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Functional protein interaction networkA high-quality human functional protein inter-action network is constructed. Its utility is dem-onstrated in the identification of cancer candidate genes.
Abstract

Background: One challenge facing biologists is to tease out useful information from massive data sets for further 

analysis. A pathway-based analysis may shed light by projecting candidate genes onto protein functional relationship 

networks. We are building such a pathway-based analysis system.

Results: We have constructed a protein functional interaction network by extending curated pathways with non-

curated sources of information, including protein-protein interactions, gene coexpression, protein domain interaction, 

Gene Ontology (GO) annotations and text-mined protein interactions, which cover close to 50% of the human 

proteome. By applying this network to two glioblastoma multiforme (GBM) data sets and projecting cancer candidate 

genes onto the network, we found that the majority of GBM candidate genes form a cluster and are closer than 

expected by chance, and the majority of GBM samples have sequence-altered genes in two network modules, one 

mainly comprising genes whose products are localized in the cytoplasm and plasma membrane, and another 

comprising gene products in the nucleus. Both modules are highly enriched in known oncogenes, tumor suppressors 

and genes involved in signal transduction. Similar network patterns were also found in breast, colorectal and 

pancreatic cancers.

Conclusions: We have built a highly reliable functional interaction network upon expert-curated pathways and 

applied this network to the analysis of two genome-wide GBM and several other cancer data sets. The network 

patterns revealed from our results suggest common mechanisms in the cancer biology. Our system should provide a 

foundation for a network or pathway-based analysis platform for cancer and other diseases.

Background
High-throughput functional experiments, including

genetic linkage/association studies, examinations of copy

number variants in somatic and germline cells, and

microarray expression experiments, typically generate

multiple candidate genes, ranging from a handful to sev-

eral thousands. These data sets are noisy and contain

false positives in addition to genes that are truly involved

in the biological process under study. An unsolved chal-

lenge is how to understand the functional significance of

multi-gene data sets, extract true positive candidate

genes, and tease out functional relationships among these

genes with confidence for use in further experimental

analysis.

Using biological pathways to interpret high-throughput 

data

One way to approach the above problem is to analyze the

data from the perspective of biological pathways [1,2]. A

pathway is a set of biochemical events that drives a cellu-

lar process. For example, the transforming growth factor

beta (TGFβ) pathway consists of a ligand receptor bind-

ing event that initiates a series of protein-protein interac-

tion (PPI), protein degradation, protein phosphorylation,

and protein-DNA binding events that transmit a regula-

tory signal and regulate proliferation, differentiation and

migration [3]. In cancer, the TGFβ signaling network

functions in complex ways to both suppress early tumor

growth and promote late stage progression [4]. Some

breast cancers [5-9] are thought to arise in part when

components of the TGFβ pathway are deleted, thereby

freeing the tissue from growth inhibition. The same type

of cancer can arise via several different routes [2]. For

example, tumors from two different patients might have
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deleted different components of the TGFβ pathway.

Although the two tumors both share the loss of TGFβ

growth inhibition, they may not share defects in a com-

mon gene or gene sets. However, a pathway-based analy-

sis will resolve this confusing finding and point towards

the etiology of the disease. By projecting the list of

mutated, amplified or deleted genes onto biological path-

ways, one will find that a statistically unlikely subset of

otherwise unrelated genes are closely clustered in 'reac-

tion space'. Pathway-based analysis can thus provide

important insights into the biology underlying disease

etiology. One striking example of this approach is the

finding of the 'exclusivity principle' in cancer: only one

gene is generally mutated in one pathway in any single

tumor [1].

Recently, several large-scale genome-wide screening

projects have revealed common core signaling pathways

in the etiology or progression of several cancer types [10-

14], indicating the relevance of pathway-based analysis

for the understanding of large scale disease data sets.

Pathway-based analysis accomplishes at least two things:

it marks the genes associated with the disease or other

phenotype and separates them from innocent bystanders

caught in the general instability of the malignant genome

or other false positive hits [15]; and it identifies the bio-

logical pathways affected by the genes [16]. The latter

outcome also places the high-throughput analysis results

in an intellectual framework that can be more easily com-

prehended by the researcher. It connects his results to

prior work from the literature, and allows him to propose

hypotheses that can be tested by further experimental

work.

Resources for pathway analysis

Pathway-based hypothesis generation has been the sub-

ject of great interest over the past few years [17]. It is the

basis for several popular data analysis systems, including

GOMiner [18,19], Gene Set Enrichment Analysis [20],

Eu.Gene Analyzer [21], and several commercial tools (for

example, Ingenuity Systems [22]).

Reactome [23] is an expert-curated, highly reliable

knowledgebase of human biological pathways. Pathways

in Reactome are described as a series of molecular events

that transform one or more input physical entities into

one or more output entities in catalyzed or regulated

ways by other entities. Entities include small molecules,

proteins, complexes, post-translationally modified pro-

teins, and nucleic acid sequences. Each physical entity,

whether it be a small molecule, a protein or a nucleic acid,

is assigned a unique accession number and associated

with a stable online database. This connects curated data

in Reactome with online repositories of genome-scale

data such as UniProt [24] and EntrezGenes [25], and

makes it possible to unambiguously associate a position

on the genome with a component of a pathway. A com-

putable data model and highly reliable data sets make

Reactome an ideal platform for a pathway-based data

analysis system. However, since all data in Reactome is

expert-curated and peer-reviewed to ensure high quality,

the usage of Reactome as a platform for high-throughput

data analysis suffers from a low coverage of human pro-

teins. As of release 29 (June 2009), Reactome contains

4,181 human proteins, roughly 20% of total SwissProt

proteins. Other curated pathway databases, including

KEGG [26], Panther Pathways [27], and INOH [28], offer

similarly low coverage of the genome.

In contrast to pathway databases, collections of pair-

wise relationships among proteins and genes offer much

higher coverage. These include data sets of PPIs and gene

co-expression derived from multiple high-throughput

techniques such as yeast two-hybrid techniques, mass

spectrometry pull down experiments, and DNA microar-

rays. These kinds of data sets are readily available from

many public databases. For example, PPIs can be down-

loaded from BioGrid [29], the Database of Interacting

Proteins [30], the Human Protein Reference Database

(HPRD) [31], I2D [32], IntACT [33], and MINT [34], and

expression data sets from the Stanford Microarray Data-

base [35] and the Gene Expression Omnibus [36]. Protein

or gene networks based on these pairwise relationships

have been widely used in cancer and other disease data

analysis with promising results [37-42].

Transforming pairwise interactions into probable 

functional interactions

A limitation of pairwise networks is that the presence of

an interaction between two genes or proteins does not

necessarily indicate a biologically functional relationship;

for example, two proteins may physically interact in a

yeast two-hybrid experiment without this signifying that

such an interaction forms a part of a biologically mean-

ingful pathway in the living organism. In addition, some

pairwise interaction data sets may have high false positive

rates [43,44], which contribute noise to the system, and

interfere with pathway-based analyses. For this reason,

groups that make pathway-based inferences on high-

throughput functional data sets inevitably draw on

curated pathway projects to cleanse their data and to

train their predictive models.

Our goal is to achieve the best of both worlds by com-

bining high-coverage, unreliable pairwise data sets with

low-coverage, highly reliable pathways to create a path-

way-informed data analysis system for high-throughput

data analysis. As the first step towards achieving this goal,

we have created a functional interaction (FI) network that

combines curated interactions from Reactome and other

pathway databases, with uncurated pairwise relationships

gleaned from physical PPIs in human and model organ-
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isms, gene co-expression data, protein domain-domain

interactions, protein interactions generated from text

mining, and GO annotations. Our approach uses a naïve

Bayes classifier (NBC) to distinguish high-likelihood FIs

from non-functional pairwise relationships as well as out-

right false positives.

