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Abstract

Activation of the unfolded

protein response (UPR) signaling

pathways is linked to multiple

humandiseases, including cancer.

The inositol-requiring kinase 1a

(IRE1a)–X-box binding protein 1

(XBP1) pathway is the most evo-

lutionarily conserved of the three

major signaling branches of the

UPR. Here, we performed a

genome-wide siRNA screen to

obtain a systematic assessment of

genes integrated in the IRE1a–

XBP1 axis. We monitored the

expression of an XBP1-luciferase

chimeric protein in which lucifer-

ase was fused in-frame with the

spliced (active) form of XBP1.

Using cells expressing this reporter

construct, we identified 162 genes

for which siRNA inhibition re-

sulted in alteration in XBP1 splic-

ing. These genes express diverse

types of proteins modulating a

wide range of cellular processes. Pathway analysis identified a set of genes implicated in the pathogenesis of breast cancer. Several

genes, including BCL10, GCLM, and IGF1R, correlated withworse relapse-free survival (RFS) in an analysis of patients with triple-negative

breast cancer (TNBC).However, in this cohort of 1,908 patients, only highGCLMexpression correlatedwithworse RFS in both TNBCand

non-TNBCpatients.Altogether, our study revealedunidentified rolesofnovelpathways regulating theUPR, and thesefindingsmayserve as

a paradigm for exploring novel therapeutic opportunities based on modulating the UPR.

Implications: Genome-wide RNAi screen identifies novel genes/pathways that modulate IRE1a–XBP1 signaling in human tumor

cells and leads to the development of improved therapeutic approaches targeting the UPR.
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Introduction

The endoplasmic reticulum (ER) is the central organelle respon-

sible for protein synthesis, assembly, and secretion. Perturbationof

these processes by stresses in the tissuemicroenvironment, includ-

ing glucose deprivation, hypoxia, and chemotherapeutic agents,

leads to the accumulation ofmisfolded or unfolded proteins in the

ER lumen, causing ER stress (1). To restore cellular homeostasis,

cells havedevelopedanevolutionarily conservedsignalingnetwork

known as the unfolded protein response (UPR). In the presence of

ER stress, the UPR is induced to promote cell survival by reducing

protein translation, increasing the expressionofER chaperones and

protein folding enzymes, and targeting misfolded proteins for

degradation (1). However, under conditions of prolonged ER

stress, the UPR may also activate proapoptotic signaling (2).

Three ER-resident transmembrane proteins are responsible for

sensing ER stress and triggering UPR signaling: inositol-requiring

kinase 1a (IRE1a), double-stranded RNA-activated protein

kinase (PKR)–like endoplasmic reticulum kinase (PERK), and

activating transcription factor 6 (ATF6; ref. 1). IRE1a is a type I

transmembrane protein that has two catalytic domains, a serine/

threonine kinase domain and an endoribonuclease domain at

the carboxyl terminal. In the presence of ER stress, IRE1a

dimerizes and oligomerizes, then autophosphorylates through

its kinase domain, leading to the activation of the endoribonu-

clease domain (3, 4). The activated endoribonuclease domain

excises a 26-nucleotide intron from the mRNA encoding a basic

leucine zipper (bZIP) transcription factor, X-box–binding pro-

tein 1 (XBP1). The removal of the 26-nucleotide sequence causes

a translational frame shift and results in the production of a

larger, spliced form of XBP1 protein (XBP1s), which is a potent

transcriptional activator of various UPR-targeted genes (Fig. 1A;

refs. 1, 5).

The IRE1a–XBP1 pathway plays an important role in various

human diseases (5). XBP1 is a key regulator of glucose intol-

erance and insulin resistance in diabetes (6). In cancer, several

lines of evidence demonstrate a critical role for the IRE1a–XBP1

pathway in tumor growth, metastasis, and immune function

(7, 8). Tumor growth and survival under hypoxic conditions

were severely compromised when XBP1 expression was inhib-

ited (9). As a mediator of cell survival, XBP1 activation has been

extensively characterized in multiple myeloma, a plasma cell

malignancy (10, 11). XBP1 is essential for plasma cell differ-

entiation, and its expression is elevated in human multiple

myeloma cells, and XBP1s expression is associated with poor

multiple myeloma patient survival (12, 13). Consistent with

these observations, expression and activation of XBP1 have also

been correlated with poor clinical outcome in breast cancer,

and with angiogenesis in pancreatic cancer (14–16). In breast

cancer cells, knockdown of XBP1 expression inhibited tumor

growth and relapse (15). Small-molecule inhibitors that selec-

tively block IRE1a endoribonuclease activity and XBP1s expres-

sion have displayed potent antitumor activity in multiple

cancer types (5, 7, 17–20).

