A Host-Based Approach to Network Attack Chaining Analysis

Paul Ammann
ISE Department
George Mason University
pammann @ gmu.edu

Joseph Pamula
Center for Secure Information Systems
George Mason University
jpamula@gmu.edu

Ronald Ritchey
Booz Allen & Hamilton
ritchey_ronald @bah.com

Julie Street
ISE Department
George Mason University
Jstreet] @gmu.edu

Abstract

The typical means by which an attacker breaks into a
network is through a chain of exploits, where each exploit in
the chain lays the groundwork for subsequent exploits. Such
a chain is called an attack path, and the set of all possible
attack paths form an attack graph. Researchers have pro-
posed a variety of methods to generate attack graphs. In this
paper, we provide a novel alternative approach to network
vulnerability analysis by utilizing a penetration tester’s per-
spective of maximal level of penetration possible on a host.
Our approach has the following benefits: it provides a more
intuitive model in which an analyst can work, and its al-
gorithmic complexity is polynomial in the size of the net-
work, and so has the potential of scaling well to practical
networks. The drawback is that we track only “good” at-
tack paths, as opposed to all possible attack paths. Hence,
an analyst may make suboptimal choices when repairing
the network. Since attack graphs grow exponentially with
the size of the network, we argue that suboptimal solutions
are an unavoidable cost of scalability, and hence practical
utility. A working prototype tool has been implemented to
demonstrate the practicality of our approach.

1. Introduction

Even well-administered networks are vulnerable to
some level of attack, since eliminating all susceptibility to
attack is arguably equivalent to isolating the network, which
is not an option in most enterprises. One of the challenging
tasks that a security administrator faces is to analyze his
or her organization’s networks for susceptibility to attack
and, as necessary, to modify the network so that it becomes
sufficiently secure. Penetration testing is a typical mecha-

nism for carrying out this analysis, but penetration testing
is expensive, labor intensive, and often incomplete. Conse-
quently, there is considerable interest in automating aspects
of penetration testing. This paper offers a novel approach to
automating part of the penetration tester’s job.

Penetration testers routinely use attack graphs to help
them understand a network’s weaknesses. Roughly speak-
ing, attack graph nodes represent network states, and at-
tack graph edges represent the application of an exploit
that transforms one network state into another, more com-
promised, network state. The terminal state of the attack
graph represents a network state in which the attacker has
achieved his or her goal. Typically these exploits take ad-
vantage of known vulnerabilities in various systems and
services. Such vulnerabilities and their associated exploits
are well documented in public sites such as bugtraq [3],
and many commercial tools such as Nessus [11] and
Retina [18] can identify known vulnerabilities in a given
host or network.

At the research level, methods have been proposed to
construct attack graphs based on data provided by commer-
cial vulnerability scanning tools. Details of these methods,
and their relation to the current work, are given in our “Re-
lated Work™ section. For the purposes of the current paper,
the salient observation is that attack graphs quickly become
unmanageably large as network complexity grows past a
few machines. Indeed, displays from tools built to support
attack graph generation often show an extremely dense web
of connections that provides little guidance to the analyst.

From a theoretical point of view, attack graphs become
unmanageable because they are, by nature, exponential in
the size of the network. To see why, consider a typical at-
tack path: it represents a minimal set of exploits '; that is,

! A similar analysis follows from the equivalent formulation of an attack
path as a minimal set of “facts”, where each fact is some network condition

each exploit is necessary for that attack path as a whole to
achieve the desired goal. There are potentially many such
minimal sets of exploits. Given e exploits, there are 2¢ pos-
sible subsets of exploits, and the number of minimal sub-
sets is still O(2¢). Unfortunately, as network size grows,
so does the number of exploits, since each exploit is bound
to a particular host. To see the reason for this, consider
applying a buffer overflow attack against the ssh service.
Attacking host B from host .4 with this exploit results in a
different network state than attacking host C from host A
with the same type of exploit, and so we must consider each
attack separately. The bottom line is that adding another
host inevitably increases the number of exploits e that must
be considered. Hence complete attack graphs, by their very
nature, do not scale well.

One way out of this computational quagmire is to go
back to the penetration tester’s perspective and ask what
structure short of the entire attack graph would nonetheless
be useful. The answer we propose in this paper is that pen-
etration testers often think in terms of the maximal level of
penetration possible with respect to a given host, and push
the details of how to achieve this level to the background.

The contribution of this paper is an alternative to com-
plete attack graphs. Our approach has the following bene-
fits:

e The approach meshes well with the typical mental
model of both the system administrator and the pen-
etration tester, both of whom, we argue, find it natural
to analyze network security in terms of the maximal
compromise possible on each host.

e The approach can scale better than complete attack
graphs to realistic size networks. This is because our
host—centric model grows polynomially with the num-
ber of hosts, but the complete attack graph model
grows exponentially.

e The approach through multiple iterations > will pro-
vide a system administrator with a secure network the
same as a complete attack graph would, at the expense
that the choices made may be suboptimal. Since each
iteration is done in polynomial time, it can be com-
puted in real-time and will give the system adminis-
trator an area that needs to be fixed.

e The approach can be used to provide near real-time
early warning of potential attacks, to identify the net-
work policy rules violations, and to conduct analysis
on the potential impacts of giving different permis-
sions or credentials to users (i.e., modelling insider at-
tacks).

(e.g., ssh service is running on host A) (initially) necessary for a given
chain of exploits to be feasible.

2The term “iterate” refers to a one complete execution cycle of the al-
gorithm.

