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1 Introduction 

This talk is about impossibility results in the area of 
distributed computing. In this category, I include not 
just results that, say that a particular task cannot be 
accomplished, but also lower bound results, which say 
that a task cannot be accomplished within a certain 
bound on cost. 

I started out with a simple plan for preparing this 
talk: I would spend a couple of weeks reading all the 
impossibility proofs in our field, and would categs 
rize them according to the ideas used. Then I would 
make wise and general observations, and try to pre- 
dict where the future of this area is headed. That 
turned out to be a bit too ambitious; there are many 
more such results than I thought. Although it is of- 
ten hard to say what constitutes a “different result”, I 
managed to count over 100 such impossibility proofs! 
And my search wasn’t even very systematic or ex- 
haustive. 

It’s not quite as hopeless to understand this area as 
it might seem from the number of papers. Although 
there are 100 different results, there aren’t 100 dif- 
ferent ideas. I thought I could contribute something 
by identifying some of the commonality among the 
different results. 

So what I will do in this talk will be an incomplete 
version of what I originally intended. I will give you 
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a tour of the impossibility results that I was able to 
collect. I apologize for not being comprehensive, and 
in particular for placing perhaps undue emphasis on 
results I have been involved in (but those are the ones 
I know best!). I will describe the techniques used, as 
well as giving some historical perspective. I’ll inter- 
sperse this with my opinions and observations, and 
I’ll try to collect what I consider to be the most im- 
portant of the-se at the end. Then I’ll make some 
suggestions for future work. 

2 The Results 

I classified the impossibility results I found into the 
following categories: shared memory resource allo- 
cation, distributed consensus, shared registers, com- 
puting in rings and other networks, communication 
protocols, and miscellaneous. 

2.1 Shared Memory Resource Alloca- 
tion 

This was the area that introduced me not only to 
the possibility of doing impossibility proofs for dis- 
tributed computing, but to the entire distributed 
computing research area. 

In 1976, when I was at the University of Southern 
California, Armin Cremers and Tom Hibbard were 
playing with the problem of mutual exclusion (or al- 
location of one resource) in a shared-memory envi- 
ronment. In the environment they were considering, 
a group of asynchronous processes communicate via 
shared memory, using operations such as read and 
write or test-and-set. 

The previous work in this area had consisted of 
a series of papers by Dijkstra 1383 and others, each 
presenting a new algorithm guaranteeing mutual ex- 
elusion, along with some other properties such as 
progress and fairness. The properties were specified 
somewhat loosely; there was no formal model used for 
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describing algorithms and specifying problems to be 
solved. Each paper, in fact, seemed to solve a slightly 
different problem (involving different fairness, perfor- 
mance and fault-tolerance properties). It was difficult 
to compare the results in the different papers. 

Cremers and Hibbard thought about inherent lim- 
itations on the solvability of mutual exclusion in that 
environment, for the special case where memory was 
accessible via powerful test-and-set primitives. (Their 
version of test-and-set was very general, allowing one 
atomic access to shared memory to read, compute and 
write a value back.) An obvious complexity measure 
to study was the size of shared memory; they con- 
sidered the very simple problem of achieving mutual 
exclusion between two processes, using a single shared 
variable, and asked how many values the shared vari- 
able would need to take on. A a-valued semaphore is 
plenty if there are no fairness requirements; however, 
if fairness is included then 3 values were the best they 
could do. They proved the simple result that 2 values 
were insufficient. 

In order to do this, they had to embark on a major 
modeling effort. (To see how important the modeling 
work was here, note that the title of their paper [35] 
emphasizes their model rather than their combinato 
rial result.) The algorithms work had proceeded quite 
far without anyone having defined a formal model 
or being too precise about problem statements. But 
in order to give a formal proof of even a very sim- 
ple impossibility result, Cremers and Hibbard needed 
the rigor of a formal model. This model needed to 
have two separate components - a careful descrip- 
tion of the correctness conditions (mutual exclusion, 
progress and fairness), and a careful description of 
the space of allowable implementations, i.e., processes 
and shared memory. 

Defining the model was hard work, especially the 
problem statement. The mutual exclusion condition 
was easy to define, but the progress and fairness 
conditions were not. For instance, the requirements 
involved the system “continuing to make progress”. 
But clearly no system could guarantee progress if the 
processes were permitted to stop at arbitrary times 
during their protocols. They needed a notion of ad- 
missible execution that described exactly when pro- 
cesses were required to continue taking steps (e.g., 
while engaging in a protocol to obtain a resource, but 
not necessarily at other times). 

They also needed to capture some ideas about who 
controls each action. For example, they needed to 
capture the idea that each process “might request 
the resource at any time”, i.e., that the requesting 
actions were not under the control of the mutual ex- 
clusion algorithm. Otherwise, they would risk having 

a trivial problem statement that permits the solution 
algorithm to prevent processes from making requests. 

They also needed to express conditional statements 
like “the system is required to guarantee progress if 
the environment cooperates in that progress” - e.g., 

the system will repeatedly grant the resource pro- 
vided the environment always returns it, They ended 
up with a carefully-crafted and delicate set of axioms 
for their problem statement. 

They proved their impossibility result for 2 values 
by assuming that memory was 2-valued, and carry- 
ing out a proof by contradiction using a case analysis. 
This involved constructing several finite runs of the 
algorithm, in which the processes request the resource 
and take steps in various orders. Consider the values 
that the memory takes on at the end of all of these 
runs. Since there are only two values, the pigeonhole 
principle implies that there are many situations in 
which the memory must have the same value. They 
showed by case analysis that no matter how values 
get assigned, there must be two “incompatible” situ- 
ations in which shared memory has the same value, 
and in which one of the processes also has the same 
state, even though these two situations require differ- 
ent behavior from the process in order to satisfy the 
correctness conditions. For example, suppose that 
shared memory could have the same value and pro- 
cess p1 have the same state, in two situations - one 
where p2 is in its critical region and one where it is 
not requesting anything. In the second situation, pl 
must eventually go to its critical region on its own, 
whereas in the first, that would violate mutual ex- 
clusion. These two situations are indistinguishable to 
~1, and so it must behave in the same way in both 
situations. But then one or the other situation would 
lead to incorrect behavior, a contradiction. 

This simple result already demonstrated the basic 
idea upon which all the 100 impossibility proofs in 
distributed computing are based - the limitations im- 
posed by local Knowledge. (A process in this shared 
memory architecture could be said to “know” only 
what is in its local state and in the shared mem- 
ory, since that is all that it can see directly.) It also 
demonstrated the importance of formal models for 
stating and proving impossibility results. 

This early work influenced two different kinds of 
later work: that on mutual exclusion upper and lower 
bounds, and that on models for distributed comput- 
ing. 

A couple of years later, at Georgia Tech, I began 
working in distributed computing, mainly because 
there was a lot of activity there on design of dis- 
tributed systems. With Mike Fischer and Jim Burns, 
I began trying to understand what the interesting the- 
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oretical ideas were in this new research area. One of 

the first things we did was to go back and look at the 
mutual exclusion work, in particular, that of Cremers 

and Hibbard. 

In [26], we extended the results of [35] to n pro- 

cesses rather than 2 (but still considered just one 

shared variable). The extended results turned out 

to be very sensitive to assumptions about fairness: 

1. 

2. 

3. 

Any solution that exhibits bounded waiting, 

where there is a bound on how many times any 

process can bypass any other while the latter is 

waiting, requires at least 12 + 1 values. 

Even if no such bound is required, if no lockout 

is required, then s2(m values are required. 

Adding a technical assumption to the preced- 

ing case, that processes cannot remember what 

they did on previous times through the proto- 

col, raises the lower bound to n/2. (It is an 
open question whether this technical assumption 

is necessary.) 

The arguments are basically similar to those of 1351, 

based on the pigeonhole principle applied to values of 

shared memory, only in place of case analysis there is 

a more systematic examination of executions. 

The first result uses a version of the following idea. 

Suppose p1 enters the system and goes to its critical 

region. Then ~2, . . . , p,, enter the system in turn, each 

stopping at a point where it is waiting for a chance to 

enter its critical region. Consider all the values of the 

variables immediately after the steps of pz, . f . , p,, . 
If any pi and pj leave the variable with the same 

value, i < j, then the situation Cj in which ~1, . . . ,pj 

all enter “looks like” the situation Ci in which only 

Pl,..., pi enter, to pl,. . . ,pi. Starting from situation 

(27 Pl,“‘,Pi are able on their own to enter and leave 

the critical region arbitrarily many times; therefore, 

they are also able to do this starting from Cj. But 

this means that in situation Cj they can bypass a 

stopped pj arbitrarily many times, more times than 
allowed by the bound for bounded waiting. This is a 

contradiction. 

This proof doesn’t work if the fairness assumption 

is weakened to allow unbounded bypassing but no 

lockout. A violation of bounded waiting occurs in 
finite time, so in showing that such a violation oc- 

curs it suffices to construct a finite bad execution. A 
demonstration of lockout, however, requires an infi- 

nite admissible execution in which some process gets 

locked out. We can’t modify the construction above 

topermitpr,..- , pi to bypass pj infinitely often, while 

pj just sits there, because pj is required to take steps 
every so often. In the situation above, as soon as 

pj takes its next step, it might reveal its presence to 

Pl,“‘, pi, so they no longer have the requisite limited 
knowledge. 

The lower bounds for no lockout use trickier con- 

structions. The contradictions involve the constcuc- 

tion of incompatible infinite admissible executions 

that look the same to particular processes, who get 

fooled thereby and exhibit incorrect behavior. The 

proper treatment of admissibility was one of the most 

difficult aspects of this work. 

