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A Hormander-Type Spectral Multiplier Theorem
for Operators Without Heat Kernel

SONKE BLUNCK

Abstract. Hormander’s famous Fourier multiplier theorem ensures the L ,-bound-

edness of F(—AgrD) whenever F € H(s) for some s > %, where we denote
by H(s) the set of functions satisfying the Hérmander condition for s derivatives.
Spectral multiplier theorems are extensions of this result to more general operators
A > 0 and yield the L,-boundedness of F(A) provided F € H(s) for some s

sufficiently large. The harmonic oscillator A = —Ag + x2 shows that in general
s > % is not sufficient even if A has a heat kernel satisfying Gaussian estimates.

In this paper, we prove the L ,-boundedness of F'(A) whenever F' € H(s) for some

s > DT“, provided A satisfies generalized Gaussian estimates. This assumption

allows to treat even operators A without heat kernel (e.g. operators of higher order
and operators with complex or unbounded coefficients) which was impossible for
all known spectral multiplier results.

Mathematics Subject Classification (2000): 42B15 (primary), 42B20, 35G99,
35P99 (secondary).

0. — Introducion

In this paper, we present a new spectral multiplier result motivated by
Hormander’s famous Fourier multiplier theorem. In terms of the functional
calculus F > F(—A) of the Laplace operator A on R?, Hérmander’s theorem
says the following:

D
Fe H(s) for some s > > — F(—A) e S(LP(RD)) for all p e (1,00).

Here we denote by H(s) the set of functions satisfying the Hormander condition
for s derivatives:

H(s) := {F : Ry — C bounded Borel funcion; sup [|[wF (t-)||gs®,) < o0},
t>0

Pervenuto alla Redazione il 5 maggio 2003.



450 SONKE BLUNCK

where w € CP(R,) is a fixed ‘partition of unity’ function [i.e. 3, , 0(2't) = 1
for all + € R;]. Christ [C] and Mauceri and Meda [MM] generalized this
result to homogeneous Laplacians A on Lie groups G of some homogeneous
dimension D, i.e. |B(x,r)| ~ rP for all x € G, r > 0. Indeed, they obtained
independently

D
F € H(s) for some s > 5 = F(—A) € £(L,(G)) forall pe(l,00).

In order to treat more general elliptic operators and irregular domains, Duong,
Ouhabaz and Sikora [DOS] extended this result to arbitrary non-negative self-
adjoint operators A on (subsets of) metric measured spaces (€2, i, d) of some
dimension D, ie. |B(x,Ar)] < CAP|B(x,r)| for all x € Q, r > 0, A > 1.
They showed

D
(H) F € H(s) for some s > > = F(A) € £(L,(Q2)) for all p e (1,00),
provided A satisfies the so-called Plancherel estimate
®) NFEAIBC. ) 152 < CIFllLyqony for all F € Loo(10.1]). 1 > 0

and A satisfies Gaussian estimates, i.e. the e’ have integral kernels k;(x, y)
for which one has a pointwise upper bound of the following type:

d(x,y)

t

(GE) lk:(x, ¥)| < |B(x,rt)|_1g ( ) for all x,yeQ,t>0.

Here the r, are suitable positive radii and g : Ry — R, is a suitable decay
function. Note that (GE) without any additional assumption like (P) does not
imply (H) since the harmonic oscillator A = —A +x? on Q = R satisfies (GE)
and has the following property [T]:

D 1
F e H(s) for some s< E+6—8#F(A)GS(L,,(R)) for all pe (1,00).

Furthermore, note that an elliptic operator A of order m on R” with bounded
measurable coefficients satisfies (GE) if m > D [AT], [D1] or m = 2 and the
coefficients are real [A]. On the other hand, in general A does not satisfy (GE)
if m < D [D3], [ACT] or the coefficients are unbounded [LSV]. But in many
of these cases A still satisfies so-called generalized Gaussian estimates [DI1],
[ScV]. By this we mean an estimate of the following type:

1 1
=5 (dx,y)
—tA /" Do ’
(GGE) “XB(X,rt)e ! XB(th)||po—>p;, S |B('x5rt)|po g( r

for all x,yeQ,t>0
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and for some p, € [1,2). Notice that (GGE) for p, = 1 is equivalent
to (GE) [BK1]. The main result of the present paper is that (GGE) without
any additional assumption implies the following adaptation of (H):

~ D+1
(H) Fe H(s) for some s> T+ = F(A) € £(L,()) for all pe(p,, Po).