In this report, we describe the procedures to construct

this FI network (Figure 1), and apply this network to the

study of glioblastoma multiforme (GBM) and other can-

cer types by expanding a human curated GBM pathway

using our FIs, projecting cancer candidate genes onto the

FI network to reveal the patterns of the distribution of

these genes in the network, and utilizing network cluster-

ing results on cancer samples to search for common

mechanisms among many samples with different

sequence-altered genes. Finally, we introduce a web-

based user interface that gives researchers interactive

access to the derived FIs.

Results
Data sources used to predict protein functional 

interactions

We used the following six classes of data to predict pro-

tein FIs (Table 1): 1, human physical PPIs catalogued in

IntAct [45], HPRD [46], and BioGrid [47]; 2, human PPIs

projected from fly, worm and yeast in IntAct [45] based

on Ensembl Compara [48]; 3, human gene co-expression

derived from DNA microarray studies (two data sets

[49,50]); 4, shared GO biological process annotations

[51]; 5, protein domain-domain interactions from PFam

[52]; and 6, PPIs extracted from the biomedical literature

by the text-mining engine GeneWays [53].

Table 1 lists these data sources, the numbers of proteins

and interactions, and estimated coverage of the human

genome expressed as their coverage of the SwissProt pro-

tein database.

The coverage ranges from 7% (Worm PPIs) to 70% (GO

biological process sharing). It is notable that the coverage

of human physical PPIs from three public protein interac-

tion databases (IntAct, HPRD, and BioGrid) is close to

50%. Many interactions from IntAct were catalogued

from co-immunoprecipitation experiments combined

with mass spectrometry, and contain multiple proteins in

a single interaction record. An odds ratio analysis showed

that human PPIs based on all interaction records are

much less correlated to FIs (see below) extracted from

Reactome pathways than interactions containing four or

fewer interactors: 13.91 ± 0.52 versus 36.98 ± 9.17 (P-

value = 2.8 × 10-5 based on t-test). Therefore, we selected

interactions that contain only four or fewer interactors

from the IntAct database. We also tried to use GO molec-

ular functional annotations as one of the data sources.

The odds ratio of this data set was 2.99 ± 0.02, much

smaller than the GO biological process data set (11.85 ±

0.20). Our results show that this data set contributed little

to the prediction. One reason for this may be that the GO

molecular functional categories are usually broad and the

purpose of our NBC is to predict if two proteins may be

involved in the same specific reactions (see below).

Construction and training of a functional interaction 

classifier

Our goal was to create a network of protein functional

relationships that reflect functionally significant molecu-

lar events in cellular pathways. The majority of PPIs in

interaction databases are catalogued as physical interac-

tions, and there is rarely direct evidence in the interaction

databases that these interactions are involved in bio-

chemical events that occur in the living cell. Other pro-

tein pairwise relationships have similar issues. To

integrate pairwise relationships into a pathway context,

we built a scoring system based on the NBC algorithm, a

simple machine learning technique [54], to score the

probability that a protein pairwise relationship reflects a

functional pathway event.

For our NBC, we used nine features as listed under

'Data source' in Table 1: 1, whether there is a reported PPI

between the human proteins; 2, whether there is a

reported PPI between the fly (Drosophila melanogaster)

orthologs of the two human proteins; 3, whether there is

a reported PPI between the worm (Caenorhabditis ele-
Figure 1 Overview of procedures used to construct the function-

al interaction network. See text for details. BP, biological process.
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gans) orthologs of the two human proteins; 4, whether

there is a reported PPI between the yeast (Saccharomyces

cerevesiae) orthologs of the two human proteins; 5,

whether there is a domain-domain interaction between

the human proteins; 6 and 7, whether the genes encoding

the two proteins are co-expressed in expression microar-

rays based on two independent DNA array data sets; 8,

whether the GO biological process annotations for

human proteins are shared; and 9, whether there is a text-

mined interaction between the human proteins.

An NBC must be trained using positive and negative

training data sets in order to determine the proper

weighting of different combinations of features. We

developed training sets from the curated information in

Reactome, relying in part on an independent analysis that

reported Reactome as a highly accurate data set for PPI

prediction [55].

An issue in using PPIs and other pairwise relationships

in a pathway context is that the data models used by path-

way databases are much richer than a simple binary rela-

tionship. A pathway database describes pathways in

terms of proteins, small molecules and cellular compart-

ments that are related by biochemical reactions that have

inputs, outputs, catalysts, cofactors and other regulatory

molecules. To develop the training sets from Reactome

pathways for NBCs, we established a relationship called

'functional interaction' using the following definition: a

functional interaction is one in which two proteins are

involved in the same biochemical reaction as an input,

catalyst, activator, or inhibitor, or as two members of the

same protein complex.

It is important to note that in Reactome a 'reaction' is a

general term used to describe any discrete event in a bio-

logical process, including biochemical reactions, binding

interactions, macromolecule complex assembly, trans-

port reactions, conformational changes, and post-transla-

tional modifications [23]. We treat two members of the

same protein complex as functionally interacting with

each other because the activity of the complex as a whole

is presumably functionally dependent on the presence of

all of its subunits.

Based on the above definition, we extracted 74,869 FIs

from Reactome, and used these FIs to create a positive

training set for the NBC. After filtering out FIs that did

not have at least one feature derived from the data

sources in Table 1, the positive data set comprised 45,079

FIs.

Creating a good negative training set is more difficult

than creating a positive set due to the incompleteness of

our knowledge of protein interactions [56]: just because

two proteins are not known to interact does not mean

that this does not in fact occur. Research groups have

addressed this problem using a variety of approaches,

including choosing protein pairs from different disjunct

cell compartments [57], or random pairs from all proteins

[58]. For our NBC training, we followed the method in

Zhang et al. [58] using random pairs selected from pro-

teins in the filtered Reactome FI set.

Choosing an appropriate prior probability or ratio

between the positive and negative data sets is important

for NBC training. We calculated the prior probability

based on the total number of proteins in the filtered FIs

from Reactome pathways, which was 5.7 × 10-3. To check

the effect of ratio between the sizes of the positive and

negative data sets, we test the NBC performance using a

ratio of either 10 or 100. NBCs trained with these two

ratios yielded similar true and false positive rates, which

indicated that our NBC is robust against the size of the

negative data set.

Table 1: Data sources used to predict protein functional interactions

Data source Proteins SwissProt proteins (coverage) Interactions Reference

Human PPIs 10,287 10,029 (49%) 53,743 [45-47]

Fly PPIs 13,383 4,088 (20%) 939,639 (26,346a) [45]

Worm PPIs 5,223 1,477 (7%) 122,192 (8,161a) [45]

Yeast PPIs 5,646 1,530 (8%) 1,900,980 (167,574a) [45]

Domain interaction 60,569 15,218 (75%) NA [52]

Lee's Gene Expression 8,250 7,647 (38%) 206,117 [49]

Prieto's Gene Expression 3,024 2,901 (14%) 13,441 [50]

GO BP sharing 14,197 14,197 (70%) NA [51]

PPIs from GeneWays 5,252 5,252(26%) 51,048 [53]

To calculate the coverage of SwissProt, we used 20,332, the total identifier number in SwissProt (UniProtKB/Swiss-Prot Release 56.9, 3 March 

2009), as the denominator. The numbers of interactions from three model organisms have been mapped to human proteins based on 

Ensembl Compara [48] (see text for details). aNumbers of PPIs in the original species. BP, biological process.
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The performance of machine learning classifier systems

can be evaluated by cross-validation, or more stringently

by using an independent data set. We used FIs extracted

from pathways in other human curated pathway data-

bases as a testing data set to evaluate the performance of

our trained NBC. Figure 2 shows a receiver operating

characteristic curve that relates true positive rates to false

positive rates across a range of thresholds using this test-

ing data set. We chose a threshold score of 0.50, which

trades off a high specificity of 99.8% against a low sensi-

tivity of 20%. The low sensitivity may result, in part, from

high false negative rates existing in some of the data sets

we used for NBC, especially in PPIs [59].