This work is a good example of the interesting 

“game” of working on conflicting positive and neg- 

ative results at the same time. We were working on 

trying to raise the lower bound of n/2 for no lock- 

out algorithms to n, since it seemed very unlikely 

that n processes could arbitrate among themselves 

fairly if there weren’t even enough values of shared 

memory for all the processes to uniquely record their 

presence. But that intuition turned out to be false - 

we came up with a complicated algorithm that used 

only around n/2 values! The algorithm arose in the 

course of trying to prove impossibility - carefully ex- 

amining the reasons why all the plausible ideas for 

impossibility proofs failed suggested what features a 

correct algorithm would have to have - and then one 

with these features actually worked. This algorithm 
was not practical; rather, it was a kind of algorithm I 

will call a counterexample algorithm, because it is de- 

signed not for its intrinsic interest or practical value, 

but rather to serve as a counterexample to an impos- 

sibility conjecture. There are many other such ex- 
amples in the impossibility result literature (some of 

which get picked on unfairly for not being practical). 

As for Cremers and Hibbard, a lot of our work 

was devoted to formulating the model and correct- 

ness conditions. Their definitions were not sufficiently 

clean for us to be able to use them easily in our 

proofs. Our proofs involved constructing complicated 

bad executions; the properties comprising the prob- 

lems statement are invoked repeatedly to justify the 

existence and properties of these executions. In or- 

der to use the properties in this way, we needed clean 

problem statements, so we had to simplify, general- 

ize and polish the model. The details of the model 

description added a lot of overhead to the paper - 
so much overhead that it might serve as a significant 

obstacle for a reader. 

The modeling considerations that arose in this 
work led directly to my own interest in formal mod- 

els of concurrency, and especially in models that are 

suitable for use in impossibility proofs. In fact, the 

second piece of work I did in this area was the de- 

sign (with Mike Fischer) of a general formal model 

for asynchronous shared-memory systems [SI]. 
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Soon thereafter, we obtained another collection of 
impossibility results [57, 531, this time for the Iz- 
exclusion problem, a generalization of mutual exclu- 
sion to some number L > 1 of resources. We showed 
that a strong simulation of a shared queue requires 
n(n2) values of shared memory. We also obtained 
lower bounds for fault-tolerant versions of the prob- 
lem, where the kinds of faults considered were just 
stopping faults. The techniques we used were similar 
to those in [26]. 

In [27], we considered what happens if memory is 
accessed via read and write operations rather than 
test-and sets. In this case, it turns out that mutual 
exclusion cannot be done at all using a single shared 
variable! It does not matter how many values the 
variable can take on. Moreover, this impossibility 
does not depend on fairness assumptions, but just on 
the two properties of mutual exclusion and continued 
system progress. More generally, n processes cannot 
achieve mutual exclusion with progress, with fewer 
than n separate shared variables). The proof again 
involves constructing incompatible admissibIe execu- 
tions that look the same to some of the processes, 
so they behave incorrectly in some cases. This time, 
the key ideas are that (1) a process must write some- 
thing in order to move to its critical region (to inform 
others), and (2) a writing process obliterates any in- 
formation previously in the variable. 

Using similar techniques, Rabin [92] proved a lower 
bound of st(n’/3> on the size of the range of test- 
and-set shared variables in any asynchronous shared- 
memory algorithm that solves the choice coordinafion 
problem. In this problem, processes share a common 
set of variables but do not have a common scheme for 
naming the variables; it is required that a marker be 
placed in exactly one of the variables. 

2.2 Distributed Consensus 

Around 1980, Leslie Lamport visited Georgia Tech, 
bringing along a copy of his new manuscript on the 
Albanian Generals Problem. Although superficiall: 
quite different from the resource allocation problems 
we had been working on, this problem had a similar 
‘Teel” . As before, independent processes with sep- 
arate inputs were required to accomplish some kind 
of coordinated action, in the presence of uncertainty 
about the rest of the system. In the case of dis- 
tributed consensus problems, the uncertainty arises 
primarily because of the possibility of faults, rather 
than because of asynchrony. Local knowledge is again 
limited, this time not by bounds on the size of shared 
memory, but by the fact that all information must be 
conveyed via point-to-point message channels. 

From the beginning, the area of distributed consen- 
sus has been a fruitful source of impossibility results. 
Some reasons for this are that the basic problem has 
a clean statement, and that there are many inter- 
esting variations of the problem, based on different 
assumptions about faults, timing, and kinds of agree- 
ment. The impossibility results in this area are based 
on just a few ideas, though. In what follows, I will 
group together results with related statements and 
techniques. 

2.2.1 Number of Processes 

The first group of results show how many processes 
are required to reach various kinds of consensus. 

The first impossibility result in this area, the im- 
possibility of reaching agreement among 3t processes 
in the presence oft Byzantine faults, appeared in the 
original papers [89] [73] on Byzantine agreement. The 
idea is based on processes “‘fooling” other processes, 
making them ‘<believe” they are in different systems. 
The most pleasing proof I know for this result is not 
the original, but the scenatio proof I did with Mike 
Fischer and Mike Merritt [54]. 

The following argument is for the case of t = I, 
i.e., 3 processes and 1 fault. Suppose that p, q, and 
P comprise a 3-process solution that can tolerate 1 
fault. Consider a system composed of two copies each 
of p, q and T joined into a ring, in order pa, qc, ro, 

P11 41 IpI* Let cy be an execution of this system (a 
“scenario”) in which each process with subscript 0 is 
started with initial value 0 and each with subscript 1 
is started with initial value 1. Although the problem 
statement does not directly imp’ose any conditions on 
scenario a, such conditions can be deduced. 

EuaJL scrnarlos for folpomlbulty of colunw 
1fault : L 

for 3 prcccsscs and , ’ 

Consider another scenario, CY’, consisting of ont 
copy each of p, q and T, where both p and q are 
started with initial value 0. Process r is faulty in 
Q’, and sends to p exactly what ri sends to po in Q 

‘ and to q exactly what ra sends to qo in 01. In a’, 
p and q behave exactly like pe and qo do in a, and 
receive exactly the same messages on their incoming 
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channels. In Q’, p and Q are required by the problem 
statement to eventually output 0; therefore, po and ~0 
will do the same in cr. By similar reasoning, ~1 and r1 
eventually output 1 in cr. However, it looks to pe and 
r1 as if they are in another three-process scenario o” 
in which Q is faulty; the problem statement requires 
them to eventually output the same value in o”, and 
so they will also do so in cr. This is a contradiction. 

The idea of the proof in [89] is basically the same 
as in this example, except that instead of describ- 
ing the scenario as the execution that is generated 
by a certain system started with certain initial val- 
ues, Lamport et al construct the scenario explicitly. 
It seems to me that the higher level of abstraction of 
the [54] proof makes much clearer what is really going 
on. Perhaps there are other impossibility proofs con- 
taining explicit constructions of bad executions that 
could be made more understandable by describing the 
bad executions implicitly, by a simple way of gener- 
ating them. 

A related impossibility result for low connectivity 
networks appears in [39]; it says that at least 2t + 1 
network connectivity is required to tolerate t faults. 
The proof is essentially another scenario argument 
similar to the one above (using a different scenario 

4. 
Lamport also proved another impossibility result 

for 3 processes and 1 fault, this time for a weaker 
version of Byzantine agreement where the decision is 
only predetermined for executions in which no faults 
occur [72]. The proof in that paper is quite complex, 
but it is again essentially another scenario argument. 

In his invited address at the 1983 PODC sym- 
posium [75], Lamport posed a problem about syn- 
chronizing clocks in a fault-prone distributed sys- 
tem. The processes are assumed to have separate 
physical clocks that can proceed at different rates; 
the object is for processes to compute adjustments 
to their physical clocks so that the nonfaulty pro- 
cesses’ adjusted clocks remain close to each other 
(e.g., within a constant), and also so that they re- 
main (approximately} within the range of the phys- 
ical clocks. Dvlev, Halpern, and Strong proved the 
impossibility of solving this problem with 3 processes 
and 1 fault 1441. I found this to be an immensely inter- 
esting result, but unfortunately I couldn’t understand 
the proof; the main problem I had with it was that it 
was not based on a rigorous formal model. To help me 
explain the proof to my distributed algorithms class, 
I redid the.provf-using a scenario argument. (It was 
the need to redo this proof that led to the work in 

PW 
The following is a very sketchy outline of the impos- 

sibility proof for synchronizing 3 clocks in the pres- 

ence of 1 possible fault. Suppose p, q and r are pro- 
cesses that solve the problem. Consider scenario a 
composed of a large number of processes pl, 41, ~1, 

P2, 42, r27 "'f arranged in a ring. The processes 
are supplied with physical clocks that run at con- 
stant rates, but the rates ark different for different 
processes. The processes at one portion of the ring 
(say the top) have clocks that run slowly, while the 
processes at the greatest distance from the slow pro- 
cesses have clocks that run fast; in between, there are 
only tiny differences in rate between neighbors (but 
of course eventually the physical clocks of any two 
neighbors diverge). 

Each pair of consecutive neighbors thinks it is in a 
3-process scenario, so must synchronize clocks appro 
priately. Each neighboring pair ends up with adjusted 
clocks that are close in value. This requires either 
svme slow processes to set their clocks far ahead or 
some fast ones to set them far back. Assume the for- 
mer, without loss of generality. Then there are two 
slow neighbors that will set their adjusted clocks to 
be far ahead, which will take them out of the range 
of their physical clocks. But a comparison of Q with 
a 3-process scenario that looks the same to these two 
neighbors shows that they must keep their adjusted 
clocks within the range of their physical clocks in a, 
a contradiction. 