Accumulating evidence indicates that the UPR signaling inte-

grates information regarding the intensity and the duration of the

stress stimuli to generate signaling leading to prosurvival or

proapoptotic pathways (5). However,mechanistic understanding

of these pathways, particularly their relevance tohumandisease, is

incomplete (5, 8). More importantly, current knowledge regard-

ing the regulation of XBP1 activity in cancer remains elusive

despite its reported functional significance in these diseases (5,

21). Therefore, to extend our understanding of the molecular

basis of the UPR, we conducted an siRNA screen as a strategy to

identify novel genes/pathways that modulate IRE1a–XBP1 sig-

naling in human tumor cells. Ultimately, this knowledge will lead

to the development of improved therapeutic approaches targeting

the UPR.

Materials and Methods

Cell culture

Human fibrosarcoma HT1080 and human breast cancer MCF7

andMDA-MB-231 cells were originally purchased from the ATCC

and immediately expanded and frozen down as master stocks.

Cells were passaged for 3 months and then replaced with fresh

stocks. Authentication of these cell lines was performed by short

tandem repeat profiling at the Stanford Functional Genomics

Facility. Cells were routinelymonitored for mycoplasma contam-

ination by the MycoAlert Mycoplasma Detection Kit (Lonza).

Cells were maintained at 37�C with 5% CO2 in DMEM media

(Gibco) supplemented with 100 U/mL penicillin/streptomycin

antibiotics and 10% FBS. HT1080 cells stably expressing the

XBP1-luc or CMV-luc constructs were established as described

previously (22, 23). We also used mouse embryonic fibroblasts

(MEF) expressing the human IGF1 receptor (Rþ) and IGF1R

knockout (R�) MEF cells obtained courtesy of Renato Baserga

(Thomas Jefferson University, Philadelphia, PA; ref. 24).

CRISPR/Cas9–mediated knockout of BCL10 or GCLM

BCL10- or GCLM-knockout MCF7 or MDA-MB-231 cell lines

were established by CRISPR/Cas9–mediated genome editing.

Guide RNA sequences (sgRNA) for CRISPR/Cas9 were designed

using http://crispr.mit.edu/ hosted by the Feng Zhang Lab. Oli-

gonucleotide inserts for generating human BCL10 and GCLM

gRNAs are the following: 50-CTCGCCGAATAGATTCAACA-30

(BCL10, Exon 2) and 50-GTGCCCGTCCACGCACAGCG-30

(GCLM, Exon 1). The complementary oligonucleotides for the

gRNAs were annealed and cloned into the lentiCRISPR v2 vector

(Addgene, plasmid #52961; ref. 25). Lentiviral particles were

produced by cotransfection with psPAX2 and pMD2.G plasmids

into HEK293T cells. Viral supernatants were collected 48 to 60

hours posttransfection and cleared through a 0.45-mm filter and

used to infect human breast cancer cells (MCF7 and MDA-MB-

231) for three rounds with Polybrene supplement (4 mg/mL;

Sigma). After final infection, stable populations were obtained

by selection with 2 mg/mL puromycin (Invitrogen). After 2 weeks,

colonies were isolated and screened for BCL10 or GCLM expres-

sion by Western blotting.