The downside of our approach is that the analyst is not
presented with complete information about possible dam-
age, but instead is presented with worst case possible dam-
age in each iteration. Consequently, the analyst may make
suboptimal choices in terms of which vulnerabilities to re-
pair. When complete attack graphs are used the analyst can
determine the minimal changes required to fix the network
at the expense of computing the large exponential graph.
In using our approach, with every iteration run, analysts
are quickly presented with an area that needs to be fixed at
the expense that the choices made maybe suboptimal. This
means that the choices made will provide the same secure
network as attack graphs, however they may not be the min-
imal number of changes. Our position is that since the opti-
mal choice of vulnerability repair is NP—complete anyway,
suboptimal solutions are a foregone conclusion for realistic
networks.

In our model, hosts have an ordered set of possible lev-
els of access, ranging from none to admin. For example,
we might record that from host A4, it is possible to obtain
admin level of access on host B with a buffer overflow ex-
ploit of the ssh service running on host B. At this point in
the analysis, we would not be concerned with other possible
attacks on B that result in admin (or lesser) level of access.
If the s sh exploit from host A to host 13 becomes no longer
beneficial, either because connectivity between hosts .A and
B was interrupted (perhaps by a firewall), or because the
ssh service was removed from host 53, then the analysis of
other exploits would begin again, with the goal of choosing
one that leads to the (new) maximal level of penetration of
host B.

Our model also handles a transitive aspect of chained ex-
ploits. Suppose that there exists a user level access from
host A to host B3, but there is admin level access from host
B to host C. From the penetration testing perspective, this
is equivalent for .4 having admin level access to C. Our
algorithm presented in Section 2 will use this property to
compute a transitive closure of our access graph.

To demonstrate the practicality of our approach, a
working prototype tool has been implemented. The
tool comprises all the algorithms presented in this pa-
per. We have also put together a companion website
for this paper which describes our tool’s usage by us-
ing the example presented in the paper. The web-
site address is: http://ite.gmu.edu/~jpamula/
tools/host-based.html. It walks the reader through
the example in Section 4 by showing the tool’s screenshots
at different stages of access graph construction and analysis.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the description of the algorithms, and also
discusses the computational complexity of our host—based
model approach to chained network attacks. In Section 3
we suggest a number of ways the analyst can use the results

of a stable host—based access graph (from Section 2) to help
secure the network. In Section 4 we give an example that
illustrates the ideas presented in this paper. Finally, Section
5 presents related work and Section 6 concludes this paper.

2. Model

We make an explicit assumption of monotonicity in our
model. One way of thinking about monotonicity is that it
means the attacker never has to backtrack. Although there
are certain attacks where monotonicity does not strictly
hold, for the most part, these can be modeled, with rea-
sonable fidelity, as monotonic. An example may help here.
Consider the “port forward” exploit, in which an unwitting
middleman host is used to forward communication from a
compromised host to some host that trusts the middleman.
To carry out a “port forward” exploit, it is clearly neces-
sary to have a free port on the middleman, and carrying out
the exploit uses up that port. Hence that port is unavail-
able for a port forwarding attack on a different host; tech-
nically the “port forward” attack is nonmonotonic. How-
ever, a clever attacker can often get by with a single port by
merely switching back and forth between the two exploits,
thereby justifying the modeling the “port forward” exploit
monotonically.

Our model is organized around hosts, rather than exploits
or vulnerabilities. It constructs an access graph with a node
for each host in the network. A directed edge from host hy
to host ho in the access graph represents the access available
on ho from hy. Initial access is achieved directly between
two hosts by a trust relationship based on network rules and
configuration. Once complete, this initial set of edges repre-
sents the intended network access. Note that there might be
multiple ways in which two hosts in the network can com-
municate. Instead of adding multiple edges in the graph,
our model will only retain the highest access that can be
achieved between hosts, since higher levels of access to the
destination host typically mean that more powerful attacks
can be accomplished. For example, a user with user ac-
cess to a host cannot, in general, mount as powerful an at-
tack on another host as can a user with admin access.

After the initial set of edges is complete, exploits are then
introduced into the model. A host can improve its access
to another host by using an exploit on the destination host.
For example, h; may have a trust relationship with hy that
allows user level access on he. However it may also be
possible for h; to use a buffer overflow exploit on hy to
gain admin level access. In this case the edge between h;
and ho would be updated to reflect this new access. Hosts
can also gain higher access indirectly through a series of ex-
ploits on numerous hosts. For example, £; may not be able
to connect to hs directly. However, ho may have admin
access on hgz by using a remote root level exploit. Using

this exploit, and the buffer overflow exploit on ho, h; can
successfully gain admin level access on hg.

The model to construct such an access graph consists of
two steps: initialization and calculation of maximal access.
The goal of initialization is to establish the initial trust re-
lationships between hosts in absence of applying any ex-
ploits. Initialization is accomplished using the algorithm
findInitialAccess, shown in Figure 1 and described
next. Here access () returns the possible access level
gained between two hosts in trust relationship table 7', or
a current level of access for a given edge ¢;; between two
hosts ¢ and j.

findInitialAccess(H, T, E) :

1

Input: A set of host nodes, H 2
Input: A set of trust relationships, T' 3
Input: An access graph E, each edge e;; € E is initialized 4
to none 5
Output: Access graph of hosts H with maximal access 6
edges F 7

8

For each h; € H Do 9
For each h; € H Do 10
For each (h;,h;j) € T Do 1

If access((hi, hj) € T) > access(e;;) Then 12

/* Update e;; € E */ 13

e;j.access = access((hi, h;) € T) 14

If access(e;j) == admin Then 15

Stop, move to next host-pair 16

Figure 1. findInitialAccess algorithm.