The paper [54] presents a collection of results about 
the number of processes and connectivity required for 
various consensus problems; these include the results 
just described. This was the first paper to organize 
the proofs using explicit and rigorous scenario argu- 
ments (although the same approach was implicit in 
the other papers I mentioned). As I said earlier, this 
approach is nice because it provides a high-level way 

of looking at the constructions, and because it unifies 
a lot of different-looking previous work. The paper 
does not contain one general theorem that implies all 
the results (which would be still better) but rather a 
general technique. , 

Some interesting modeling issues arose here. I usu- 
ally like to present impossibility proofs using an ex- 
plicit operational model, describing processes and the 
message system as some kind of state machines. Dv- 
ing that for the ordinary or weak Byzantine agree- 
ment setting seems straightforward. But it is not 
clear what kind of model is appropriate for processes 
with physical clocks that move at different rates. It 
seemed at the time that if we gave all the details of 
such a model, it would be so complicated, and add so 
much overhead to the paper that no one would ever 
read it. 

Our solution here was to give an axiomatic model 
(without saying what kind of mathematical object is 
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supposed to serve as a model for the axioms). This 
approach tends to impose the fewest possible con- 
staints on the system, making the result potentially 
applicable to more systems. On the other hand, such 
an approach is also potentially applicable to RO sys- 
tems - when proving impossibility results with an 
axiomatically-described model, one should be sure 
to check that some interesting models satisfy the ax- 
ioms! 

Another result that can be proved using the same 
techniques is the impossibility result proved by Kar- 
lin and Yao [68] for probabilistic Byzantine agree- 
ment using randomized algorithms. Knowing that 
n processes can’t reach agreement with t faults when 
n < 3t, they asked with what probability such a small 
number of processes are able to agree. Their result 
shows that probability 2/3 is the best that can be 
achieved. Again, they used direct constructions of 
bad executions, but the proof can be done more sim- 
ply using a scenario argument similar to the first one 
above. 

It, is an interesting open question whether this 
bound is tight (for symmetric Byzantine agreement 
algorithms, in which each process starts with an ini- 
tial value), and how it extends to arbitrary values of 
n and t. Even though an answer to this open ques- 
tion may not have much direct practical significance, 
an answer to this question may give important ia- 
sight into the power of randomized algorithms. (So 
far, there itre very few results in the literature giv- 
ing impossibility results for randomized algorithms.) 
Impossiblity results for some additional special cases 
of this problem are proved in the new paper [60] the 
proofs appear to be based on detailed analysis of the 
properties of randomized algorithms. The paper [40] 
extends the Karlin-Yao bound to hold even under cer- 
tain restrictions on the power of the “adversary”. 

The paper [46] contains some lower bounds on the 
number of processes required to reach consensus in 
various fault and timing models. Proof techniques 
are based on scenarios. 

The paper [31] contains lower bounds for the num- 
ber of processes required to solve the Byzantine firing 
squad problem, using various fault and timing mod- 
els. A nice touch here is that one of the results is 
proved by reducing weak Byzantine agreement to it 
rather than by a direct proof. For the other results, 
scenario arguments are used, this time based on a se- 
quence of scenarios, al, a2, . . .; each successive pair 
of scenarios looks the same to some process, which 
therefore behaves in the same way in both cases. This 
leads to a contradiction when the constraints imposed 
by the problem statement are applied to some of the 
scenarios. 

Thus, we have a collection of impossibility results 
for the number of processes and connectivity for con- 
sensus problems, all proved using scenario arguments. 
Several different kinds of models are used in this work. 
For the results about synchronous systems, the early 
work such as that in [89] used specially tailored for- 
mal models. The later work used more general and 
familiar-looking state machine models. These models 
are a lot simpler than those used for asynchronous 
systems, because the notions of timing and admissi- 
bility are much simpler. For the results about par- 
tially synchronous systems (e.g., the results on clock 
synchronization), it is not so clear what the proper 
model should be. Some of the proofs for partially 
synchronous systems are done informally and am- 
biguously. Some have very detailed and complicated 
special models, and some are done axiomatically. 

2.2.2 Number of Rounds 

My first reaction to Leslie’s paper on Albanian agree- 
ment was that the clever algorithms in the paper ran 
too long! Surely, I thought, there must be a way to 
reach consensus in fewer than the t+l rounds their al- 
gorithm required. (From my experience, this is most 
often the way impossibility proofs originate - one of- 
ten doesn’t start out thinking that the impossible task. 
is impossible.) 

Mike Fischer and I soon were able to prove a t + 1 
lower bound on number of rounds required for Byzan- 
tine agreement [56]. 0 ur work on this result was an- 
other good example of the game of working on con- 
flicting positive and negative results at the same time. 
We went back-and-forth, working alternately on algo- 
rithms and impossibility proofs, for several days. A 
counterexample arose for each algorithm we thought 
of, until finally one counterexample was extended to 
an impossibility proof. 

The basic idea of the proof is pretty simple. Con- 
sider the case of two faults, i.e., where t = 2; we must 
show that two rounds can’t suffice to reach agree- 
ment. We can assume without loss of generality that 
the algorithm consists of every process broadcasting 
its value, then repeatedly receiving messages from ev- 
eryone and relaying everything that it received. So 
after two rounds, each process can record the infor- 
mation it has received as a matrix of values. 

If a process sees a matrix of all O’s, it must decide 
0, and similarly for 1. Also, it is possible to construct 
a chain of matrices, Ml, M2, . . a , kfk, starting with a 
matrix of all O’s and ending with a matrix of all l’s, 
where for each i, there is some execution with at most 
2 faulty processes, in which some nonfaulty process 
sees A4i and some nonfaulty process sees Mi+l (SO 
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the decisions wouid have to be the same). This is a 
contradiction. The successive matrices in the chain 
can be constructed by converting one 0 entry to a 
1 at each step, moving down the columns; at each 
step, two faults are necessary to produce an execu- 
tion in which the two views can be presented to two 
processes. 

This construction was done using an explicit con- 
struction of the executions; I don’t know whether an 
implicit construction via a simple generator might be 
possible, as it was for the scenario work. 

This lower bound was extended to the case where 
the processes participating in the algorithm are per- 
mitted to authenticate messages, in [43] and [37]. The 
proofs in those papers are also chain constructions; 
however, these constructions are much more compli- 
cated than the one in [56]. There is also some diEi- 
culty in defining what it means for a system to permit 
authentication of messages. 

The lower bound was further extended to the case 
where the only kind of fault permitted was simply a 
stopping fault. Versions of this result appeared in sev- 
eral unpublished notes (by Hadzilacos, by Fischer and 
Lamport and by Merritt), so that it became part of 
the folklore, before it was finally written up by Dwork 
and Moses. They incorporated this work into their 
work on knowledge [47], believing that using explicit 
formal definitions of the “knowledge” that a process 
has during an execution would provide a helpful way 
of looking at constructions such as these chain argu- 
ments. (For example, if a process can see a certain 
matrix in either of two executions constructed for the 
chain in [56], we can say that, the process does not 
“know” which of the two executions it’s in.) It’s still 
not clear to me whether or not the formal knowledge 
definitions help in explaining the combinatorial con- 
struction for the stopping fault lower bound; however, 
Dwork and Moses were able to generalize this lower 
bound to yield results for other problems of reaching 
“common knowledge” in synchronous systems. (In 
fact, they were able to do more, in particular, to an- 
alyze exactly which patterns of failures required the 
protocol to run for t + 1 rounds.) 

Moses and Tuttle extended the work in [47] to other 
fault models [86]. They obtained algorithms that ter- 
minate as quickly as possible in all executions; in fact, 
they were led to these algorithms by considering the 
impossibility results. (Along the way, they produced 
a simpler version of the t + 1 round lower bound for 
stopping faults.) 

Coan proved a t + 1 round worst-case lower bound 
for consensus for randomized algorithms, assuming 
that no erroneous answers are allowed [34]. In this 
case, the result for deterministic algorithms carried 

over fairly easily. (For comparison, note that Feldman 
and Micali [52] h ave a new constant expected time 
randomized Byzantine agreement algorithm for the 
case where a small probability of error is allowed.) 

Babaoglu, Stephenson and Drummond [17] showed 
similar lower bounds for models in which broadcast 
communication, rather than point-to-point communi- 
cation, is used. Their bounds depend on the “broad- 
cast degree”. 

The paper [36] contains a lower bound for the 
number of rounds required for distributed processes 
to reach approximate agreement on a real number 
(rather than exact agreement, on a value). A chain 
argument is used to show that no approximate agree- 
ment algorithm can converge too fast, in the case of 
Byzantine faults: for any k-round approximate agree- 
ment algorithm, there must be some executions such 
that the ratio of the range of output values to the 
range of initial values is at least (t/nk)k. 

The simplest style of approximate agreement alge 
rithm, one that repeats a simple l-round averaging 
algorithm k independent times, does not meet this 
bound, but rather achieves a ratio of around (t/n)‘. 
(It converges more slowly than the lower bound indi- 
cates). Another lower bound in [36] shows that this 
is the best that can be achieved by an algorithm with 
such a round-by-round structure. The argument is 
another chain argument. 

These impossibility results left open the question 
of whether a better algorithm might be possible if 
it were not required to be round-by-round. Fekete 
answered this question positively [50], giving a clever 
counterexample algorithm that uses information from 
prior rounds: some fault detection is carried out and 
then the results of processes known to be faulty are 
ignored. This is one of the first examples where de- 
tection of Byzantine faults was shown to Iead to im- 
proved results; it came about because of an impossi- 
bility conjecture. 

