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Abstract— It has long been assumed that for effective human-
robot teaming, it is desirable for assistive robots to infer the
goals and intents of the humans, and take proactive actions
to help them achieve their goals. However, there has not
been any systematic evaluation of the accuracy of this claim.
On the face of it, there are several ways a proactive robot
assistant can in fact reduce the effectiveness of teaming. For
example, it can increase the cognitive load of the human
teammate by performing actions that are unanticipated by the
human. In such cases, even though the teaming performance
could be improved, it is unclear whether humans are willing
to adapt to robot actions or are able to adapt in a timely
manner. Furthermore, misinterpretations and delays in goal
and intent recognition due to partial observations and limited
communication can also reduce the performance. In this paper,
our aim is to perform an analysis of human factors on the
effectiveness of such proactive support in human-robot teaming.
We perform our evaluation in a simulated Urban Search
and Rescue (USAR) task, in which the efficacy of teaming
is not only dependent on individual performance but also on
teammates’ interactions with each other. In this task, the human
teammate is remotely controlling a robot while working with an
intelligent robot teammate ‘Mary’. Our main result shows that
the subjects generally preferred Mary with the ability to provide
proactive support (compared to Mary without this ability). Our
results also show that human cognitive load was increased with
a proactive assistant (albeit not significantly) even though the
subjects appeared to interact with it less.

I. INTRODUCTION

The efficacy of teaming [8] is not only dependent on

individual performance, but also on teammates’ interactions

with each other. It has long been assumed that for effective

human-robot teaming, it is desirable for assistive robots to

infer the goals and intents of the humans, and take proactive

actions to help them achieve their goals. For example, the

ability of goal and intent recognition is considered to be

required for an assistive robot to be socially acceptable

[22], [5], [16], [2], [24]. This claim is also assumed in

other human-robot teaming tasks, such as collaborative man-

ufacturing [25] and urban search and rescue (USAR) [23].

However, there has not been any systematic evaluation of the

accuracy of this claim.1
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Fig. 1. Illustration of our USAR task in which the human teammate
remotely controls a robot while working with an intelligent robot ‘Mary’.
We intend to compare Mary with and without a proactive support ability.

There are several ways a proactive robot assistant can

in fact reduce the effectiveness of teaming. For example,

it can increase the cognitive load of the human teammate by

performing actions that are unanticipated by the human. In

such cases, even though the teaming performance could be

improved, it is unclear whether humans are willing to adapt

to robot actions or are able to adapt in a timely manner.

Furthermore, misinterpretations and delays in goal and intent

recognition due to partial observations and limited commu-

nication can also reduce performance. For example, consider

a case in which you want to make an omelet and need eggs

to be fetched from the fridge. Even if an assistive robot has

started to fetch the eggs (after recognizing your intent), you

may decide that the robot is too slow and fetch the eggs

by yourself although you could improve the performance by

letting the robot fetch the eggs while you preheat the pan.

On the other hand, adapting to the robot’s actions in such

scenarios to improve teaming performance can increase the

human cognitive load, which leads to unsatisfactory teaming

experience. These conflicting factors make us investigate the

utility of Proactive Support (PS) in human-robot teaming.

In this paper, we start this investigation in a simulated

USAR task with a general way to implement the proactive

support ability on a robot in similar scenarios. Previous work

[13] that investigates the effects of this ability is restricted

to human-robot teaming with more proximal interactions.

Meanwhile, to maintain the generality of this task, we only

introduced a few necessary simplifications. In our task,

the human teammate is remotely controlling a robot while

working with an intelligent robot ‘Mary’ (as shown in Fig.

1). The human-robot team is deployed during the early phase



of an emergency response where they need to search, rescue

and provide preliminary treatment to casualties.

This USAR scenario considers many of the complexities

(e.g., partial observations) that often occur in real-world

USAR tasks and we intend to learn whether these complex-

ities influence the overall evaluation of the intelligent robot

(i.e., Mary) with a proactive support (PS) ability, compared

to Mary without this ability. We also aim to investigate

the various trade-offs, e.g., mental workload and situation

awareness through this human factors study.