Algorithm findInitialAccess deserves a few
comments. We include in the set of hosts, one outside
host with no privileges and no exploits. This host repre-
sents the basic attacker. We also consider a limited, ordered
set of access levels, namely, none, connectivity,
pass—-through, user, and admin. Our notion of ac-
cess level could clearly be refined, but we take the position
that it is an adequate start. Initially, access graph E has each
edge e;; € F initialized to access level none. In some cases
there may be multiple trust relationships between hosts in
a network. In these cases, findInitialAccess is de-
signed to examine each relationship and retain the one that
provides the highest level of access (lines 12 — 14). To help
reduce computational cost, lines 15— 16 cause the algorithm
to cease checking for new access levels if the current level
of access for a given edge is already at its highest.

The next step in our model is to calculate maximal ob-
tainable level of access between all the hosts in the network
using each host’s known exploits. If sufficient connectiv-
ity on the appropriate ports exists between two hosts, an
exploitable vulnerability exists on the destination host, and
the source host has all of the prerequisites for the exploit,
an edge can be added from source to destination. For book-

keeping purposes, edges are tagged with a route ID, source
host, destination host, the means by which the edge was
achieved (trust relationship, exploit name, etc.), the access
level achieved, bugtraq ID, and a chain ID flag to determine
if the edge was part of a chain of exploits. The chain ID flag
will be empty if it is not part of a chain, otherwise the route
ID of the last edge used in the chain is indicated. The algo-
rithm findMaximalAccess, shown in Figure 2, calcu-
lates the maximal access each host has on each other host in
presence of applying any exploits. Here access () returns
the current level of access for a given edge e;; (an edge be-
tween hosts ¢ and j), or a possible higher level access gained
through an exploit zj, launched from host 7 against the target
host j.

findMazimalAccess(H,E, X, V) : 1
INPUT: A set of host nodes, H 2
INPUT: A set of access edges, E 3
INPUT: A set of network exploits, X 4
INPUT: A set of vulnerabilities at each host, V' 5
OUTPUT: Access graph of hosts H with maximal access 6
edges F 7

8

/* Direct Exploits */ 9
For each h; € H Do 10
For each h; € H Do 1

If access(e;j) == admin Then 12

Stop, move to next host-pair 13

For each vj, € V exhibited by host h; Do 14

For each z,, € X against vy Do 15

If all preconditions z,, are TRUE Then 16

If access(zw) > access(e;;) Then 17

/* Update edge e;; € E */ 18

e;j.access = access(Tw) 19

If access(ejj) == admin Then 20

Stop, move to next host-pair 21

2

/* Indirect Exploits */ 23
For each hy € H Do 24
For each h; € H Do 25

If access(e;r) > none Then 2

For each h; € H Do 27

If access(ejj) == admin Then 28

Stop, move to next host-pair 29

If access(ex;) > access(ej;) Then 30

/* Update edge e;; € E */ 31

e;j.access = access(ey;) 32

eij-.chainlD = e 33

Figure 2. findMaximalAccess algorithm.

The algorithm findMaximalAccess examines both
direct exploits and chained sets of exploits (indirect edges).
Lines 9 through 21 attempt for each host to run the best (di-
rect) available exploit against each of it’s neighbors (e.g.,
hosts they can communicate with). In some cases there
may be an exploit that can be run by a host against itself,
these are often referred to as “self—elevation of privilege”
attacks. For example, on several platforms including So-

laris 2.5 through 2.6 the “dtappgather symlink” vulnera-
bility (bugtraqg 131) can be used to overwrite any file
present on the filesystem, regardless of the owner of the
file, because of improper ownership checking. Using this
exploit a malicious user can alter files and permissions to
gain greater access on the affected machine. Thus, the algo-
rithm findMaximalAccess includes (h;, h;) as a valid
host pair. An interesting aspect of the model is that success-
ful exploits carried out on one host can satisfy the precondi-
tions for a different exploit on some other host; resulting in
an attack chain. Our model captures this through the use of
indirect edges—a transitive aspect of an attack chain is con-
sidered. For example, if there exists host A with user level
access to host B, but there also exists admin level access
from host B to host C, then from the penetration testing per-
spective, this is equivalent to A having admin level access
to C. Our access graph would use an indirect edge e, with
access level admin to capture the aforementioned scenario.
The second half of findMaximalAccess, lines 23 — 33,
computes the transitive closure (cf. [4]) of our access graph.
This is done for each host by attempting to improve their
access to another host by using the other exploits that have
been carried out. To improve the algorithm performance,
line 26 is used to test whether—or—not access level of edge
e; is higher than none. Since ¢ and k values do not change
as j changes, the test for e;; edge is moved out of the inner—
most loop. Note that the monotonicity assumption en-
sures that this process will converge, will not involve back-
tracking, and hence is computationally feasible. To help
minimize computational cost, findMaximalAccess has
similar break points to findInitialAccess where the
algorithm will stop checking for new access levels if an
edge already has the highest level of access.

The information to develop this type of access graph can
be discovered directly with vulnerability scanning tools and
resources such as the bugt raqg database. It is helpful to
sort the possible exploits by level of access gained. The
first exploit for which all of the preconditions are satisfied is
guaranteed to be the most powerful exploit available. Once
an edge is added, the algorithm can then be modified to
move on to the next pair of hosts, subsequently reducing
the computational cost.

