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Abstract

In this paper, we propose a human action recognition
system suitable for embedded computer vision applications
in security systems, human-computer interaction and intel-
ligent environments. Our system is suitable for embedded
computer vision application based on three reasons. Firstly,
the system was based on a linear Support Vector Machine
(SVM) classifier where classification progress can be im-
plemented easily and quickly in embedded hardware. Sec-
ondly, we use compacted motion features easily obtained
Jfrom videos. We address the limitations of the well known
Motion History Image (MHI) and propose a new Hierar-
chical Motion History Histogram (HMHH) feature to rep-
resent the motion information. HMHH not only provides
rich motion information, but also remains computationally
inexpensive. Finally, we combine MHI and HMHH together
and extract a low dimension feature vector to be used in the
SVM classifiers. Experimental results show that our system
achieves significant improvement on the recognition perfor-
mance.

1. Introduction

Event detection in video is becoming an increasingly im-
portant computer vision application, particularly in the con-
text of activity classification [1]. Event recognition is a
fundamental building block for interactive systems which
can respond to gestural commands and for systems which
analyse body motion, for example in sporting activities and
dance. Other applications include video surveillance and
video indexing.

Aggarwal and Cai [1] present an excellent overview of
human motion analysis. Of the appearance based meth-
ods, template matching has gained increasing interest re-
cently [18, 19, 10, 20, 7, 16, 5, 2, 17, 12, 11, 21, 22, 15].
These methods are based on the extraction of a 2D or 3D
shape model directly from the images, to be classified (or
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matched) against a training data. Motion-based models do
not rely on static models of the person, but on human mo-
tion characteristics. Motion feature extraction is the key
component in these kinds of human action recognition sys-
tems.

In this paper, we aim to build a human action recognition
system based on a linear Support Vector Machine (SVM)
classifier and compact motion features from the videos with
a view to applications in security systems, human-computer
interaction and intelligent environments.

The rest of this paper is organized as follows: In section
2, we give an introduction to related work. In section 3, we
give a detailed description of our new Hierarchical Motion
History Histogram (HMHH) features. In section 4, we give
a brief overview of our SVM-based human action recogni-
tion system. In section 5, experimental results are presented
and compared and finally, we present conclusions.

2. Related work

Bobick and Davis [3] pioneered the idea of temporal
templates [14]. They use Motion Energy Images (MEI) and
MHI to recognize many types of aerobics exercises. They
[4] also proposed the Motion Gradient Orientation (MGO)
to explicitly encode changes in an image introduced by mo-
tion events.

Davis [6] also presented a useful hierarchical extension
for computing a local motion field from the original MHI
representation. The MHI was transformed into an image
pyramid, permitting efficient fixed-size gradient masks to be
convolved at all levels of the pyramid, thus extracting mo-
tion information at a wide range of speeds. The hierarchi-
cal MHI approach remains a computationally inexpensive
algorithm to represent, characterize, and recognize human
motion in video.

Schuldt et al. [18] proposed a method for recognizing
complex motion patterns based on local space-time features
in video and they integrated such representations with SVM
classification schemes for recognition.



The work of Efros et al. [8] focuses on the case of low
resolution video of human behaviours, targeting what they
refer to as the 30 pixel man. In this setting, they propose a
spatio-temporal descriptor based on optical flow measure-
ments, and apply it to recognize actions in ballet, tennis and
football datasets.

Weinland et al. [19] introduced Motion History Volumes
(MHYV) as a free-viewpoint representation for human ac-
tions in the case of multiple calibrated, and background-
subtracted, video. They presented algorithms for comput-
ing, aligning and comparing MH Vs of different actions per-
formed by different people from a variety of viewpoints.

Ke et al. [10] studied the use of volumetric features as an
alternative to the local descriptor approaches for event de-
tection in video sequences. They generalized the notion of
2D box features to 3D spatio-temporal volumetric features.
They constructed a real-time event detector for each action
of interest by learning a cascade of filters based on volu-
metric features that efficiently scanned video sequences in
space and time.

Ogata et al. [16] proposed Modified Motion History Im-
ages (MMHI) and used an eigenspace technique to realize
high-speed recognition. The experiment was performed on
recognizing six human motions.

Wong and Cipolla [20] proposed a new method to recog-
nize primitive movements based on MGO extraction and
used it for continuous gesture recognition [21] later.

Recently, Dalal et al. [5] proposed Histogram of Ori-
ented Gradient (HOG) appearance descriptors for image se-
quences and developed a detector for standing and moving
people in video.