II. RELATED WORK

There are many early works on goal and intent recognition

(e.g., [15], [14], [4]). More recently, a technique to compile

the problem of plan recognition into a classical planning

problem is provided [20]. There is also a rich literature

in the area of plan adaptation, which handles how robots

plan under human-introduced constraints (e.g., social rules

[24]). Using simple temporal networks (STNs), there has

been development in efficient dispatchers that perform fast,

online, least-commitment scheduling adaptation [6]. There

are also a number of adaptation techniques that focus on

integrated planning and execution [7], [21], [1].

There are existing systems that combine both goal and

plan recognition and plan adaptation to achieve a proactive

support ability on robots. In [13], [12], the authors propose a

cost based anticipatory adaptive action selection mechanism

for a robotic teammate to make decisions based on the

confidence of the action’s validity and relative risk. However,

only repetitive tasks are considered and the task settings are

for human-robot teaming with more proximal interactions

compared to that in USAR scenarios. In [5], a human-

aware planning paradigm is introduced where the robot only

passively interacts with the human by avoiding conflicts with

the recognized human plan. In USAR scenarios, it is also

desirable for the robot to proactively provide support to the

human. A recent paper proposes a planning for serendipity

paradigm in which the authors investigate planning for

stigmergic collaboration without explicit commitments [3].

In [17], the authors propose a unified approach to concurrent

plan recognition and execution for human-robot teams, in

which they represent alternative plans for both the human

and robot, thus allowing recognition and adaptation to be per-

formed concurrently and holistically. However, the limitation

is that the plan choices must be specified a priori instead of

dynamically constructed based on the current goal and intent

of the human. This renders the approach impractical for real-

world scenarios since even moderate number of choices (i.e.,

branching factors) can make the approach infeasible.

Part of our goal is to provide a general way to achieve

a proactive support ability in scenarios that are similar to

our USAR task, in which the task is composed of subtasks

with priorities that are dependent on the current situation.

Note that a framework to achieve general proactive support

can be arbitrarily complex depending on the task and level

of support that is needed. In our work, similar to [23], we

use the plan recognition technique in [20] and then feed its

outputs to a planner which determines the priorities of the

subtasks and computes a plan accordingly. The main goal of

this work is to start the investigation of humans factors for

proactive support in various human-robot teaming scenarios.

Regarding the benefits of automation in human-robot

teaming, it is well known that automation can have both

positive and negative effects on human performance. Empir-

ical proofs have been provided in four main areas: mental

workload, situation awareness, complacency and skill degra-

dation [19]. We also aim to study the influence of proactive

support on these factors in our USAR task.

III. BACKGROUND

A. USAR Task Settings Overview

In our simulated USAR task, the human and intelligent

robot (i.e., Mary) share the same set of candidate goals

(i.e., subtasks), and the overall team goal is to achieve

them all (which will be distributed among the human and

Mary). These goals are not independent of each other. In

particular, the priorities of goals are dependent on which

goals are achieved in the current situation. Given these task

settings, we aim to investigate the influence of a proactive

support (PS) ability on a robot. We compare two cases:

Mary (i.e., the intelligent robot) has a PS ability and Mary

does not have this ability. During the task execution, in

both cases, Mary chooses her own goal to maximize the

teaming performance accordingly to the human’s current

goal. When Mary does not have a proactive support ability,

she can only know the human’s current goal when the human

explicitly communicates it to her. When Mary has this ability,

if the human does not inform Mary of his/her current goal,2

Mary can infer it based on her observations. To summarize,

Mary in both cases can adapt to human goals while Mary

with a PS ability can adapt in a more “proactive” fashion

(hence proactive support). Finally, in both cases, Mary has

an automated planner (see a brief description below) that

can create a plan to achieve her current goal and she can

autonomously execute the plan.

B. Automated Planner

In our settings, a task or subtask is compiled into a

problem instance for an automated planner to solve. The

planner creates a plan by connecting an initial state to a goal

state using agent actions. A planning problem can be spec-

ified using a planning domain definition language (PDDL)

[11]. Depending on the task, there are many extensions of

PDDL (e.g., [9], [10]) that can incorporate various modeling

requirements. We use the extension of PDDL described in

[9] to model the USAR domain. Using an automated planner

allows an agent to reason directly about the goal. Human

factors study on the incorporation of automated planners for

human-robot teaming has appeared previously in [18].