siRNA transfection and siRNA screen

For the primary screen, we used an arrayed library of 21,121

siRNA pools covering the majority of the human genome

[Dharmacon Human Genome siARRAY siRNA library (cat# G-

005000-025), Thermo Fisher Scientific]. Each siRNA pool con-

sisted of four oligonucleotides targeting different regions of the

same gene. Each assay plate included the following controls:

nontargeting control siRNA, siTOX control siRNA, and ERN1

(human IRE1a) siRNA (Thermo Fisher Scientific). The siRNAs

were transiently transfected in duplicate into HT1080 cells stably

expressing the XBP1-luc or CMV-luc reporter at a 25 nmol/L final

concentration using reverse transfection. In detail, all siRNAswere
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aliquoted into 384-well plates (8 mL/well) in duplicate for each

cell line using an Agilent Technologies (formerly Velocity 11)

robotic system. To each well, 10 mL of serum-free DMEM media

containing 0.04 mL Dharmafect 1 transfection reagent (Dharma-

con) was added using WellMate Dispenser (Matrix). The siRNA/

Dharmafect mixture was incubated at room temperature for 1

hour before 60 mL of HT1080-XBP1-luc or HT1080-CMV-luc cell

suspension (10,000 cells/mL in complete DMEM media) was

seeded using theWellMateDispensing system. After incubation at

room temperature for 30 minutes, all plates were placed into cell

culture incubator at 37�C supplied with 5% CO2. ER stress was

induced by adding 10 mL of bortezomib (10 nmol/L) after 48

hours to all the wells except the first two columns of each plate,

which served as a noninduced control. The plates were returned to

the incubator for additional 24 hours before the luciferase assay

was performed.

For the secondary screen, the 4 oligonucleotides of each siRNA

pool were added into individual wells. The cells were transfected

and treated with bortezomib using the same procedure as for the

primary screen.

In the validation studies, HT1080 cells were transfected in 6-

well or 6-cm plates using reverse transfection with 1.25 mL

Dharmafect 1/mL, 10 to 20 nmol/L final siRNA concentration,

and cells at 1� 105 to 2.5� 105 cells/mL. After incubation for 48

hours at 37 �C, ER stress was induced by thapsigargin or borte-

zomib treatment at 300 or 100 nmol/L final concentration,

respectively. Cells were harvested after 14 hours under ER stress

and further assessed by Western blotting or qRT-PCR.
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Figure 1.

Whole-genome siRNAscreen for genes required for optimal XBP1 splicing.A,Top, schematic overviewof ER stress-induced IRE1a activation andXBP1mRNAsplicing;

bottom, schematic view of the luciferase reporter constructs used in this study. B, HT1080-XBP1-luc and HT1080-CMV-luc cells were transfected with

nontargeting siRNA (control) or siRNA targeting human ERN1 for 48 hours, and then treated with bortezomib (BTZ, 10 nmol/L) for 24 hours, and luciferase activity

was measured. C, Summary of the siRNA screen approach. D, Dot plot of the screen results. y-axis represents the average z-scores of HT1080-XBP1-luc

luminescence readings for each targeted gene.Nontargeting siRNAcontrols are colored in green. Noninduced controls are colored in black. The entire siRNA library is

colored in blue with candidate genes highlighted in yellow. Red dash line represents cut-off z-score of �1.5. Gray dash line represents cutoff z-score of �0.5.

Regulators of IRE1a–XBP1 Pathway
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Luciferase reporter assay

To measure the luciferase activity in both HT1080-XBP1-luc

and HT1080-CMV-luc cells, we performed luciferase reporter

assay. For siRNA screen in 384-well plates, 10 mL per well of

Bright-Glo firefly luciferase substrate (Promega) was added, and

luciferase activity was measured immediately using Analyst GT

plate reader (Molecular Devices) in coordination with Twister II

robotic loading system (Caliper LS). For luciferase assays in 96-

well plates, 20 mL per well of Bright-Glo substrate was added

before the plates were read using Tecan Infinite M1000 multi-

mode plate reader (Tecan Group).

Statistical analysis

To effectively identify initial hits and minimize false positives,

we included several quality controls and performed step-by-step

statistical analysis. The controls were the following: (i) blank:

transfection reagents only and were treated with DMSO control;

(ii) low control: siTOX control siRNA plus transfection reagents

andwere treatedwith bortezomib; (iii) high control: nontargeting

control siRNA plus transfection reagents and were treated borte-

zomib; (iv) negative control: transfection reagents only and were

treated with bortezomib; (v) positive control: human ERN1

siRNA plus transfection reagents and were treated with

bortezomib.