The computational cost of developing our ac-
cess graph can be roughly analyzed as follows.
findInitialAccess computes the intended ac-
cess levels of the network using a set of trust relationships,
T. In the algorithm, there are as many nodes, n, as there
are hosts in the network, and each host pair is analyzed,
hence making a quadratic number of edges, n2. Therefore
making the required number of computations 7n?. Since
findMaximalAccess uses exploits in its algorithm
to determine the maximal access in a network, it has
a slightly higher computational cost. The first part of

findMaximalAccess examines only the direct edges in
a network, so in the worse case the number of computations
required is X Vn?, where X is the total number of exploits
for all the hosts, V' is the total number of vulnerabilities
present in the network, and n is the total number of hosts.
The second half of findMaximalAccess (indirect
exploits) examines chains of exploits by examining ex-
isting edges in combination with exploits iteratively until
all possible paths have been examined. In the densest
access graph, with all access levels higher than none,
we can compute the transitive closure (¢f [4]) in time
proportional to n3. Therefore the total computational cost
of findMaximalAccess is XVn? + n3.

3. Analysis

Given a stable access graph, we suggest that an analyst
can use this information in a variety of ways to help secure
the network. First, we suggest that an analyst can identify
a host with an unacceptable level of compromise and a so-
lution to fix the problem. This involves, in some but not all
cases, patching the vulnerabilities of the exploit that led im-
mediately to that level of access. The exploit to patch is the
one identified by the edge tags explained above. This is not
true in all cases, which is the rationale for the approaches
in the literature that compute entire attack graphs. In this
paper, however, this is exactly the trade—off we make: we
accept that the analyst may make a suboptimal choice of
which vulnerability to patch, in return for having the com-
putational complexity be polynomial instead of exponential.
Although a complete attack would provide an analyst with
the minimal number of changes required to secure the net-
work, they are extremely expensive to build. Our approach
will present the analyst with an area that needs to be fixed
and since it is computed in polynomial time it provides real—
time results. The approach cannot provide a comprehensive
list of changes that are required in one iteration, however it
can be accomplished through several iterations.

Once the access graph stabilizes, the analyst can then
compute the effect a patch of a vulnerability has on the net-
work access graph by first checking if there exists an equiv-
alent exploit. An equivalent exploit is an exploit that will
result in the same access on the target host and whose all
preconditions are satisfied by the same set of hosts. If this
is the case, the analysis is complete. If not, then we need
to find the next most powerful, applicable exploit for edges
that directly use that exploit. For each effected direct edge,
we will attempt to find the next best access it can achieve
by examining trust relationships and exploits. Then for ev-
ery other edge whose chain depended on the now infeasible
edge is re—examined, as it may no longer be feasible as well.
In each case, the next most powerful exploit is chosen. This
occurs recursively until all affected edges are examined and

the graph stabilizes. Now the analyst can review the new
network configuration to see if it is acceptable.

The access graph developed by an analyst can also be
used as a means of providing near real-time early warning
of potential attacks. Intrusion detection systems (IDS) are
used to help the system administrator detect when an attack
is being carried out in real-time in order to minimize the
damage. Our approach can be computationally run in real—
time to provide early warning of vulnerable areas to prevent
exposure from ever occurring. Given a stable access graph,
an analyst can determine risk areas and secure them to pre-
empt an attack in near real-time.

potential NewMazimalAccess(H, T, E, X, V, ha) : 1
INPUT: A set of host nodes, H 2
INPUT: A set of trust relationships, T’ 3
INPUT: A set of access edges, E 4
INPUT: A set of network exploits, X 5
INPUT: A set of vulnerabilities at each host, V 6
INPUT: A new attacker node, hq 7
OUTPUT: Access graph of hosts H with maximal access s
edges F 9

10

/* Trust Relationships */ 1
For each h; € H Do 12
For each (hq,hi) € T Do 13

If access((ha, hi) € T) > access(eq;) Then 14

/* Update eq; */ 15
eqi-access = access((ha, hi) € T) 16

If access(eqi) == admin Then 17

Stop, move to next host-pair 18

19

/* Direct Exploits */ 20
For each h; € H Do 21
If access(eq;) == admin Then 2
Stop, move to next host-pair 23

For each v; € V' exhibited by host h; Do 24
For each x;, € X against v; Do 25

If all preconditions z; are TRUE Then 26

If access(zy) > access(eqi) Then 27

/* Update edge eq; € E */ 28

eqi-access = access(zy) 29

If access(eqi) == admin Then 30

Stop, move to next host-pair 31

2

/* Indirect Exploits */ 33
For each hy € H Do 34
For each h; € H Do 35

If access(e;x) > none Then 36

For each h; € H Do 37

If access(ejj) == admin Then 38

Stop, move to next host-pair 39

If access(ex;) > access(ej;) Then 40

/* Update edge e;; € E */ 41

e;j.access = access(ey;) %2

ejj-chainlD = e;p, 43

Figure 3. potentialNewMaximalAccess al-
gorithm.

We also suggest that the access graph can be used to con-
duct analysis on the potential impacts of giving different
permissions or credentials to users. For example, this type
of analysis can be done to model insider attacks. To com-
pute this type of analysis, an additional node is used for the
special case attacker along with the attacker’s credentials
and permissions added to the set of trust relationships. Then
the potentialNewMaximalAccess algorithm, shown
in Figure 3, is used to determine what new access levels are
gained.

potentialNewMaximalAccess 1is designed to
leverage the existing access graph when adding additional
hosts to the graph. The algorithm first focuses on adding
any existing trust relationship edges the new host can
achieve. This is accomplished on lines 11 through 18,
where the new attack host attempts to leverage its ac-
cess to other hosts in the network, in absence of apply-
ing any exploits. Next the algorithm computes and pos-
sibly updates any new additional relevant direct and indi-
rect edges. This is accomplished on lines 20 — 43. Once
potentialNewMaximalAccess is finished computing
a new access graph, the analyst can now determine what ad-
ditional accesses a user gains by having a new specific set of
permissions. This information can then be used to modify
the network to minimize the undesired access.