At the threshold score (0.50), a protein pair must have

multiple types of FI evidence in order to be scored as a

true FI (Table S1 in Additional file 1). While most (97%)

of the predicted FIs have at least one PPI feature (Figure

S1 in Additional file 1), there are no predictions sup-

ported solely by human PPI data, and fewer than 3% are

supported solely by PPIs in human plus other species.

This greatly reduces the weight given to raw human PPI

features: the 44,819 human PPIs that went in to the classi-

fier as features resulted in fewer than 15,000 predicted

FIs, representing the removal of 68% of the raw PPIs.

Most (75%) of the predicted FIs are derived from GO bio-

logical process term sharing and protein domain interac-

tions in addition to PPIs.

As a check on the classifier's ability to enrich for FIs, we

compared the sharing of GO cellular component annota-

tions (which includes compartments such as 'nucleo-

plasm') among raw human PPIs to the sharing of these

annotations among predicted FIs. Since GO cellular com-

ponent annotations were not used as a feature during

NBC training, we reasoned that this assessment should

be independent. Among raw PPIs, 62.9% share GO cellu-

lar component terms annotated for both proteins

involved in the interaction. In contrast, 96.2% of the pre-

dicted FIs share this type of GO term (P-value < 2.2 × 10-

16), suggesting a substantial enrichment in true FIs rela-

tive to an interaction set derived from raw features alone.

Merging the NBC with pathway data to create an extended 

FI network

To construct an extended FI network with high protein

and gene coverage, we merged FIs predicted from our

trained NBC with annotated FIs extracted from five path-

way databases. The five pathway databases used were

Reactome [23], Panther [60], CellMap [61], NCI Pathway

Interaction Database [62], and KEGG [63] (Table 2).

To further increase the coverage of our network, we

imported interactions between human transcription fac-

tors and their targets from the TRED database [64].

TRED has two parts: one contains highly reliable, human

curated data from published literature and the other is

uncurated and comprises predictions based on several

computational algorithms. For our purposes, we used the

human curated part only to ensure the reliability of our FI

network, and treat these interactions as a part of the

pathway FIs in this report.

The extended FI network contains 10,956 proteins

(9,393 SwissProt accession numbers, splice isoforms not

counted) and 209,988 FIs (Table 3). It covers 46% of Swis-

sProt proteins.

The average connection degree (that is, the number of

interacting partners per protein) of the extended network

is 38, and the maximum degree is 593 for protein P32121

(ARRB2, Beta-arrestin-2). Most proteins in this network

are interconnected: 10,645 proteins are interconnected in

the largest connected graph component. The remaining

311 proteins reside in 124 connected graph components

of size 7 or smaller.

The FI network shows scale-free properties (data not

shown) as do other biological networks [65-68]. GO slim

annotation enrichment analysis results (not shown) show

that our network is enriched in proteins involved in signal

transduction, cell cycle and the central dogma. This

reflects the ascertainment bias of using Reactome as the

training set, as these pathways reflect high priorities for

Reactome curation.

Assessing the utility of functional interactions in the 

network

GBM is the most common type of brain tumor in humans

and also has the highest fatality rate. Recently, two data

sets from two independent high throughput screens for

somatic mutations involved in GBM have been released

[12,14]. In this section, we demonstrate that the interac-

tions from our network can be used to automatically

extend a hand-curated GBM pathway developed to sup-

port the analysis of one of these data sets [14]; the

extended GBM pathway captures more observed somatic

mutation events and can be used to generate testable bio-

logical hypotheses.

In preparation for analysis of The Cancer Genome

Atlas (TCGA) somatic mutation data set [14], a team of

bioinformaticians, molecular biologists and clinical

oncologists based at Memorial Sloan Kettering Cancer

Center and Dana-Farber Cancer Institute developed a

human-curated map of the molecular pathways involved

in GBM (Figures S7 and S8 in [14]; the original Cytoscape

file can be downloaded from [69]). Our network captures

the majority of proteins and interactions in this map: 96%

of proteins (70 of 73) and 69% of interactions (129 of 187).

The TCGA GBM screen captured 341 mutated genes,

including both point mutations and copy number varia-

tions (CNVs). Of these genes, 38 (11%) are part of the

original hand-curated GBM pathway, and 237 (70%) are

in the FI network. Of these genes in the FI network, 36
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are in the original GBM pathway (15%), and in addition,

108 directly interact with at least one of the curated GBM

pathway genes, for a total of 42% of the somatic muta-

tions. This degree of interaction between somatically

mutated genes with the GBM pathway is far greater than

would be expected by chance (P-value = 1.3 × 10-23 by the

hypergeometric test), suggesting that the FI network pro-

vides an effective way to enrich the hand-curated GBM

pathway for additional genes involved in the disease.

Figure 2 Receiver operating characteristic curve for NBC trained with protein pairs extracted from Reactome pathways as the positive data 

set, and random pairs as the negative data set. This curve was created using an independent test data set generated from pathways imported 

from non-Reactome pathway databases. The positions for the cutoff values 0.25, 0.50 and 0.75 are marked from right to left in the inset. The area under 

the curve (AUC) for this receiver operating characteristic (ROC) curve is 0.93.
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We then added these potential proteins and interac-

tions to the GBM pathway map to extend it. In order to

do so, we chose proteins that were found to have one or

more somatic mutations in the GBM screen, and had

direct interactions with one or more of the proteins in the

hand-curated GBM pathway. In this way we were able to

extend the hand-curated pathway from 73 proteins and

187 interactions to 181 proteins and 768 interactions. A

total of 581 FIs were added between pathway compo-

nents and new mutated protein interactions (an increase

of 148% for proteins and 311% for FIs). Figure 3 shows the

original hand-curated map after extending it with pre-

dicted and curated FIs from the FI network involving

mutated genes. Interactions derived from curated path-

ways are represented as solid lines (with arrows for FIs

involved in catalysis and activation, and with a 'T' bar for

those involved in inhibition), while those predicted from

the NBC are shown as dotted lines. Many mutated pro-

teins interact with more than one pathway component.

For the purposes of readability, Figure 3 shows only pro-

teins that interact with one pathway component. A larger

diagram showing the fully extended map is available in

Figure S2 in Additional file 1.

A total of 23 of the FIs added to the GBM pathway in

Figure 3 were predicted by the NBC. To validate the accu-

racy of these predicted FIs, we searched the published lit-

erature for evidence supporting that two genes in the

predicted FIs are indeed functionally related. Table 4 lists

the literature references that support these interactions.

Out of 23 FIs, a total of 18 (78%) are supported by litera-

ture evidence for a functionally significant event. One FI

(ROS1-EGFR) has no literature evidence supporting it,

and the remaining four are confirmed physical interac-

tions but have no evidence of functional significance.

These results suggest that the predicted FIs are suffi-

ciently reliable to be safely integrated into known path-

ways for systematic analysis.

A detailed examination of the extended GBM pathway

can lead to hypotheses that connect the observed

sequence alteration in the TCGA data set to known bio-

logical pathways. For example, NUP50 is required for

degradation of CDKN1B protein [70]. Copy number dele-

tion in NUP50, which occurs in three TCGA GBM sam-

ples, may inhibit the degradation of CDKN1B and impact

the cell cycle process. For another example, tenascin-C

(TNC) protein is a ligand for epidermal growth factor

receptor (EGFR) [71]. Three re-sequenced GBM samples

have found TNC mutations, which may disturb the RTK/

RAS signaling pathway via its interaction with EGFR.

It needs to be pointed out that the directionality of the

interaction should be taken into account when using the

FI network to frame hypotheses. For example, two of the

pathway FIs around TP53, BAX-TP53 and GTSE1-TP53

were originally extracted from the KEGG human p53 sig-

Table 2: Pathway data sources in the functional interaction network

Data source Proteins SwissProt proteins (coverage) Interactions Reference

Reactome 4,490 3,863 (19%) 74,869 [23]

Panther 1,912 1,355 (7%) 33,425 [60]

CellMap 567 567 (3%) 1,195 [61]

NCI Nature 1,492 1,486 (7%) 10,845 [62]

NCI BioCarta 1,137 1,136 (6%) 6,695 [62]

KEGG 2,497 2,261 (11%) 13,934 [63]

TRED 1,167 1,166 (6%) 3,030 [64]

SwissProt coverages were calculated as described in Table 1. NCI Pathway Interaction Database has two divisions: batch-imported pathways 

from BioCarta [83] and pathways hand-curated by NCI Nature pathway curators. We represent these two divisions separately. TRED is a 

transcription factor/target database. We have imported the human curated part of transcription factor-target interactions from this database 

for our network.