All the luminescence readout data were first transformed to

logarithmic scale. Then, each plate was normalized using a medi-

an of positive control wells on a given plate for intraplate nor-

malization. We performed interplate normalization by comput-

ing median of luminescence intensity value across all plates and

then scaling each plate to have the same median value. Using the

normalized luminescence, we computed z-score such that a

negative z-score indicated inhibition of XBP1-luciferase and a

positive z-score indicated activationofXBP1-luciferase. The screen

hits were selected on the basis of the median z-score of the

duplicate plates with a cut-off of z-score <�1.5. We chose a z-

score cutoff of �1.5 to efficiently reduce false negatives. The

resulting hits were subjected to a more stringent secondary screen

to rule out false positive hits.

To analyze the secondary screen data, the normalized percent-

age of inhibition for each siRNA compared with nontargeting

control was calculated. We used percentage of inhibition as

follows: % of inhibition ¼ [1�[(response�low)/(high�low)]]
�100; response¼ the rawdata for eachwell (luminescence signal);

low¼median of low control, siTOXwells; high¼median of high

control, siGenome nontargeting wells. We used 50% normalized

inhibition as a threshold. An siRNA that inhibits XBP1-luciferase

signal no less than 50%was selected. To exclude siRNAs that have

general toxic effect, we applied a 50% normalized percentage of

inhibition to the CMV-luciferase cell line. An siRNA that inhibits

CMV-luciferase activity by more than 50% was considered toxic

and thus eliminated from further analysis. The remaining

siRNAs were considered to inhibit XBP1 splicing significantly and

specifically.

Unless otherwise indicated, all the P values in this study were

calculated from a two-tailed Student t test with equal variance. All

error bars represent standard deviation.

Bioinformatic analysis

Reactome Skypainter (www.reactome.org/skypainter-2/) and

Ingenuity Pathway Analysis (IPA, www.ingenuity.com/products/

ipa) for pathway analysis were used to select genes for our

secondary screen. Using a list of input genes, Reactome Skypainter

identifies which pathways these genes are involved in and com-

putes P values for observing that many or more genes in a given

pathway. Because Skypainter does not correct these P values for

multiple hypotheses, Benjamini–Hochberg correction was

applied to identify pathways with significance at FDR � 5%. The

list of initial 227 genes was used as input of IPA for network

analysis. When creating the gene–gene interaction networks, the

"direct relationships" option in IPA analysis was implemented.

Western blotting

Cells were lysed inRIPA buffer (Cell Signaling Technology) and

protein concentration was determined using the Bradford protein

assay (Bio-Rad). Lysates (50 mg) were separated using 10% SDS-

PAGE and electro-transferred onto Nitrocellulous membranes

(Bio-Rad) following standard protocols. Antibodies used include

anti-XBP1s (BioLegend), anti-BCL10, anti-GCLM and anti-b actin

(Santa Cruz Biotechnology), and anti-IGF1R (Cell Signaling

Technology). Chemiluminescence was induced with ECL detec-

tion reagents (GE Healthcare) and measured using ChemiDoc

system (Bio-Rad). Blots were quantified using NIH ImageJ64

software.

Analysis of breast cancer patient datasets

Microarray expression and clinical data of the 1,809 patients

were downloaded from Kaplan–Meier Plotter website (www.

kmplot.com). The estrogen receptor (ESR) and the triple-neg-

ative breast cancer (TNBC) status of each patient tumor sample

in this dataset was defined as reported previously (26, 27). The

Kaplan–Meier relapse-free survival (RFS) graphs of the different

subtypes of patients with breast cancer stratified by the expres-

sion of BCL10, GCLM, or IGF1R were plotted as described

previously (28). The RNA-seq data (n ¼ 1,182; Illumina HiSeq)

with the clinical information of the patients with breast cancer

were downloaded from The Cancer Genome Atlas (TCGA)

database through the University of California Santa Cruz Can-

cer Browser. Correlations between the expression of BCL10,

GCLM or IGF1R and XBP1 gene signature were evaluated using

Pearson correlation matrix (28).

Results and Discussion

Genome-wide siRNA screen

To identify genes that are required for XBP1 activation under

UPR, we performed a whole-genome high-throughput siRNA

screen using a unique quantitative signal–monitoring system.

