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A human immune dysregulation syndrome
characterized by severe hyperinflammation with
a homozygous nonsense Roquin-1 mutation
S.J. Tavernier1,2,3,23, V. Athanasopoulos4,5,23, P. Verloo6,23, G. Behrens7,8, J. Staal 2,3, D.J. Bogaert1,9,

L. Naesens1,10, M. De Bruyne 1,11, S. Van Gassen12,13, E. Parthoens14, J. Ellyard4, J. Cappello4, L.X. Morris15,

H. Van Gorp10,16, G. Van Isterdael 3,17, Y. Saeys12,13, M. Lamkanfi10,16, P. Schelstraete9, J. Dehoorne18,

V. Bordon9, R. Van Coster6, B.N. Lambrecht19,20,21, B. Menten11, R. Beyaert 2,3, C.G. Vinuesa4,5,

V. Heissmeyer7,8, M. Dullaers 1,22 & F. Haerynck1,9*

Hyperinflammatory syndromes are life-threatening disorders caused by overzealous immune

cell activation and cytokine release, often resulting from defects in negative feedback

mechanisms. In the quintessential hyperinflammatory syndrome familial hemophagocytic lym-

phohistiocytosis (HLH), inborn errors of cytotoxicity result in effector cell accumulation, immune

dysregulation and, if untreated, tissue damage and death. Here, we describe a human case with

a homozygous nonsense R688* RC3H1 mutation suffering from hyperinflammation, presenting

as relapsing HLH. RC3H1 encodes Roquin-1, a posttranscriptional repressor of immune-

regulatory proteins such as ICOS, OX40 and TNF. Comparing the R688* variant with the murine

M199R variant reveals a phenotypic resemblance, both in immune cell activation, hypercyto-

kinemia and disease development. Mechanistically, R688* Roquin-1 fails to localize to P-bodies

and interact with the CCR4-NOT deadenylation complex, impeding mRNA decay and dysre-

gulating cytokine production. The results from this unique case suggest that impaired Roquin-1

function provokes hyperinflammation by a failure to quench immune activation.
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H
yperinflammatory syndromes are life-threatening dis-
orders caused by severe and uncontrolled immune cell
activation and hypercytokinemia. These syndromes

comprise a constellation of distinct entities such as hemophago-
cytic lymphohistiocytosis (HLH), macrophage activation syn-
drome, sepsis and the cytokine release syndrome in the setting of
immunotherapy. The clinical presentation shares a number of
features such as unremitting fever, splenomegaly, coagulopathy,
hepatitis, cytopenia and, if unrestrained, multi-organ failure and
death. At the heart of these diseases lies an uncontrolled immune
response to a persisting trigger, which can be pathogen driven or
innocuous (self) antigen derived1–4.

Especially in familial HLH (FHL), progress has been made to
identify the underlying disease-causing genes. These variants are
mostly situated in pathways that regulate cytotoxic granule
function (e.g., PRF1) or exocytosis (e.g., RAB27A, LYST). In these
conditions, HLH is often the only manifestation of disease but
can also be part of a broader syndrome2. Additional inborn errors
of the immune system such as X-linked lymphoproliferative
disease (SH2D1A, XIAP) are prone to the development of HLH2.
Although these hyperinflammatory episodes in FHL occur typi-
cally in the first years of life, hypomorphic mutations of these
genes can give rise to atypical HLH at adult age5,6. Currently,
hematopoietic stem cell transplantation is considered to be the
only curative treatment option in FHL7.

Roquin-1, encoded by RC3H1, recognizes and binds to RNA by
the virtue of its ROQ domain and the adjacent C3H1 zinc
finger8–14. It acts as a post-transcriptional regulator that typically
promotes mRNA degradation15 but also protein translation
inhibition has been reported16. As such, it controls immune-
relevant proteins such as ICOS, OX40, CTLA4, REL, IκBδ, IκBζ,
and TNF among others9,17–19. Roquin-1 has no intrinsic nuclease
activity but relies on the recruitment of RNA decapping and
deadenylation complexes9,17,20. Furthermore, Roquin-1 regulates
RNA expression in cooperation with the endonuclease Regnase-1,
relying on the binding of RNA by the Roquin ROQ domain and
the nuclease activity of Regnase-1, although also spatiotemporal
distinct modes of action of these regulators have been
suggested19,21. As a consequence of its function, Roquin-1 can
colocalize with P-bodies, cytoplasmic regions in which stalled
mRNA storage and post-transcriptional regulation occurs22.

Roquin-1 came under the immunological limelight with the
original description of sanroque mice by Vinuesa and Good-
now23. The sanroque mouse strain, carrying a homozygous point
mutation (M199R) in the ROQ domain of Rc3h1, was the result
of an ethylnitrosourea mutagenesis screen to identify repressors
of autoimmune responses. These mice acquired a lupus-like
disease with anti-nuclear antibodies, splenomegaly and lympha-
denopathy, became anemic, thrombocytopenic and developed
hepatitis and glomerulonephritis. The underlying immune dys-
regulation was characterized by accumulation of T follicular
helper (Tfh) cells and germinal center (GC) B cells23,24. Sub-
sequent reports revealed that in the presence of the hypomorphic
M199R variant, ICOS expression and interferon-γ release
increased, promoting Tfh cell proliferation and impairing the
negative selection of autoimmune GC B cells15,25.

The immunoregulatory function of Roquin-1 was further
unraveled making use of immune cell specific conditional
knockout mice. Loss of Roquin-1 in T cells or B cells resulted in
effector T cell expansion, eosinophilia and monocytosis but failed
to induce Tfh cell and GC B cell accumulation26. The generation
of mice lacking both Roquin-1 and Roquin-2 revealed functional
redundancy as loss of both paralogs aggravated immune dysre-
gulation and prompted Tfh cell and GC B cell expansion18. These
findings reveal the complex regulation and crucial role of Roquin-
1 in the murine immune system.

Here, we describe a hyperinflammatory syndrome presenting
as relapsing HLH in a patient with a homozygous nonsense
mutation (R688*) in RC3H1, yielding a truncated Roquin-1. In-
depth immunophenotyping reveals pronounced immune dysre-
gulation bearing striking resemblance with the phenotype
observed in Roquin-1 mouse models. By detailed analysis of the
sanroque mice, we unveil additional parallels between human and
murine disease. Inhibition of JAK1/2 signaling in the sanroque
mice mitigates disease. Mechanistically, the truncated R688*
Roquin-1 does not colocalize with P-bodies, fails to interact with
the CCR4-CNOT1 deadenylation complex and delays the decay
of the Roquin-1 target ICOS mRNA. Transduction of the Rc3h1
mutants in murine T cells deficient for Roquin-1 and -2 reveals a
pronounced impairment of the truncated Roquin-1 to recon-
stitute repression of known targets such as ICOS, Ox40 and
CTLA4. Furthermore, these experiments indicate that the R688*
variant fails to control the production of a number of cytokines
such as TNF, IL-2 and IL-17A. In conclusion, our work highlights
that post-transcriptional control by Roquin-1 is critical in the
regulation of the human immune system.

Results
Identification of a homozygous nonsense R688* RC3H1 var-
iant. We performed whole exome sequencing (WES) to identify
causal mutations in the case of an 18-year-old male, who was
referred to our center at age 11 suffering from hyperinflammation
clinically resembling hemophagocytic lymphohistiocytosis (HLH)
(Table 1). The patient was treated according to the HLH-2004
protocol27. After termination of Cyclosporin A (CSA), at age 13,
disease reactivation was observed, and clinical course only

Table 1 Characteristics of relapsing hyperinflammatory

syndrome in the R688* patient

Characteristics

Episode 1 Episode 2

Age 11 years 13 years

Clinical manifestations

Fever (T > 38 °C) >4 weeks >2 weeks

Splenomegaly Mild Prominent

Hepatomegaly Mild Prominent

Lymphadenopathy Present Present

Biochemical features

Hemoglobin (g/dL) 6.2 (11.5–15.5) 9.9 (13–16)

Platelets (103/μL) 42 (156–408) 234 (156–408)

Leukocytes (103/μL) 2.13 (4.5–12) 5.57 (4.5–12)

Neutrophils (cells/μL) 1299 (2500–8000) 3130 (2500–8000)

Monocytes (cells/μL) 50 (500–1000) 260 (500–1000)

Lymphocytes (cells/μL) 809 (1500–6500) 1700 (1500–6500)

Ferritin (ng/μL) 35199 (7–142) 5162 (7–142)

Fibrinogen (mg/dL) <60 (200–400) 305 (200–400)

Triglycerides (mg/dL) 870 (32–125) 996 (32–125)

Soluble CD25 (pg/mL) NA 16944 (632–5054)

Features of hemophagocytosis

Bone marrow aspirate Mild NA

NK-cell activity

Target cell killing NA Normal

CD107a expression NA Normal

Additional features

Gamma-GT (U/L) 908 (3–22) 274 (2–42)

AST (U/L) 1482 (11–50) 209 (0–37)

ALT (U/L) 199 (7–40) 168 (7–40)

Units of measurements are mentioned in parentheses, bold characters indicate values below or

above normal range. Normal ranges are indicated in parentheses
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ameliorated under treatment with CSA (Table 1). No infectious
agent or autoimmune trigger could be identified (Supplementary
Fig. 1A–C). Despite good clinical control, laboratory findings
revealed ongoing inflammation under CSA treatment (Supple-
mentary Fig. 1D–G). Furthermore, the patient suffers from
chronic hepatitis and dyslipidemia (Supplementary Fig 1H–J).
This immune dysregulation syndrome developed on top of a
dysmorphic phenotype (short stature, webbed neck) and mild
mental retardation. The patient is the first child of Belgian con-
sanguineous parents with Spanish roots. Family history reveals a
spontaneous abortion of the first pregnancy and a predisposition
to autoimmune mediated pathology (Fig. 1a).