Fekete’s work in [50] and [Sl] contains lower bounds 
on the rate of convergence for crash and omission 
fault models, analogous to those for Byzantine faults. 
Again, chain arguments are used. 

Thus, there are many lower bound results for the 
number of rounds required to solve consensus prob- 
lems, all based on chain arguments. The kinds of 
models used here are primarily fairly straightforward 
synchronous state machine models, augmented in 
some cases with knowledge definitions, 

2.2.3 Number of Messages 

Dolev and Reischuk [42] p roved lower bounds on the 
number of messages and number of signatures re- 
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quired for Byzantine agreement algorithms that use 
authentication, using scenario-style arguments. 

2.2.4 Asynchronous Impossibility Results 

So far, the bounds I’ve described for consensus pro- 
tocols have been mainly for synchronous algorithms, 
and they have all been quantitative (lower bound} 
results. There has also been a lot of work on ab- 
solute impossibility results for purely asynchronous 
algorithms. 

The “Two Generals” result in [61] should proba- 
bly be classified as the first impossibility result for 
consensus in an asynchronous distributed system, al- 
though it isn’t so much the asynchrony that is im- 
portant here, but rather the uncertainty of message 
delivery. This result says that it is impossible for two 
distributed processes communicating via an unreli- 
able message system to reach consensus. 

The proof presented in [SI] is pretty informal; when 
I worked it out formally it looked like a chain argu- 
ment, but of a slightly different sort from the chains 
constructed for the round bounds. 

Starting from an execution in which both processes 
decide, say on value V, a chain of executions is con- 
structed by successively removing the last message 
receipt event. Each pair of consecutive executions 
looks the same to one of the processes, and the two 
processes must decide on the same value in each exe- 
cution; it follows that a decision of II is reached by 
both processes, in all the executions in the chain. 
Among the executions in the chain is a “null” exe- 
cution in which no messages are ever received; start- 
ing from this null execution, the chain can be further 
extended to produce another null execution in which 
neither process starts with initial value V, and yet 
a decision of u is reached by both processes. Un- 
der some reasonable assumptions about initial values 
and their relationship to the final decisions, it can be 
shown that such an execution should not result in a 
decision of II. 

A siniilar argument is used by Koo and Toueg [69] 
to show the impossibility of achieving any knowledge 
gain in an asynchronous network, in the presence of 
even transient communication failures. 

Halpern and Moses [64] have used formal notions 
of knowledge to describe the result of [61]. They also 
show that, in a precise sense, common knowledge can- 
not be gained in an asynchronous system. The tech- 
niques are basically similar to Gray’s, Chandy and 
Misra [29] also show a similar result. 

The next impossibility result I know about for 
asynchronous consensus is my result with Mike Fis- 
cher and Mike Paterson in [55]. This result shows the 

impossibility of reaching consensus in asynchronous 
systems, even when the message system is reliable, 
and even if the processes communicate via broadcast 
primitives, if there is the possibility of even a single 
stopping fault. 

Just as for the t + 1 lower bound on rounds, we 
began our work on this problem by guessing that a 

solution was. possible (for t faults, if n was sufficiently 
large relative to i). We had already had experience 
extending some synchronous agreement algorithms to 
the asynchronous setting; in the asynchronous set- 
ting, processes can wait to hear from all but t pro- 
cesses, so adding some extra processes sometimes per- 
mits an algorithm to compensate for the uncertainty 
of the missing messages. Again, we worked on both 
directions alternately, until the final result arose from 
a counterexample. 

The version of our proof that I like best was devel- 
oped by Bridgeland and Watro; similar ideas appear 
in recent work of Taubenfeld, Katz and Moran [98]. 

For simplicity, we restrict attention here to Booiean 
values only. 

If v is a Boolean value, we say that a configura- 
tion C is “v-vale&,” if u is the only possible decision . 
value reachable from C; we say that C is “bivalent” if 
both values are reachable. First, it is shown that any 
asynchronous consensus protocol that is resilient to a 
single fault has a bivalent initial configuration. Next, 
it is shown that any asynchronous consensus proto- 
col that has an initial bivalent configuration and that 
works correctly when there are no faults must have a 
reachable configuration C in which there is a decider 
process p. This means that from C, it is possible for 
p to take some finite sequence of steps leading to a 
“0-valeat” configuration, and also some other finite 
sequence of steps leading to a “1-valent” configura- 
tion; that is, p can make the decision on its own. 

C 
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The reason this is true is roughly as follows. The 
problem statement implies that we can’t have an in- 
finite execution consisting of bivalent configurations 
in which all processes continue taking steps and all 
messages eventually get delivered. Therefore, there’s 
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a reachable bivalent configuration C and a particu- 
lar message m in the message system such that any 
configuration resulting from delivering m is univa 
lent. Then there are two “neighboring” configure, 
tions D and E (that is, one a child of the other) such 
that delivering m from one leads to O-valence and the 
other leads to l-valence. This can only happen if the 
“neighbor edge” corresponds to a step of the same 
process p that is the recipient of m. 3ut this means 
that p is a decider. 

/ 
dcitver m 

1-valellt 

- Neh$lbotUq conQmUon~ D and E leading 10 
con.RguraUons of opposite Mlcnct 

But such an algorithm with a decider, sayp starting 
from configuration C, cannot be resilient to a single 
fault. This is because the rest of the system, operat- 
ing on its own starting from C, is required to decide 
either 0 or 1, but it can’t tell whether p has already 
decided differently. 

Here again, as for the shared memory work and 
all other work on asynchronous algorithms, it is im- 
portant to be careful about stating and using admis- 
sibility assumptions (the liveness assumptions about 
how the system runs). Here, the admissibility as- 
sumptions are that the non-failed processes continue 
to take steps (as long as there are steps to be per- 
formed), and that all messages eventually get deliv- 
ered. It is possible to get much easier proofs, for ex- 
ample, if messages are not required to be delivered; 
one such proof is given in [ZS]. 

Our original proof was similar to this one, but it 
turned the ideas around; we assumed the existence 
of a resilient algorithm and arrived at a contradic- 
tion. As usual, the contradiction involved construct- 
ing a bad admissible execution. The new proof or- 
ganization is better because it is not just a proof by 
contradiction, but also gives some positive informa- 
tion about (non-fault-tolerant) asynchronous consen- 
sus protocols. 

The general technique used here is to analyze the 
ways in which the system configuration can move 
from being bivalent to being univalent, showing that 
none of them can work properly in all cases. Or, 
turning the proof around, starting with a bivalent 
configuration, construct an admissible execution in 

which the configuration stays bivalent (by analyzing 
the ways in which decisions are made). 

The modeling issues were interesting here. As in 
the earlier papers on shared memory, this paper con- 
tains a carefully-developed formal model for asyn- 
chronous computation, but this time specially tai- 
lored to message communication. The model isn’t 
very complicated, but it is a little annoying that the 
modeling work starts from‘scratch, borrowing nothing 
from previous work in model development for asyn- 
chronous shared memory systems. Since both kinds 
of systems deal with ideas such as admissibility and 
control of actions, it seems that a common foundation 
could have been used. It would be very nide if there 
were some body of common definitions that people 
could use for asynchronous computing impossibility 
results, that would remove some of the overhead of 
the model section of each paper. 

Another problem with the model in this paper is 
that some of the particular aspects of the model, such 
aa the particular protocol used by the nodes in in- 
teracting with the message system, seem very spe- 
cial. Perhaps a more general model could have been 
useful here, in trying to apply this result to slightly 
different settings. I have since redone this proof for 
my class using the general “I/O automaton” model 
for asynchronous concurrent computation, (defined in 
[79, SO]), but I can’t yet tell how much of an improve- 
ment this is. 

This paper, unlike most impossibility results, has 
had lots of attention, even from practitioners. For ex- 
ample, one system designer’s reaction was to say “of 
course” - this theorem formalized an intuition that 
she had already had about distributed systems. This 
doesn’t mean that she “knew” the result in the sense 
that theoreticians mean (that they can prove it), but 
rather that her experience with things like commit 
protocols had led her to believe that this kind of 
thing could not be done. She probably would not 
have known ezactly what couldn’t be done - farmu- 
lating the precise assumptions on which such results 
depend is the sort of delicate analytical task that will 
probably always be left to the theoreticians. 

Distributed system designers do seem now to be 
generally aware of the limitation expressed by this 
result. I sometimes hear people describing their sys- 
tem designs by saying that the system cannot achieve 
a certain behavior because of this known limitation; 
they then go on to describe the weaker guarantees 
that their systems do make. In one case, system de- 
signers were surprised that what they believed their 
system was guaranteeing was in fact impossible; they 
did not give up on their project, though - rather, they 
used the new knowledge to help them clarify their 
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claims about what their system did. So it seems that 
this impossibility result has had the beneficial effect 
of helping (or forcing) system designers to clarify their 
claims about their system. 

This result has seen some follow-on technical work. 
There have been positive results, including counterex- 
ample algorithms for variations of the problem and 
some algorithms that may be interesting in them- 
selves. There have also been related impossibility 
results. 

For example, Ben-Or [19] and later Rabin [91] de- 
vised interesting randomized algorithms that circum- 
vent the impossibility result; these algorithm even- 
tually decide with probability one, and never violate 
safety properties. Also, Dwork, Lynch and Stock- 
meyer [46] devised consensus algorithms for the case 
where the problem definition is weakened to allow 
nontermination if certain nice timing conditions (i.e., 
upper bounds on message delivery time) fail. (An in- 
teresting technical open question remains about the 
time requirements for consensus in the model of [46] .) 