The computational cost saving of running poten-
tialNewMaximalAccess instead of findInitial-
Access and findMaximalAccess is seen when com-
puting new access edges from trust relationships and di-
rect exploits. The new host will attempt to gain new ac-
cess on the other hosts, n. In the worse case, the algo-
rithm will examine all trust relationships, 7', exploits, X,
and vulnerabilities, V', for each host in the network mak-
ing the cost Tn + XVn. The indirect edges are com-
puted in the same fashion as in findMaximalAccess,
thus making the total computational cost of potential-
NewMaximalAccess (Tn+ XVn)+n3. Since the total
computational cost is smaller, it makes sense for an analyst
to use this algorithm rather than to recompute the entire ac-
cess graph from scratch.

Another way our approach can be used to secure a net-
work is by analyzing network policy rules. An analyst can
use a stable access graph to determine policy violations in a
network. Policy rules, such as limiting access to specific ar-
eas, is a typical way system administrators think about safe-
guarding their network. Since our approach meshes well
with this typical mental model, such policy rules can be ex-
pressed as access edges. For example, a network adminis-
trator may not want any outside access to a particular inter-
nal database host. This can be expressed as a set of access
edges (Any, Database, attacker, any, pass through), (Any,
Database, attacker, any, user), (Any, Database, attacker, any,
admin). An analyst, given a set of policy rules expressed as

edges, P, and the computed set of maximal access edges, E,
can determine the policy rules violations using P (] E. An
analyst can not only determine which policy rules are com-
promised, but also can determine the exploit(s) that lead to
these violations by examining the edge’s tags. The edge tags
will identify any direct exploits that were used to compro-
mise the policy rules, as well as, any indirect paths with a
complete trail of how they were achieved. Through several
quick iterations of fixing the problematic exploits, the ana-
lyst can properly prevent policy rules from being violated.

4. Example

To demonstrate how our approach works, we have cre-
ated a small example network. In it, there are three target
hosts. These are a publicly accessible web server, a pub-
licly accessible file server, and a back—end database server.
In addition, there is a host to represent the attacker located
somewhere out on the Internet. The target hosts are pro-
tected by a firewall, which is limiting connectivity between
the Internet, the DMZ, and the internal networks. The fire-
wall rules are shown in Table 1. Finally, each of the hosts
has certain vulnerabilities, which the attacker would like to
be able to exploit. These are shown in Table 2 along with
the corresponding access level gained when these vulner-
abilities are exploited. Data in Table 2 is easily obtained
from vulnerability scanners such as Nessus and Ret ina.

| Source | Destination | Service | Action

All Web http Allow
All Web ftp Allow
All File ftp Allow
Web Database Oracle | Allow
File Database ftp Allow
All All All Deny

Table 1. Firewall Rules

Host | Vulnerability | Bugtrag | Access
Web Apache Chunked-Enc. 5033 admin
Web Wu-Ftpd SockPrintf() 8668 admin
File FTP Bounce 126 pass-thr.
Database | Oracle TNS Listener 4033 admin

Table 2. Host Vulnerabilities

The chief data structure in our model is an access graph.
Consequently, initialization of the model proceeds by cre-
ating a node in the access graph for every host, and then
adding directed edges to represent any initial trust relation-
ships that may exist using findInitialAccess. In this

example our set of host nodes, H, is {Database (d), File
(f), Web (w), Attacker (a)}. Trust relationships, 7', are
represented as (source, destination, access level) and deter-
mined based on the information gathered in network scan-
ning tools. In this example, the trust relationships are: { (d,
f, connectivity), (d, w, connectivity), (f, d, user), (f, w, user),
(w, d, user), (w, f, user), (a, w, connectivity), (a, f, connec-
tivity)}. Lines 9 — 10 of findInitialAccess ensure
that every host pair is examined and lines 11 — 16 ensure
that the appropriate edges are added. In this example, the
first host pair to be examined is (d, d). Since (d, d) does not
have a trust relationship in 7, the algorithm moves to the
next host—pair, namely (d, f). Since (d, f) has a trust rela-
tionship (line 11) that will give Database connectivity
on File (this is higher than no access that is currently in
our graph), an edge will be updated to reflect this on line
14. Using the defined format for edges, it will be marked
as (D_F, Database, File, Trust, Connectivity, -, -). Since the
highest access has not been achieved, the algorithm will ex-
amine the next trust relationship between Database and File.
However since only one exists, the algorithm returns to line
10 to examine the next destination host, Web. The algo-
rithm looks at the first trust relationship and on line 12 de-
termines that Database can have connectivity on Web
and it is higher than no access. The edge (D_W, Database,
Web, Trust, Connectivity, -, -) will be updated on line 14.
This process continues until there are no remaining desti-
nation hosts. Then the algorithm returns to line 9 to get
another source host to conduct the same analysis. Once the
algorithm is completed, the resulting graph for our example
is shown in Figure 4. This graph shows how much access
each host has to each other host prior to any exploitation at-
tempts. Note, that in order to keep the graph readable and to
emphasize our point, only the edges with pass-through
access or higher are included in the diagrams. However, all
edges are still used during the computations.