In this system, the coding sequence of firefly luciferase is fused

in-frame with the human XBP1s mRNA sequence, resulting in

luciferase expression only when XBP1 mRNA is spliced into its

active XBP1s form. This construct, or a CMV promoter-driven

luciferase construct used to normalize for nonspecific effects,

was stably introduced into HT1080 human fibrosarcoma cells

(HT1080-XBP1-luc and HT1080-CMV-luc, respectively; Fig. 1A;

ref. 29). ER stress was induced by the administration of 10

nmol/L bortezomib, and luciferase activity was measured after

24 hours. Bortezomib is a selective and potent inhibitor of the

26S proteasome, as well as a modulator of calcium flux within

the ER (30). Treatment of cells with this agent induced the UPR

(31) and XBP1 splicing (20). Transfection of siRNA targeting

IRE1a (encoded by ERN1) led to significant inhibition of XBP1

splicing, as assessed by reduction of XBP1-luciferase activity,
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but not CMV-luciferase activity (Fig. 1B). Using this system, we

screened the siARRAY whole human genome siRNA library

targeting 21,121 genes. The screening protocol is illustrated

in Fig. 1C. The entire assay was carried out in duplicate for both

cell lines, and normalized z-scores of luminescence were cal-

culated. Our analyses focused on the group of screening hits in

which siRNA inhibition of the gene resulted in differential

inhibition of XBP1 splicing without reducing CMV-luciferase

activity significantly. We selected genes with a z-score less than

�1.5 to be considered significant for XBP1-luciferase inhibition

(Fig. 1D). To reduce the false-positive hit rate, we used a more

stringent z-score of less than �0.5 for CMV-luciferase activity as

an indication of nonspecific activity (Fig. 1D; Supplementary

Fig. S1A–S1D). Details of the statistical analysis are described in

the Materials and Methods section.

Gene function and pathway analysis

The primary screen identified 227 candidate genes as potential

regulators of IRE1a–XBP1 signaling (Supplementary Table S1).

Gene Ontology analysis classified these genes into enzymes,

transcriptional factors, transporters, phosphatases, peptidases,

transmembrane receptors, and kinases (Fig. 2A). To identify genes

that were significantly enriched in particular biological processes,

we performed pathway enrichment analysis using Reactome Sky-

painter. The output demonstrates a global overview of signifi-

cantly enriched pathways as illustrated in Fig. 2B. The most

enriched genes include those encoding proteins involved in

"mRNA Processing" and "Transcription" (P < 10�5 and P <

10�2, respectively; Fig. 2C). These findings were reassuring as

transcription and mRNA processing are known to be involved in

regulating XBP1 mRNA splicing during ER stress. Other signifi-

cantly enriched signaling pathways include "Ion Channel Trans-

port," "Gene Expression," "DNA Repair," and "Transmembrane

Transport" (Fig. 2B and C), which are not previously associated

with theUPR. The statistical significance of each enrichedpathway

is listed in Supplementary Table S2.

To examine whether these genes are part of specific signaling

modules, we also created gene–gene interaction networks

using IPA (Ingenuity Systems, Inc.). This analysis revealed two

major interaction networks (Fig. 2D). Consistent with the

Reactome Skypainter results, both networks contained a subset

of genes involved in mRNA processing (Fig. 2D, orange dashed

circle). Both networks also encompassed several genes that

have been implicated in human cancers, including BCL10,

EPO, SMAD2, and CDKN1B (p27) and are key regulators of

cell cycle, proliferation, differentiation, and apoptosis. Partic-

ularly, we identified a subset of genes related to estrogen

receptor signaling (Fig. 2D, blue dashed circle). Indeed, a

majority of these genes, including BCL10, GCLM, NCOR2

(SMERT), CDKN1B (p27), HXOD1, IL-17A, and IGF1R, have

been shown to be critical for the onset and progression of

breast cancer (32–37). It has been shown previously that XBP1

expression and activation correlated with clinical outcome of

endocrine-treated breast cancer, resulting in tamoxifen resis-

tance (14). Therefore, the interaction between these identified

genes and XBP1 activation may play a significant role in the

pathogenesis of human breast cancer.