Dolev, Dwork and Stockmeyer [41] noticed that 
there were several different kinds of asynchrony in 
the execution model of [55], e.g., asynchrony of mes- 
sages and of processes. They classified systems, based 
on the various combinations of these factors, and ob- 
tained impossibility results for many of these cases 
(and algorithms for some). The impossibility results 
were proved using bivalence arguments similar to that 
in [55]. 

Their proofs proceed by contradiction, construct- 
ing bad executions; these executions had to be care- 
fully designed not only to satisfy admissibility as- 
sumptions like the ones for asynchronous systems, but 
also to satisfy additional requirements of partial syn- 
chrony as required by the various cases. They ana- 
lyzed the ways in which decisions must be made, e.g., 
locally to a single process, and showed that none of 
them can work correctly in all cases, e.g., a resilient 
protocol must be able to proceed without the deciding 
process. In some cases, they obtained impossibility of 
S-resilient consensus, rather than l-resilient consen- 
sus (because analysis of the decision point showed 
that the rest of the system might have to proceed 
without 2 processes, in order to produce a contradic- 
tion). 

The models used in [41] are quite detailed and spe- 
cialized, for example, in their assumption that time 
has a minimum granularity; it makes me think that a 
more abstract or general model could have been used 
here. For example, some recent work on impossibil- 
ity results for atomic register problems seems quite 
similar to some of the work in [41]; if the earlier work 
were stated in a more general way, perhaps it would 

imply some of the new register results. 
Attiya, Dolev and Gil [9] extended some of the work 

in [41] to consider Byzantine faults, not just stopping 
faults. They considered asynchronous processes with 
time-bounded communication. They gave an impos- 
sibility result that shows that a process cannot be 
guaranteed to decide in a bounded number of its own 
steps. The argument is a simple bivalence argument, 
similar to arguments in [41]. They also proved a 3t 
vs. t process impossibility result, using a scenario 
argument. 

Welch [loo] presented a nice reducibility argument 
that yields one of the main impossibility results of 
[41] directly from the result of [55]. The reducibility 
uses a fault-tolerant version of Lamport’s distributed 
clock idea 1741. 

Moran and Wolfstahl [85] gave two generalizations 
of the result of [55], one using a similar proof and 
one using a reducibility from the result of [55]. They 
defined two graphs to represent the problem being 
solved: an input graph for the possible input vectors, 
and an output graph for the allowable decision vectors. 
(In each graph, an edge joins two vectors if they differ 
in exactly one component.) Their results show the 
impossibility, in the presence of one faulty process, 
of performing any task that has a connected input 
graph and a disconnected decision graph. 

Bridgeland and Watro 1241 presented more impos- 
sibility results generalizing [55], using similar proofs. 
Their work also originated the notion of a “decider”, 
described above. 

Attiya, Bar-Noy, Dolev, Koller, Peleg and Reischuk 
[lo] presented three impossibility results for the “pro- 
cess renaming problem”, wherein anonymous pro 
cesses that start with distinct names from a large ID 
space are supposed to decide on distinct names from 
a fixed (smaller) ID space. They showed that renam- 
ing with n names is impossible; the argument is again 
very similar to that of [55], using generalizations of 
the sort obtained in [85]. (Some special argument 
is needed to show the bivalence of an initial config- 
uration.) There is a very interesting open question 
remaining here, about whether the lower bound for 
t faults can be extended from n + 1 to n + t names. 
An algorithm in their paper shows that n + t names 
suffice. 

They also showed that the problem cannot be 
solved with 2t processes, using a simple scenario ar- 
gument. Finally, they considered an order-preserving 
version of the problem, which they showed to have 
an interesting and large lower bound (for which they 
have a matching upper bound). The reason so many 
names are required is that processes sometimes have 
to decide on names for themselves while there are still 
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t silent processes; in this case, they need to reserve 
enough space for all possible relative orderings among 
those processes and between those processes and the 
others. 

Biran, Moran and Zaks [20] extended the [85] work 
to a characterization of what can be done with one 
faulty process. Their characterization has a pleas- 
ing graph-theoretic flavor, in terms of input graphs 
and decision graphs. More specifically, they proved 
a-variant of the [85] impossibility results, plus a new 
result giving a second graph-theoretic condition im- 
plying impossibility. On the other hand, they were 
able to obtain a protocol for the case where both of 
these conditions fail. They also utilized the graph 
characterization to get a lower bound on the number 
of messages require. Taubenfeld, Katz and Moran 
[98] have made preliminary attempts to extend the 
work in [85] to characterize what can be done in the 
presence of t faulty processes. 

Loui and Abu-Amara [76] proved results about the 
impossibility of resilient consensus in shared-memory 
rather than distributed models, in case the allowable 
operations on shared memory are reads and writes, 
and also in case they are test-and-sets. The ideas 
used here are very similar to those used for the related 
distributed results. The similarity between the ideas 
used in these two settings reinforces my intuition that 
there is an awful lot that is fundamentally the same 
in the two environments. 

They proved the impossibility of l-resilient consen- 
sus for read-write shared memory. The construction 
is very similar to that in [55] and [41]: a bivalence ar- 
gument with a simple case-analysis about the decision 
point. They also proved impossibility for 2-resilient 
consensus for test-and-set shared memory, in the spe- 
cial case of binary values. This is another bivalence 
argument, but, as in [41], this time analysis of the de- 
cision point shows that all except 2 processes might 
have to proceed in order to produce a contradiction. 
Both of these results extend immediately to fully re- 
silient algorithms - algorithms that tolerate arbitrary 
numbers of faults - a fact that wits useful in the work 
on atomic registers that I will describe later. Chor, 
Israeli and Li [30] also proved the first of the two 
impossibility results in [76]. 

In the asynchronous consensus work based on 
shared memory, admissibility considerations are sim- 
pler than they are in the distributed work. Here it is 
only necessary to ensure that (non-failed) processes 
continue to take steps, it is not necessary to worry 
about ensuring message delivery. 

Thus, there are many closely related results that 
describe what cannot be done in fault-tolerant asyn- 
chronous systems. Nearly all of these results are 

proved using similar bivalence arguments. 

2.2.5 Commit 

The commit problem is a particular kind of binary- 
valued consensus problem, where the two values are 
known as “commit” and “abort”. This problem re- 
quires agreement and termination; in addition, a 
“commit rule” should be satisfied, e.g., saying that 
if any initial values are “abort” the decision must be 
“abort”, while if all initial values are “commit” and 
there are no failures, then the final result is “com- 
mit”. The impossibility result of [55] implies that the 
commit problem cannot be solved in an asynchronous 
setting, so it is usually considered in synchronous and 
partially synchronous models. 

Dwork and Skeen [48] considered the commit prob- 
lem in a synchronous complete network model. They 
proved a lower bound of 2n - 2 messages for every 

failure-free execution that results in a commit de- 
cision. This proof is based on a simple argument 
that there must be a path of messages from every 
process to every other (or a wrong decision could 
result). This proof was redone using formal no 
tions of knowledge by Hadzilacos [62]. Dwork and 
Skeen also proved lower bounds on the number of 
rounds required in failure-free executions, based on 
the same fact (the existence of paths of messages be- 
tween pairs of processes) and an assumption about 
bounded bandwidth. Segall and Wolfson [96] gen- 
eralized the Dwork-Skeen message bound result to 
give a lower bound on the number of message hops 
needed for solving the commit problem in incomplete 
networks. 

Coan and Welch [33] considered the commit prob- 
lem in a partially synchronous model, for randomized 
algorithms for which eventual termination is required 
with probability 1. Also, a commit decision is only re- 
quired in case all processes have initial value “abort”, 
the execution is failure-free and all messages are de- 
livered within a fixed bound time b that is known to 
the processes. The main point of their paper is actu- 
ally an upper bound result: a fast randomized com- 
mit protocol for n > 2t; in order to argue that this 
protocol is close to optimal, they showed two limita- 
tions. First, they showed that no solution is possible 
if n < 2t. This proof does not seem to be a scenario 
argument like the other proofs of lower bounds on 
the number of processes (at least not obviously); it’s 
a complex explicit construction of bad admissible ex- 
ecutions. (Perhaps a higher-level argument might be 
possible.) 

The second impossibility result in [33] says that 
it is not possible for each process to make a deci- 
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sion within a bounded expected number of its own 
steps. (The time bound for the protocol in the pb 
per is measured in terms of a non-local asynchronous 
round measure.) The proof of this result is a bivalence 
argument that allows construction of not just a single 
non-deciding execution, but of lots of long nondecid- 
ing executions. (This is in order to obtain a bound for 
the average.) This is an interesting extension of the 
bivalence technique. Note that the two impossibility 
results of [33] are among the very few impossibility re- 
sults that make interesting claims about randomized 
protocols. 

2.2.6 Synchronization 

I am here grouping certain synchronization problems 
together with the consensus problems, since they in- 
volve processes agreeing on when to perform actions. 

Arjomandi, Fischer and Lynch [8] proved a lower 
bound on the time for an asynchronous, reliable net- 
work to carry out a simple synchronization task - to 
perform s “sessions”, in each of which all the pro- 
cesses in the network must perform at least one out- 
put event. The result is a lower bound of approxi- 
mately sd on the time for performing s sessions, where 
d is the diameter of the network. Since a synchronous 
system would only require time s, this amounts to 
a provable difference in the time complexity of syn- 
chronous and asynchronous systems. 