Dollér et al. [7] proposed a similar method where they
use a new spatio-temporal interest point detector to obtain
a global measurement instead of the local features in [8].
Niebles et al. [15] also use spatial-time interest points to
extract spatial-temporal words as their features. Yeo et al.
[22] estimate motion vectors from optical flow and calculate
frame-to-frame motion similarity to analyse human action
in video.

Blank et al. [2] regarded human actions as three dimen-
sional shapes induced by silhouettes in space-time volume.
They adopted an approach for analyzing 2D shapes and gen-
eralized it to deal with volumetric space-time action shapes.

Oikonomopoulos et al. [17] introduced a sparse rep-
resentation of image sequences as a collection of spatio-
temporal events that were localized at points that were
salient both in space and time for human action recognition.

‘We note that, in some of these methods, the motion fea-
tures employed are relatively complex [8, 18, 19, 15, 5,
7, 2, 17, 10, 22], which implies significant computational
cost when building the features. Some of them require seg-
mentation, tracking or other prohibitive computational cost
processes [3, 4, 6, 20, 21, 16, 2], which makes them not

(a) Handwaving sample

(b) MHI of Handwaving

Figure 1. Example of a MHI. (a) is one frame from the original
hand waving action video clip and (b) is the MHI of this action.
The vertical red line in (b) has the pixels from (60, 11) to (60, 80).

suitable for real-time embedded vision applications in the
intelligent environment.

In our previous work[12, 11, 13], we have proposed a
SVM based system based on the simple motion features
MHILMMHI and MGO. They are suitable for embedded
computer vision application, but the overall performance on
real-world (challenging) databases is relatively poor.

In this work, we aim for a solution which uses com-
pact representations, is fast to compute, and yet gives an
improved classification performance over existing compact
and fast methods. We extended the work of [12, 11, 13] by
introducing new motion features and combination methods
with significiently improved performance.

3. Hierarchical Motion History Histogram
(HMHH)

In this section, we introduce the “Hierarchical Motion
History Histogram” (HMHH) and describe the motivation
for it, but first it is necessary to review the motion history
image (MHI).

3.1. Motion History Image

A MHI [3] is a kind of temporal template to compact the
whole motion sequence into one image to represent the mo-
tion. It is the weighted sum of past images and the weights
decay back through time. Therefore, a MHI image contains
the past raw images within itself, where most recent image
is brighter than past ones.

Normally, a MHI H,(u,v,k) at time k and location
(u,v) is defined by the following equation 1:

T, if D(u,v,k)=1
max{0, H,(u,v, k) — 1}, otherwise
()
where the motion mask D(u,v,k) is a binary image ob-
tained from subtraction of frames, and 7 is the maximum
duration a motion is stored. In general, 7 is chosen as the
constant 255, allowing the MHI to be easily represented as a

H,(u,v,k) =1
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Figure 2. D(:, :, :) on the red line of figure 1(b) is shown. Each row
is D(u, v, :) for one fixed pixel (u,v). A white block represents
‘1’ and a black block ‘0’. The horizontal green line is the ‘bina-
rised frame difference history” or ‘motion mask’ of pixel (60, 50)
through time, ie, D(60, 50, :).

gray scale image with one byte depth. Thus a MHI pixel can
have a range of values, whereas a MEI is its binary version,
which can easily be computed by thresholding H, > 0.

An example of a MHI is shown in Figure 1, where (a) is
one frame from the original hand waving action video clip
and (b) is the MHI of this action. It is clear that MHI is an
image, with the same size as the frame, but which retains
some motion information of the action.

In order to have a detailed look at the MHI, we have
selected the pixels on the red line in the MHI of figure 1 (b).
If some action happened at frame & on pixel (u,v), then
D(u,v, k) =1, otherwise D(u, v, k) = 0. The locations of
these pixels are (60, 11), (60, 12),--- , (60, 80). For a pixel
(u, v), the motion mask D(u, v, :) of this pixel is the binary
sequence:

D(u,v,:) = (by,ba, - ,bn), b; €{0,1} 2)

where NV + 1 is the total number of frames.