2In both cases, when the human (optionally) informs Mary of his/her
current goal, it is used directly by Mary assuming that this information is
accurate.



(a) (b)

Fig. 2. (a) Simulated Environment for our USAR task. (b) The environment
(from robot X’s cameras) that the human subject actually sees.

C. Goal and Intent Recognition

To recognize the human intents and goals, assuming that

humans are rational, we use the technique in [20]. In our

task, Mary maintains a belief of the human’s current goal

(denoted by GX ) as a hypothesis goal set ΨX , in which

ΨX corresponds to all remaining candidate goals. Given a

sequence of observations θ that are obtained periodically

from sensors (on Mary or fixed in the environment), the

probability distribution Θ over G 2 ΨX is recomputed using

a Bayesian update P(G|θ) ∝ P(θ |G), where the prior is

approximated by the function P(θ |G) = 1/(1+ e�β∆(G,θ))
in which ∆(G,θ) = Cp(G�θ) � Cp(G+θ). Cp(G+θ) and

Cp(G�θ) represent the cost of the optimal plan to achieve G

with and without the observation of θ , respectively. Having

known the probability distribution Θ, the goal that has the

highest probability is assumed to be the current goal of

the human. This goal is correspondingly taken out of the

consideration of Mary and Mary then adapts her current

goal if necessary (from her remaining goals) to optimize

the teaming performance. Mary then makes a plan using

an automated planner described previously to achieve her

current goal.

IV. STUDY DESIGN

A. Hypotheses

We aim to investigate the following hypotheses:

• H1) Mary with a proactive support (PS) ability enables

more effective teaming (e.g., less communication and

more efficiency) in our task settings.

• H2) Mary with a PS ability increases human mental

workload (e.g., due to unanticipated actions from Mary).

In our study, we also make efforts to maintain the task

settings as general as possible. For a discussion on the

generalization of the results, refer to the conclusion section.

B. Environment

Fig. 2(a) shows the simulated environment (created in

Webots) in our USAR task, which represents the floor plan

of an office building where a disaster occurs (e.g., a fire). Fig.

2(a) is the visual feedback from the remotely controlled robot

Fig. 3. Example puzzle problem used in our USAR task.

(i.e., robot X in Fig. 1) that the human subject actually sees.

The environment is organized as segments, and each segment

is identified by a unique label (e.g., R01). Furthermore, the

segments are grouped into four regions: medical kit storage

region (represented by segments starting with ‘S’), casualty

search region (starting with ‘R’), medical room region where

treatment (or triage) is performed (starting with ‘M’), and

the hallway region (starting with ‘H’). Each region can be

accessed via a door that connects to a hallway segment and R

regions are further divided into rooms that are also connected

by doors. The doors are initially closed and can be pushed

open by the robots. The doors remain open after being

pushed open. Both the remotely-controlled robot (denoted by

‘X’) and Mary work inside this environment. There are two

networked CCTV cameras that Mary can obtain observations

from and the field of views of these cameras are also shown

in Fig. 2(a).

C. Task Settings

The overall team goal is to find and treat all the casualties

in the environment, which includes searching for casualties in

the R regions, carrying casualties to medical rooms, fetching

medical kits and performing triages. In Fig. 2(a), the two

colored boxes (i.e., red and blue) in R regions represent

casualties and the white boxes in S regions represent medical

kits.

We impose two constraints on the agents: 1) either robot

X or Mary can carry only one medical kit or one casualty

at one time. 2) The triage can only be performed by robot

X for which the human subject needs to solve a few puzzle

problems (see Fig. 3 for an example) in 2 minutes. Out of

the two casualties, we assume that one is critically injured

(i.e., the red box in R02) who should be treated immediately

after being found. The other one is lightly injured (i.e., the

blue box in R05). It is also assumed that a medical room

can only accommodate one casualty and each medical kit

can only be used towards one casualty.

D. Interface Design

In this USAR task, the human subject needs to manually

control robot X while interacting with Mary. To create a more

realistic USAR environment, the human subject only has

access to the visual feeds from robot X . In other words, the

human subject can only observe the part of the environment

from robot X’s “eyes” (i.e., two cameras, one mounted above

the other).