Validation of the screen hits

Next, we chose a subset of 165 genes from the 227-gene list

to confirm the reproducibility of the screen results using mul-

tiple individual siRNAs (deconvolution, Fig. 1C). The genes

were selected based upon the Gene Ontology and functional

analysis (as described in Materials and Methods and Supple-

mentary Table S3). In this secondary screen, four siRNAs

targeting different regions of the same gene were individually

evaluated at 25 nmol/L with the same protocol used in the

primary screen. To exclude siRNAs causing general cytotoxicity,

we again included the HT1080-CMV-luc cells as a control. An

siRNA was considered to be a positive hit if it inhibited XBP1-

luciferase activity by more than 50% in comparison with the

nontargeting control without significantly inhibiting the CMV-

luciferase (below 50%). The details of the secondary screen are

described in Materials and Methods. After applying these cri-

teria, a total of 162 of the 165 candidate genes (98%) retested

showed inhibition with at least 1 siRNA meeting the selection

criteria. In addition, 56% of the genes (93/165), including

ERN1 (encoding IRE1a) and XBP1, had at least 3 of 4 siRNAs

that met the selection criteria. The complete list of these genes

and their secondary validation data are summarized in Sup-

plementary Table S3. Seven (4.3%) of these genes, XBP1, ERN1,

GCLM, IGF1R, MCL-1, PIK3R5, and SEC61B (21, 38–42), were

previously identified to be related to IRE1a–XBP1 signaling.

The identification of these known molecular connections pro-

vides an important validation of the screening approach we

adopted.

To further substantiate our findings, we selected several

screening hits representing each group (listed in Supplemen-

tary Table S3) for further validation. We performed qRT-PCR

and/or Western blotting analysis of selected siRNA hits to

determine the efficiency of gene knockdown (Supplementary

Figs. S2A and S2B and S3A–S3D; and data not shown). XBP1

splicing was induced by either bortezomib or thapsigargin,

an inhibitor of the ER Ca2þ ATPase to induce ER stress. siRNA

knockdown of BCL10, ERN1, GCLM, IGF1R, DAG1, FBXO4,

or SERGEF inhibited XBP1 splicing induced by either borte-

zomib or thapsigargin (Supplementary Fig. S2A and S2B). As

summarized in Supplementary Table S4, of the 25 genes

selected from the secondary screen, we identified 21 genes

(88%) that were required for bortezomib-induced XBP1 splic-

ing and 13 genes (52%) that were also essential for thapsi-

gargin-induced XBP1 splicing (Supplementary Figs. S2A and

S2B and S3A–S3D).

Recently, we and other investigators have shown that higher

expression of an "XBP1 gene signature" was associated with

worse RFS in patients with triple-negative (TNBC) or estrogen

receptor–negative (ESR�) breast cancers, but not in those with

non-TNBC or estrogen receptor–positive (ESRþ) cancers (15,

28). To test the hypothesis that our screening hits also corre-

lated with breast cancer patient survival, we performed survival

analyses on an 1,809-patient dataset (26, 28), using a cutoff of

the median expression value for each gene. Higher expression

of BCL10, GCLM, and IGF1R was significantly associated with

worse RFS in patients with TNBC (Fig. 3A; Supplementary Fig.

S4A) or ESR� (Fig. 3B; Supplementary Fig. S4B). Interestingly,

higher expression of GCLM was also significantly associated

with worse RFS in patients with non-TNBC or ESRþ breast

cancer patients (Supplementary Fig. S4A and S4B), suggesting

that GCLM is an important mediator of survival in all popula-

tions of breast cancer patients.

Next, to validate the role of BCL10, GCLM, and IGF1R in

XBP1 activation under ER stress in human breast cancer cells,
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we deleted expression of BCL10 or GCLM in MCF7 (ESRþ) and

MDA-MB-231 (TNBC) cells using a CRISPR/Cas9 approach.