The proof idea is simple. First, note that an ex- 
ecution can be represented by a diagram with time 
lines for processes and connecting edges for messages. 
These time lines and connecting edges represent de- 
pendencies among events. Such a diagram can be 
“stretched” without violating the dependencies, and 
processes will not be able to tell the difference. Now, 
if an execution takes too little time, it can be parti- 
tioned into r- 1 short intervals, in&, 1 5 i 5 r- 1, in 
each of which there is insufficient time for a message 
to propagate between a certain pair of processes, pi 
and qi. Then it is possible to modify the execution 
by stretching its diagram so that all steps of pi fol- 
low all steps of qi in interval im!i; if the pi and qi ate 
chosen appropriately, the modified execution will not 
contain r sessions. 

This result demonstrates that lower bounds can be 
proved on time, even in asynchronous networks. This 
is not usually done, but I see no good reason why 
not. Appropriate ways of measuring time are avail- 
able for asynchronous systems, such as those defined 
in [90],[81],[79]. and [83]. Proving such lower bounds 
is a good area for future research. 

Awerbuch [16] proved a time/communication 
tradeoff lower bound for any network synchronizer, 

i.e., a program designed to adapt synchronous algo- 
rithms for use in (reliable) asynchronous networks. 
The techniques are generally similar to those used in 
[8], and are based on the necessity of communication 
between various pairs of nodes between pulses of the 
synchronous algorithm being simulated. This proof, 
however, uses some fancier graph theory. 

Lundelius and Lynch [77] proved a lower bound on 
how closely software clocks of (nonfaulty) distributed 
processes can be synchronized, in terms of the uncet- 
tainty in the message delivery time between pairs of 
processes. In particular, we obtained an interesting 
tight bound of 2c(l- l/n) for complete graphs. The 
idea is to represent an execution by a diagram as in 
[8], but with message edges tagged with message de- 
livery times. This diagram can be “stretched” as be- 
fore, but this time keeping the new message delivery 
times within the allowable bounds, and everything 
will still look the same to all the processes. Applying 
inequalities representing the constraints of the prob- 
lem to the various stretched diagrams gives a contra- 
diction. 

Dolev, Halpern and Strong 1441 gave a lower bound 
similar to that in [77], b u c aracterizing the closeness t h 
of synchronization obtainable along the0 real time 
axis. That is, they proved a lower bound on how 
close the real times can be when two processes’ ad- 
justed clocks have the same value, whereas our result. 
is a lower bound on how close the adjusted clock val- 
ues can be at the same real time. 

Halpern, Megiddo and Munshi [63] extended the te- 
sults of [77] to other kinds of graphs besides just com- 
plete graphs, using the same basic kind of stretching 
arguments. (The characterization for general graphs 
is not as nice as for complete graphs, however.) 

2.3 Shared Registers 

Now I reconsider shared memory asynchronous algo- 
rithms, in a setting similar to the one I started this 
talk with. In the past couple of years, there has been 
a lot of interest in problems about implementing dif- 
ferent kinds of shared registers in terms of other kinds 
of shared registers, generally in a “wait-free” manner. 

Lamport’s paper [71] includes one impossibility te- 
sult - a result that says that atomic registers can- 
not be implemented in terms of regular registers un- 
less the readers write. The proof is based on a new 
axiomatic partial ordering model introduced in [71]. 
The proof is only sketched, and involves an explicit 
construction of bad executions. Although the result 
is probably correct, I do not believe that it actually 
follows as claimed from the axiomatic model given in 
that paper. 
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Herlihy’s interesting paper [65] contains impossi- 
bility results and also universality results. He noted 
a connection between (fully-resilient) consensus re- 
sults and the (wait-free) implementation of atomic 
registers. Namely, if one type of data object can im- 
plement fully resilient consensus and another cannot, 
then the first data object cannot be implemented in 
terms of the second, in a wait-free manner. (There 
is a close connection between the full resiliency prop- 
erty and the wait-free property, although they origi- 
nated in different contexts.) In particular, the objects 
I described above in connection with [76], (read-write 
objects and binary test-and-set objects) plus others 
described by Herlihy, cannot provide wait-free imple- 
mentations of objects with more powerful operations 
such as general test-and-set. 

The proofs are bivalence arguments, but they are 
actually somewhat simpler than the proofs in [76], 
because the notion of admissibility used here is less 
restrictive than that used in the results on l-resilient 
and 2-resilient consensus. The full resiliency assumed 
here means that the only liveness condition needed 
for admissibility is that some process continue taking 
steps, i.e., that the execution be infinite. It is some- 
what easier to construct infinite non-deciding execu- 
tions than non-deciding executions satisfying some 
extra admissibility conditions. 

Again turning the proof around in the style of [24], 
implicit in this work is a lemma that says that fully 
resilient consensus implies the reachability of another 
kind of “decider” configuration: one that is bivalent 
but for which any step of any process leads to a uni- 
valent state (in one step). This is a different notion 
of a decider from the one used by Bridgeland and Wa- 
tro; theirs involves a particular process forcing either 
of two different decisions in some number of its own 
steps, whereas Herlihy’s means that any process can 
force a decision in one step. This simplified notion of 
decider leads to simpler proofs here than in [24] and 

[551. 
Thus, the bivalence technique is useful (indirectly) 

in getting more than just consensus impossibility re- 
sults. Here, reducibilities show its utility in proving 
that some kinds of objects can’t be implemented in 
terms of other kinds. 

Some interesting modeling issues arise. For exam- 
ple, Lamport’s impossibility proof sketch in [71] is 
based on his axiomatic partial ordering model. Her- 
lihy’s work, on the other hand, uses I/O automata. 
His method of using I/O automata to model registers 
differs from the way they are used to model regis- 
ters in [21] and 1951 Herlihy uses special “scheduler” 
machinery not used in the other work. Some work 
still seems needed to determine the best way to use 

this general model to describe registers. It is also not 
clear whether the axiomatic model or the I/O au- 
tomaton model is better for describing these results, 
or whether the two should somehow be combined. 

The I/O automaton model is not often used for 
reasoning about shared memory algorithms. This is 
because that model handles input and output events 
separately; for reasoning about shared memory algo- 
rithms, one would often like to avoid handling these 
two kinds of events separately, treating an invocation 
of an operation on a shared objects and a correspond- 
ing response as indivisible. (For example, the models 
in [81] and in [76] do this.) However, in the work on 
wait-free shared registers, It is appropriate to handle 
these two events separately, making I/O automata a 
reasonable model. The major point about atomic ob- 
jects is that they make it appear “as if’ accesses were 
performed indivisibly; this suggests that it might be 
useful to have two models (or two instances of one 
general model), one like [81] in which the accesses are 
indivisible and one like I/O automata in which they 
are not; connections between the two models should 
be proved. 

It is still not clear to me what the proper formal 
definition of the “wait-free” property should be. Per- 
haps it should be defined (as in [65]) in terms of a 
bounded number of process steps, perhaps in terms of 
an asynchronous time measure, and perhaps in terms 
of failure resiliency. This needs more work. 

2.4 Computing in Rings and Other 
Networks 

Now I switch to another area in which the proofs 
are very different from the ones I have considered so 
far. This area contains many impossibility results, 
most involving the message cost of carrying out vari- 
ous computations in a network. The case most com- 
monly studied is that of a ring network. 

Some of these results are based on a distance ar- 
gument: in a ring, it takes many messages to get in- 
formation from one place to another. Another basic 
idea is symmetry. For instance, a ring containing in- 
distinguishable processes is a very symmetric configu- 
ration; if it is to accomplish a task involving breaking 
symmetry, some process p must send a message; then 
because of symmetry, all processes indistinguishable 
from p will also send messages. 

There are so many results in this area that I 
couldn’t really classify them very well. Many of the 
results seem related; for instance, there are many re- 
sults giving lower bounds of Q(n log n) on the number 
of messages required to solve certain problems in a 
ring. Some work still seems to be required in unify- 



ing these results. 

2.4.1 Absolute Impossibility Results Based 
on Symmetry 

The earliest paper giving impossibility results in this 
area seems to be the very interesting paper of An- 
gluin [7], which proves the impossibility of electing a 
leader in various graphs. The processes in her model 
are indistinguishable, and they have no inputs, so all 
that can be used to distinguish them is their posi- 
tion in the network graph. But many graphs have 
symmetries that will prevent a guarantee of distin- 
guishing any process - anything that one process can 
do, the others symmetric to it might do also. The 
paper ideutifies symmetry properties of graphs that 
lead to impossibility of leader election. This paper 
can be credited for the now well-known and simple 
folk theorem that says that it is impossible to elect a 
leader in a ring (with a non-randomized algorithm), 
if processes do not have unique ID%. 

One unusual feature of this paper is that it uses a 
model based on Hoare’s CSP. This is the only example 
I can think of, of CSP being used for an impossibility 
result. It has many features that seem to me to be 
too distracting for such proofs. 

Johnson and Schneider [67] gave impossibility re- 
sults related to Angluin’s for several different prob- 
lems using several different models; the models are 
based on CSP, read-write shared memory, and vari- 
ables with locks. Other related results appear in [23]. 

2.4.2 Lower Bounds for Rings 

Many lower bound results have been proved expressly 
for ring networks. 

Burns [25] proved an Q( n log n) lower bound on the 
number of messages required to elect a leader in an 
asynchronous ring. The key idea is the limitation 
of local knowledge based on how far information can 
travel - it takes k messages to propagate information 
to a process distance k away. The proof does not 
require any special assumptions about process ID’s: 
processes can have distinct ID’s chosen from any ID 
space. 