We were unable to identify pathogenic variants in known HLH
genes nor in any other described PID gene (Supplementary
Table 1). Immunological work-up showed normal NK-cell
cytotoxicity, expression of perforin and CD107a and normal
iNKT cell numbers, providing additional arguments against most
familial HLH (Table 1 and ref. 28). Ultimately, selection of
variants predicted to result in a missense, nonsense, indel, or
splice-site mutation uncovered a homozygous nonsense mutation
in the RC3H1 gene encoding Roquin-1: g.173931003G>A
(ENST00000258349.4: c.2062C>T, ENSP00000258349.4: p.
R688*) with pathogenic in silico predictions (CADD score=
40). Interrogation of public databases (dbSNP, gnomAD, ESP,
Bravo) revealed that this R688* Roquin-1 variant has not yet been
described in human populations29. Sanger sequencing confirmed
the mutation located in exon 12, a region coding for a proline-
rich domain in Roquin-1 (Fig. 1b, c). Both parents are
heterozygous carriers of the mutation (Fig. 1a, b).

Whereas full-length Roquin-1 was undetectable in the case of
the patient, longer exposure revealed a faster running protein at
75 kDa (Fig. 1d). Roquin-1 is cleaved by the paracaspase MALT1
upon TCR stimulation at R510 and R59719. Indeed, stimulation
of patient-derived T cells with ionomycin and the phorbol ester
PMA promoted the disappearance of this faster running protein.
Pretreatment with the MALT1 inhibitor mepazine blocks
Roquin-1 cleavage and confirmed the identity of the faster
running protein (Supplementary Fig. 1K). In conclusion, we
identified a homozygous nonsense R688* mutation in RC3H1
encoding a truncated Roquin-1 in a patient with relapsing
hyperinflammatory episodes.

Immune dysregulation in the presence of the R688* RC3H1
variant. We performed in-depth immunological phenotyping of
the patient’s peripheral blood mononuclear cells (PBMCs) to
characterize the immunological abnormalities associated with the
nonsense R688* RC3H1 mutation. We analyzed this data using
the unsupervised clustering and visualization algorithm Flow-
SOM30. Through the use of a self-organizing map (SOM),
FlowSOM assigns cells to a number of nodes and subsequently
structures these nodes in a minimal spanning tree based on the
expression of distinct markers. After identifying viable cells, the
datafiles of the R688*/R688* patient and age-matched healthy
controls (HCs) were concatenated into 1 dataset to generate a
single FlowSOM tree for all individuals (Fig. 2a). FlowSOM was
able to identify and cluster relevant immune cell populations and
organize them in a coherent manner (Fig. 2a). We analyzed the
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contribution of R688*/R688* immune cells in each node (Sup-
plementary Fig. 2A) and identified nodes in which R688*/R688*
immune cells were significantly under- or overrepresented (Z-
score <−2 or >2) (Fig. 2b). By plotting these nodes onto the
trained FlowSOM tree, we found that clusters containing naive B
cells, CD14+ monocytes, effector CD4+ and CD8+ T cells,

regulatory T cells (Tregs) and CD16+ NK cells were over-
represented in the R688*/R688* patient whereas clusters identi-
fied as memory B cells, basophils, naive CD4+ T cells and CD56+

NK cells were underrepresented (Fig. 2c). An additional
three clusters containing cellular debris (cluster 12) or doublet
cells (clusters 51 and 66) appeared overrepresented in the
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R688*/R688* PBMCs (Supplementary Fig. 2A, C). These results
corroborated to a large extent the classical supervised analyses
performed on PBMCs collected at different ages (Supplementary
Fig. 2B).

Chronic activation and exhaustion of R688*/R688* T and B
cells. The phenotype of the cell clusters was further refined by
analyzing surface marker expression (Fig. 2d, e). The over-
represented effector CD8+ T cell clusters contained both
CXCR3+ T cells (clusters 175 and 194) and CD11b+ CD27−

PD1+ CD8+ T cells with variable expression of CD4 (clusters 131
and 145). The latter T cell population is also observed during viral
infections and autoimmune diseases and represents an exhausted
population with cytotoxic capacity (Fig. 2d and refs. 31,32). Within
the overrepresented clusters annotated as Tregs and effector
CD4+ T cells, we identified a large number of clusters compatible
with bona fide Tregs (clusters 91, 108, 112, 127, and 151)
(Fig. 2d). Among these, cluster 112 contained activated effector
Tregs (HLA-DR+) with highly suppressive capacity (Fig. 2d and
ref. 33). An additional population of CD4+ terminal effector
memory T cells (TEMRAs) with elevated expression of the
inhibitory molecule PD-1 (cluster 141) was similarly increased in
the R688*/R688* PBMCs (Fig. 2d). Reflectory, 1 cluster (cluster
154) containing naive CD38lo CD4+ T cells appeared under-
represented in the R688*/R688* PBMCs although manual gating
could not identify reductions in naive CD4+ T cells (Fig. 2e and
Supplementary Fig. 2B). Functional analyses were in line with
these findings; intracellular cytokine staining demonstrated that
both IL-17A+ CD4 T cells and IFNγ+ CD8 T cells were expanded
(Supplementary Fig. 2B).

Among the cell clusters with the highest Z-scores, a population
of B cells with a distinct surface marker expression could be
identified (cluster 28, Fig. 2b, d). This CD20hi CD11c+ CD24−

CD27− CD38− population expands during chronic inflammation
and has been observed in a number of autoimmune conditions
including systemic lupus erythematosus (SLE), primary Sjögren’s
syndrome and common variable immunodeficiency (CVID)34.
This population lacked the chemokine receptor CXCR5, neces-
sary for trafficking to B cell zones in secondary lymphoid organs
but rather expressed CXCR3 and CRTH2, suggesting that these
cells might migrate to sites of inflammation. This B cell subset still
expressed surface IgD, indicative of an unswitched phenotype
(Fig. 2d). Similarly, naive B cells (clusters 13, 43, 44, 45, 59) were
strongly increased in the R688*/R688* PBMCs whereas memory
B cells (clusters 73, 89, 90) were reduced (Fig. 2d, e). Aside of a
minor decrease in IgG2 levels, this does not lead to major defects
in humoral immune responses (Supplementary Fig. 1A, Supple-
mentary Fig. 2D, E). Analysis of specific polysaccharide antibody
responses was not performed as additional vaccinations were
refused.

Increased expression of ICOS and OX40 by R688*/R688*
T cells. In mice, loss of post-transcriptional regulation by Roquin-
1 results in increased expression of ICOS and Ox40 in T cells
(Supplementary Table 2 and ref. 18). Likewise, T cells of the
R688*/R688* patient displayed augmented levels of both ICOS
and OX40 (Fig. 2f–i). Careful comparison with the published
findings on Roquin-1 (and Roquin-2) mouse models demon-
strated additional analogies (Supplementary Table 2). In the
absence of Roquin-1, mice develop a similar immunopathology
characterized by the expansion of effector T cells and Tregs,
monocytosis and eosinophilia. In contrast to the sanroque model
and in mice in which T cells are deficient for both Roquin-1 and
2, the R688* Roquin-1 mutation did not result in the expansion of
the CXCR5+ circulating counterparts of T follicular helper cells
(cTfh) (Supplementary Table 2 and Supplementary Fig. 2B). In
conclusion, our R688*/R688* PBMC phenotyping experiments
revealed pronounced immune dysregulation which shared
resemblance with Roquin mouse models.