The interaction interface between the human subject and

robot X is shown in Fig. 4. More specifically, robot X

displays a list of applicable actions that it can perform given



Fig. 4. Interaction interface between the human subject and robot X .

the current state. The human subject interacts with robot X

to choose an action from the list of applicable actions. When

the chosen action is completed by X , the interaction interface

displays the next set of actions. This process is repeated

until the task is finished (i.e., all the casualties are found

and treated). Following are the list of all possible action

types that the human can choose. Compare the list with that

shown in Fig 4. This interface also allows the human subject

to optionally inform Mary about his/her current goal so that

Mary can remove it from consideration and adapt her goal

accordingly when necessary.

• move X H01 H02 - Move robot X from hallway

segment H01 to hallway segment H02.

• pushdoor X R01 R02 - Push the door between

room R01 and room R02.

• grab medkit X S01 - Grab the medical kit from

storage room S01.

• carry casualty X R01 - Carry the casualty at

room R05.

• drop medkit X M01 - Drop the medical kit in med-

ical room M01.

• lay down casualty X M01 - Lay down the casu-

alty in medical room M01.

• perform triage X M01 - Perform medical triage

in medical room M01.

• Press ‘i’ - Inform Mary about the human subject’s

current or intended goal. (A list of all remaining candi-

date goals will be displayed to be chosen.)

Note that these actions are modeled to respect the

constraints that we discussed in Sec. IV-C. For ex-

ample, lay down casualty X M01 is only available

when there is no other casualties in medical room M01;

perform triage X M01 is only available when there is

a casualty and a medical kit in M01.

The interaction interface between the human subject and

Mary is shown in Fig. 5. This interface is first used by Mary

to update the human subject about her current goal. When

the human subject wants to take over the goal that Mary is

Fig. 5. Interaction interface between the human subject and Mary.

Fig. 6. Experimental setup in the USAR task

acting to achieve, this interface is also used to display the

choices (to be selected by the human subject) for Mary to

terminate her current (uncompleted) goal.

E. Study Setup and Flow

The study was set up in our lab space, similar to that

shown in Fig. 6. Before the beginning of the task, the human

subject is given the floor plan without the annotations of

the casualties (i.e., colored boxes). Furthermore, the human

subject is informed that there are two casualties (that cannot

move) and they are located inside the casualty search regions.

However, no information about their exact locations is pro-

vided (i.e., which rooms the casualties are in). The human

subject is also informed that the casualty that is represented

by a red box is seriously injured, and should be treated as

soon as possible. Note that Mary has no more information

than the human subject. The remotely controlled robot X and

Mary start in the same segment H01, which is specified by

the green arrows.

Subjects were assigned alternately to team up with either

Mary with a PS ability or without. Each subject is only



allowed to take part in one experimental trial to avoid perfor-

mance fluctuation due to experience. All subjects completed

the consent form before participating in the study. Prior to

each run, the subject was asked to read the instruction mate-

rials that contain the background knowledge and the above

information. The subject was then exposed to the simulator

and the interface and was asked to experiment with them to

gain some familiarity. The subject was asked to collaborate

with Mary to find and treat the two casualties. After the trial,

the subject was asked to complete a questionnaire (in Likert

scale).

F. Example Scenario

Next, we walk through an example scenario in our USAR

task. Consider a scenario in which the human subject found

the critically injured casualty and the current goal (GX )

of the human subject becomes ‘bring the critically injured

casualty to the top medical room in Fig. 2(a):

goal(X,‘bring the critically injured

casualty to the top medical room’) =

{ (at critically injured casualty M01)}

However, assume that the human subject failed to inform

Mary of his/her current goal. Also, assume the following

states for the medical kits: {(at med kit 1 S01),

(at med kit 2 S04)}, and that Mary at that time is

still searching the casualties in the other casualty search

region. When robot X enters the field of view of the

CCTV cameras the action and state of X are detected by

the cameras and are fed to Mary as observations. In this

example, some of robot X’s actions, such as {(move X

H02 H03), (move X H04 H08)} will be observed by

Mary, which triggers the goal and intent recognition process.