We want to mention that, for the class of operators A satisfying (GGE), the
interval [p,, p,] is optimal for the existence of the semigroup (e™")er 4+ on

L, [D3]; this shows the optimality of our spectral multiplier theorem (H).

Our main tool for the proof of (H) is the singular integral theory devel-
opped in [BK2] which generalizes the classical singular integral theory based
on Hormander’s well-known weak type (1,1) condition for integral operators
(in a weakened version due to Duong and Mclntosh [DM]). This new singular
integral theory based on (GGE) allows to extend other L,-properties of A (than
the boundedness of F(A) for F € H(s) is considered in this paper) to L, for
p € (po, p,). We mention the properties of having maximal regularity [BK1],
an H®° functional calculus [BK2] or Riesz transforms [BK3], [HM].

ACKNOWLEDGEMENTS. I would like to thank El Maati Ouhabaz for several
conversations on the subject of this paper.

1. — Main result

We begin with some basic notation and assumptions. For the rest of this
paper, (2, i, d) is a metric measure space of dimension D, i.e.

|B(x, Ar)] < CAP|B(x,r)| forall xeQ,r>0 A>1.
Here we denote by B(x,r) the ball of center x and radius r, and by |B(x, r)]
or v,(x) its volume; by L;‘j(Q) we denote the weak L,(€2)-spaces. Further-

more, we fix once and for all real numbers p, € [1,2), m € [2,00) and the
following notation:

. 1/m — Co T
ry =t and g(t):=Ce "m-1 forall teR,.
Here C and b are positive constants whose values are of no interest and might
change from one appearance of the function g to the next without mentioning it.
We denote by H(s) the set of functions satisfying the Hérmander condition for s
derivatives:

H(s) := {F : Ry — C bounded Borel function; sup [[wF (t-)|gsr,) < 00},
t>0

where w € C2°(R.) is a fixed ‘partition of unity’ function [i.e. 3, @ (2/t) = 1
for all + € R;]. Now we can present the main result of this paper.
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THEOREM 1.1. Let (2, u, d) be a space of dimension D and A a non-negative
self-adjoint operator on L,(2) such that (GGE) holds. Then, forall s > DTH, there
exists C > 0 such that

IE ()l e(zp,.L8 @) = CUF L@y + iug lwF ()l as®y))

forall F € H(s). In particular, the following implication holds:

D+1

FeH(s) forsome s> = F(A) € £(L,()) forall pe (p,, p:)).

REMARK.

(a) An important example are the Riesz means R, (A), where Ry (x) := (1—x)9.
Observe that R, € H(s) if and only if s < o + % Hence, in the situation
of Theorem 1.1 one has

D
R (tA)lpsp < Cpo forall t>0,pe(p,yp,), a=> 5

(b) Another important example are the imaginary powers AT, T e R.If we
denote P (x) := x'* then [P (t)|gs®y) < Cs(1 + |7])* for all T € R,
s,t > 0. Hence, in the situation of Theorem 1.1 one has

: , D+1
||A”||p—>p =< Cp,s(l + |T|)S for all 7 eR, JZBS (pm P;), s > .

(c) Theorem 1.1 is optimal with respect to p since, for the class of operators A
satisfying (GGE), the interval [p,, p,] is optimal for the existence for the
semigroup (e‘“‘),E]RJr on L, [D3].

(d) Concerning optimality with respect to s (the number of derivatives), we
mention that our condition s > % cannot be replaced by s > % + «
with o < %. Indeed, the Riesz means R,(A) of the harmonic oscillator

A =—A+x? on R do not satisfy R,(A) € L(L,(R)) for all p € (1, 00)
unless o > é [T, Theorem 2.1]. On the other hand, A satisfies (GGE) for
po=1, and R, € H(s) for all s <o + 3.
Under the additional assumptions (P) from above and p, = 1, our condition
s > % can be replaced by s > % [DOS, Theorem 3.1].