Adaptive and innate immunity contribute to hypercytokine-
mia. The observed immune dysregulation is not sufficient to
explain the hyperinflammatory episodes, which are the con-
sequence of excessive T cell and/or monocyte/macrophage acti-
vation and uncontrolled cytokine release. As Roquin-1 is known
to regulate the expression of proinflammatory cytokines such as
TNF17, we measured serum cytokines and found increases of both
proinflammatory cytokines TNF, IL-1β, IL-6, IL-17A, IL-18,
IFNγ, CXCL9, and regulatory mediators such as IL-1RA and IL-
10 (Fig. 3a). This hypercytokinemia was observed under sustained
CSA treatment, indicating that other immune cells in addition to
T cells contribute to the observed hypercytokinemia. Hemopha-
gocytic lymphohistiocytosis (HLH) and macrophage activation
syndrome (MAS) represent two distinct entities and recent stu-
dies have demonstrated that IL-18 and CXCL9 might serve as
valuable biomarkers to distinguish both35. Here, analysis of IL-18
and CXCL9 concentrations suggested that the observed immune
dysregulation was more akin to HLH than MAS (Fig. 3a and
Supplementary Fig. 3A).

To study the contribution of adaptive and innate immune cells,
T cells and monocytes were enriched from PBMCs and stimulated
ex vivo. TNF and IFNγ were increased in the supernatant of PMA
and ionomycin stimulated T cells (Fig. 3b, c). Monocytes were
stimulated with both ATP and LPS to assess the activation of the
inflammasome in the presence of the R688* variant. Although LPS
induced a higher secretion of TNF and IL-6 by R688*/R688*
monocytes, IL-1β and IL-18 release was similar to HCs (Fig. 3d and
Supplementary Fig. 3B). These results indicated that both innate
and adaptive immune cells contribute to disease (Fig. 3b–d).

Roquin-1 exerts control over immune responses by virtue of its
post-transcriptional regulation of RNA36. Indeed, mRNA tran-
scripts of established targets were upregulated in the R688*/R688*

Fig. 2 Analysis of the R688* proband peripheral blood mononuclear cells (PBMCs) reveals immune dysregulation. a FlowSOM tree of concatenated 29-

parameter cytometry data of PBMCs obtained from seven HCs and the R688* proband. b Normalized data of the relative contribution of R688* proband

PBMCs to each immune cell cluster. Percentage of R688* immune cells was normalized into a Z score based on HC mean and SD. Each cluster with a Z

score > 2 (red) or <−2 (blue) was considered as a relevant immune cell population. Color of cluster number corresponds with panel a. c Clusters with a Z

score > 2 (red) or <−2 (blue) were plotted onto FlowSOM tree. Color of cluster number corresponds with panel a. d, e Phenotypic description of

overrepresented (d) and underrepresented (e) clusters in the R688* proband. Histograms depict expression profile of surface markers of given clusters

(colored) compared with relevant immune cell populations (black). f Histogram representing ICOS expression on CD4+ T cells of a HC and R688*

proband. Mean fluorescence is given. g Scatter dot plot of geometric mean fluorescence (gMFI) of ICOS in T cell subsets of HCs (n= 4) or proband. N:

naive; EM: effector memory; Tfh: T follicular helper cell. h Histogram of OX40 expression on CD4+ T cells of a representative HC and R688* proband.

Mean fluorescence is given. i Scatter dot plot of gMFI of OX40 in T cell subsets of HCs (n= 4) or R688* proband. Data shown in (a–i) are representative

for two independent experiments. Source data are provided as a Source Data file
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T cells (Supplementary Fig. 3C). To study the effects of truncated
R688* Roquin-1 on mRNA transcripts of TNF and IFNG in more
detail, we stimulated R688* or HC T cells with or without
pretreatment of the cells with mepazine (Fig. 3e). Mepazine
inhibits Roquin-1 degradation upon T cell activation (Supple-
mentary Fig. 1K) and promotes Roquin-1 dependent mRNA
regulation. Confirming the impaired function of R688* Roquin-1,
TNF mRNA was not reduced in the setting of stimulated R688*/
R688* T cells pretreated with mepazine (Fig. 3e). In contrast,
IFNG expression was not decreased by pretreatment with
mepazine in HC T cells (Fig. 3e).

Sanroque mice suffer from systemic hyperinflammation. To
study immune dysregulation in the presence of impaired Roquin-
1 function in more detail, we made use of sanroque mice. The
M199R variant acts as a hypomorphic allele but does not result in
postnatal lethality as observed in Roquin-1 null mutants, ren-
dering this strain ideally suited for analysis23,26. Similar to the
R688* mutation, sanroque mice endured pronounced hypercy-
tokinemia, illustrated by the increased concentrations of IL-2, IL-
6, IL-10, IFNγ, CXCL9, and TNF (Fig. 4a). An unchanged IL-17A
concentration was noted and is reminiscent of the differences
between sanroque mice and the Rc3h1-2fl/fl; CD4-Cre mice, in
which Th17 differentiation increased similar to what we observe
in the Roquin-1 R688*/R688* patient19. In contrast, the observed
hypercytokinemia in sanroque mice did not result in full-blown
hyperinflammation resembling HLH. Whereas sanroque mice
developed pronounced splenomegaly, mild thrombocytopenia,
tendency to anemia, increased soluble CD25 (sCD25) and
hepatitis, other hallmarks of HLH such as neutropenia, hyper-
ferritinemia and increased triglycerides were absent (ref. 23,
Fig. 4b–e and Supplementary Fig. 4A–D).

Sanroque mice develop severe disease upon CpG injection.
Transplantation of sanroque bone marrow cells into sublethal
irradiated CD45.1 mice recapitulated main features of the
immune dysregulation such as ICOS upregulation and spleno-
megaly. Disease progression was observed with progressive leu-
kopenia and anemia (Supplementary Fig. 4E-H). Spleen

immunophenotyping revealed a decrease in B cells without
maturation defects and infiltration with both granulocytes and
monocytes (Fig. 4f and Supplementary Fig. 4J). As reported in25,
Tregs and Tfh cells were increased and both CD4+ and CD8+

T cells displayed an effector memory phenotype (Fig. 4g, h). Liver
analysis revealed pronounced tissue infiltration by monocytes
(Fig. 4i). These data confirm that impaired Roquin-1 function in
hematopoietic cells is sufficient to induce immune dysregulation.
This systemic inflammation in sanroque chimeras might render
these mice more sensitive to the occurrence of hyperin-
flammatory disease. To test this hypothesis, mice were subjected
to CpG injections every 2 days, a known macrophage activation
syndrome (MAS) model37,38. Repetitive CpG ODN-1826 injec-
tions uniformly resulted in splenomegaly and cytopenia, in san-
roque and control chimeric mice (Supplementary Fig. 4K).
Careful analysis revealed that the sanroque chimeric mice pro-
duced more TNF and IL-10 and lost more weight upon CpG
injection compared with control mice (Fig. 4j, k). These results
indicate that reduced Roquin-1 function in sanroque mice results
in a more pronounced hyperinflammation.

Cell intrinsic and extrinsic effects of sanroque mutation. The
crucial role of uncontrolled cytokine release in the phenotype of
sanroque mice was highlighted by the Ifngr−/− sanroque mice25.
Loss of IFNγ signaling reduced splenic hypercellularity, Tfh and
GC B cells numbers and ameliorated autoimmunity25. To study
the influence of hypercytokinemia in sanroque mice in more
detail, sublethal irradiated CD45.1/2 mice were transplanted with
30/70 mixed CD45.2 sanroque and CD45.1 wild-type (WT) bone
marrow (BM) cells. Chimeras generated with 30/70 mixed
CD45.2 WT/CD45.1 WT BM cells functioned as controls. Ana-
lysis revealed a cell intrinsic expansion of CD4+ T cells (Fig. 5a).
This was associated with a high percentage of CD4+ effector
memory (EM) T cells expressing increased levels of ICOS and a
marked differentiation into Tregs (Fig. 5b, c and Supplementary
Fig. 5A). Similarly, we observed a cell intrinsic maturation into
CD8+ EM T cells (Fig. 5d, e). The CD45.2 sanroque/CD45.1 WT
BM chimeras recapitulated the reduced number of B cells and
delayed maturation of NK cells, highlighting cell intrinsic effects
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of the M199R variant (Fig. 5f, g). In contrast, sanroque monocytes
and neutrophils were not increased in the chimeras (Fig. 5h, i).