After computing the probability distribution Θ for all goals

in the candidate goal set for the human, the goal that has the

higher probability (and falls above a pre-specified threshold)

is assumed to be the current goal of the human (GX ), which

in this case is ‘bring the critically injured

casualty to the top medical room’. Mary now

knows that the critically injured casualty has been found and

can remove this goal from her own candidate goal set.

Furthermore, given this information, Mary recomputes

the priorities of the remaining goals in the current situation

and adapts her goal accordingly. In particular, although the

searching task is still undergoing, Mary realizes that in this

case helping the human subject by bringing a medical kit to

M01 would achieve a better utility for the team. Note that

should the casualty found by the human subject be lightly

injured instead, Mary would decide to continue her search;

also, should the casualty found by the human subject be

lightly injured but the critically injured casualty has already

been treated, Mary would choose to help the human fetch

the medical kit. Note also that in the case that Mary does

not have a PS ability, the above update can only occur in a

timely manner if the human subject chooses to inform Mary

about his/her current goal. In our running example, the goal

that Mary chooses is:

goal(GM,‘bring med kit 1 to the top

medical room’) =

{(at med kit 1 M01)}

Having chosen her current goal GM , Mary then uses an

automated planner to generate a plan (ΠM) that achieves the

goal. Meanwhile, Mary will update the human subject with

her current goal. Assuming that Mary is at segment H01 at

the time, the following plan would be generated:

ΠM = h(pushdoor Mary H01 S03),

(move Mary H01 S03),

(move Mary S03 S04),

(grab medkit Mary S04),

(move Mary S04 S03),

(move Mary S03 H01),

(move Mary H01 H02),

(move Mary H02 H03),

(move Mary H03 H04),

(move Mary H04 H08),

(pushdoor Mary H08 M02),

(move Mary H08 M02),

(move Mary M02 M01),

(drop medkit Mary M01)i

Note that various other scenarios can arise in this task,

which may not always favor Mary with a PS ability. For

example, the human subject may decide to deliver the

medical kits to the medical rooms even before finding any

casualties. or the human subject may walk robot X to the

medical room empty-handed. These can confuse the goal

and intent recognition process on Mary and lead to reduced

teaming performance. Although not all of these scenarios

occurred during our experimental study, they demonstrate

the conflicting factors for proactive support in human-robot

teaming tasks. It is also clear that these tradeoffs are de-

pendent on the task and robot settings, which require more

investigations in future work.

V. RESULTS

The study was performed over 4 weeks and involved

16 volunteers (9 males, 7 females), Volunteers have ages

with M = 24 and SD = 1.15. Subjects were recruited from

students on campus. Due to the requirement of understanding

English instructions, subjects must indicate that they are

confident with English communication skills before taking

part in the study. We also asked about the subject’s familiarity

with computers (M = 6.56, SD = 0.63), robots (M = 4.19,

SD = 0.91), puzzle problems (M = 3.19, SD = 0.83) and

computer gaming (M = 4.69, SD = 1.49), in seven-point

scales after the study (with 1 being least familiar and 7

being most familiar). The subjects reported familiarity with

computers, but not so much with robots, puzzle problems or

computer gaming.



Fig. 7. Results for objective performance and measures. ⇤ denotes p< 0.05,
⇤⇤ denotes p < 0.01, ⇤⇤⇤ denotes p < 0.001.

A. Measurement

A post-study questionnaire is used to evaluate three of

four areas that are often used to assess automated systems:

mental workload, situation awareness, and complacency [19].

Furthermore, we also use the questionnaire to evaluate

several psychological distances between individuals and the

environment (including robots), which include immediacy,

effectiveness, likability and trust. Immediacy describes how

realistic the subject felt about the task and Mary. Effective-

ness describes the subject’s feeling about how effective the

subject considered Mary as a teammate. Likability describes

how likable the subject felt about Mary. Trust describes

whether the subject felt that Mary was trustworthy. We also

collect the subjects’ opinions on whether they considered that

Mary should be improved (i.e., improvability).

One way fixed-effects ANOVA tests were performed to

analyze the objective performance and measures, as well as

the subjective questions. The fixed factor in the tests is the

type of Mary, the intelligent robot, which is either Mary with

a PS ability or without (denoted by No-PS).

