a)k22 = 0 from which either A:22 = 0 or k22 = ±Va.
Hence, we have three solutions

0

0

0

; F=-

; F=-

k2n 0

0 0

*?i 0

0 (7

(7>0

o  >

*?i  0]
<7>0 (36)

0 a J

A bifurcation occurs at a=?0 and one of the new solutions is
positive definite, but all three are direct output feedback
solutions in the sense that the controller state in the second
two solutions is unobservable in the control signal.

Taking the second choice, making the square bracket in
Eq. (34) zero, and substituting the resulting kn into Eqs.
(33) and (35) yields after some manipulation,

(kn +k22)
2-o]

(37)

(38)

Obviously, if fl5 = 0, the equations are inconsistent and there
is no solution. For as^0, equate the second terms of these
equations to find that kn +k22 = — l/as, from which we con-
clude that to obtain a positive definite solution as must be
negative. Using this sum in the equations makes two linear
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equations for kn,kl2 whose solution is

= __2_/_L\-JL ==JLf __L
11 ^\a ajJ a/ 22~ a2\ dj.

plied to x. These kl2 = 0 controllers are

—— (39)
a.

These equations define two more solutions for K, A, and F
(considering both roots for kl2) that have a first-order con-
troller state, provided the right-hand side of Eq. (40) is
positive. One expects that this solution must have bifurcated
from one of the previous solutions. Setting &22 = 0 in Eq.
(39) and substituting the resulting a into kl2 in Eq. (40)
makes &12 = 0, so the bifurcation occurs at a= — a5/2 + I/a2.
However, if the bifurcation is to occur in the range of mean-
ing for our problem, a<0, then as must be greater than
(2)1/3, which means that kn +k22<0 and the resulting solu-
tion is not positive definite.

In summary, in this example of finding and tracking all
solutions of the necessary conditions [Eqs. (6-9)], we have
seen that for a sufficiently negative the only solution is the
direct output feedback solution with a gain k2

{ satisfying Eq.
(32) that can be seen to go to zero in the limit as a-* — oo, as
predicted. As a is increased, two bifurcation points are en-
countered, at a = 0 and a— — as/2+ I/a2 from which we can
get a total of five solutions. One is the direct output feed-
back solution; two have first-order controller differential
equations (the same equation in each case, one produced by
a K>Q, the other by a K>Q)9 but the controller state has no
influence on the control signal; and two solutions are first-
order controller designs that fail to satisfy K>Q, A>0 when
the solutions exist in the a<0 range of interest.

2) Reconsider this same example but with the cost func-
tion so that Q-I. We seek all solutions to the first-order
controller equations. Equations (33-35) again apply, except
that a - !/2 term must be inserted in Eq. (35) analogous to
that in Eq. (33). As before, Eq. (34) gives us two choices for
the value of kl2. Considering &12 = 0 first, we see a fun-
damental difference between cases 1 and 2: that A:22 can no
longer be zero because of the - Vi term introduced in Eq.
(35). This is reasonable—the controller state appears in the
cost functional and the optimization must find a first-order
controller even if it has no effect on the control signal ap-

det

-2.0 -1.0

Fig. 3 Det0 as a function of a.

E,F

1.0

-1.0

(41)

where kn satisfies Eq. (32) and k22 satisfies Eq. (32) with as

removed. For a<min( — aS9G), there exists only one solution
for each and each is positive. Between - as and 0, there can
exist three solutions for one of the ktt, but only one for the
other, and the new solutions have negative kti. For
a>max(-tfy,0) there can be three solutions for each (see
Fig. 1). In all cases, the positive definite solutions give the
same control signal as the direct output feedback controller
obtained previously.