(e) By standard methods [DM], [BK2], Theorem 1.1 can be extended to the
case where Q2 is only a subset of a space of dimension D. This allows
to treat elliptic operators A on irregular domains  C R”; see Section 2.1
below.
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2. — Examples

In this section, we give some examples of elliptic operators A for which
Theorem 1.1 applies, i.e. for which (GGE) holds.

2.1. - Higher order operators with bounded coefficients and Dirichlet
boundary conditions on irregular domains

These operators A are given by forms a: V x V — C of the type

a(u, v) :/ Z aaﬁaaude,
Q

l|=[Bl=k

where V := I—OI k(Q) for some arbitrary (irregular) domain @ C R”?. We assume
Aup = gy € Loo(RP) for all o, B and Garding’s inequality

a(u,u) = 8|V¥u|3 forall ueV,

for some § > 0 and [|V*u|3 := 3 ,— 19°«[3. Then a is a closed symmetric
form, and the associated operator A on L,(€2) is given by u € D(A) and
Au =g if and only if u € V and (g, v) = a(u,v) for all v € V.

In this situation, we have for p, := mz% v 1 and m := 2k [D1], [AT,
Section 1.7]:

o(
—tA
“XB(x,rt)e XB(y.,r1) ”p0—>p;) =r

-

,L)

o d(x,

3 g (M) for all x,y e Q,t>0.
It

Hence, by Remark (e) above, the conclusion of Theorem 1.1 holds:

D+1
F € H(s) for some s >

= F(A) € £(L,(2)) for all p € (p,, p,) .

2.2. — Schridinger operators with singular potentials on R”

Now we study Schrodinger operators A = —A + V on R?, D > 3, where
V =V, —V_, Vi >0 are locally integrable, and V. is bounded for simplicity
(for the general case, see e.g. [ScV]). We assume the following form bound:

(Vou,u) < y(IVull3 + (Vow, u) + c()lull;  for all u e H'(RP)

and some y € (0,1). Then the form sum A := —=A+V = (-A+V,) —
V_ is defined and the associated form is closed and symmetric with form
domain H'(RP). By standard arguments using ellipticity and Sobolev inequality,

(GGE) holds for p, = g—fz and m = 2 [after replacing A by A + c(y)].

Due to [LSV], (e_’A)teR+ is bounded on Lq(RD) for all ¢ € (py,p;) and
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Py = bax m?fz(l— NETI D +2 Hence, by interpolation, one obtains (GGE)
even for all p, € (p,,2). Thus, Theorem 1.1 yelds

1
F e H(s) for some s> — F(A) € S(LP(RD)) for all pe (p},,p;).

2.3. - Elliptic operators on Riemannian manifolds

Let A = —A be the Laplacian on a Riemannian manifold Q2. Let d be the
geodesic distance and u the Riemannian measure. Assume that 2 satisfies the
so-called volume doubling property and that the heat kernel k,(x, y) satisfies

ki(x,x) < C|B(x,v/t)|7! forall xeQ,t>0.

Then (¢'®);cr , satisfies (GE) [G] or, equivalently, (GGE) for p,=1 and m=2.
On Riemannian manifolds satisfying a local higher order Sobolev inequality,
(GGE) holds even for suitable higher order elliptic operators A [BC].

3. — Proof of the main result

The main tool for the proof of Theorem 1.1 is the following result [BK2,
Theorem 1.1] which generalizes Hérmander’s well-known weak type (1, 1) con-
dition for integral operators (in a weakened version due Duong and Mcln-
tosh [DM]) and provides a weak type (p,, p,) condition for arbitrary operators.

THEOREM 3.1. Let (2,d, i) be a space of homogeneous type and A a non-
negative selfadjoint operator on L,(2) such that (GGE) holds. Let T € £(L,(R2))

satisfy

@ Nyt o2 (T D"e ™Yy ampe () < C(Ma f)(x)

forallt >0, f € L, (Q) x € Q, vy € B(x,r;/2) and some n € N. Then we have
T € £(Ly,(S2), Ly, (Q))

Here we used the following notation:

M, f(x) :=supN,,f(x) [p-maximal operator]
r>0

k=0

Npr fx) =BG, )" YPN fllLp ey, D f@) = (’;) (—D* f k) .