Table 3: Protein identifiers and functional interactions in the extended FI network

Source type Proteins SwissProt proteins (coverage) Interaction

Pathways 6,316 5,496 (27%) 98,590

Predicted 8,345 7,546 (37%) 111,398

Total 10,956 9,393 (46%) 209,988

FIs listed in the pathways row include transcription factor-target interactions imported from the TRED database.
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naling pathway [72]. The BAX and GTSE1 genes are tran-

scriptionally upregulated by TP53 protein. Though it is

not annotated in the original KEGG database, there is

evidence showing that GTSE1 protein can regulate TP53

protein's activity and localization [73]. However, there is

no evidence to suggest that the P53 pathway is affected by

BAX protein, a protein involved in apoptosis [74]. Hence,

mutations in BAX in a particular tumor do not support

an etiology involving P53 signaling, but instead might

point to events downstream of P53. The same caveat

applies to predicted FIs as well.

Clustering of GBM sequence-altered genes in the extended 

FI network

The previous section described how the FI network can

be used to enhance and extract novel hypotheses from a

previously created hand-curated disease pathway. In this

section, we illustrate how studies of distributions of

altered genes in the GBM samples in the FI network can

assist in genome-wide functional analysis when a preex-

isting disease pathway is unavailable.

Both the TCGA [14] and Parsons et al. [12] GBM stud-

ies identified recurrent patterns of somatic gene muta-

Figure 3 Overlay of predicted functional interactions onto a human curated GBM pathway from the TCGA data set. Many genes can interact 

with multiple pathway genes. In this diagram, only genes interacting with one pathway gene are shown to minimize diagram clutter. Newly added 

genes are colored in light blue, while original genes are colored in grey. Newly added FIs are in blue, while original interactions are in other colors. FIs 

extracted from pathways are shown as solid lines (for example, PHLPP-AKT1), while those predicted based on NBC are shown as dashed lines (for ex-

ample, KLF6-TP53). Extracted FIs involved in activation, expression regulation, or catalysis are shown with an arrowhead on the end of the line, while 

FIs involved in inhibition are shown with a 'T' bar. The original GBM pathway map in the Cytoscape format was downloaded from [69].
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tions involving multiple classical signaling pathways

using a manual process of inspection and correlation to

the literature and a variety of pathway databases. Here,

we use network community analysis to automatically

identify network modules that contain genes and their

products that are involved in common processes.

The edge-betweenness algorithm [75] has been used to

find network modules in protein interaction networks

[76-78]. We applied this algorithm to search for FI net-

work modules for sequence-altered genes identified in

the two GBM data sets. Starting with the TCGA data set,

we collected 341 mutated and CNV genes from 91 GBM

samples that have been re-sequenced in that study. A

total of 237 of these genes (70%) were in the FI network.

Of these, 168 have mutual FIs and are interconnected. We

built a subnetwork around these 168 genes, applied the

edge-betweenness network clustering to it, and obtained

17 network modules, 6 of which were greater than size 4

(Figure 4).

The sizes of the first two modules (modules 0 and 1) are

63 and 50, respectively. The distribution study showed

that 76 out of 91 GBM samples have altered genes in both

module 0 and module 1 (84%, P-value < 1.0 × 10-4 from

permutation test). As a cross-validation test, we pro-

jected 22 samples from the discovery screen in the Par-

sons data set, which provided both somatic mutation and

CNV data, onto these network modules. The result

showed that 68% (15 out of 22) have altered genes in both

module 0 and module 1 from the TCGA data set (P-value

< 1.0 × 10-4). We also did a reciprocal test by applying the

Table 4: Literature references for predicted FIs added to human curated GBM pathway from the TCGA GBM data set

Pathway gene FI partner Reference Comment

CCNE1 FBXW7 [99] Turnover of CCNE1 protein is dependent on FBXW7 protein

CDK4 ASPM [100] Physical interaction: functional relationship is not clear

CDKN1A PIM1 [101] Pim-1 kinase dependent phosphorylation of p21Cip1/WAF1 (CDKN1A) influences 

subcellular localization of p21

CDKN1B NUP50 [70] NUP50 protein is required for degradation of CDKN1B protein, which is important in 

cell cycle regulation

E2F1 TRRAP [102] TRRAP is required as a cofactor for E2F transcriptional activation

EGFR ANXA1 [103] ANXA1 protein and other annexins are involved in degradation of EGFR protein

EGFR ROS1 This may be a false positive example

EGFR TNC [71] TNC protein is a ligand for EGFR

EP300 GLI1 [104] GLI1 is involved in a GLU1-p53 inhibitory loop

EP300 IQGAP1 [105] Physical interaction: functional relationship is not clear

EP300 PROX1 [106] Physical interaction: functional relationship is not clear

EP300 TCF12 [107] Form a functional complex in neurons

GRB2 SYP [108] SYP involvement in the RAS pathway has been reported some time ago

GRB2 TNK2 [109] TNK2 protein is a target of GRB2 protein

MSH6 PMS2 [110] PMS2 has been treated as a DNA repair gene

PDPK1 RPS6KA3 [111] Phosphoserine-mediated recruitment of PDPK1 to RPS6KA3 leads to coordinated 

phosphorylation and activation of PDPK1 and RPS6KA3

PRKCA ANXA7 [112] Calcium-dependent membrane fusion driven by annexin 7 can be potentiated by 

protein kinase C and guanosine triphosphate

SRC CD46 [113] CD46 is a substrate of SRC

SRC MAPK8IP2 [114] Though no direct evidence shows a functional relationship between these two 

genes, it is shown that an isoform of JIP (MAPK8IP2), JIP1, is regulated by Src family 

kinases

TP53 CYLD CYLD is a deubiquitinating enzyme. Several deubiquitinating enzyme have been 

shown to be involved in the p53 pathway; however, no evidence has been provided 

for CYLD in the p53 pathway

TP53 KLF4 [115] KLF4 is a direct suppressor of expression of TP53

TP53 KLF6 [116] Physical interaction: TP53 may enhance the function of KLF6

TP53 TOP1 [117] Activity of TOP1 may be modulated by P53
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edge-betweenness clustering algorithm to a subnetwork

composed by altered genes from the Parsons data set, and

checking sample distributions from both GBM data sets

in the network modules. The results are similar to our

results in the TCGA data set: 77% (P-value = 0.0002) of

GBM samples in the Parsons data set, and 71% (P-value <

1.0 × 10-4) in the TCGA data set have altered genes in two

corresponding modules (Figure S3 in Additional file 1).

To see what biological features these two modules may

connote, we annotated these two modules using path-

ways and GO terms. GO cellular annotation enrichment

assay indicated that module 0 mainly corresponds to pro-

teins present in the cytoplasm and plasma membrane,

while module 1 mainly involves gene products present in

the nucleus. Many pathways can be assigned to these two

modules, but it is clear that module 0 is mainly related to

signaling transduction pathways while module 1 is related

to the cell cycle, DNA repair and pathways involved in

chromosome maintenance (Table S2 in Additional file 1).

The fact that most of the GBM samples have altered

genes in both modules implies that these two major mod-

ules are acting cooperatively in establishing and/or main-

taining the GBM phenotype, and suggests that the

development of GBM cancers involve malfunctions in

both signaling transduction and cell-cycle regulation.