Other controllers are generated by the other choice of kl2

to make the square bracket in Eq. (34) zero. To find these
solutions, equate term as before from Eqs. (37) and (38), but
this time Eq. (37) has a + 1A added to its left-hand side. This
result is as(ku +&22) = 0. Provided #S5*0, kn = -k22. Using
this to get the equation for k2

n in terms of kn and then
eliminating kl2 and k22 from Eq. (33) yields kn = -\/as.
Hence,

^--V) (42)

The square root is real if o> -as/2+\/a2, so these solutions
bifurcate from the previous solution at the same a for which
there was a bifurcation in case 1 of this example (the
previous a = 0 bifurcation does not apply here because the
pure direct output feedback controller is excluded). In fact,
at the bifurxation, value of a, the ku of Eq. (39) equals the kn

in Eq. (42), as it should.
In summary, for large negative a, there is only one solu-

tion of the form of Eq. (41) with kn and A:22 being positive
solutions obeying the form of Fig. la. As a increases, either
kn or k22 can introduce a new value (as in Fig. Ib) that is
not connected with the solution as <r-*-oo. The same will
happen later to the other kn. We conclude, in answer to one
of the questions posed in the previous section, that not all
solutions to Eqs. (6-9) are obtainable by bifurcations of the
a homotopy starting at the unique solution for a^—oo.
Since, if &n>0, &22<0 and vice versa in Eq. (42), we s,ee
that Eq. (42) bifurcates from the positive branch of one of
the kn (which is obtained in the homotopy), but the other kn

bifurcates from the unconnected solution that has appeared.
At each of ,the bifurcations observed, the old solution con-
tinues and two new solutions are formed.

\

2 \

\ \

\ \

\ \

Fig. 4 Feedback gain vs
a for all solutions.

1.0

1.0

\ E , F

-2.0
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D , G , H

Fig. 5 ku as a function of a for all solutions.

.125

-.48

-.49

Fig. 6 kn as a function of a for all solutions (detail shows bifurca-
tion point of enlargement of solutions E,F).

Still another type of pathology can be exhibited in this
problem. The results above applied to as7±Q. When #5 = 0,
Eqs. (37) (with the Vi added) and (38), which represent Eqs.
(35) and (33) with k\2 substituted, become identical. Then, in
place of Eq. (42), the three unknowns 'kn, &12, and k22 are
any solutions of the following two equations:

(kn+k22)[(kn+k22)
2-a]+y2=0

Therefore, for this value of as there can be an infinite
number of solutions! (The second form of k\2 comes from
substituting for the square term using the first equation; in
the form, it is clear that we can generate solutions with
*?2>0.)

If the solutions were being tracked using a differential
equation such as Eq. (22), it is of interest to see the form of
the equation at the bifurcation point forming Eq. (42). Sub-
stituting £n = -l/tf9, k22 = \/as, £12 = 0, and a=-as/2

l k

D,G,H

-1.0

det0-0 -i

22

1.0

F,G

\ E,H

Fig. 7 k2 as a function of a for all solutions.

0.5

I.J

50.

det,

1.0 .

I.J.

0.5 a

det.

G,H

d.5

Fig. 8 First-order controller determinant detT as a function of a
(enlargement shows that when detx reaches zero in the I,J solution
and disappears, it approaches the a axis vertically).

+ I/a2 into Eq. (22) with 0 = 0 and K=A yields

and hence kn can be discontinuous at this a.
t

Example 2

Consider now a second-order system with system matrices
and cost function matrices for problem P given by

o i l  r 1

• H.  •  Ct="01

XS=I, M=I9 QS=I (43)

In the case of a direct output feedback controller (with K= A
assumed), Eqs. (6-9) imply that

2akl l + 2k 12 + 1 - 2k 1 1 (k
2

n + k\2) = 0

2akl2 + k22 + kn- kl2(k
2
n + k2

2) = 0

(44a)

(44b)

(44c)
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Fig. 9 Values of kl3, k23, k33 as a function of a for
the first-order controller solutions. .5

-i-

G.H

\

I

G.H

Note that, when a = 0, the system of Eq. (43) cannot be
stabilized by a direct output feedback. The same is true for
a>6, but when <r<0 a feedback gain F<min
(- 2a, (1 - a2)/a) produces stability and all positive definite
solutions of Eqs. (44) must give such an F.

Equations (44) were solved by a root-finding algorithm
and to insure that all solutions had been located, the follow-
ing procedure was used. Equation (44a) is quadratic in kl2 as
a function of kn, whereas Eq. (44b) after eliminating k22 *s

quadratic in kn as a function of kl2. For representative
values of #, these functions were plotted and the number of
intersections established the total number of solutions (Fig.
2).