B. Objective Performance

We first investigate the objective performance and mea-

sures. The overall performance (presented in in Fig. 7) is

evaluated based on the total time taken for the team to find

and treat the critically injured casualty, and the total time

taken for the team to finish the entire task (i.e., find and

treat both casualties). It is interesting to observe that while

there is a significant difference between PS and No-PS for

the time taken to complete the entire USAR task (F(1,14) =
8.34, p < 0.01), we do not find any significant difference for

treating the critically injured casualty. This may be due to the

fact that humans are proficient at prioritizing goals. However,

this may negatively impact the teaming performance since

the subject may more often choose to neglect the help of

Mary when he/she does not feel comfortable with entrusting

Mary with important goals. This conjecture is also consistent

with the results in Fig. 8, which is discussed next.

We provide a more detailed analysis of task performance

in Fig. 8. We compare the average number of times the

subject stopped Mary from executing her current goal and

the average number of times the subject had goal conflicts

with Mary. The results show that these numbers are generally

Fig. 8. Results for task performance and measures. ⇤ denotes p < 0.05,
⇤⇤ denotes p < 0.01, ⇤⇤⇤ denotes p < 0.001.

smaller for the PS case but we did not find any significant

difference. However, we did find a significant difference for

the average number of times the subject informed his/her

goal to Mary (F(1,14) = 18.27, p < 0.001). This shows that

the subject felt less necessity to inform Mary in the PS

case. There is also a significant difference in the number

of goal updates the subject received from Mary (F(1,14) =
7.58, p < 0.05), This confirms that Mary changed her goal

less frequently in the PS case.

We also compare the accuracy of the puzzle problems for

the triage operations. To discourage subjects from guessing

the answers to the puzzle questions, they were told that

each incorrect answer would give them negative scores.

Our analysis, interestingly, shows a significant difference

on this performance measure (F(1,14) = 4.64, p < 0.01),

which suggests that the human mental workload may have

been reduced in the PS case, which is not consistent with

the second hypothesis (i.e., H2). Furthermore, as we show

in the evaluation of subjective measures, this interpretation

contradicts with the results there.

C. Subjective Performance

In this section, we investigate the subjective performance

based on the questionnaire (23 questions in total). For these

23 questions, we categorize them into 8 different (partially

overlapping) groups. This includes 3 groups for evaluating

automation: mental workload (3 items, Cronbach’s α =
0.713), situation awareness (1 item), and complacency (2

items, Cronbach’s α = 0.769). Furthermore, we also evaluate

several psychological distances between the human subject

and environment (including Mary), which include immediacy

(1 item), effectiveness (7 items, Cronbach’s α = 0.724),

likability (1 item), and trust (3 items, Cronbach’s α = 0.871).

We also include improvability (1 item). The answers to the

questions are in seven-point scales. The results are presented

accumulatively in Fig. 9.

1) Mental Workload: For mental workload, we include

questions that inquire about the ease of working with Mary,

and questions to rate the subject’s mental workload to interact

with Mary during the task. Although our analysis does not

find any significant difference (p = 0.404), the subjects still

reported some difference in their mental workloads. This is

an interesting result that confirms our hypothesis (i.e., H2):



Fig. 9. Results for subjective measures. ⇤ denotes p < 0.05, ⇤⇤ denotes p < 0.01, ⇤⇤⇤ denotes p < 0.001.

although the PS ability enables more effect human-robot

teaming, it also tends to increase the human mental workload

at the same time. It is also worth noting that even though the

subjects in the PS case reported increased mental workload,

they also tended to perform well on the puzzle problems.

This may be due to the fact that subjects felt less necessity

to communicate with Mary and thus can concentrate more

on these problems.

2) Situation Awareness: For situation awareness, we in-

clude questions that inquire about whether the subject felt

that he/she had enough information to determine what the

next goal should be. Our analysis does not show a significant

difference (F(1,14) = 2.78, p = 0.35), although the subjects

reported slightly more situation awareness in the No-PS case,

which is consistent with the side effects of automation in

general. Although the number of updates for the No-PS case

was significantly more than that for the PS case, the fact that

situation awareness of the subject was not reduced much in

the PS case is encouraging. We attribute this to the fact that

the subject still needed to occasionally interact with Mary

when they had goals conflicts, and the subject could gain

situation awareness through such interactions.