Hence I — D"e¢™'4 can be seen as an approximation of the identity of order n
since we formally have Dnt;f(t) — (=1)" f™(0) for t — 0.

Another central tool for the prof of Theorem 1.1 is the following result
on the extension of generalized Gaussian estimates for real times r € Ry to

complex times z € C; its proof is given in [B, Theorem 2.1].
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THEOREM 3.2. Let (2, u, d) be a space of dimension D and1 < p <2 <q <
oo. Let A be a non-negative selfadjoint operator on L,(S2) such that

_ 1.1 [(d(x,y)
Ix8erne A xBorllpsg < |B(x, 7)1 7 g (7

It

forallt e Ry, x,y € Q. Then we have

1 1
_ 1_1 |z] D(E*E> d(x,y)
A s
”XB(x,rz)e ¢ XB(y,rZ)||p—>q <|B(x,r))|7 Pg (R—ez> 8 r,

forallz e Cy,x,y € Qandr, := (Rez)%_llzl.

Some rather technical features of generalized Gaussian estimates are sum-
marized in the following lemma; see [BK4, Proposition 2.1] and [BK2, Lem-
ma 3.3(a)] for the proofs. We will denote by A(x,r, k) the annular region
A(x,r, k) := B(x, (k+ Dr)\B(x, r).

Lemma 3.3. Let (2, i, d) be a space of dimension D and 1 < p < g < oo.
Let R be a linear operator and r > Q.

(1) The following are equivalent:

(a) We have forall x,y € Q :

1_1 /d(x,y)
“XB(x,r)RXB(y,r)”p%q = Ur(x)q pg .

r

(b) We have forall x,y € Qandu € [p,q]:

1_1 /d(x,y)
”XB(x,r)RXB(y,r)”u—w =< v,(x)‘l “g (f .

(c) We have forall x € Qandk € N :

1_1
”XB(x,r)RXA(x,r,k)”p%q < Ur(x)q .Dg(k) .

(ii) If (a) holds then we have for all s > 0, f € Ly(2), x € Q, y € B(x,s) :

N, s(RPgysoe f)(y) < gr's)(L+s7'r)P/ M, f(x).

In order to prove the assertion F(A) € £(L,,(£2), L;"O(Q)) of Theorem 1.1

by means of our weak type (p,, p,) criterion Theorem 3.1, we have to check
line (1) for T = F(A). The main step is the following.
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PropOSITION 3.4. Let (2, d, i) be a space of dimension D and A a non-negative
selfadjoint operator on L,(S2) such that (GGE) holds. Then, for all s > %, there
exist €1, &3, C > 0 such that we have for all F € Loo(Ry) ando > 0 :

—£

.
Ny 2 (F (@AY Xt arye ) < C<(§) v (ﬁ) ) 1 F-exp ll s ) (Mo ) ()

forallt >0, f € LPZ(Q)’ x €2,y € B(x,r/2).

Proor. By Lemma 3.3(i), the L,, — Lp;) estimate (GGE) in the hypothesis
implies the following L, — L,/ estimate:

1
=2 (d(x,y)
— / 2 )
| XBCx,r€ tAXB(y,r,)Hz_)p;) <|B(x,r)|Po “g ( .

Ty
By Theorem 3.2, the latter extends to complex times z € C as follows, denoting

1
r. = (Rez)m Y|z and o = D(% _ pL/ :
o

11 o
- =2 ( Izl d(x,y)
”XB(x,rz)e ZAXB(_Vsz)HZHPZ) < |B(x, ry)|Pe i <€ 8 .

Iy

This implies by Lemma 3.3(ii) for R = (Il%élz)""e

_ea 2l \“ r\PPe (i
Ny 2@ Xy arpe ) = <—> (1 + _> g (7) (M> f)(x)

Rez 7y

forallt >0, f € Lp;)(Q), x € Q, y € B(x,r/2). The latter for z = (1+it)o
allows to estimate N ot n(F (0 A)* xB(y,4r)c f)(y) by using the Fourier inversion
formula for G := F - exp (this approach is taken from [DOS, Lemma 4.3]):

F(O_A)* — / e*(l‘H‘E)GA a(f)dT '
R
Indeed, since r(11ire = V1 + 7201/m we can estimate as follows:
Nyt o2 (F (0 A)* XB(yarpe ()
= /RNpé;,r[/z(ef(lm)“XB(y,zm)cf)(y)IG(r)Idr