The next step in the analysis is to determine the best ex-
ploit a host can run against each of its neighbors, which is
accomplished by findMaximalAccess. In this exam-
ple, the algorithm will first start with Database attempting
to attack itself. In this case, the source and destination hosts
are the same. The only exploit available on the Database
is (bugtraqg 4033), which must be done as a remote at-
tack and thus no edge can be added. With the exploits ex-
hausted, the algorithm moves onto the next destination host,
File. Since the edge between Database and File exists, and
is not at admin level of access, the analysis proceeds in an
attempt to improve the current access. File’s only vulnera-
bility is the FTP Bounce exploit (bugt raqg 126). Although
Database has connectivity access on File, it does not
satisfy all the preconditions necessary run the exploit, so the
edge is not updated. Having examined all the exploits avail-
able on File, the algorithm moves to the next destination

(W_F, w, f, Trust, user, _, _)

(F_W, f, w, Trust, usr, _, _)

(W_D, w, d, Trust, user, _, _)

=
89
38!

888

(F_D, f, d, Trust, user, _, _)

Figure 4. Access graph with intended access.

host, Web. Since the edge between Database and Web is not
at admin level of access, the algorithm will attempt to use
one of Web’s two known exploits. Web’s Apache service
is vulnerable to a remote root exploit (bugtraqg 5033).
Database can communicate with this service on Web and by
exploiting this vulnerability, Database gains admin level
control of Web. Since admin is higher than its current ac-
cess level of connectivity, we update the directed edge
between Database and Web, labeled by a route ID (D_-W),
with the vulnerability that was used (Chunk), the access that
was gained (admin), and the bugtrag ID 5033: (D_W, d,
w, Chunk, admin, 5033, -). The chain flag remains empty
because this edge is not part of a chained attack. Since the
edge from Database to Web is at the highest level of access,
there is no need to continue examining any more exploits
and the algorithm breaks out of the For loop on line 13.
This process continues until all the possible source and des-
tination host pairs have been examined.

The second half of findMaximalAccess, lines 23 —
33, calculates access achieved through a series of attacks.
The algorithm works by examining existing edges that can
be leveraged to achieve an attack on another host through
an indirect edge. In essence, the algorithm computes the
transitive closure of the access graph. The algorithm works
by representing all possible host—pair combinations as an
adjacency matrix. Systematically, each edge is examined
and updated only if it is more beneficial to use an indirect
attack path (through some other host(s)) rather than a direct
edge to the target. More specifically, an edge e;; (between
hosts h; and h;) is updated only when it is more beneficial
for host h; to go through some other (intermediate) host Ay,
whose access level to host h; is higher than the current level
of access for the edge e;; (i.e., line 30 of the algorithm). The

(W_W, w, w, Chunk,
admin, 5033, W_D)

(W_F, w, f, Trust, user, _, _)

(F_W, f, w, Chunk, admin, 5033, _)

(W_D, w, d, TNS, admin, 4033, _)

v

(D_F, d, f, Trust, user, _, D_W)

(E_D, f, d, TNS, admin, 4033, F_W)

(D_D, d, d, TNS,
admin, 4033, D_W)

(F_F, f, f, Trust.
user, _, F_W)

Figure 5. Maximal possible access due to all
exploits.

edge label captures this by marking the chainID field of
edge e;; with host hy. In this example, the algorithm first
selects the host pair whose source being examined is also
the destination host corresponding to edge eqq. Since the
current level of access for the edge e4y is only none, the
algorithm tries to improve it. The edge gets updated since
there exists an indirect path to leverage the access by go-
ing through Web host. First, Database gains admin level
access on Web through Chunk (bugtraqg 5033) exploit.
Then, TNS (bugtraqg 4033) is used to gain admin level
access from Web to Database. This is captured by labeling
edge eqq with (D_D, d, d, TNS, admin, 4033, D_W). Since
this is a chained attack, the chain flag is not longer empty
and the last edge used in the chain of exploits, namely D_-W,
isused as chainID flag. The algorithm then tries to lever-
age the access level between the next host pair (Database
and File). Through available trust relationships, vulnerabili-
ties and exploits, the algorithm uses Database’s admin con-
trol of Web to improve access to File. Currently Database
only has connectivity to File. However, by exploit-
ing the trust relationship between Web and File, Database
can leverage its level of access to File to that of user by
using Web as an intermediate host. Lines 31 — 33 cause
the corresponding edge eqy to update its label as (D_F, d,
f, Trust, user, -, D_-W). Since this is also a chained attack,
the chain flag is not longer empty and chainID is marked
with the last edge used in the chain of exploits, namely
D_W. Since access edge between Database and Web is al-
ready admin, the algorithm moves to the next host—pair.
This process will continue until all host pairs have been ex-
amined and no edges can be updated. To optimize the al-

gorithm, two checks are being done. First, line 26 checks
whether—or—not the path through an intermediate host has
an access level higher than none. If the answer is yes,
the inner—most loop is executed since we are at least guar-
anteed connectivity through the intermediate host. If
the answer is no, it makes no sense to continue since there
does not exist an edge to the intermediate host whose access
level is higher than none. Second, lines 28 — 29 quit the
inner—most loop if the currently examined edge is already at
admin level of access. The resulting access graph in Fig-
ure 5 shows the best exploitation paths that can be created
in the example network.

Once the graph stabilizes, the analyst can then examine
the undesirable accesses and look for ways to remedy them.
With so much access being achieved due to the Apache vul-
nerability (bugtraqg 5033) on the Web server, this would
be an obvious place to start remediation efforts. Accord-
ing to the bugt raqg notice, upgrading to a newer version
of the Apache software will resolve this problem. Assum-
ing that this occurs, it will invalidate any direct edges that
terminate on Web and use Apache Chunk vulnerability and
any chained edges that are dependent on the now infeasible
edges. The affected edges (represented as “‘dashed” lines)
are shown in Figure 6.