JAK1/2 inhibition reduces immunopathology in sanroque
mice. Ruxolitinib is a JAK1/2 inhibitor that is approved for the

treatment of myelofibrosis and polycythemia vera in JAK2 gain of
function mutations. It inhibits a number of cytokines such as IL-
1, IL-6, IL-18, IFNγ, and TNF and reduces pathology in models of
HLH39,40. The potential of ruxolitinib for HLH treatment has
been suggested in a case study of refractory HLH41 and is under
evaluation in clinical trials (NCT03533790 and NCT02400463).
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To test the role of dysregulated cytokine release in the setting of
impaired Roquin-1 function, sanroque mice were treated with
ruxolitinib. After 5 days of treatment, normalization of spleen size
was observed with reduction of monocyte and eosinophil num-
bers (Fig. 5j, k). TNF and the IFNγ inducible chemokine
CXCL9 similarly decreased alongside CD64 expression, a known
IFNγ response gene, on monocytes (Fig. 5l). Ruxolitinib did not
repress EM T cells in the spleen nor did it reduce IFNγ (Fig. 5l
and Supplementary Fig. 5B). In conclusion, the results of BM
chimeras and JAK1/2 inhibition demonstrate that whereas
Roquin-1 directly controls T cells, splenomegaly, monocyte and
granulocyte expansion are indirect consequences of dysregulated
cytokine release.

R688* mutation results in impaired localization in P-bodies.
Cytoplasmic granules such as processing bodies (P-bodies) and
stress granules (SGs) are major integration sites for the regulation of
mRNA fate42. Whereas SGs contain stalled polysomes, P-bodies are
enriched in proteins that mediate RNA degradation, surveillance
and translational repression43. As Roquin-1 is enriched within both
cytoplasmic granules and its activity is correlated with P-body
colocalization8,9, we speculated that the R688* variant results in
aberrant Roquin-1 localization. HEK293T cells were transfected
with WT or R688* Roquin-1 and stained with antibodies to
visualize P-bodies and Roquin-1. Whereas WT Roquin-1 had a
speckled appearance and colocalized with Edc4+ P-bodies, dis-
tribution of the R688* mutant was more diffuse and impaired in
its localization to P-bodies (Fig. 6a). Colocalization was quantified
and revealed a decrease of the Pearson correlation coefficient (PCC)
and Manders colocalization coefficient 1(CMM1) upon R688*
Roquin-1 transfection (Fig. 6b). These results were confirmed in
HEK293T and murine T cells, using DCP1 and Rck, alternative
markers of P-bodies (Supplementary Fig. 6A, B). To test dominant
negative behavior, WT Roquin-1 fused to GFP and V5-Roquin-1 or
V5-R688* Roquin-1 were cotransfected into HEK293T cells. Similar
to Fig. 6a, V5 fused WT Roquin-1 colocalized with Edc4+ granules
whereas V5-R688* displayed a more diffuse appearance. The
cotransfected Roquin-1-GFP retained a speckled organization that
coincided with Edc4 independent of WT or R688* Roquin-1
(Fig. 6c). Quantification of colocalization confirmed that R688*
mutant did not impact WT protein localization or vice versa
(Fig. 6d, e). Roquin-1 accumulation in SG upon arsenite treatment
was similar for WT and R688* Roquin-1 (Supplementary Fig. 6C,
D), confirming previous reports that SG recruitment requires the
aminoterminus of Roquin-1, harboring an intact ROQ domain8.

Reduced association of R688* Roquin-1 with CCR4-NOT
complex. As Roquin-1 lacks nuclease activity, it induces mRNA

decay by recruiting proteins from both the decapping or
deadenylation complexes through amino- or carboxy-terminal
regions, respectively9,17. We overexpressed V5 tagged WT and
R688* mutant Roquin-1 in HEK293T cells and coimmuno-
precipitated Roquin-1-associated proteins with an anti-V5
monoclonal antibody. R688* Roquin-1 readily interacted with
Edc4 (Fig. 6f). In contrast, association with CNOT1, the scaf-
fold protein of the CCR4-NOT deadenylase complex, was
reduced (Fig. 6f). The detection of the faint CNOT1 band
(compared with control IgG), might suggest a weaker secondary
binding site for CNOT1 upstream of R688 or be a consequence
of a macromolecular complex comprising both the decapping
and deadenylation machinery (Edc4-Rck-CNOT1 complex)
bridged by Rck44.

ICOS mRNA decay is impaired in the presence of R688*
Roquin-1. Our results predict that deletion of the C-terminal part
in R688* Roquin-1 results in a loss of post-transcriptional con-
trol. Chase experiments with actinomycin D demonstrated that
the stability of ICOS mRNA was enhanced in R688*/R688* T cells
(Fig. 6g). To address whether the reduced interaction of R688*
Roquin-1 with CNOT1 impaired mRNA deadenylation, we
assessed the poly(A) tail of Icos mRNA in 4-OHT treated Rc3h1/
2fl/fl; CD4-CreERT2; rtTA CD4+ T cells transduced with retro-
viral vectors encoding doxycycline inducible WT or R687* Rc3h1
variant (murine equivalent of R688*). Absence of Roquin-1 and
Roquin-2 resulted in strongly enhanced levels of poly(A) tailed
Icos mRNA in murine T cells (Fig. 6h). This was partially restored
in cells re-expressing WT Roquin-1. In contrast, R687*-Roquin-1
failed to reduce poly(A) tailed Icos mRNA (Fig. 6h). These results
indicate that the loss of interaction between R688* Roquin-1 and
the CCR4-NOT deadenylase complex results in enhanced ICOS
mRNA stability.

Roquin-1 mutant comparison reveals variant specific defects.
To compare the effects of Roquin-1 variants in more detail, 4-
OHT treated Rc3h1-2fl/fl; CD4-CreERT2; rtTA CD4+ T cells were
transduced with inducible constructs encoding GFP, GFP fused
WT Rc3h1, GFP-M199R Rc3h1, GFP-R687* Rc3h1 or with GFP-
Rc3h1 1-509AA, an aminoterminal construct representing a
MALT1 cleaved Roquin-1 (Supplementary Fig. 7A, B and ref. 9).
Upon Roquin-1 and Roquin-2 deletion, ICOS expression
increased dramatically (Fig. 7a). Whereas reconstituting the
double-deficient T cells with GFP-WT Roquin-1 was sufficient to
normalize ICOS expression, ICOS levels were not completely
rectified upon introduction of the M199R, R687*, or 1-509AA
Roquin-1 mutants (Fig. 7a). Quantification of ICOS fluorescence
revealed that R687* and M199R reduced ICOS expression to a

Fig. 4 Sanroque mice recapitulate some features of the R688* variant phenotype and develop severe hyperinflammation upon challenge. a Serum

concentrations of cytokines TNF, IFNγ, IL-17A, CXCL9, IL-10, IL-6, IL-2 in sanroque mice (n= 4) and control littermates (n= 5). *p < 0.05 (unpaired t-test).

b Number of blood neutrophils and lymphocytes in sanroque mice (n= 8) and control littermates (n= 8). ***0.001 < p < 0.0001 (unpaired t-test).

c Number of platelets in sanroque mice (n= 11) and control littermates (n= 10) **p < 0.01 (unpaired t-test). d Concentration of serum soluble CD25

(sCD25) in sanroque mice (n= 9) and control littermates (n= 8). ***0.001 < p < 0.0001 (unpaired t-test). e Serum concentration of the liver enzymes

aspartate transaminase (AST) and alanine transaminase (ALT) in sanroque mice (n= 6) and littermate controls (n= 12). ****p < 0.001 and **p < 0.01

(unpaired t-test). f Number of splenic immune cell subsets in sanroque chimeras (n= 11) and control chimeras (n= 6). *p < 0.05 and **p < 0.01 (unpaired

t-test). g Percentage of splenic regulatory T cells (Treg) and T follicular helper cells (Tfh) in sanroque (n= 11) and control (n= 6) chimeras. *p < 0.05 and

**p < 0.01 (unpaired t-test). h Contour plot of CD4+ and CD8+ T cell differentiation in sanroque and control chimeras. EM: effector memory; CM: central

memory; N: naive. i Immunophenotyping of liver derived CD45+ cells in sanroque (n= 5) and control chimeric mice (n= 5). *p < 0.05 and **p < 0.01

(unpaired t-test). j Serum concentrations of TNF and IL-10 and k body weight of sanroque and control chimeras treated with 50 μg ODN-1826 CpG or

vehicle control every 2 days for 8 days. *p < 0.05, **p < 0.01, ***0.001 < p < 0.0001, ****p < 0.001 (one-way ANOVA with Dunnett’s multiple comparisons

test). Data shown are accumulated from three independent experiments (d), two experiments (a–c, e, f, j, k), or representative for two experiments (g–i).