1/m
5/\/1 + <1+\/1+z2 jl/m
R

1/m

D/p,
) g(\/l + 2 1;1/’n>|@(r)|drM2f(x)

_q ¢l/m

o D/pym D/2 t R
< <1 +t> /\/1 +o2 g (Vid e S IG@IdTMy f ()
R

1/2
1 t1/m

o D/pym ) D -1t ?
< (1+7) /(l—l—r g (Vid e ) dr | Gl Maf ().
R
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D
2>

Hence the assertion is proved once we show for g :=s — %:

o0 -1
/ (1+1tHPg(V1+1* aydr <Ca'™* forall a>2.
0
First, the change of variables u = V1 4+ 2! yields

o0 _1 0
/ A+ Pe(V1+12 a)dr = az(lfﬁ)/ 1 g Hu'"@*u? — 1)"12du.
0 -

Since (a%u® — )2 > Yau for all u € [2a~', 00), we have

o0 2 o0
/ 1g(u_l)ul_zﬂ(azu2 — D V2qu < ﬁa_l/ g(u_l)u_zﬂdu =Cal.
2 0

On the other hand, the remaining part of the integral can be estimated by

2a~! 2a~1
/ g Hu' " (@*u? — 1)7du < g(a/2)a2f‘—1/ - (au =17 du

1 a

1
=g(a/2)a2<ﬁ*”/0 v 2qdv. 0

The last preparatory step for the proof of Theorem 1.1 is the following
lemma.

LemMma 3.5. Letn € N, & > 0and E(u) := Y 4_o ()(=D¥e™ u € Ry.
Then
||E(O—’)||Cn([g,€—l]) < C(l A O-n) for all o > 0.

Proor. Fix m € {0,...,n}. First we treat the case of small o. Since
EM ) — 2 for t — 0, we have [E™ ()] < Cot"™™™ for all ¢ € [0, 1]. This

th—m (n—m)!

implies for all o € [0, ¢] and u € [0, &7 ]:

|E(a)™ )| = o™ |E™ (ou)| < 6" Colou)"™" < Coe" o™

Now we treat the case of large o. Since E™(t) = S }{_ockmae X with
co.mn =0 for m > 0, we deduce for all o, u € [g, 00):

n
|E(@)™ )| = 0™ E™(ou)| <™ lckmale ™ < C. O
k=0

Finally, we come to the proof of Theorem 1.1. We use the symbol < to indicate
domination up to constants independent of the relevant parameters.
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ProoF oF THEOREM 1.1. We want to apply our weak type (p,, po) criterion
Theorem 3.1 for T = F(A). Hence we have to show

) Ny p(FAD" ™) xp(yare () < sup llwFpll s (M2 f)(x)

for all t >0, f € L, (Q) x € Q, y € Bx,r,/2) and some n € N. Choose
8] > g > 0 as in Proposmon 3.4 and n € N such that n > &; v s. Denote

=n—e) A& >0and o) :=u1 Vu 2, E@m):=Y;_, (})(=Dre
for all u € Ry. Furthermore, for o0 > 0 we denote the dilations F, := F(o-),
w, ‘= w(o-) and E, := E(c-). Observe that E,(A) = D"e °4 and by
Lemma 3.5

3 9@ Eslcruppe) < 9(@)(1 A" <0 Ao’ forall o>0.

Now (2) follows from Proposition 3.4, applied for wF,—; E,,—; instead of F and
o = 2!, and then summation over ! € Z:

Ny 2 ((FCAYD" e ™) xg(y arye £) ()

=Ny . <Z((w21 F)(A)D"e™"*)* xay, 4mcf> ) [Z @yl = 1]

leZ
<Y Ny 2 (W E o) (2N A X(y.are /() [Es(A)=D"e "]
leZ
=< Z go(t2_l)||wF2_z E -1 -expllus M f(x) [Proposition 3.4]
=y
= SUp [l Fy s Ma.f () > 02 DIE -1 - exp llcnsuppey [n = 51
> leZ
= sup lwFyllas Mo f () > (27 7% A 127) (line (3)]
lez
= sup llwFpll s Ma f (x) .e 0
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