3) Complacency: For complacency, we include questions

about the comfort and ease of the teaming, as well as how

well the subject felt about their performance in the task. Our

analysis shows a significant difference (F(1,14)= 11.29, p<
0.001). This is consistent with the objective performance and

measures, which shows that the human subject generally felt

more satisfied and confident working with Mary in the PS

case. This is important for human-robot teaming.

4) Immediacy, Effectiveness, Likability & Trust: For im-

mediacy, we include questions about how much the subject

considered the simulated task as a realistic USAR task,

and Mary as a teammate. Our analysis shows a significant

difference (F(1,14) = 11.63, p < 0.001), which is consistent

with our prior results.

For effectiveness, we include questions about the perceived

effectiveness of the team, the balance of workload between

the team members, and whether or not the subject felt that

Mary performed expectedly. Our analysis shows a significant

difference (F(1,14) = 6.57, p < 0.05). This result suggests

that the proactive support ability indeed increases teaming

effectiveness.

For likability, we include questions about whether the

subject felt that Mary was a good teammate. Our analysis

shows a significant difference (F(1,14) = 23.26, p < 0.001),

which suggests that the subjects preferred Mary with a PS

ability for teaming.

For trust, we include questions about the evaluation of the

Mary’s trustworthiness with the assignments (or tasks) she

took and with her updates during the task. Our analysis did

not show any significant difference with F(1,14) = 3.78, p=
0.072, although subjects in the PS case reported slightly

higher trust.

5) Improvability: For improvability, we include questions

about how much the subject felt that Mary could be im-

proved, and how the subject evaluated his/her interaction

with Mary. Our analysis shows a significant difference for

improvability with F(1,14)= 17.80, p< 0.001, which, again,

suggests that the subjects preferred Mary with a PS ability.

D. Summary

In summary, our results are mostly consistent with our

hypotheses. Our main result shows that the subjects generally

preferred Mary with a PS ability. With the PS ability,

the human cognitive load was indeed increased (albeit not

significantly), even though the subjects appeared to inter-

act less with Mary. More specifically, while the result on

mental workload confirms our hypothesis, it also seems to

be conflicting with the objective performance on the puzzle

problems. This is likely due to the fact that the subject

felt less necessity to interact with Mary in the PS case.

Furthermore, given that situation awareness was not reduced

significantly in the team with Mary having a PS ability, and

that the subjects had positive feelings towards her, it seems to

suggest that intelligent robots with a PS ability is welcomed

in general. This is, of course, largely dependent on the fact

that the subject’s cognitive load is not increased significantly,

which may change when the human needs to adapt to the

robot’s action more frequently in more complex tasks, and

more communication may be needed. More investigations



are needed to be conducted in such scenarios where the task

and robot settings largely differ.

VI. CONCLUSIONS

In this paper, we aim to start the investigation of humans

factors for proactive support in human-robot teaming. We

start in a simulated USAR task with a general way to

implement the proactive support (PS) ability on a robot in

similar scenarios in which the task is composed of subtasks

with priorities that are dependent on the current situation.

Meanwhile, to maintain the generality of this task, we only

introduced a few necessary simplifications. However, given

the richness of USAR scenarios, more in depth studies are

required to generalize the conclusions to scenarios where

the task and robot settings largely differ. In such cases, our

plan recognition and plan adaptation approaches may also

need to be extended to implement proactive support. Note

that a framework to achieve general proactive support can

be arbitrarily complex depending on the task and level of

support that is needed (e.g., whether the support is active

[13] or passive [5] and whether it is commitment sensitive

or not [3]).

In our task, the human teammate is remotely controlling a

robot while working with an intelligent robot Mary to search

for and treat casualties. Our results show that, in general, the

human teammates prefer to work with a robot that has a PS

ability. However, our results also show that teaming with

PS robots also increases the human’s cognitive load, albeit

not significantly. This is understandable since working with

a proactive teammate may require more interactions and/or

mental modeling on the human side in order to achieve

better teaming performance. Furthermore, we also show that

situation awareness when working with robots with a PS

ability is not significantly reduced compared to working with

robots without it. This seems to suggest that intelligent robots

with a PS ability is welcomed in general.
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