Our FI network is composed of a combination of

curated FIs and predicted FIs. To determine whether the

distribution of altered genes is robust, we checked the

above results against FI network modules composed of

FIs derived from curated FIs only. The results are similar

to those obtained using the integrated FI network except

that network modules 0 and 1 are smaller than the mod-

ules built with both predicted and pathway FIs (results

not shown). Figure 4 shows that many mutated genes are

brought into modules 0 and 1 based on predicted FIs

only, which are shown with dashed lines.

To further explore the distribution of mutations among

the network modules, we performed a hierarchical clus-

tering of the TCGA GBM samples based on the occur-

rence of altered genes in the modules (Figure 5). From

this clustering, we obtain five sample clusters of size 61,

Figure 4 Edge-betweenness network clustering results for the altered genes from the TCGA data set. Gene nodes in different clusters are dis-

played in different colors. GO cellular component annotation for clusters 0 and 1 are labeled in the diagram to show the major cellular localizations 

for genes in these two clusters. The node size is proportional to the number of samples bearing displayed altered genes.

Module 1: nucleus�

Module 0: cytoplasm, plasma membrane�
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13, 6, 9, and 2, respectively. Three types of samples were

used in the original TCGA screening (rightmost column

of Figure 5): recurrent samples (15, blue), secondary sam-

ples (4, red), and primary samples (72, green). Sample

cluster 0, which has a signature of mutations in both net-

work modules 0 and 1, is enriched in primary tumor sam-

ples (P-value = 0.055 from Fisher test). In contrast,

sample cluster 1, which has additional mutations involv-

ing network modules 8, 3, 9, 7 and others, is enriched in

samples from tumor recurrences and metastases (P-value

= 0.026). Indeed, all but one of the four metastatic sam-

ples can be found in sample cluster 1 (P-value = 0.0086).

In the original TCGA paper [14], seven of the recurrent

or metastatic samples were labeled as 'hyper-mutated'

because of their much higher rate of somatic mutation.

We found that except for one sample (TCGA-02-0099)

located in sample cluster 0, all of the other six samples are

in cluster 1 (P-value = 1.7 × 10-5). These results illustrate

how the mutated network modules can be used to differ-

entiate cancer samples.

Defining a GBM core cancer network

It is expected that multiple false positive ('passenger')

genes exist in the set of sequence-altered genes identified

from the GBM samples. It is also expected that true posi-

tive ('driver') GBM-related genes should occur more often

in GBM samples than by chance. We plotted the percent-

age of altered genes versus samples for both GBM data

sets (Figure 6), and compared this distribution against

what would be expected by random assignment of genes

to samples. There are two phases in the distribution of

altered genes across samples. In the first phase, involving

gene alterations occurring between two to five samples,

there is sharing of fewer altered genes than would be

expected by chance. In the second phase, involving genes

altered independently in six or more samples, there are

more altered genes shared among the samples than would

be expected by chance. This result can be explained if

there exist a minimum number of driver genes that must

be mutated in order to produce GBM, and that this 'GBM

core' tends to be recurrently mutated in independent

samples. Figure 6 also shows that the average shortest

path among shared genes from GBM samples decreases

versus sample numbers in contrast to random samples,

which implies that GBM candidate genes tend to be

closer in the FI network than by chance (see below).

To visualize sequence-altered genes and further define

the core set of genes in the GBM samples, we collected

genes altered in at least two samples to reduce the num-

ber of false positive GBM candidate genes, performed

hierarchical clustering among them to identify a set of

highly interconnected candidates, and then selected and

built subnetworks containing >70% of altered genes (Fig-

ure 7a, b) by adding the minimum number of linker genes

to form a fully connected subnetwork.

In the TCGA data set, 164 altered genes occurred in

two or more GBM samples, 98 (60%, P-value = 3.2 × 10-7)

of which were in the FI network. Of these, 71 are in the

GBM subnetwork (72%, P-value < 0.001 from permuta-

tion test). An average shortest distance calculation (Table

5) shows that genes in this cluster are linked together

much more tightly than would be expected by chance:

2.29 for subnetwork genes versus 3.83 for a similarly sized

random set of genes treated in the same way as the cancer

subnetwork. In the Parsons data set, 111 genes occur in

two or more GBM samples, 65 (59%, P-value = 8.4 × 10-5)

of which are in the FI network. Of these, 46 are in the

GBM cancer cluster (71%, P-value < 0.001 from permuta-

tion test). Similar to the TCGA data set, the average

shortest path among these genes is shorter than by

chance (2.76 versus 3.82, P-value < 0.001).

In the average shortest path calculation, a potentially

confounding factor in the TCGA data set is that 601

genes pre-selected for sequencing may be more tightly

interconnected than average. Indeed this is the case.

When we performed the permutation test using these

601 pre-selected genes, we obtained an average shortest

path of 2.40, which is shorter than the genome-wide aver-

age, but still longer than the length of 2.29 calculated for

the subnetwork formed by recurrently mutated genes (P-

value = 0.023; connection degrees have been considered

in permutation test (see below)). This consideration does

not apply to the Parsons set, which used an unbiased

resequencing approach.

In summary, results from both GBM data sets indicate

that more than 70% of the recurrently mutated genes are

more tightly interconnected than expected by chance,

and occupy a small corner of the large FI network space.

We found that the average connection degrees in the

GBM clusters are higher than the average connection

degree in the whole FI network (40 based on the biggest

connected graph component using gene names): 87 for

the TCGA cluster (P-value = 1.3 × 10-5 from t-test), and

60 for the Parsons cluster (P-value = 0.13). The result that

the average shortest path among altered genes in cancer

clusters is shorter than by chance may be an ascertain-

ment bias due to the higher connection degrees in the

cancer clusters resulting from the intensive study of sig-

nal transduction pathways, to which most GBM candi-

date genes belong. To determine whether the differences

in average shortest paths between the cancer clusters and

randomly selected genes are due entirely to the difference

in degree, we performed an additional permutation test

in which the genes picked were stratified by degree in

order to match the distribution of the cancer gene sets

(Table 6, Degree-based permutation column). This cor-

rection reduced, but did not eliminate, the differences in
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average shortest path between the cancer gene sets and

randomly selected genes, and the differences remained

statistically significant: both P-values < 0.001.

The reason why the average shortest paths for the

TCGA data set are smaller than the those calculated for

the Parsons set for both the cancer cluster and degree-

based permutation results is that re-sequenced genes in

the TCGA data set number 601 in total, which are pre-

selected and believed to be more cancer-related, while the

Parsons paper resequenced 20,661 protein coding genes.

Looking at the two GBM cancer subnetworks in more

detail, each subnetwork consists of GBM candidate genes

('cancer genes') plus the minimum number of interacting

genes necessary to interconnect them ('linker genes',

shown in red in Figures 7 and 8). The TCGA subnetwork

contains 77 genes, 5 of them linkers, while the Parsons

subnetwork contains 62 genes, 14 of them linkers. Since

Figure 5 Hierarchical clustering of GBM samples in the TCGA data set based on altered gene occurrences in the network modules identified 

by the edge-betweenness algorithm. The rows are samples, while the columns are 17 network modules. In the central heat map, red rectangles 

represent samples having altered genes in modules, while green rectangles represent samples having no altered genes in modules. The vertical blue 

dashed line shows the cutoff value we used to select sample clusters from the hierarchical clustering. The right-most column lists sample types: green 

for primary GBM samples ('No' in Table S1B in [14]), blue for recurrent ones ('Rec' in Table S1B in [14]), and red for secondary ones ('Sec' in Table S1B in 

[14]).
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Figure 6 Plots of altered genes versus samples. The horizontal axis is the sample numbers, and the left vertical axis is the percentage of altered 

genes occurring in samples related to total altered genes. The right vertical axis is the average shortest path among altered genes occurring in sam-

ples. (a) The TCGA data set. (b) The Parsons data set.
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many of our FIs were extracted from human curated

pathways, it is easy to superimpose pathways back to

these subnetworks to see what pathways are involved in

these cancer genes. Many pathways are statistically signif-

icantly hit by these genes. Figure 8 shows four pathways:

focal adhesion, signaling by platelet-derived growth fac-

tor (PDGF), p53, and cell cycle (false discovery rate <8.0 ×

10-4). As illustrated in Figure 8a, b, there are extensive

overlaps among, and cross-talk between, these pathways.