When applicable, mean and/or SEM are depicted. Source data are provided as a Source Data file
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similar extent whereas the 1-509AA variant was more impaired
(Fig. 7b). As doxycycline treatment resulted in supraphysiologic
levels (Supplementary Fig. 7A, B), we correlated ICOS fluores-
cence with GFP in GFPdim T cells for the different Roquin-1
constructs. Fitting of regression curves generated dose response
curves for each Roquin-1 variant (Fig. 7c). This revealed a
stronger reduction of ICOS in cells expressing low levels of WT or
M199R Roquin-1 compared with cells that express comparable

levels of the R687* or 1-509AA variants (Fig. 7c). Expression of
Ox40 and CTLA4 were not repressed by the R687* and 1-509AA
variants whereas the M199R mutation reduced both surface
proteins to a similar extent as WT Roquin-1 (Fig. 7d, e). Similar
observations were made for c-Rel (Supplementary Fig 7C). These
data indicate that the M199R and R687* variants represent
hypomorphic mutations but have diverging effects on specific
targets.
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Dysregulated post-transcriptional control of cytokines. Simi-
larly, intracellular TNF levels were measured upon stimulation of
transduced T cells in the presence of PMA/ionomycin and bre-
feldin A (Fig. 7f). This revealed that whereas complementation
with WT Roquin-1 and M199R Roquin-1 effectively inhibited
TNF production, both the 1-509AA and R687* variant failed to
control TNF (Fig. 7f, g). Modeling the regulatory capacity of these
variants revealed a similar activity for both the R687* and 1-
509AA variant (Fig. 7h). Similarly, Roquin-1 1-509AA and R687*
Roquin-1 also failed to suppress IL-2 and IL-17A upon T cell
activation (Fig. 7i, j). In conclusion, our data reveal that the R687*
but not the M199R variant failed to regulate the production of
inflammatory cytokines.

Discussion
In this report, we describe the consequences of a homozygous
nonsense R688* RC3H1 mutation in a patient suffering from an
immune dysregulation syndrome with uncontrolled systemic
inflammation. PBMC analysis reveals an increase in effector CD8+

T cells, Th17 cells and Tregs, upregulation of ICOS and OX40
and a profound maturation defect in the B cell lineage. A wide
range of cytokines is markedly increased regardless of Cyclos-
porin A (CSA) treatment. The R688* mutation of RC3H1 lies
within the proline-rich domain and produces a truncated
Roquin-1 that fails to colocalize with P-bodies and is impaired to
interact with CNOT1. This results in ICOS mRNA stabilization,
increased expression of ICOS, OX40, and CTLA4 and dysregu-
lated cytokine production. Although this study relies on a single
family and one should be careful when inferring evidence from
overexpression systems, cell lines and even murine models, the
accumulated evidence strongly suggests a causal relationship
between the R688* RC3H1 variant and the observed disease.

The significance of Roquin-1 as a post-transcriptional regulator
of immune responses is well characterized thanks to the study of a
number of mouse models (summarized in Supplementary Table 2
and Supplementary Fig. 8). Comparing the R688* variant with
these mouse models allows us to formulate a number of inter-
pretations. Bertossi et al. reported that complete loss of Roquin-1
resulted in postnatal lethality and this survival deficit was later
confirmed in a subsequent study26,45. This might suggest that the
R688* variant retains some critical functions. Indeed, our data
reveal that ICOS expression is still partially regulated. Analysis of
Roquin mouse models suggests a role of Roquin-1 in body
growth26. In line with these observations, the patient is short of
stature, although there was no evidence of neural tube closure
defects. The observed immunophenotype is reminiscent of the
sanroque mice and other Roquin-1 mouse lines (Supplementary

Table 2 and Supplementary Fig. 8). We also identified some
notable differences. The marked B cell maturation defect in
the presence of the R688* variant has not been observed in any of
the Roquin-1 transgenic mouse lines, although we observe a
reduced number of B cells in the sanroque chimeras18,23,26,45,46.
This maturation defect might be a consequence of the chronic
calcineurin inhibition by CSA treatment to suppress T cell
hyperactivation47. The number of the circulating T follicular
helper cells is not increased nor does the patient present with
overt signs of autoimmunity15,23–25. Finally, we have found
increased production of IL-17A, a feature that is only observed in
mice upon combined ablation of Roquin-1 and its paralog
Roquin-219. Although reservations should be made when com-
paring pathogen-free mice and immune deficient humans, we
speculate that whereas the expansion of Tfh cells and GC B cells
is under the control of the redundant functions shared
with Roquin-2, Th17 differentiation and IL-17A production can
also be dysregulated in humans in the presence of Roquin-2.

Comparing the R687* variant (the murine equivalent of R688*)
and M199R mutation, we found remarkable differences in the
post-transcriptional functionality (Fig. 7). This residual function
of M199R variant might be crucial for autoimmune disease
development. In line with this reasoning, it is of interest to note
that the heterozygous parents acquired autoimmunity (Fig. 1a).
Similarly, a heterozygous deletion of the last 16 exons of RC3H1
has been detected in a Japanese patient with autoimmune disease-
like symptoms with high titers of rheumatoid factors48. These
observations strengthen the hypothesis that residual function of
Roquin-1 may be required for autoimmune antibody generation.
This concept merits further attention and experiments are
underway to test this hypothesis.

The precise mode of action of the M199R mutation in Roquin-
1 is still unsolved, but it is believed to impair an interaction with
an unrecognized binding partner of Roquin-1 besides Edc4,
CNOT1, or Nufip217,20,49,50. Our work has now established that
the carboxy-terminal truncation of Roquin-1 beyond R688 deletes
sequences required for CNOT1 interaction but retains sequences
with the ability to interact with Edc4. Surprisingly, targets of
Roquin-1 respond to a different extent to this partial loss of
posttranscriptional activity. Considering that Roquin-1 can trig-
ger deadenylation, decapping and translational inhibition in a
redundant manner16, we propose that Roquin-1 interacts with
different post-transcriptional effectors through independent
modules in its polypeptide sequence. Therefore, despite the fact
that a complete loss-of-function mutation may cause postnatal
lethality and may therefore not be found in human patients,
additional mutations similar to the one described here may exist,

Fig. 5 Sanroque BM chimeras reveal cytokine driven immune dysregulation blocked by chemical JAK1/2 inhibition. a Percentage of CD4+ T cells in mixed

CD45.2control/CD45.1 (n= 7) and CD45.2sanroque/CD45.1 bone marrow chimeric mice (n= 7). ***0.001 < p < 0.0001 (unpaired t-test). b Contour plot of

CD4+ T cell differentiation in mixed bone marrow chimeras. EM: effector memory; CM: central memory; N: naive. c Percentage of regulatory T cells (Treg)

in mixed CD45.2control/CD45.1 (n= 7) and CD45.2sanroque/CD45.1 chimeras (n= 7). ***0.001 < p < 0.0001 (unpaired t-test). d Percentage of CD8+

T cells in mixed CD45.2control/CD45.1 (n= 7) and CD45.2sanroque/CD45.1 chimeric mice (n= 7). ***0.001 < p < 0.0001 (unpaired t-test). e Contour

plot of CD8+ T cell differentiation in mixed bone marrow chimeras. f Percentage of B cells in mixed bone marrow chimeras (n= 7). **p < 0.01 (unpaired

t-test). g Contour plot of NK-cell maturation. Scatter dot plot of CD11b+ NK cells in mixed CD45.2control/CD45.1 (n= 7) and CD45.2sanroque/CD45.1

bone marrow chimeric mice (n= 7). **p < 0.01 (unpaired t-test). h, i Percentage of monocytes and neutrophils in mixed CD45.2control/CD45.1 (n= 7)

and CD45.2sanroque/CD45.1 bone marrow chimeric mice (n= 7). j Spleen weight in control and sanroque bone marrow chimeric mice treated with

ruxolitinib (RXL) or vehicle. nCtrl chimera vehicle= 3; nsanroque chimera vehicle= 4; nCtrl chimera RXL= 3; nsanroque chimera RXL= 3. **p < 0.01 (unpaired t-test).

k Number of splenic monocytes, neutrophils and eosinophils in control and sanroque bone marrow chimeric mice treated with ruxolitinib (RXL) or

vehicle. nCtrl chimera vehicle= 3; nsanroque chimera vehicle= 4; nCtrl chimera RXL= 3; nsanroque chimera RXL= 3. **p < 0.01; ****p < 0.0001 (one-way ANOVA with

Dunnett’s multiple comparisons test). l Serum concentration of TNF, IFNγ and CXCL9; median expression of CD64 on monocytes. nCtrl chimera vehicle= 3;

nsanroque chimera vehicle= 4; nCtrl chimera RXL= 3; nsanroque chimera RXL= 3. *p < 0.05; **p < 0.01; ***0.001 < p < 0.0001; ****p < 0.0001 (one-way ANOVA with

Dunnett’s multiple comparisons test). Data shown are representative of two independent experiments (a–i), accumulated from two independent

experiments (j, k) or one experiment (l). When applicable, mean and/or SEM are depicted. Source data are provided as a Source Data file
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partially crippling Roquin-1 function by interfering with indivi-
dual modes of post-transcriptional regulation and resulting in
immune deficiencies with variable clinical phenotypes.