All of the motion masks on the red line are shown in
figure 2. Each row is D(u,v,:) for one fixed pixel (u,v)
and a white block represents ‘1’ and black block represents
‘0’ in the sequences. The green line is the motion mark
D(60, 50, :) and it has the following sequence 3:

0000000001101000000000000000000000001010000 (3)

From the definition of MHI in equation 1 it can be observed
that, for each pixel (u,v), MHI only retains the most re-
cent action that occurred. That is, only the last ‘1’ in the

(b) HMHHC(:,:,P,)

(c) HMHH(:,:,P;)

(d) HMHHC(:,:,P,)

Figure 3. HMHH example. Four Patterns P;, P>, P3 and P, were
selected. The results were generated from the handwaving action
in figure 1. Each pattern P;, HMHH(:, :, ;) has the same size as
the original frame.

sequence 3 are retained in the MHI at pixel (60, 50). It is
clear that previous ‘1’ in the sequence, when some action
occurred, are not represented. It is also clear that almost all
the pixels have more than one ‘1’ in their sequence. This has
motivated us to design a new representation (the HMHH,
described in the next sub-section) in which all of the infor-
mation in the sequence is used and yet it remains compact
and efficient to use.

3.2. HMHH

We define the patterns P; in D(u, v, :) sequences based
on the number of connected ‘1’s as showed in equation 4.

P =010
P, = 0110

P3 =01110
. “

Py =01---10
M

We denote a subsequence C; by equation 5 and denote
the set of all subsequences of D(u,v,:) as Q{D(u,v,:)}.
Then for each pixel (u,v), we can count the number of
occurrences of each specific pattern P; in the sequence
D(u,wv,:), as shown in equation 6, where 1 is the indica-
tor function.

Cz - bnl 5 b"LQ? ) bm, (5)

HMHH (u,v,P;) =3, 1{c;=P;|C;eQ{D(u,v,)}}
(6)



From each pattern P;, we can build a gray scale im-
age and we call this the Motion History Histogram (MHH),
since the bin value records the number of this pattern type.
With all the patterns P;,¢ = 1...M together, we col-
lectively call them the ‘Hierarchical Motion History His-
togram’ (HMHH) representation.

For a pattern P;, HMHH(:,:, P;) can be displayed as
an image. In figure 3, four patterns Py, P>, P3 and Py are
shown, which were generated from the handwaving action
in figure 1. By comparing the HMHH in figure 3 with the
MHI in figure 1, it is interesting to find that HMHH de-
composes the region of MHI into different parts based on
patterns. Unlike the hierarchical MHI described by Davis
[6], where only small size MHIs were obtained, HMHH
records the rich information of an action. The computa-
tion of HMHH is inexpensive and can be implemented in
the following procedure.

Algorithm (HMHH)
Input: Video clip f (u,v,k), u=1,...,U, v=1,...,V, frame k=0,1,...,.N
Initialisation: Pattern M, HMHH(I:U,1:V,1:M)=0, I(1:U,1:V)=1
For k=1to N (For 1)
Compute: D(:,:k)
For u=1to U (For 2)
For v=11t V (For 3)
If Subsequence C;={D(u,v,1),....D(u,v,k)}=P;
Update: HMHH(u,v,P)=HMHH (u,v,P)+1
End If
Update: I(u,v)
End (For 3)
End (For 2)
End (For 1)
Output: HMHH(1:U,1:V,1:M)

3.3. Motion Geometric Distribution (MGD)

The size of the HMHH representation is a bit large to
present to a classifier and we seek a more compact repre-
sentation, which captures the geometric distribution of the
motion across the image. To do this, we first define the bi-
nary version of a MHH as M H Hj, as shown equation 7.

1, if MHH (u,v,P;) >0

MH Hy(u,v, P;) = { 0, otherwise

(7)

We then sum each row of M H Hj, (for a given pattern,
P;) to give a vector of size V' rows. We obtain another vec-
tor by summing columns to give another vector of size U
rows. Thus using all M levels in the binarised MHH hier-
archy, we obtain a ‘Motion Geometric Distribution” (MGD)

vector of size M x (U + V'), which is relatively compact,
when compared to the size of the original HMHH and MHI
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Figure 4. SVM based human action recognition system.

features. The MGD vector can thus be represented by the
following equation 8:

MGD = {Y, MHH,(u,v, ), Y, MHHy(u,v, P;)}
1=1,2,--- ’M
(®)

4. SVM based human action recognition

Meng et al. [12] built a fast human action recognition
system based on a linear SVM and simple motion features.
In this architecture, a linear SVM was chosen because it has
historically shown very good performance in lots of real-
world classification problems and also can deal with very
high dimensional feature vectors. Three fundamental mo-
tion features MHI, MMHI and MGD were tested in the sys-
tem with varying levels of performance.

We make a generalization for the system in [12] , allow-
ing it to handle more motion features. The overall architec-
ture of the human action system is shown in figure 4. The
training part is done off-line to get SVM parameters. The
classification part is just a inner product between SVM pa-
rameters and motion feature obtained from testing video.