It is surprising that the two GBM studies identified a

relatively small number of GBM candidate genes in com-

mon: just 15 out of a total of 260 unique genes are shared

(6%) for all GBM candidate genes (13 out of a total of 150

unique genes (9%) for altered genes in the FI network).

Intriguingly, 12 out of 13 shared genes in the FI network

are present in the two cancer subnetworks we built inde-

pendently for the two data sets (Figures 7 and 8, shared

genes are in yellow; P-value = 0.0014 based on permuta-

tion test), suggesting that the GBM cancer clusters cap-

ture the common candidate genes. Interestingly, with the

exception of COL3A1, all the shared genes directly inter-

act with each other, suggesting that they form the core of

a GBM pathway, and that non-shared cancer genes are

extensions of the core network.

To further narrow down the list of candidate genes to

those that are likely to be drivers, we used the results

shown in Figure 6 to investigate candidate genes altered

in eight or more GBM samples in the TCGA data set, and

five or more samples in the Parsons data set. In the

TCGA data set, a total of 20 genes are altered in 8 or

more GBM samples. Of these 20 genes, 13 are in our FI

network, and 10 are displayed in Figure 7a: CDK2A,

CDK2B, CDK4, EGFR, MDM2, NF1, PTEN, RB1, PIK3R1,

and TP53. In the Parsons data set, 14 genes occur in 5 or

more samples, 10 are in the FI network, and 9 are dis-

played in Figure 7b: CDKN2A, CDKN2B, EGFR, IFNA1,

IFNA2, IFNA8, IFNE1, PTEN, and TP53. Out of these

genes, five are shared between these two data sets:

CDKN2A, CDKN2B, EGFR, PTEN, and TP53 (P-value =

5.8 × 10-13). The fact that these genes are altered in multi-

ple samples and shared in two studies further indicates

the existence of a GBM core network.

Application of the FI network to other cancer types

In this section, we test whether the network patterns

found in the GBM samples can also be found in other

cancer types. We applied our FI network to the genome-

wide data sets for breast [10], colorectal [10] and pancre-

atic cancers [11], and found similar patterns of clustering

of mutations into network modules.

In the breast and colorectal data sets, 18,191 genes

based on 20,857 transcripts were re-sequenced for 11

breast and 11 colorectal tumors during the discovery

phase. Mutated genes found in the discovery phase are

further validated with 24 additional samples of the same

tumor type. For network module analysis, we collected

mutated genes from the 11 discovery phase samples from

both breast and colorectal cancers, built interaction sub-

networks based on the FI network, clustered the subnet-

works using edge-betweenness, and compared the

resulting network modules to the distribution of patient

samples.

For breast cancer samples, 1,023 genes were mutated in

11 tumor samples. Of these, 524 genes are in our FI net-

work (51%). The edge-betweenness algorithm generated

33 clusters, of which 12 were of size 5 or greater. The sizes

of the first three modules are 55 (module 0), 49 (module

Figure 7 Subnetworks for GBM clusters. (a) The TCGA cluster. (b) 

The Parsons cluster. Shared GBM candidate genes are shown in yellow, 

non-shared candidate genes in aqua, and linker genes used to connect 

cancer genes in red. The node size is proportional to the number of 

samples bearing displayed altered genes. Other colors and symbols 

are as in Figure 2.

 

(b)
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1), and 26 (module 2) (Figure S4 in Additional file 1). The

sample distribution analysis showed that all 11 breast

samples had mutated genes in modules 0 and 1, and 9 out

11 breast tumor samples had mutated genes in modules

0, 1, and 2. A GO cellular component annotation enrich-

ment analysis showed that genes in module 0 are mainly

from the extracellular region, cytoplasm and the plasma

membrane, while genes in module 1 are found mainly in

the nucleoplasm, nucleus and nucleolus (Table S3 in

Additional file 1). Pathway annotation shows that genes

in module 0 are involved in integrin and focal adhesion

pathways, while genes in modules 1 and 2 are involved in

transcription, cell cycle and DNA repair (Table S3 in

Additional file 1).

For colorectal cancers, 766 genes were mutated in 11

tumor samples. Of these, 410 genes are in our FI network

(54%). We detected 31 modules from the edge-between-

ness algorithm, 8 of which were of size 5 or greater. Nine

out of 11 colorectal cancer samples had mutated genes

involving three network modules, modules 0, 1 and 4

(Figure S5 in Additional file 1). A GO cellular component

enrichment analysis (Table S4 in Additional file 1) dem-

onstrated that module 0 is enriched for plasma mem-

brane and cytosol, while module 1 is enriched in GO

terms describing the extracellular region, and module 4 is

enriched in terms for the nucleoplasm and nucleus. Com-

pared with breast cancer, module 0 in breast cancer has

been split into two modules in colorectal carcinoma.

Pathway annotation showed that genes in module 0 are

highly enriched in components of the endothelin and

Nerve Growth Factor (NGF) pathways, in contrast to

breast cancer and GBM, which show no such enrichment.

Genes in module 1 are involved in focal adhesion and

integrin pathways, while genes in module 4 are involved

in DNA repair (Table S4 in Additional file 1), all of which

are also enriched in breast cancer and GBM.

As with the two GBM data sets, we performed a hierar-

chical clustering analysis on genes mutated in at least two

or more samples. In this analysis, we used samples from

both the discovery and validation phases to increase the

sample numbers. Table S5 in Additional file 1 lists the

numbers of genes mutated in two or more samples,

mutated genes in the whole FI network, and mutated

genes in the clusters from hierarchical clustering; these

numbers indicate that most of the mutated genes are

clustered together in the FI network, as was previously

observed with GBM candidate genes. Also similar to the

results from the GBM analysis, the majority of cancer

candidate genes in both breast and colorectal cancers are

closer than would be expected by chance (Table S6 in

Additional file 1). Figures S6 and S7 in Additional file 1

show these clusters with their pathway annotations. As

with GBM, many cancer-related pathways are signifi-

cantly enriched in these clusters.

We performed a similar network module and hierarchi-

cal clustering analysis on a pancreatic data set [11]. Our

results show that similar network patterns can be found

in pancreatic cancers (Tables S5, S6, and S7, and Figures

S8 and S9 in Additional file 1). We noted that 75% (P-

value = 0.38) of pancreatic samples (18 out of 24 samples)

have mutated genes in module 0 (nucleus and cytosol)

and module 1 (extracellular region), and 71% (P-value =

0.24) of samples (17 samples) have mutated genes in

Table 5: Clustering of GBM-related altered genes occurring in two or more samples in the FI network

Data set Cancer genes Genes in FI network (%) Genes in cluster Percentage of genes in cluster (P-value via

random permutation)

TCGA 164 98 (60%) 71 72% (<0.001)

Parsons 111 65 (59%) 46 71% (<0.001)

The numbers in the 'Cancer genes' column are for altered genes in two or more samples from the TCGA and Parsons data sets. Genes were 

collected using both somatic mutations and CNVs.

Table 6: Average shortest distance for GBM clusters

Data set Cancer genes Random permutation (P-value) Degree-based permutation (P-value)

TCGA 2.29 3.83 (< 0.001) 2.86 (<0.001)

Parsons 2.76 3.82 (< 0.001) 3.32 (<0.001)

The values in the 'Cancer genes' column are from the cancer clusters, while those in the two permutation columns are from permutation tests. 

Random permutation is done via randomly picking up the same number of genes from the biggest connected graph component as for the 

cancer genes, and degree-based permutation is done by picking up genes from different bins based on the degree distributions of cancer 

genes. The gene bins are dynamically generated based on the sorted list of degrees from the cancer genes.
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module 0 and module 2 (plasma and integral to mem-

brane) (Figure S8 in Additional file 1).