Sanroque mice and several Roquin-1 deficient mouse lines
develop oligoclonal lymphoproliferation with effector memory
T cell accumulation, resembling the immunophenotype of the
R688* variant (Supplementary Table 2). Murakawa et al. used
PAR-CLIP and identified Roquin-1 mRNA targets including
those coding for proteins that are involved in DNA repair, cell
cycle control and p53 signaling14. Given that these pathways have
important tumor suppressor functions, additional studies are
needed to assess the risk of lymphoma development particularly

in the light of findings of increased incidence of angioimmuno-
blastic T cell lymphomas in heterozygous sanroque mice by Ell-
yard et al.51.

Immune dysregulation syndromes with hyperinflammation are
the consequence of uncontrolled activation of the immune sys-
tem. In the setting of familial hemophagocytic lymphohistiocy-
tosis, the pathogenesis is dictated by perpetual immune cell
activation in absence of cell mediated cytotoxicity. X-linked
lymphoproliferative disorders represent a group of immune
dysregulatory diseases defined by a failure to control Epstein-Barr
virus infections and ensuing development of hyperinflammation.
Here, we present an example of an immune dysregulation
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syndrome caused by the impaired function of the post-
transcriptional repressor Roquin-1. The inability of the R688*
variant to extinguish immune activation results in lymphoproli-
feration and uncontrolled cytokine release. Roquin-1 is a member
of a larger family of post-transcriptional regulators of the immune
system. Identification of additional variants in this family of
proteins in immune dysregulation syndromes will lead to novel
insights in the regulation of the immune system and define new
therapeutic opportunities.

Methods
Human subjects. The patient and family members provided written informed
consent for participation in the study, in accordance with the 1975 Helsinki
Declaration. The patient and family members formally agreed for the publication
of the findings of this study. The research protocol was approved by the ethical
committee of Ghent University Hospital (2012/593).

Genetic investigations. Karyotype analysis was performed on the index patient.
Chromosomes from cultivated peripheral blood lymphocytes were analyzed with
the conventional G-banding technique. Microarray-based comparative genomic
hybridization (array-CGH) was performed using an 180 K oligonucleotide array
with an average genome-wide resolution of ~100 kb (SurePrint G3 Human CGH
Microarray Kit, Agilent Technologies). Hybridizations were performed according
to manufacturer’s instructions with minor modifications. Results were analyzed
using Vivar. For whole exome sequencing (WES), genomic DNA was isolated from
whole blood leukocytes using the Puregene DNA isolation kit (Qiagen) according
to manufacturer’s protocol. Whole exome enrichment was performed with the
SureSelect Human All Exon V4 kit (Agilent Technologies). Paired-end massively
parallel sequencing (100 cycles) was performed on a Hiseq2000 sequencer (Illu-
mina). Data analysis was performed with our in-house developed analysis pipeline
Seqplorer. In brief, read mapping against the human genome reference sequence
(NCBI, GRCh37), and post-mapping duplicate read removal, quality-based variant
calling and coverage analysis were performed with BCBio. Variants were annotated
with Ensemble’s Variant Effect Predictor (VEP) and Gemini. Variants were filtered
on impact and minor allele frequency with dbNSFP. Primers for amplification and
sequencing of exon 12 of Roquin-1 were designed with Primer3Plus [http://www.
bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/]. For assessing the inheri-
tance mode of the Roquin-1 mutation, DNA from both parents was tested.

Mice. Sanroque mice carrying the M199R mutation in the ROQ domain of
Roquin-123 and backcrossed to the C57Bl/6 background were housed under spe-
cific pathogen-free (SPF) conditions. To generate bone marrow chimeras in C57Bl/
6 CD45.1/CD45.2 hosts, the bone marrow (BM) of wild-type CD45.1,
CD45.2 sanroque and CD45.2 control mice were used. In short, 12 h after lethal
irradiation (8 Gray), CD45.1/2 mice were injected intravenously with 2 × 106 bone
marrow cells. According to the experiment, BM cells of CD45.2 sanroque and
control C57Bl/6 mice or mixtures of these cells together with BM cells carrying the
CD45.1 analog were used. Mice were analyzed at least 8 weeks after irradiation.
Rc3h1-2fl/fl; CD4-CreERT2 mice18 were crossed with rtTA transgenic mice (Jack-
son Laboratory) to generate Rc3h1-2fl/fl; CD4-CreERT2; rtTA mice and were
housed in a SPF facility in accordance with the Ludwig-Maximilians-Universität
München institutional, state and federal guidelines. All experimental procedures
involving mice were performed in accordance with the ethical regulations for
animal testing and research of and were approved by the local government (Animal

Experimentation Ethics Committee of the Australian National University, Ethical
Committee of the Ghent University Faculty of Sciences).

Cells and media. Peripheral blood mononuclear cells (PBMC) were isolated using
Leucosep tubes (Greiner Bio) containing Ficoll density gradient medium. Cells
were stored in RPMI-1640 medium, GlutaMax supplemented (Gibco, 61870044)
enriched with 10% Fetal Calf Serum (FCS; Sigma Aldrich; F7524) containing 10%
dimethyl sulfoxide (DMSO; Sigma Aldrich; D2650) at −150 °C, until further use.
PBMC were thawed in 37 °C preheated complete medium (RPMI-1640 medium
supplemented with GlutaMAX, 10% FCS, 1% penicillin-streptomycin (Pen/Strep;
10,000 U/mL; Gibco; 15140122), 1 mM sodium pyruvate (Gibco; 11360070), 1%
non-essential amino acids (NEAA; Gibco; 11140035) and 50 μM 2-
mercaptoethanol (Gibco; 31350010). In the setting of functional testing, cells were
left to recuperate for 30 min at 37 °C and 5% CO2 after removal of DMSO. CD4+

T cells, CD8+ T cells and CD14+ monocytes were enriched using positive selection
of abovementioned populations with microbeads and magnetic assisted cell
separation according to manufacturer’s protocols (Miltenyi; 130-045-101 (CD4),
130-045-201 (CD8), or 130-050-201 (CD14)). PHA blasts were generated from
PBMCs using 1% PHA (v/v; Life Technologies; 10576015) and 20 ng/mL IL-2
(eBioscience; PHC0021). The cells were cultured at a density of 2 × 106/mL in
complete medium at 37 °C and 5% CO2 for 4–14 days. Every 2–3 days, 10 ng/mL
IL-2 in fresh medium was supplemented. In the case of anti-CD3/
CD28 stimulation, cells were cultured in the presence of 2 μg/mL anti-CD3 (Bio-
Legend; 317315), anti-CD28 (BioLegend; 302914) and IL-2 in 6-well plates coated
with 5 μg/mL goat anti-mouse antibody (Invitrogen; 16-5098-85).

Murine CD4+ T cells were isolated from spleens and lymph nodes of Rc3h1-2fl/fl;
CD4-CreERT2; rtTA mice using the EasySepTM Mouse CD4+ T cell Isolation Kit
(Stem Cell; 19852) and treated with 1 μM 4′ OH-tamoxifen (4-OHT) (Sigma
Aldrich, H7904) in T cell medium (DMEM (Gibco; 10566016) supplemented with
10% FCS (Gibco), 1000 U/mL Pen/Strep (Gibco), 10 mM HEPES (pH 7.4; Gibco;
15630080), 50 μM 2-Mercaptoethanol (Gibco), and 1% NEAA (Lonza) for 24 h to
induce CRE enzyme mediated recombination of loxP targeted sequences at a
concentration of 1 × 106 cells/mL. Afterward, CD4+ T cells were washed twice with
T cell medium to remove 4-OHT. T cells were subsequently stimulated in
Th1 skewing conditions by addition of 0.5 μg/mL anti-CD3 (145-2C11; in-house
production Helmholtz Zentrum München), 2.5 μg/mL anti-CD28 (37.N; in-house
production Helmholtz Zentrum München), 10 μg/mL anti-IL-4 (11B11, in-house
production Helmholtz Zentrum München), 10 ng/mL IL-12p70 (BD Pharmingen,
554592), and subsequent culturing in 6-well plates coated with 0.05 μg/mL goat
anti-hamster IgG (MP Biochemicals; 0855397) at an initial cell density of ~4 × 106

cells/mL. After 40 h of T cell activation, T cells were transduced with retroviral
particles using spinoculation (1 h, 18 °C, 850 × g). After an additional 4–6 h co-
incubation of T cells and virus, viral particles were washed off and T cells were
resuspended in T cell medium supplemented with IL-2 (20 U/mL). To induce
construct expression, transfected T cells were cultured for 16 h in the presence of
doxycycline (1 μg/mL).

HEK 293T cells were obtained from the American Type Culture Collection
(ATCC; CRL-3216) and were maintained in Dulbecco’s modified Eagle’s medium
containing 10% fetal bovine serum, 1% pen/strep at 37 °C and 5% CO2.