5. Experimental results

For the evaluation, we use a challenging human action
recognition database, recorded by Christian Schuldt [18]. It
contains six types of human actions (walking, jogging, run-
ning, boxing, hand clapping and hand waving) performed
several times by 25 subjects in four different scenarios: out-
doors (s1), outdoors with scale variation (s2), outdoors with
different clothes (s3) and indoors (s4). This database con-
tains 2391 sequences. Figure 5 shows the examples in each
type of human action and their associated MHI and HMHH
motion features.

We performed our experiments in the same manner as in
papers [10, 12, 11, 13]. In all our experiments, the same
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Figure 5. The six database human actions and associated MHI, HMHH features: (a) walking (b) jogging (c) running (d) boxing (e)

(1) Video

handclapping (f) hand-waving.

parameters were used. The threshold in frame differenc-
ing was chosen as 25 and 7 was chosen as 255 for MHI
construction. The number of the patterns was chosen to be
M = 5 for HMHH computation. The size of the MHI is
160 x 120 = 19200, which is same width as that of the
frames in the videos. In our experiment, the SVM is imple-
mented using the SV M light software [9].

We experimented with different HMHH and MHI based
features in our system. In order to avoid a very high dimen-
sional HMHH, we constructed a small sized HMHH_S by
averaging the pixels in an 8 x 8 block, so that the size of all
HMHH feature vectors is reduced to 20 x 15 x 5 = 1500.
Our MGD feature also has a small size of (160+120) x5 =
1400. In [13], a histogram of MHI was combined with Haar
Wavelet Transform (HWT) of MHI features and good re-
sults obtained, when compared to other approaches on the
same dataset. Here, we combine the histogram of MHI and
MDG, which has a size of 255 + 1400 = 1655. Table 1
showed the confusion matrix. The confusion matrices show
the motion label (vertical) versus the classification results
(horizontal). Each cell (4, §) in the table shows the percent-
age of class 7 action being recognized as class j. Then trace
of the matrices show the percentage of the correctly recog-
nized action, while the remaining cells show the percentage
of misclassification.

We compared our results with other methods on this
challenging dataset and summarize the correctly classified

(3) HMHH(:,;,P,) (4) HMHH(,:,P;) (5) HMHH(:,:,P3) (6) HMHH(:,;,P) (7)HMHH(:,:,Ps)

] | Walk [ Jog [ Run | Box | Clap | Wave |
Walk | 66.0 | 31.3 | 0.0 0.0 2.1 0.7
Jog 139 | 62.5 | 21.5 1.4 0.0 0.7
Run 2.1 16.7 | 799 | 0.0 0.0 1.4
Box 0.0 0.0 00 | 888 | 2.8 8.4
Clap 0.0 0.0 0.0 35 | 93.1 3.5
Wave 0.0 0.0 0.0 1.4 6.9 91.7

Table 1. MGD & Hist. of MHI’s confusion matrix, trace=481.9

rates in table 2. From this table, we can see that HMHH has
made a significant improvement in comparison with MHI.
Furthermore, MGD gives better performance than HMHH
itself. The best performance, which gives significantly bet-
ter classification results, came from the combined feature
based on the histogram of MHI [13] and MGD.

It should be mentioned here that some results avoid the
difficult part of the dataset (subset 2, outdoor with scale
variation) [7, 22] and some of them [18, 15, 22] did an
easier task of classifying each complete sequence (contain-
ing 4 repetitions of same action) into one of six classes
while our method was trained as the same way as papers
[10, 8, 12, 11, 13]; that is to detect a single instance of each
action within arbitrary sequences in the dataset.



Method | Rate(%) |
SVM on local features [18]« 71.7
Cascade of filters on volumetric features[10] 62.9
SVM on MHI [12] 63.5
SVM_2K on MHI & MMHI [11] 65.3
SVM on HMHH_S 69.6
SVM on MGD 72.1
SVM on HWT of MHI & Hist. of MHI[13] 70.9
SVM on MGD & Hist. of MHI 80.3
SVM on spatio-temporal feature [7]A 81.2
Learning on spatial-temporal words [15] 81.5
KNN on NZMS [22]Ax 86.0

Table 2. Overall correctly classified rate (%) for all the methods on
this open, challenging dataset. Some of them didn’t use the difficut
part of dataset(A) while some of them did an easier task(x).

6. Conclusion

In this paper, we have addressed the limitations of the
MHI representation and proposed a new HMHH feature,
which keeps the whole historical motion information in the
video. HMHH remains a computationally inexpensive fea-
ture to represent, characterize motion in video.