With k22 eliminated, Eqs. (44a) and (44b) produce the
following differential equations satisfied along the solution
curves:

~2a-6k2
n-2k2

l2

— 2knkl2

4knkl2

a

dku/da

dA:19/d(j

-2kn

(45)

Note that solving for k22 and substituting has introduced
terms in I/a which would not be present in Eq. (22) if
dk22/da were also included and that this causes the determi-
nant of coefficients in Eq. (45), denoted det0, to go to infin-
ity at (7=0. '

Figure 3 gives the determinant of coefficients in Eq. (45),
det0 as a function of a for all solutions, which are denoted
A-F. The corresponding feedback gains F, a scalar, are
given in Fig. 4. Note that the feedback gains can be well
behaved at a = 0 (as can the elements of A>A), but the det0

is not well behaved for any solution. The limits on the values
of F for a stabilizing controller found above are also in-
dicated and only solution A is stabilizing.

The corresponding solutions for &n , kl2, and k22 are given
in Figs. 5-7. From Fig. 3, it is seen that the determinant of
coefficients is zero at a= -0.345 arid 0.123. These points are
indicated in Figs. 5-7. The a= -0,345 point corresponds to
the spontaneous generation of a new solution unrelated to a
a homotopy that started for large negative a, but the new
solutions generated are not positive definite/The o- +0.123
is a point of bifurcation where the original solution con-
tinues and two new solutions start. The new solutions at the
bifurcation point and the spontaneously generated new solu-
tions all have infinite slopes dku/do, dk22/do9 and dk{2/da
(see detail in Fig. 6).

The equations analogous to Eqs. (44) for first-order con-
trollers were generated and the determinant of the coefficient
matrix (det^ of the corresponding differential equation (again
with k22 eliminated as before) was monitored for first-order
controllers as shown in Fig. 8. Note that the detj for solutions
I and J depart from the a axis with a vertical slope which can
be seen only if the scale of the figure is expanded. Solutions

G-I were found, and the associated kn, &12, and k22 are in-
dicated in Figs. 5-7 and the new kl3t k23, and k33 in Fig. 9. Of
the four, two have controller dynamics that are unobservable
in the controller output (G and H) and bifurcate when a = 0, as
happened in the first example. The more meaningful solutions
I and J bifurcate from a point a= - 0.26, which is numerically
near a det0 = 0 point and perhaps there is ill-conditioning
creating the apparent difference. Five second-order controller
solutions were found by the same methods to emanate from
this same point (but no second-order solutions emanated from
the points where the G and H solutions had detj zero).

Conclusions
A homotopy method was generated for obtaining stabiliz-

ing controllers of fixed dimension for linear systems. Ap-
propriate methods for efficient performance of the
homotopy were generated and a series of properties of the
solutions along the homotopy were proved. Several examples
were generated in which all solutions of the nonlinear matrix
equations defining the stabilizing controller as a function of
the homotopy parameter were found. It is interesting to note
that no full-order controllers were found to be optimal in the
examples (in the sense of the cost function of problem P) in
spite of the fact that most modern control design methods
would use a full-order controller. In these examples, the
stabilizing solutions of interest were found to be connected
by the homotopy to the known solutions as the homotopy
parameter becomes infinitely negative. Other solutions that
were not connected were found to appear suddenly when the
parameter reaches certain values, but at least in these ex-
amples these unconnected solutions were not stabilizing and
therefore not solutions one would be looking for. The
homotopy method discussed here can be a useful technique
in obtaining stabilizing and optimal fixed-order controllers,
but there is a potential difficulty of having to cross bifurca-
tion points. To minimize these difficulties, the homotopy in-
terval should be kept short. The programming required to
perform the homotopy efficiently has the extra benefit that it
easily allows one to generate a Newton iteration to search for
optimal controller solutions, which offers a way to speed up
the rate of convergence when the gradient method is nearing
a solution to the fixed-order controller problem.
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