As in the GBM analysis, we used permutation testing to

assess whether more of the breast, colorectal, or pancre-

atic cancer samples had mutations involving these mod-

ules than would be expected by chance. However, due to

the small number of samples available and the relatively

large number of mutations per specimen (32 to 49 altered

genes per specimen in the breast, colorectal and pancre-

atic sets, versus 22 per specimen in GBM), we failed to

demonstrate statistically significant overrepresentation of

specimens with mutated genes in these modules.

In conclusion, we found that most samples from breast,

colorectal or pancreatic cancers have sequence-altered

genes involving multiple modules localized in different

cellular localizations, and that most cancer candidate

genes in the FI network are closer than would be

expected by chance. The results are broadly similar to

those seen with GBM, but there are many intriguing dif-

ferences as well in the identity of the pathways involved.

Software tools for accessing the functional interactions

To make our FI data sets available to general researchers,

we developed a web-based application. This application

was built upon the current Reactome SkyPainter using

Google Web Toolkit (GWT) and is available at [79]. Fig-

ure 9 is a screenshot of the application when first

launched. At the top of the application is a Google-map

style view of all reactions manually curated for Reactome;

at the bottom is a hierarchical tree of all pathways, orga-

nized by biological process.

To find FIs, users can upload lists of UniProt accession

numbers or gene names for proteins or genes of interest.

The application will then highlight pathways involving

FIs with the proteins or genes of interest in both the reac-

tion map and the pathway hierarchy. When the user

selects a reaction that has been 'hit', a dialog appears that

provides detailed information on the relationship

between the reaction, its components, and FIs involving

those components (Figure 10a). The user can also select a

hit pathway in the hierarchical tree to bring up a pathway

diagram to show pathway components and its FIs (Figure

10b).

The entire set of FIs can be downloaded as a MySQL

database dump (Additional file 2) or in tab-delimited files

(Additional file 3) from this web application. There is no

restriction on their use or redistribution beyond citing

the source of the information.

Discussion
Increasingly, human diseases and other traits are being

probed by genome-wide screens. For example, several

recent papers [10-14] describe genome-wide screening

efforts to identify somatic mutations in several cancer

types. Placing such lists of genes or proteins into a path-

way context can yield information on the relationships

among these genes and has the potential to generate

hypotheses about the mechanism(s) linking these genes

to phenotypes.

Reliable pathway databases are essential for such an

analysis, but because of the effort needed to curate path-

ways is so human-intensive, even the largest pathway

database has a SwissProt coverage of under 20% (Table 2).

In this report, we describe how we have integrated sev-

eral large-scale experimental data sets to build and train a

machine-learning system that identifies potential 'func-

tional interactions' among pairs of human proteins. We

have combined the FIs predicted by this classifier with

the curated pathways from Reactome and other pathway

Figure 8 Subnetworks with pathways annotated for GBM clus-

ters. Many pathways are hit by GBM candidate genes. Only four of 

them are labeled for two GBM clusters in this diagram to simplify the 

diagram. Colors and symbols are as in Figure 6.
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databases to create an extended database of FIs that cov-

ers nearly 50% of the human proteome. Our literature

search for a small set of predicted FIs around a human

curated GBM pathway [14] shows that our prediction has

an accuracy around 78% (Table 4).

An essential step in building this extended FI network

was the construction of a naïve Bayes classifier to predict

FIs from a combination of physical PPI data and other

noisy sources of information.

NBC is a simple, robust method that is usually the first

to be tried in machine learning techniques. NBCs can fre-

quently yield better results than more sophisticated tech-

niques [80]. One requirement for a successful NBC is that

the features used in the classifier be independent. In our

NBC, we used human physical PPIs, protein-protein

interologs from yeast, worm, and fly, two independent

gene co-expression data sets, protein domain interac-

tions, GO biological process annotations and PPIs gener-

ated from text mining. Human PPIs, protein interactions

from other species, and gene-expression data sets were

generated experimentally, and meet the requirement for

independence. Many of the GO annotations and protein

domain interactions are based on sequence similarities

among proteins in different species. Hence, there is a

potential dependency among these two data types and

protein-protein interologs from yeast, worm and fly since

they all rely on the same phylogenetic trees. Many human

protein interactions in interaction databases we used

(IntAct, BioGrid, and HPRD) are human curated from

the literature. This literature may be used by the text min-

ing technique to generate PPIs. But we feel both effects

are likely to be small.

Many computational methods have been developed to

generate biological pathways and networks based on

DNA microarray or other similar data sets from scratch

with promising results [81]. Most recently, Vaske et al.

[82] developed a factor-graph-based method to expand

known pathways using array data sets generated from

perturbation experiments. Here we propose a new

approach to expand a known human curated pathway by

Figure 9 Front page of the web application for predicted functional interactions.
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using FIs, with the example of the human curated GBM

pathway. Compared to the computational approach, our

method provides direct supporting evidence for

expanded FIs from curated pathways (for curated FIs)

and high reliability from multiple data sources (for pre-

dicted FIs). We are in the process of developing a soft-

ware tool so human curators can make use of these FIs to

expand known pathways for expedited curating.

By applying our FI network to two independent GBM

data sets from whole-genome screening projects, we are

struck by the finding that most genes with recurrent

mutations (>70%; Table 6) co-cluster into a small corner

of huge FI space. These clusters are highly enriched in

classical signaling pathways as well as the cell cycle, in

agreement with pathway analyses performed by the origi-

nal authors of the studies. We are also able to identify

extensive crosstalk among the pathways, which indicates

the complexities in tumorigenesis. Furthermore, we show

how the FI network can reveal overlaps - and possibly

common mechanisms - between the two GBM studies.

This suggests a scenario in which the two cancer whole-

genome screening projects are sampling from a common

core cancer pathway that can be revealed by FI network

analysis.

Our result that most cancer candidate genes are clus-

tered together is similar to what was reported by Cui et

al. [83] based on a much smaller signaling interaction

network generated from BioCarta [84] and CellMap [61],

Figure 10 Views of predicted functional interactions. (a) FIs in a reaction diagram. (b) FIs in a pathway diagram.

(a)

(b)
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a small subset of our imported pathway databases. The

reason why most cancer genes cluster closely together is

still under investigation. The connection degree contrib-

utes to such clustering. However, the degree alone still

cannot interpret the clustering based on our degree-

based permutation test. We suspect that the major factor

that governs the clustering is from FIs among cancer

genes. A subset of cancer genes may form a small graph

component via these FIs in the huge FI network. Such a

small graph component may be used as a core to pull

other cancer genes together to form a bigger cluster.

Lin et al. [85] investigated network patterns for breast

and colorectal cancers using a similar but smaller data set

[86], and predicted that over half of the mutated proteins

(59 out of 83) in breast cancers participate in an interac-

tion cluster, but only a very small percentage of mutated

proteins in colorectal cancers form an interaction cluster,

which contains 12 proteins. We used different network

analysis approaches based on a larger and more reliable

FI network. Our results uncovered network modules that

have been mutated in the majority of cancer samples and

show that most recurrently mutated genes form a net-

work cluster that is more interconnected than would be

expected by chance in both breast and colorectal cancers.

The results from multiple cancer types imply that the pat-

terns revealed in our study might be common in all can-

cer types.

Multiple sources of evidence show that tumorigenesis

in human is a multi-step process and that genomes of

tumors have sequence alterations at multiple sites [1].

Pathway analysis indicates that many pathways are

mutated in cancer samples [2]. A striking finding from

our study is that, for all cancer types examined so far,

most samples have mutations involving a small number

of discrete network modules. One of these modules typi-

cally corresponds to cell cycle regulation, DNA repair,

and other nucleus-based processes, while another corre-

sponds to signal transduction events in the plasma mem-

brane and cytoplasm. This result suggests that the

transformation from normal cells to malignant cells

requires functional mutations in both nuclear and cyto-

plasm/plasma membrane-based pathways. However, our

work also suggests that different cancer types have differ-

ent network modules. A detailed network module based

comparison analysis is likely to reveal different specific

mechanisms in different cancer types.