Deletion of BCL10 significantly inhibited bortezomib or

thapsigargin-induced XBP1 splicing in both MCF7 and

MDA-MB-231 cells (Fig. 3C). Knockout of GCLM inhibited

bortezomib- or thapsigargin-induced XBP1 splicing in MDA-

MB-231 cells, and we further confirmed this result in a second

TNBC (MDA-MB-468 cells; Supplementary Fig. S4C). Deletion

of GCLM in ESRþ breast cancer cells (MCF7, T47D) yielded

uninterpretable results (data not shown). Furthermore, we

were not able to delete IGF1R in these human breast cancer

cell lines by CRISPR/Cas9, likely due to severely compromised

cell viability upon loss of IGF1R expression. Nevertheless, we

utilized MEFs expressing IGF1R (Rþ cells) and the IGF1R-null

MEF cells (R� cells; ref. 24) and showed that XBP1 activation

under ER stress was significantly reduced in R� cells, compared

withRþ cells (SupplementaryFig. S5A). Furthermore, siRNAknock-

down of IGF1R expression significantly inhibited bortezomib-

or thapsigargin-induced XBP1 splicing in both MCF7 and MDA-

MB-231 cells (Fig. 3C).
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Figure 2.

Functional classification and pathway analysis of siRNA screen results. A, Pie graph showing functional classification of candidate genes based on Gene Ontology

analyses. B, An overview of enriched pathways generated by Reactome Skypainter analysis. The number of identified genes in each signaling event ranging

from 1 to 11 was colored from blue to red accordingly. Enriched reaction groups were highlighted in pink box frames. C,Negative log [P values] of enriched signaling
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To further demonstrate the correlation between BCL10,

GCLM, or IGF1R expression and XBP1 activation, we analyzed

a 1,182 breast cancer patient dataset from TCGA. Statistical

analysis revealed a significant correlation between the XBP1

gene signature with BCL10, GCLM, or IGF1R expression (Sup-

plementary Fig. S5B). We also evaluated the staining intensity of

XBP1s versus IGF1R or GCLM in a tissue microarray made up of

150 cores of human breast cancer specimens. Overall, we found

that the expression of XBP1s and IGF1R or GCLM protein was

highly correlated (Supplementary Fig. S5C and data not

shown). Taken together, these results demonstrate the feasibility

of identifying important genes that regulate IRE1a–XBP1 sig-

naling through genome-wide siRNA screen. These studies also

provide strong evidence to support the clinical significance of

IRE1a–XBP1 signaling in the prognosis of breast cancers.

Significance

The IRE1a–XBP1 pathway plays an indispensable role in tumor

growth, metastatic progression, and chemoresistance (7, 8, 15).

XBP1 has been extensively characterized as a mediator of cell

survival in many tumor types. Expression and activation of XBP1

has been correlated with poor clinical outcome in breast cancer

(14, 15) and angiogenesis in pancreatic cancer (16). Here, we

performed a genome-wide, loss-of-function, luciferase reporter–

based siRNA screen, throughwhichwe identified and characterized
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Figure 3.

Validation of the screen hits.A andB,Kaplan–Meier graphs of

RFS for 225 TNBC and 1,415 non-TNBC patients in A or 1,286

ESRþ and354ESR�breast cancer patients inB from the same

patient cohort, stratified by high and low expression ofBCL10

(left graph) or IGF1R (right graph). High BCL10 and IGF1R

expression resulted in worse RFS in TNBC and ESR� patients.

The P values after Benjamini–Hochberg correction from

log-rank (Mantel–Cox) test and the HRs (higher expression

compared with lower expression) are shown. C, Reduction

in ESR stress–induced XBP1s expression after CRISPR/Cas9-

mediated knockout of BCL10 or siRNA-mediated knockdown

of IGF1R. MCF7 or MDA-MB-231 cells deficient in BCL10

expression or IGF1R expression were treated with

thapsigargin (TG, 300 nmol/L) or bortezomib (BTZ, 100

nmol/L) for 14 hours, and Western blotting was performed.

Quantification of XBP1s/actin ratio is shown below

each blot.
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a groupof162novel genes involved in the regulationof the IRE1a–

XBP1 signaling branch of the UPR. To ensure the accuracy of our

screening hits, we confirmed that 88% of our positive hits were

indeed involved in bortezomib-induced XBP1 activation. The

enrichedmolecularpathways fromthesegenes suggest that a variety

of biological processes and signaling networksmay influence XBP1

splicing, thus providing important biological insights into UPR

regulation and suggesting new therapeutic strategies for diseases in

which the UPR is deregulated. Furthermore, our study highlights

the value of combining genome-wide loss-of-function screen, bio-

informatics analysis, and postscreen validation to comprehensively

elucidate the global regulation of a complex signaling pathway.
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