Roughly speaking, Burns’ proof shows inductively 
on n that there are a large number of segments 
of length n each of which is capable of generating 
n(n log n) messages on its own (without any commu- 
nication arriving from the endpoints). For the induc- 
tive step, suppose there are many segments of size 
n/2 each of which can generate lots of messages, and 
try to get some of size n that also can generate many 
messages. Suppose they don’t exist. Consider all pos- 
sible ways of concatenating pairs of the segments of 

size n/2. If such a double segment is unable to gen- 
erate lots of messages on its own, then consider an 
execution in which the two halves first quiesce, then 
some additional messages flow starting at the merge 
point. Because of the limitation on number of mes- 
sages, information about the merge cannot propagate 
as far as the middle of either of the two halves before 
the double r^-*?gment quiesces. 

So this means that there must be a large set S of 
length n/2 segments such that any double segment 
composed of segments in S quiesces without infor- 
mation about the merge propagating as far as the 
midpoint of either half. Now consider what happens 
when any number of segments in S are formed into a 
ring. They have executions in which the length n/2 
segments quiesce first, then the additional messages 
propagate from merge points (but not as far as the 
midpoints of the S segments), until quiescence occurs. 
This means that each individual process’ decision can 
only depend on local information: information about 
its own S segment and about its nearest adjacent S 
segment. But then inconsistencies can arise based 
on different ring arrangements: the fact that some of 
these rings elect a leader implies that others can elect 
more than one leader. 

Much attention is devoted in this paper to the 
design of an appropriate formal model for message- 
passing systems, as is suggested by the paper’s title. 

Pachl, Korach and Rotem 1871 extended the 
Q(nlog n) lower bound of [25] to the overage case, 
for asynchronous deterministic leader-election algo- 
rithms. The techniques are similar. They also proved 
a lower bound for unidirectional rings in which pro 
cesses are interrupt-driven, using a different style of 
argument based on the special structure of such al- 
gorithms. Such algorithms are essentially determinis- 
tic; what happens at each process can be viewed as a 
transformation from input strings to output strings. 
Pachl [88] extended the results of [87] to the case of 
randomized algorithms where a nonzero probability 
of erroneous outputs is permitted. Related results 
were proved by Duris and Galil [45] and Bodlaender 

PA * 
Burns’ proof depends heavily on the asynchrony; 

for instance, construction of bad executions involves 
forcing subsegments to quiesce separately, then to 
quiesce around the merge points. Frederickson and 
Lynch [58] considered the same problem for syn- 
chronous rings. In the synchronous case, the absence 
of a message might be regarded as a special “null 
message” , and used to communicate something. We 
showed that this apparent extra capability doesn’t 
help - an Q(n log n) lower bound still holds. 

Now special restrictions are needed on the algo- 
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rithm in order to obtain the lower bound. Namely, 
the algorithm is required either to be comparison- 
based, or to use a very large ID space relative to the 
running time. The result for the second assumption 
follows by a reducibility from the result for the first, 
by a Ramsey’s Theorem argument; the argument says 
that with enough ID’s, the algorithm must behave like 
a comparison algorithm on some subset of the ID%. 

The idea of the first, proof is that many mes- 
sages are required to break symmetry. Consider for 
example the ring consisting of processes with ID’s 
0,4,2,6,1,5,3,7. 

This ring is very symmetric, up to comparisons. 
In particular, adjacent segments of length 2& are 
comparison-equivalent. So everything looks the same 
(up to comparisons) to processes 2k apart until some 
chain of (real, not null) messages spans a distance of 
at least 2&. Until then, if one process sends a message, 
so does every process a multiple of 2” away. 

It is easy to produce highly symmetric rings of size 
equal to any power of 2. Much of the effort in the 
paper is devoted to producing highly symmetric rings 
when tz is not a power of 2. 

This paper also contains a counterexample aigo- 
rithm. This algorithm shows that you cannot remove 
all assumptions about ID’s or running time. For oth- 
erwise there is a very time-consuming algorithm (its 
time complexity depending exponentially on the ID’s 
actually in use) with only O(n) messages. This alg+ 
rithm does not seem to be very interesting in itself, 
but it is interesting because it demonstrates the need 
for the assumptions in the lower bound. 

Attiya, Snir and Warmuth, in [14] used similar 
ideas to those in [58] but took them much further. 
They considered the case where there are no ID’s built 
in, but (for certain problems) processes may start 
with input values. The object is for the processes 
to compute some function (invariant under circular 
shifts} of the input vector. 

They considered both asynchronous and syn- 
chronous rings. For the asynchronous case, they ob- 
tained an n(n2) message lower bound for many in- 

teresting computable functions, including AND and 
MAX. This bound contrasts with the O(nlogn) 
bounds that hold for the case where the processes 
have distinct ID’s. 

The proof involves constructing a “fooling pair” of 
rings, RI and R2, where RI is very symmetric, but R2 
need not be, together with a process p which has a big 
neighborhood that is the same in both rings but which 
is required to decide differently in the two rings. Then 
messages must propagate to p from outside the com- 
mon neighborhood (in both rings). However, when 
a process sends a message in RI, many symmetric 
processes must also send messages. 

The proof for the synchronous case uses a simi- 
1a.r argument, but now it only yields a lower bound 
of R(nlog n), because of the possible utility of null 
messages. Now a stronger definition is needed for a 
fooling pair, in which both RI and RZ must be very 
symmetric. Then it can be shown that the algorithm 
causes many messages to be sent in both RI and R2. 

The lemmas used in [14] are slightly different from 
those used in [58]; instead of analyzing chains of mes- 
sages in detail, they are stated in terms of less de- 
tailed information about the number of rounds at . 
which some message is sent. As in [58], much effort 
is devoted here to producing the strong symmetries 
needed for rings whose sizes are not powers of two. 

Several other recent papers contain results re- 
lated to those in [14]. Moran and Warmuth [84] 
proved a lower bound of C!(n log n) for the number 
of bits required to compute any ‘“nontrivial” function 
on a deterministic ring. with indistinguishable pr+ 
cesses. Attiya and Mansour [12] gave a proof that 
any ‘hen-quasi-permutation-f&e” regular language 
requires C?(n log n) messages, using the synchronous 
theorem from [f4]. Attiya and Snir [13] considered 
the avernge case for deterministic algorithms, in the 
asynchronous setting. They showed a lower bound 
of Q(n log n) for the average number of messages re- 
quired by any deterministic algorithm for computing 
an arbitrary ‘honlocal” function. Roughly speaking, 
they showed that there are many sequences of pro- 
cesses of any given length Ic in which messages are 
sent by the center process in the sequence at round 
Ic (in a synchronous execution of the algorithm); this 
implies that many messages are generated in an “av- 
erage ring”. This lower bound extends easily to ran- 
domized algorithms that admit no probability of er- 
ror, using a simple reduction. However, if nonzero 
error probability is allowed, then the lower bounds 
fail (and an O(n> algorithm exists). 

Abrahamson, Adler, Higham and Kirkpatrick 
proved a collection of amazing lower bounds for ran- 
domized algorithms for solving certain problems, e.g., 
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“solitude detection”, in a ring. They allowed a 
nonzero probability of error, and measure the commu- 
nication bit complexity. The model is asynchronous, 
but it’s unidirectional and interrupt-driven, so (as in 
[87]) its behavior is very constrained. 

They studied many different cases, e.g., in which 
the ring s&is either known or unknown, and in which 
decisions are revocable or irrevocable. The lower 
bounds are quite complicated-looking functions, but 
what’s most amazing is that they are tight. 

One key idea is the following. If the expected cost 
of computations in a particular ring is low, then for 
some fixed boundary in the ring, and for some fixed 
short sequence of messages, computations having that 
sequence at that boundary occur with reasonably 
high probability. Then it is possible to splice together 
multiple copies of that ring, by cutting and splicing at 
the designated boundary. Then with reasonably high 
probability, solitude will be verified erroneously in the 
spliced ring. This argument can be thought of as a 
sophisticated form of symmetry-breaking, incorporat- 
ing ideas reminiscent of crossing sequence arguments 
in Turing machine theory. (Some of the techniques 
used in this work dso extend to proving lower bounds 
on the best case bit complexity for a nondeterministic 
algorithm.) 

The model definitions are an important part of this 
work, because the results are very sensitive to slight 
variations in assumptions. Unfortunately, these def- 
initions do impose a lot of overhead on the reader. 
This work contains different sets of problem state- 
ments, strong ones for the algorithms and correspond- 
ing weak ones for the impossibility results, thus mak- 
ing each result as strong as possible. 

Mansour and Zaks [82] considered the case where 
the ring starts with a leader, but where the ring size 
is unknown. Even with a leader, interesting lower 
bounds still hold for other reasons. They showed that 
recognition of any nonregular set requires Q(n log n) 
bits of communication. 

Finally, Goldreich and Shrira [59] proved an 
R(n log n) lower bound on the number of messages 
for function computation in an asynchronous ring in 
which one link might fail, even if the ring has a leader 
and the ring size is known. The basic idea is that the 
leader needs to hear from everyone; to ensure this, 
it must initiate messages in both directions, which 
need to propagate until they reach the broken link (if 
any), and then responses must come back. But a node 
doesn’t know if it’s adjacent to a broken link; to be 
safe, it might have to behave as if it were even if it is 
not, and send messages back toward the leader. This 
means that the leader might get messages reflected 
back from ‘fake extremities” and still not have heard 

from all processes. In that case, the leader needs to 
initiate messages again. The paper [59] also contains 
an n(n”) lower bound for the case where the ring size 
is unknown. 