(W_W, w, w, Chunk,
admin, 5033, W_D)

(W_F, w, f, Trust, user, _, _)

(F_W, f, w, Chunk, admin, 5033, _)

) S

(W_D, w, d, TNS, admin, 4033,
(D_W, d, w, Chunk, admin, 5033,
\----- e

(F_D, f, d, TNS, admin, 4033, F_W)

-
(E_F, f, f, Trust.
user, _, F_W)

(D_D, d, d, TNS,
admin, 4033, D_W)

Figure 6. Effect of patching Apache Chunk
vulnerability.

This example shows how to compute an access graph
using our approach. Through multiple iterations, the net-
work will become secure. Although our approach may not
provide an analyst with a minimal set of changes, it does
produce the same desired goal of a secure network. Since
our approach can be used in real-time analysis because of
its polynomial cost, it is desirable for system administrators

to incorporate this approach into their security arsenal.
4.1. Larger Network Example

To further demonstrate that our approach runs in rea-
sonable time for realistic networks, we ran our tool on
a network comprised of 6 subnets (separated by a bor-
der and internal firewalls) and 87 hosts. The experiment
was conducted on an Intel Pentium 4 (2.0 GHz) with 512
MBytes of RAM running on Fedora Core 3 (Linux 2.6.9).
In our model, there are as many nodes, as there are hosts
in the network. Each host pair is analyzed, hence mak-
ing 872 = 7569 edges in the resulting access graph.
Out of these edges, 2088 had level of access higher than
connectivity. The open source graph visualization
program, graphviz [8], was used to generate graphs for
closer analysis and visualization. First, the system was ini-
tialized with the network’s topology/configuration before
findInitialAccess and findMaximalAccess al-
gorithms were used. Our tool read this information from
couple of files: set of host nodes—H, set of trust re-
lationships between hosts—7T', set of available network
exploits—X, set of vulnerabilities present at each host in
the network—V, and set of firewall rules—F'. This took
1.527 seconds to complete. Then, findInitialAccess
took 0.107 seconds to establish the initial trust relation-
ships between hosts in absence of applying any exploits.
findMaximalAccess took 1.571 seconds to calculate
maximal accesses between all the hosts in the network using
each host’s known exploits. The graphviz tool was then
used to generate access graph for visualization and analysis
purposes.

By way of comparison, a model presented by Sheyner
et al [20] took 5 seconds to execute for a network com-
prised of 3 hosts, but when their sample network was in-
creased to 5 hosts, their tool took over 2 hours to construct
a corresponding attack graph. Similar scalability prob-
lems are encountered by models which construct complete
attack graphs [19, 16, 22], and by alert correlation tech-
niques [13, 14].

5. Related Work

A variety of graph based approaches [2, 25, 16, 22, 23, 6]
to modelling network vulnerabilities have been proposed.
Swiler et al [16, 22] developed one of the initial graph—
based formalisms for analyzing network vulnerabilities.
The requires/provides model of Templeton and Levitt [23]
has been used by many other researchers to model the role
of exploit pre— and post—conditions in chaining exploits to-
gether. Ritchey and Ammann [19] proposed the use of
model checkers to generate attack paths for known exploits.
Ramakrishnan and Sekar [17] used a model checker to carry

out a related analysis in single host systems with respect to
unknown vulnerabilities.

In an extension of the network vulnerability analysis of
Ritchey and Ammann cited above, Jha e al [10, 9] and
Sheyner et al [20, 21] used model checking to analyze at-
tack graphs on heterogeneous networks. They consider in-
terconnected network of computers with known vulnerabil-
ities that attackers can combined in order to attack one or
more hosts. If an attack succeeds, the authors provide a
mechanism to allow the analyst to understand all possible
attack scenarios. Ammann et al [1] introduced a mono-
tonicity assumption and used it to develop a polynomial al-
gorithm to encode all of the edges in an attack tree without
actually computing the tree itself. Noel er al [15] devel-
oped an elegant, though still exponential, algorithm to re-
cursively back substitute exploits with preconditions; the re-
sult is a boolean expression describing the initial conditions
that lead to a compromise. Also, there have been number of
different series of techniques developed [7, 5, 13, 14] that
integrate alert correlation methods in order to build possible
attack scenarios.

As described above, researchers have proposed a variety
of methods to generate attack graphs. The computational
complexity for most of their methods quickly becomes ex-
ponential in the size of the network as network complexity
grows past a few machines. By utilizing penetration tester’s
worst case possible damage perspective, our model’s algo-
rithmic complexity is reduced to polynomial in the size of
the network, and so has the potential of scaling well to prac-
tical, more realistic networks.

To help feed information into our model, number of dif-
ferent research efforts and tools can be used. Analyst can
get vulnerabilities and their associated exploits from well
documented public sites such as bugtraqg. Commercial
tools such as Nessus and Ret ina can be used to identify
known vulnerabilities in a given host or network. Since in-
formation from various tools can be in multiple formats and
each may provide different information, Vigna et al [24]
developed NetMap [12] program for integrating multiple
tools, and for providing information in a more complete and
concise format. The information retrieved by the tool is a
nice complement to developing our model.

6. Conclusions

In this paper, we developed a host—centric approach to
analyzing network vulnerabilities. Our approach is a com-
plement to the attack graph approach, and has the benefit
of being computationally feasible on large networks, albeit
at the expense of not explicitly identifying every possible
attack sequence. Instead, we argue that penetration testers
look for specific degrees of compromise on a given host,
and focusing on that level of compromise is a natural ap-

proach for a system analyst. Our model can be computed
and analyzed in real-time (its algorithmic complexity is
polynomial in the size of the network), it can be used to 1)
provide near real-time early warning of potential attacks,
2) to identify the network policy rules violations and 3) to
conduct analysis on the potential impacts of giving differ-
ent permissions or credentials to users (modelling insider
attacks), thus making it a viable solution for industry.