We extract a basic MGD feature vector from HMHH and
apply it in an SVM based human action recognition sys-
tem. In comparison with methods in [18, 10, 7, 15, 22], our
feature vectors are computationally inexpensive. In com-
parison with methods in [12, 11, 13] methods, we used a
similarly inexpensive and fast method, but we obtained a
significant improvement on recognition performance.

For future work,we have developed a FPGA based real-
time video system and the algorithms will be modified and
optimized based on the hardware limitations such as mem-
ory, speed and storage space. We will also consider its po-
tential applications in hand gesture recognition, facial ex-
pression classification and video characterization.

References

[1] J. K. Aggarwal and Q. Cai. Human motion analysis: a re-
view. Comput. Vis. Image Underst., 73(3):428-440, 1999.

[2] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri.
Actions as space-time shapes. In ICCV, pages 1395-1402,
2005.

[3] A. FE Bobick and J. W. Davis. The recognition of human
movement using temporal templates. [EEE Trans. Pattern
Anal. Mach. Intell., 23(3):257-267, 2001.

[4] G. R. Bradski and J. W. Davis. Motion segmentation and
pose recognition with motion history gradients. Mach. Vis.
Appl., 13(3):174-184, 2002.

[5] N. Dalal, B. Triggs, and C. Schmid. Human detection using
oriented histograms of flow and appearance. In ECCV (2),
pages 428-441, 2006.

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

[22]

J. W. Davis. Hierarchical motion history images for recog-
nizing human motion. In IEEE Workshop on Detection and
Recognition of Events in Video, pages 39-46, 2001.

P. Dolldr, V. Rabaud, G. Cottrell, and S. Belongie. Behavior
recognition via sparse spatio-temporal features. In VS-PETS,
October 2005.

A. A. Efros, A. C. Berg, G. Mori, and J. Malik. Recognizing
action at a distance. In /CCV, pages 726733, 2003.

T. Joachims. Making large-scale SVM learning practical.
In Advances in Kernel Methods - Support Vector Learning,
USA, 1999. MIT-Press. Oikonomopoulos, Antonios and Pa-
tras, loannis and Pantic, Maja eds.

Y. Ke, R. Sukthankar, and M. Hebert. Efficient visual event
detection using volumetric features. In /CCV, pages 166—
173, 2005. Beijing, China, Oct. 15-21, 2005.

H. Meng, N. Pears, and C. Bailey. Human action classifica-
tion using SVM_2K classifier on motion features. In LNCS,
volume 4105, pages 458465, Istanbul, Turkey, 2006.

H. Meng, N. Pears, and C. Bailey. Recognizing human ac-
tions based on motion information and SVM. In Proceedings
of 2nd IET International Conference on Intelligent Environ-
ments, pages 239-245, Athens, Greece, 2006. IET.

H. Meng, N. Pears, and C. Bailey. Motion information com-
bination for fast human action recognition. In Proceedings
of 2nd International Conference on Computer Vision The-
ory and Applications (VISAPP07), Barcelona, Spain., March
2007.

T. Moeslund, A. Hilton, and V. Kruger. A survey of advances
in vision-based human motion capture and analysis. Comput.
Vis. Image Underst., 103(2-3):90-126, November 2006.

J. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning
of human action categories using spatial-temporal words. In
BMVCO06, page I11:1249, 2006.

T. Ogata, J. K. Tan, and S. Ishikawa. High-speed human
motion recognition based on a motion history image and an
eigenspace. [EICE Transactions on Information and Sys-
tems, E89(1):281-289, 2006.

A. Oikonomopoulos, I. Patras, and M. Pantic. Kernel-based
recognition of human actions using spatiotemporal salient
points. In Proceedings of CVPR workshop 06, volume 3,
pages 151-156, June 2006.

C. Schuldt, I. Laptev, and B. Caputo. Recognizing human
actions: a local SVM approach. In /CPR, Cambridge, U.K,
2004.

D. Weinland, R. Ronfard, and E. Boyer. Motion history vol-
umes for free viewpoint action recognition. In /IEEE Interna-
tional Workshop on modeling People and Human Interaction
(PHI’05), 2005.

S.-F. Wong and R. Cipolla. Real-time adaptive hand motion
recognition using a sparse bayesian classifier. In /ICCV-HCI,
pages 170-179, 2005.

S.-F. Wong and R. Cipolla. Continuous gesture recognition
using a sparse bayesian classifier. In ICPR (1), pages 1084—
1087, 2006.

C. Yeo, P. Ahammad, K. Ramchandran, and S. Sastry.
Compressed domain real-time action recognition. In /EEE
International Workshop on Multimedia Signal Processing
(MMSP) - 2006, Washington, DC, USA, 2006.