Plasmids and cloning. For studies of Roquin-1, the murine equivalent R687*
mutation was introduced with the Quikchange site-directed mutagenesis protocol
(Agilent Technologies, Santa Clara, CA, USA) using pKMV-Roquin-1-GFP
(Roquin1-IRES-GFP, ref. 23) or pKMV-V5-Roquin-1 (pKMV V5-Roquin1, ref. 27)
as a template. For confocal imaging, HEK293T cells plated into 6-well plates were
transiently transfected using 300 ng branched 25 kDA polyethylenimine (PEI) and
200 ng DNA. For immunoprecipitation experiments, subconfluent HEK293T cells
were transfected 10 μg of DNA complexed with 15 μg of PEI.

Fig. 6 Impaired P-body colocalization, CNOT1 interaction and ICOS mRNA degradation in the presence of Roquin-1 R688*. a HEK293T cells were

transiently transfected with V5 tagged Roquin-1 (V5-FLRoquin-1) or V5-R688* Roquin-1 and subsequently stained with anti-V5 and anti-Edc4 (P-body

marker). Nuclei were revealed using Hoechst. Scale bar= 10 μM. b Correlation analysis of Edc4 and Roquin-1 comparing V5-FLRoquin-1 (n= 26 cells) and

V5-R688* Roquin-1 (n= 26 cells) transfected HEK293T cells. tPCC: tresholded Pearson correlation coefficient; CCM1/2: Manders coefficient1/2. Mean

and standard deviation are plotted. *p < 0.05 and ****p < 0.0001 (unpaired t-test). c HEK293T cells were transiently transfected with a combination of

wild-type Roquin-1 fused with GFP and V5 tagged wild type or R688* mutant Roquin-1. Slides were subsequently stained with anti-V5, anti-Edc4 and

Hoechst. Scale bar= 10 μM. d, e Analysis of correlation between Edc4 and GFP fused Roquin-1 (d) and V5 tagged Roquin-1 (e), respectively. Analysis is

based on at least 24 cells/group and mean and standard deviations are plotted. *p < 0.05; ***0.001 < p < 0.0001; ****p < 0.0001 (unpaired t-test).

f HEK293T cells were transiently transfected with V5 tagged Roquin-1 (V5-FLRoquin-1) or V5-R688* Roquin-1. After immunoprecipitation with anti-V5 or

control IgG coupled to Dynabeads Protein G, endogenous Edc4 and CNOT1 and overexpressed Roquin-1 variants were revealed by immunoblot analysis. β-

Tubulin serves as a loading control. g ICOS mRNA transcripts upon actinomycin D treatment at given time points in R688*/R688* T cells. Data was

normalized using the housekeeping genes HPRT and GAPDH. HCs (n= 11), R688*/R688* (n= 3). *p < 0.05 (unpaired t-test). Mean and SEM are depicted.

h Poly(A) tail length measured for Icos mRNA in murine Rc3h1-2fl/fl; CD4-CreERT2; rtTA CD4+ T cells retrovirally transduced with GFP, GFP fused WT

Roquin-1 or R687* Roquin-1. Bar graph represents ratios of Poly(A) tailed Icos mRNA over de(A) Icos mRNA. Data shown are representative of 2 (f, h), 3

(a–e) or accumulated data of three experiments (g). Source data are provided as a Source Data file
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In the case of murine T cell studies, retroviral vectors (pRetro-Xtight; Clontech)
expressing GFP fused Roquin-1 variants under the control of the Tet-On system
were used. To create the plasmids encoding various pRetro-Xtight-GFP-Roquin-1
variants, the mutations were introduced using the Quikchange protocol. For the
generation of viral particles, HEK293T cells, pretreated with 25 μM chloroquine,
were cotransfected with 5 μg of pCL-Eco (Addgene; 12371) and 50 μg of the
respective pRetro-Xtight-GFP-Roquin-1 variant using calcium phosphate as a
transfection reagent. After 6 h of incubation with the DNA-calcium phosphate
precipitates, cells were washed and cultured in fresh medium for an additional 48 h

while virus particles were collected. Viral particles were filtered (45 μM) and mixed
with polybrene (10 µg/mL) prior to T cell transduction.

Reagents. Cells were treated with PMA (81 nM in human or 20 nM in murine
studies; Sigma Aldrich; P8139) and ionomycin (1 μM; Sigma Aldrich; I3909) for
indicated time points. Mepazine acetate (Vitas-M Laboratory Ltd; STK386548) was
used at a concentration ranging between 6.5 and 20 μM. Sodium arsenite (Sigma
Aldrich; S7400) was dissolved in complete medium at a final concentration of 1M
and used at 1 mM. Cultured monocytes were stimulated with 100 ng/mL LPS
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(Invivogen; tlrl-3pelps) or 5 mM ATP (Merck; A6419) dissolved in sterile H2O. For
the chase experiments with actinomycin D (Merck; A9415), a final concentration of
5 μg/mL was used. Fifty micrograms of CpG ODN-1826 (Invivogen; tlrl-1826) was
dissolved at a concentration of 500 μg/mL in sterile H2O and injected intraper-
itoneally every 2 days for 10 days. Ruxolitinib (ABCR; AB358151) was dissolved in
2.5% DMSO, 33% PEG400, and sterile H2O at a final concentration of 6.25 mg/mL.
Mice were orally gavaged twice daily during 5 days with 1.25 mg of ruxolitinib or
vehicle.

RNA isolation, qRT-PCR, and primers. PHA blasts (2 × 106 cells) were lysed into
RLT Plus-buffer (1048449; Qiagen) and stored at −80 °C until further processing.
RNA was obtained using the RNEasy Kit (74106; QIAGEN) following manu-
facturer’s instructions. Concentration and purity of RNA was assessed using the
NanoDrop 8000 technology (ThermoFisher Scientific, ND-8000-GL). Five hundred
nanograms of RNA was transcribed to cDNA using the sensifast cDNA synthesis
kit (Bioline; BIO – 65054) and 15 ng cDNA (estimated from input RNA) was used
as input for quantitative Real-Time PCR (Lightcycler 480, Roche). Gene expression
was analyzed using qbase+ software version 2.6 (Biogazelle). All primer sequences
can be retrieved in Supplementary Table 3.

Poly-A tail length assay. 4-OHT treated murine Rc3h1-2fl/fl; CD4-CreERT2; rtTA
CD4+ T cells were transduced with constructs encoding GFP fused WT or R688*
Roquin-1 and treated with doxycycline (1 μg/mL) for 6 h. 300 K to 1 M GFP+ cells
were sorted using FACS ARIA IIu. RNA was extracted using Nucleospin RNA
(Macherey-Nagel; 740955) according to manufacturer’s instructions. To assess poly
(A) tail length, the assay was performed according to manufacturer’s guidelines
(ThermoFisher; 764551KT).

Western blotting. PHA blasts were lysed at a concentration of 2 × 106 cells in 50 µl
E1A lysis buffer (1% NP40, 20 mM HEPES, pH 7.9, 250 mM NaCl, 1 mM EDTA)
complemented with protease inhibitors (Complete-ULTRA; 05 892 970 001;
Roche). Prior to SDS-PAGE, samples were spun at 12,000 × g to remove insoluble
material and were resuspended in 14 μl of loading dye. Equal amounts of protein
(30 µg) were separated on a 4–15% agarose gel (Criterion TGX Stain-Free Protein
Gel; Bio-Rad; 5678084) followed by semi-dry transfer to nitrocellulose. Proteins
were visualized by chemiluminescence (SuperSignal West Femto; ThermoFisher;
34094). Antibodies used recognize Roquin-1/2 (Millipore; 3F12), CNOT1 (Pro-
teintech; 14276-1-AP), Edc4 (Cell Signaling Technology; 2548), β-Tubulin (Abcam;
ab21058), and β-Actin (Santa Cruz; c4, sc-47778). All uncropped images can be
retrieved in the Source Data file.

Immunoprecipitation. Dynabeads Protein G (ThermoFisher Scientific; 10003D)
were complexed with 10 μg anti-V5 (Life Technologies; 46-0705) or IgG control
(BD Biosciences; 349050). HEK293T cells, transiently transfected with pKMV V5-
Roquin-1 or V5-Roquin-1 R688* using PEI reagent and subsequently lysed in
350 μl E1A buffer complemented with Complete-ULTRA. 1 mg of cell lysate was
incubated with anti-V5 antibody/Dynabead Protein G complexes for 1 h at 4 °C on
a rotating wheel. After fixation on the magnet, the beads were thoroughly washed
for 3 consecutive times with E1A buffer. The beads were resuspended in 30 μl E1A
buffer and 10 μl Laemlli buffer and stored at −80 °C until immunoblotting.