A major motivation for this work was the desire to inte-

grate information from multiple pathway databases in

order to reduce the fragmentation of knowledge stored in

these useful resources. Even with common data models

such as BioPAX [87], this is not easy to accomplish due to

different focus of interests among the pathway databases,

and different standard operating procedures, which allow

the same series of biological reactions to be described

quite differently from one database to the next. By reduc-

ing the pathway databases into a series of pairwise FIs,

however, we have been able to merge five of the major

pathway databases into a single uniform data model,

although much information about the distinct roles of

each protein has been lost during the process. Much of

our current and future effort will be devoted to develop-

ing methods to map the FIs back to their original pathway

contexts in order to find causal and directional relation-

ships among the proteins.

Conclusions
We have built a FI network that covers close to half of

human gene products. This functional network, which

interconnects with the curated pathways available from

Reactome and other human curated pathway databases,

forms the foundation for a pathway-based data analysis

system for high-throughput data analysis. We have

applied this system to the analysis of two genome-wide

GBM data sets and data sets from other cancer types and

revealed common network patterns in cancer related

genes and samples, suggesting that there exists a core net-

work in GBM tumorigenesis.

Materials and methods
Importing data from non-Reactome pathway databases

Data from four non-Reactome human-curated pathway

databases were imported into the Reactome database (28

March 2009 release). These four databases are: Panther

[27], CellMap [61], NCI Pathway Interaction Database

[62], and KEGG [26]. To store these imported data into

the Reactome database, the original Reactome schema

was extended by adding one new class, Interaction, as a

subclass to Event, and a new attribute, dataSource, to the

top-most class DatabaseObject. The latter is used to track

the original data sources of imported instances. The data

formats used for importing were: BioPAX [87] for Cell-

Map (released June 2006) and NCI Pathway Interaction

Database (released March 2009), SBML [88] with Cell-

Designer additions for Panther (version 2.5, August

2008), and KGML for KEGG (released on March 8 2009).

After importing, all data from Reactome and the four

external databases were maintained in a database, which

was also used to store PPI data (see below). We have also

imported human transcription factor and target interac-

tions from the TRED database [64]. There are two types

of data in the TRED database: human curated data from

the published literature and predictions based on compu-

tational methods. Only the human data were imported to

ensure high quality. Panther uses protein families gener-

ated from hidden Markov models for pathway annota-

tions [60]. We only imported human UniProt proteins

that could be mapped to pathway components reliably

based on evidence codes used in the mapping file.
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Importing protein-protein interaction datasets

Human PPIs were extracted from three PPI databases:

BioGrid [29] (release 2.0.50, February 2009), HPRD [31]

(released August 2007) and IntAct [33] (released March

2009). Data dumps in PSI-MI version 2.5 format from

these three databases were processed by an in-house Java

PSI-MI parser, converted into the extended Reactome

data format, and stored in the extended Reactome data-

base. An odds ratio analysis was used to check the corre-

lation between a PPI or other pairwise data set and FIs

extracted from Reactome pathways. The control groups

were generated from random pairs by using proteins

from the Reactome FIs. The reported odds ratio values in

the results section were based on ten permutations.

PPIs in S. cerevisiae, C. elegans and D. melanogaster PPI

data sets were downloaded from IntAct (released March

2009). Ensembl Compara [48] was used to map non-

human proteins onto putative human orthologs.

Other data sets for naïve Bayes classifier

The protein domain-domain interaction data set was

downloaded from pFam [52] (release 23.0, July 2008).

Two microarray co-expression data sets were used in

the NBC: one downloaded from [89], which was com-

piled from 60 data sets that contained a total of about

4,000 microarrays [49], and another generated by Prieto

et al. [50].

Protein GO annotations were downloaded from [90]

(gene_association.goa_human, released March 2009). A

PPI data set generated from a text-mining technique was

kindly provided by Rzhetsky et al. [53].

Training of naïve Bayes classifier

We used a NBC to score protein-protein pairwise rela-

tionships. These pairwise relationships were extracted

from nine data sources described above and used as fea-

tures to train the NBC. We used a closed-world hypothe-

sis [91] to assign values to a protein pair: if there was a

pairwise relationship between the two proteins in the

data set, we used true, otherwise false.

To integrate protein-protein pairwise relationships into

the pathway context, we extracted pairwise relationships

from reactions and complexes annotated in pathways by

defining a FI as an interaction in which two proteins are

involved in the same reaction as input, catalyst, activator

and/or inhibitor, or as components in a complex. To train

the NBC, we extracted a positive data set from Reactome

using this definition, and filtered out pairs that do not

have any feature. We generated a negative training set

using random pairs from proteins in the positive data set.

Clustering of cancer genes in the functional interaction 

network

Two human GBM data sets [12,14] were used in our can-

cer data analysis. For sequence-altered genes in GBM, we

chose mutated genes and CNV genes for each sample.

Many genes exist in CNV chromosome fragments. For

our study, we chose those genes that have been labeled

'Genes with gene expression correlated with copy num-

ber' in the TCGA data set (Table S3 in [14]) or 'Candidate

target' and 'Other genes' in the Parsons data set (Tables

S5 and S6 in [12]). Note that CNV genes in the TCGA

data set have been pre-filtered based on gene expression

data sets, while CNV genes in the Parsons have not since

only SAGE expression data are available, which were not

used for filtering because of their lower sensitivity for

under-regulated genes. To get CNV genes for each sam-

ple in the TCGA data set, we used a file, TCGA-GBM-

RAE-genemap-n216-20080510-dscrt.txt, downloaded

from [92], which lists CNVs for individual samples [93].

For edge-betweenness network clustering [75], we

lumped all sequence-altered genes from samples

together, searched FIs among these genes, and con-

structed a subnetwork based on these interactions. A Java

graph library, Jung2 [94], was used for edge-betweenness

network clustering. Hierarchically clustering of TCGA

GBM samples was done using the hclust method in R [95]

based on the complete linkage method with the binary

distance between binary vectors generated for each GBM

sample according to occurrence of altered genes in net-

work modules identified by the edge-betweenness algo-

rithm. The heat map from hclust was drawn using the R

package heatplus [96].

To search for GBM cancer clusters, we collected

sequence-altered genes occurring in two or more samples

(GBM candidate genes), calculated pairwise shortest

paths among genes in the FI network, hierarchically clus-

tered them based on the average linkage method, and

then selected a cluster containing more than 70% altered

genes. To estimate P-value for GBM cancer clusters, we

did a 1,000-fold permutation test by randomly choosing

the same numbers of genes from the biggest connected

graph component as the GBM candidate genes to subject

to the same hierarchical procedures for the candidate

genes.

To construct a subnetwork spanning a set of genes, we

implemented a search algorithm guided by the hierarchi-

cal clustering results based on shortest path between two

clusters in order to keep the number of linking genes to a

minimum. To calculate the P-value for the average short-

est distance for cancer clusters, we performed a 1,000-

fold permutation test by randomly selecting the same

numbers of genes from the biggest connected graph com-

ponent. To check if the connection degree is a con-

founder to clustering of cancer genes, we repeated this

analysis after dynamically generating gene bins based on

the sorted list of degrees in the cancer genes, and then

randomly choosing genes from these bins in the same dis-

tribution as the cancer genes.
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For other cancer types, we used Table S3 from [10] for

somatic mutated genes in breast and colorectal cancers,

and Tables S3, S4, and S5 from [11] for somatic mutated

and CNV genes in pancreatic cancers.

All network diagrams were drawn with Cytoscape [97].

The functional enrichment analyses for pathways and GO

annotations were based on binomial test. False discovery

rates were calculated based on 1,000 permutations on all

genes in the FI network.

Enhanced experimental SkyPainter

Skypainter is a web application implemented in the Reac-

tome web site for gene or protein over-representation

analysis [23]. We augmented the function of the original

Skypainter by adding predicted FI data. The enhanced

Skypainter was implemented using the Google web tool-

kit [98].

Additional material
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