Acknowledgments

This work was supported in part by the National Science
Foundation under grant CCR—0208848. The work of Joseph
Pamula was partially supported by the Air Force Research
Laboratory, Rome under the grant F30602—-00-2-0512 and
by the Army Research Office under the grants DAAD19-
03-1-0257 and W91 1NF-05-1-0374.

References

[1] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable graph-
based vulnerability analysis. In Proceedings CCS 2002: 9th
ACM Conference on Computer and Commuincations Secu-
rity, pages 217-224, Washington, DC, November 2002.

[2] R. Baldwin. Kuang: Rule based security checking. Tech-

nical report, MIT Lab for Computer Science, Programming

Systems Research Group, May 1994.

Bugtragq. The security vulnerabilities mailing list.

http://www.securityfocus.com.

T. Cormen, C. Leiserson, and R. Rivest. Introduction to Al-

gorithms. McGraw-Hill Book Company and The MIT Press,

1998.

F. Cuppens and A. Miege. Alert correlation in a cooperative

intrustion detection framework. In Proceedings of the 2002

IEEE Symposium on Security and Privacy (S&P '02), May

2002.

[6] J. Dawkins, C. Campbell, and J. Hale. Modeling network
attacks: Extending the attack tree paradigm. In Workshop on
Statistical and Machine Learning Techniques in Computer
Intrusion Detection, Johns Hopkins University, June 2002.
Center for Information Security, University of Tulsa.

[7] H. Debar and A. Wespi. Aggregation and correlation of in-
trusion detection alerts. In Proceedings of Recent Advances
in Intrusion Detection (RAID 2001), pages 85-103, 2000.

[8] Graphviz. Graph visualization software.
http://www.graphviz.org.

[9] S. Jha, O. Sheyner, and J. Wing. Minimization and reli-
ability analysis of attack graphs. Technical Report CMU-
CS-02-109, School of Computer Science, Carnegie Mellon
University, February 2002.

[10] S. Jha, O. Sheyner, and J. Wing. Two formal analyses of
attack graphs. In Proceedings of the 2002 Computer Secu-
rity Foundations Workshop, pages 49-63, Nova Scotia, June
2002.

[11] Nessus. Open source vulnerability scanner project.
http://www.nessus.org.

3

—

4

—_

[5

—

[12]

[13]

(14]

(15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

NetMap. Network modeling, discovery, and analysis.
http://www.cs.ucsb.edu/~rsg/NetMap/index.html.

P. Ning, Y. Cui, and D. Reeves. Constructing attack scenar-
ios through correlation of intrustion alerts. In Proceedings
of the 9th ACM Conference on Computer & Communica-
tions Security, pages 245-254, Washington D.C., November
2002.

P. Ning, D. Xu, C. Healey, and R. S. Amant. Building at-
tack scenarios through integration of complementary alert
correlation methods. In Proceedings of the 11th Annual
Network and Distributed System Security Symposium (NDSS
"04), pages 97-111, February 2004.

S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs. Efficient
minimum-cost network hardening via exploit dependency
graphs. In Proceedings ACSAC 2003: 19th Annual Com-
puter Security Applications Conference, pages 8695, Las
Vegas, December 2003.

C. Phillips and L. Swiler. A graph-based system for
network-vulnerability analysis. In Proceedings of the New
Security Paradigms Workshop, pages 71-79, Charlottesville,
VA, 1998.

C. Ramakrishnan and R. Sekar. Model-based vulnerability
analysis of computer systems. In Proceedings of the 2nd In-
ternational Workshop on Verification, Model Checking and
Abstract Interpretation, September 1998.
Retina. Network security
http://www.eeye.com/html/products/Retina/.
R. W. Ritchey and P. Ammann. Using model checking to
analyze network vulnerabilities. In Proceedings of the 2000
IEEE Symposium on Security and Privacy (Oakland 2000),
pages 156-165, Oakland, CA, May 2000.

O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing.
Automated generation and analysis of attack graphs. In Pro-
ceedings of the 2002 IEEE Symposium on Security and Pri-
vacy (Oakland 2002), pages 254-265, Oakland, CA, May
2002.

O. Sheyner and J. Wing. Tools for generating and analyz-
ing attack graphs. In To appear in Proceedings of Interna-
tional Symposium on Formal Methods for Components and
Objects, Lecture Notes in Computer Science, 2005.

L. Swiler, C. Phillips, D. Ellis, , and S. Chakerian.
Computer-attack graph generation tool. In Proceedings DIS-
CEX ’01: DARPA Information Survivability Conference &
Exposition 11, pages 307-321, June 2001.

S. Templeton and K. Levitt. A requires/provides model
for computer attacks. In Proceedings of the New Secu-
rity Paradigms Workshop, Cork, Ireland, September 2000.
http://seclab.cs.ucdavis.edu/papers/NP2000-rev.pdf.

G. Vigna, E. Valeur, J. Zhou, and R. Kremmerer. Compos-
able tools for network discovery and security analysis. In
Proceedings ACSAC 2002: 18th Annual Computer Security
Applications Conference, Las Vegas, December 2002.

D. Zerkle and K. Levitt. Netkuang - A multi-host con-
figuration vulnerability checker. In Proceedings of the 6th
USENIX Unix Security Symposium, San Jose, CA, 1996.

scanner.