Flowcytometry. Both PBMCs and murine cells were labeled with monoclonal
antibodies labeled with fluorochromes or biotin recognizing surface markers. A
complete list of the used antibodies can be found in Supplementary Table 4. In
general, cells were first stained with FcR block (human; Miltenyi; 130-059-901,
mouse; in-house developed; 2.4G2) together with biotin conjugated antibodies and
Fixable Viability dye eFluor 506 (eBioscience; 65-0866-14), Fixable Viability Stain
620 (BD Biosciences; 564996) or blue fluorescent reactive dye (Invitrogen; L34962).
In a second step, remaining surface markers were stained with a mixture of

antibodies in FACS buffer (DPBS pH 7.4, 1% Bovine serum albumin, 0.05% NaN3,
1 mM EDTA). If staining of intracellular antigens was required, cells were fixed 30
min in 2% paraformaldehyde at room temperature and subsequently permeabilized
with FoxP3 permeabilization buffer (eBioscience; 00-5523-00). Acquisition and
analysis of labeled cell suspensions was performed with a LSR Fortessa or a BD
FACSymphony flowcytometer (BD Biosciences) and subsequent analysis of data
with FlowJo10 software (BD Biosciences) and R (version 3.5.1). Gating strategies of
data presented in this paper can be found in Supplementary Figs. 9 and 10.

For analysis of cells via the Image Stream, cells were stained as described above
and for measurement resuspended in FACS buffer containing DAPI for nuclear
stain. The samples were measured with the AMNIS image stream (Millipore) and
similarity score of proteins was calculated using the IDEAS software Bright
Detailed similarity feature R3.

Cytokine quantification. Human serum cytokines IL-1α, IL-1RA, IL-6, IL-10, IL-
18, IFNγ, and TNF were quantified by magnetic bead-based multiplex assay using
Luminex technology (Bio-Rad) according to manufacturer’s protocol with small
adaptations. Serum IL-17A was measured using eBioscience Ready-Set-Go ELISA
kits (ThermoFisher Scientific; 88-7371-88).

For intracellular cytokine staining, 1 × 106 PBMC were cultured in complete
medium with PMA (82 nM) and ionomycin (1 μM) in the presence of brefeldin A
(20 µg/mL; Sigma Aldrich; B7651) for 18 h.

For cytokine secretion, 4 × 105 PHA stimulated CD4+ T cells, 4 × 105 CD8+

PHA stimulated T cells or 2 × 105 monocytes were cultured 10 h in complete
medium without or with PMA/ionomycin (T cells) or LPS (monocytes).
Supernatants were stored at −20 °C until quantification of TNF and IFNγ
by ELISA.

Qualification of mouse IL-2, IL-4, IL-6, IL-10, IFN-γ, and TNF in the plasma
from sanroque mice or wild-type littermate controls was performed using Meso
Scale Discovery V-PLEX custom assay or the U-PLEX Biomarker assay for IL-17A
and IL-21 according to the manufacturer’s instructions (Meso Scale Discovery;
K152A0H-2, K15069L-2). Serum levels of CXCL9 and IL-2Ralpha were quantified
using the mouse SimpleStep ELISA kit (Abcam, ab203364) and mouse IL-2Ralpha
DuoSet kit (R&D Systems, DY2438), respectively.

Confocal imaging. HEK cells were seeded in 8-well chamber slides (Ibidi). Ninety
percent confluent cells were transfected using PEI52 with indicated combinations of
pKMV-Roquin-1-GFP, pKMV-V5-Roquin-1, and pKMV-V5-Roquin-1 R688*
(with a fixed total of 300 ng plasmid DNA per well). Alternatively, cells were seeded
onto coverslips and transfected in six-well plates with 3 μg total plasmid DNA
using Lipofectamine 2000. The next day, some wells were treated with 1 mM
sodium arsenite for 45 mins to induce stress granule formation. Cells were fixed
with 4% PFA and cells were stained with mouse anti-V5, rabbit anti-Edc4 or anti-
eIF3 (Cell Signaling Technologies; #3411) in triton (0.2%) containing staining
buffer. All primary antibodies were used at a dilution of 1:100 and subsequently
detected using donkey anti-mouse-AF594 or donkey anti-rabbit 650 (Molecular
Probes, Invitrogen; 1:500). Untagged WT and R688* Roquin-1 were detected using
an anti-Roquin-1 antibody (Novus Biologicals). Confocal images were captured
with a Zeiss LSM780 confocal microscope (Zeiss, Zaventem, Belgium). Images were
taken using a 63 × Pln Apo/1.4 oil objective. The pinhole was set at 1Airy Unit and
scans ware made with a pixel dwell time of 2.62 µs. The scan area covered 800 by
800 pixels. Combined with a zoom of 1.9 this resulted in a pixel size of 0.089 µm. A
Z-stack of 3–5 slices was recorded with a z-interval of 1 µm. Extended focus images
were made in Volocity 6.3 (Perkin Elmer). Data sets for colocalization analyses
were collected on an observer Z.1 microscope equipped with a yokogawa disk CSU-
X1 (Zeiss, Zaventem, Belgium). Per condition z-stacks of 30 Roquin-1+ cells were
created with a z-interval of 0.220 µm. Parameters such as detector gain, laser
intensity, exposure time, and image post-processing were kept consistent between
the different conditions. A voxel-based measurement of the tresholded PCC and
Manders coefficients M1 and M2 was carried out in Volocity 6.3.0 (Perkin Elmer).

Fig. 7 The murine equivalent Roquin-1 R687* fails to regulate proinflammatory cytokines TNFα, IL-2 and IL-17A. a Contour plots showing ICOS expression

in 4-OHT treated murine Rc3h1-2fl/fl; CD4-CreERT2; rtTA CD4+ T cells retrovirally transduced with GFP fused Roquin-1 variants. Representative

histograms depict ICOS levels in GFP+ T cells expressing various Roquin-1 variants. b Scatter dot plot representing mean ICOS fluorescence in GFP+ T cells

(n= 9). c Nonlinear regression of ICOS expression in murine T cells transfected with GFP fused Roquin-1 variants (n= 3). Mean and SEM are depicted. d, e

Scatter dot plot representing mean Ox40 (d) and CTLA4 (e) fluorescence in GFP+ T cells (n= 9). **p < 0.01; ***0.001 < p < 0.0001; ****p < 0.0001 (one-

way ANOVA with Tukey’s correction). f Contour plots showing TNF production 4-OHT treated murine Rc3h1-2fl/fl; CD4-CreERT2; rtTA CD4+ T cells

retrovirally transduced with GFP fused Roquin-1 variants and treated with PMA/ionomycin for 2 h and incubated for an additional 2 h after brefeldin A

supplementation. Representative histograms depict TNF expression in stimulated GFP+ T cells. g Scatter dot plot representing mean TNF fluorescence in

GFP+ T cells transduced with various Roquin-1 variants (n= 9). h Nonlinear regression of TNF fluorescence in murine T cells transduced with GFP fused

Roquin-1 variants (n= 3). Mean and SEM are depicted. i, j Scatter dot plot representing mean IL-2 (h) and IL-17A (i) fluorescence in GFP+ T cells (n= 8).

*p < 0.05; **p < 0.01; ***0.001 < p < 0.0001 (one-way ANOVA with Tukey’s correction). Data shown are representative for four independent experiments

(a, f), accumulated data from two independent experiments (c, h) or four independent experiments (b, d, e, g, i, j). Source data are provided as a Source

Data file
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Statistics and reproducibility. No estimate of variation has been performed
within each group of data prior to statistical analysis. Data sets were analyzed using
the parametric unpaired or paired t-test to compare two populations (when
indicated). In the case of more than two populations, one-way ANOVA combined
with Tukey’s multiple comparisons test to correct for multiple comparisons was
applied. All tests were performed as two-sided. Results with a p value of 0.05 or less
were considered significant. Mean values, standard error of the mean and statistics
were calculated with Prism7 (GraphPad software). No criteria of inclusion or
exclusion of data were used in this study. Experiments were performed without
prior randomization of the animals and without blinding. No statistical method
was used to predetermine sample size of mouse experiments.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All sequence data pertaining to the patient and family member is stored on the secured

server of the Center for Medical Genetics Ghent due to privacy regulations. This

sequence data is available to researchers on request. Furthermore, all other data if not

mentioned differently are contained within the article and its supplementary information

or available upon reasonable request. The flowcytometry data used for FlowSOM analysis

of the R688*/R688* has been deposited in the public database FlowRepository (www.

flowrepository.org) as a dataset with ID: FR-FCM-Z267. The source data underlying the

figures and supplementary figures of this articles are provided as a Source Data file.

Code availability
The R-code used for the FlowSOM analysis of R688*/R688* PBMCs is publicly available

and can be accessed via GitHub (https://github.com/saeyslab/Roquin-1-

hyperinflammation).
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