Thus, I have described a collection of bounds for 
ring computations that depend mainly on symmetry, 
on the distance messages have to travel, and oncross- 
ing sequence arguments. It seems to me that there is 
some good work still to be done in coalescing, gener- 
alizing and simplifying this work. 

2.4.3 Lower Bounds for Complete Graphs 

Some lower bounds on the number of messages have 
also been proved for complete graphs. Korach, 
Moran and Zaks [70] proved tight lower and up- 
per bounds for some distributed problems in a com- 
plete asynchronous network of processes. They ob- 
tain Q(nlogn) lower bounds for leader election and 
spanning tree determination, and sZ(n2) for certain 
matching problems. Afek and Gafni [3] proved simi- 
lar bounds to those in [70], for leader election; theirs, 
however, extend to the synchronous case, and they 
also prove time bounds. 

2.4.4 Lower Bounds for Meshes 

Abu Amara [2] showed a lower bound of (57/32)n, 
on the number of messages required for comparison- 
based leader election in a synchronous mesh consist- 
ing of n nodes. 

2.4.5 Lower Bounds for General Graphs 

Other related bounds have been proved for gen- 
eral graphs. Santoro [94] proved a lower bound of 
Q(n log n + e) for leader election in general graphs. 
The n log n component results from the correspond- 
ing bound for rings. The e component is based on a 
“folk argument” that all edges need to be traversed, 
in order to ensure that no other nodes are hidden in 
the middle. 

Awerbuch, Goldreich, Peleg and Vainish [15] 
proved a very nice lower bound that says that it’s nec- 
essary to “involve” all the edges in a network in order 
to solve certain problems, such as broadcast commu- 
nication, election, constructing a minimum spanning 
tree, or counting the number of nodes in the net- 
work. This implies that the number of fixed-length 
messages needed is at least e. The argument is for 
comparison-based algorithms, but can be extended to 
more general algorithms using Ramsey Theory tech- 
niques similar to those used in [58]. This result builds 
on an earlier weaker result by Reischuk and Koshors 
in [93]. 
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The result follows as in [94] in case no one knows 
identity of neighbors, so this work supposes that each 
node knows the identity of its immediate neighbors. 
Then it cannot be proved, as in [94], that a mes- 
sage actually gets sent on each edge; however, bad 
executions based on duplicate graphs with pairs of 
crossover edges demonstrate that a node must some- 
how find out additional information about its neigh- 
bor; roughly speaking, this involves the node receiv- 
ing a message containing the identity of the neighbor, 
to use for comparison. An extension of the result 
gives a weaker lower bound on the number of mes- 
sages if nodes know about their neighbors to distance 
up to b,b > 1. 

Yamsshita and Kameda [lOl, 1021 proved impossi- 
bility results about computation in general graphs in 
which the nodes are indistinguishable and have par- 
tial information about the graphs. 

2.5 Communication Protocols 

There have been some isolated impossibility results 
about communication protocols; it seems as if there 
is much more to be done here. 

Aho, Ullman, Weiner and Yannakakis [4] showed 
that certain kinds of data link behavior cannot be 
achieved with protocols composes of finite-state ma, 
chines of particular sizes. The arguments are based on 
the limitations imposed by small numbers of states. 
Arguments use case analysis. 

Lynch, Mansour and Fekete [78] gave impossibil- 
ity results for implementing desirable data link be- 
havior (reliable message delivery) in terms of typical 
physical channel behavior (less reliable packet deliv- 
ery), in either of two cases: (1) if crashes can occur 
that cause a loss of memory, or (2) if there are only 
a;. bounded number of packet headers for use on the 
physical channel and a besl case bounded number of 
packets are required to deliver each message. 

The basic idea of the proofs is that the physical 
channel can “steal” some packets, while it accom- 
plishes the delivery of messages. This is because the 
algorithms are supposed to tolerate packet loss. Then 
the “stolen” packets can be used to fool the receiver 
process into thinking another message is to be deliv- 
ered. 

These theorems have apparently seemed natural to 
people in the practical communication protocols com- 
munity, in fact almost part of the “‘folk wisdom”. Our 
proofs serve to make these intuitions rigorous. They 
also make the necessary assumptions explicit, some- 
thing that network designers might not think about 
because they take them for granted. For instance, I 
doubt that a network designer would have realized 

that a bound on the best case number of packets per 
message would have been needed for a result such 
as our second. We as theoreticians are supposed to 
identify such hidden assumptions. 

In fact, although we did not think so at the time, 
it turns out that this technical-sounding assumption 
is necessary! For, Attiya, Fischer, Wang and Zuck 
[ll] have recently devised a counterexample algo 
rithm that works with finitely many headers, but does 
not have such a best-case bound! (At the time we 
found out about this result, we were trying to prove 
that such an algorithm was impossible.) Although 
this algorithm, is very interesting as a counterexam- 
ple algorithm it not practical, since it uses more and 
more packets, even in the best case, to send later and 
later messages. This means the network operation 
must get slower, and s lo w e r, and s 
1 0 w e r . . . Some interesting open 
questions remain about the rate at which the num- 
ber of packets required must grow with the number 
of messages delivered. 

We found defining the model to be a difficult part 
of the work in [78]. We used I/O automata; in fact, 
this was our first attempt to use I/O automata to 
prove impossibility results. We found getting the for- 
mal definitions right to be exceedingly tricky, espe- 
cially compared to the informal way in which we first 
discussed the ideas. Much of the difficulty, as usual, 
involved the proper handling of admissibility. An- 
other difficulty involved modeling the interaction of 
algorithms; the components about which we prove 
impossibility results interact with other components, 
the “physical channels”. Thus, constructing a coun- 
terexample requires not only giving a bad execution, 
but also constructing a particular physical channel 
that interacts with the algorithm to generate the bad 
execution. Admissibility must also be handled prop- 
erly for the physical channels. 

It is not clear what impact the choice of the I/O 
automaton model had on the difficulty of this work. 
My feeling is that the model worked rather well, even 
though the definitions in [?8] are not easy to under- 
stand. I think that some of the difficulty is due to the 
subtlety of the concepts and some due to the fact that 
our definitions could still use some polishing. But I 
think the basic model is well suited to expressing all 
the required concepts. 

Spinelli [97] also proved essentially the same im- 
possibility result as the first one in [78], on crash- 
tolerance. A completely different style of irnpussibil- 
ity result about communication protocols appears in 
[18]; the authors prove a linear lower bound on the 
amount of time required for deterministic broadcast 
in a multiaccess medium. 
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2.6 Miscellaneous 

Coan, Kolodner and Oki [32] proved the only exam- 
ple I have of an impossibility result for concurrently- 
accessible databases. It gives simple proofs of limita- 
tions on what types of transactions can execute in a 
partitioned network. This looks like a good area for 
future work. 

Yao [103] and many others have written a series 
of papers about the communication complexity of 
computing particular functions, where the inputs are 
distributed between several (usually 2) participants. 
The results are lower bounds on the number of bits 
that need to be transmitted. The arguments are 
information-theoretic. 

The one example I know involving cryptographic 
protocols (outside of the authenticated Syzantine 
agreement work) is the work of Dwork and Stock- 
meyer 1491 giving limitations of the power of interac- 
tive proof systems in which the components are finite 
automata. The limitations are based on the structure 
of finite-state machines. 

Chandy and Misra [29] showed that termination 
detection requires at least as many messages as the 
underlying computation whose termination is being 
detected. They also proved a simple lower bound 
on the number of messages required for distributed 
solutions to the dining philosophers problem. The 
proofs use formal reasoning about knowledge. 

Finally, Anderson and Gouda [S] devised a new 
proof of the impossibility of building an arbiter out of 

Boolean gates (the “arbiter glitch”) problem. Their 
proof is based on discrete bivalence considerations 
rather than continuous considerations such as the 
other proofs in the literature. They make a restrictive 
assumption that there not be any gates with outgo- 
ing wires connected back to inputs of the same gate 
(even with delay on the wire). It would be interest- 
ing to understand what happens if this restriction is 
removed. 

3 General Comments 

So what can be distilled from this survey? 

3.1 The Basic Ideas That Make The 
Proofs Work 

There is only one fundamental underlying idea on 
which all of the proofs in this area are based, and 
that is the limitation imposed by local knowledge in a 

disitibuied system. If a process sees the same thing 
in two executions, it will behave the same in both. 

Ideas related to local knowledge have been used im- 
plicitly in proofs since the beginning, although in the 
past few years there has been some work in trying to 
make the use of knowledge explicit. 

There are many reasons for the limits on local 
knowledge in distributed settings. Uncertainty arises 
from asynchrony, failures, and unknown inputs. In- 
formation about other parts of the system might not 
be communicated quickly because of limitations on 
communication media, e.g., the size of shared mem- 
ory, the bandwidth of message channels, or the dis- 
tance information must travel. 

Many specific techniques are used, all manifesta- 
tions of the limitation of local knowiedge. I have 
mentioned pigeonhole arguments for bounds on the 
number of values of shared memory, scenario argu- 

ments for bounds on the number of processes, chain 

urguments, primarily for lower bounds on rounds for 
consensus problems, bivalence arguments for impos- 
sibility of decision problems, communication diagram 

stretching arguments for time and message bounds 
for synchronization problems, symmetry arguments 

for impossibility and message lower bounds for net- 
work computations, especially for ring computations, 
distance arguments for message bounds in low-degree 
networks such as rings, crossing sequence arguments 

for ring computations, message-stealing arguments 

for communication protocols, and finite-state argu-’ 

ments for FSA-based algorithms. 
Also, some proofs make use of reducibiiities to infer 

impossibility results from others that have previously 
been proved. 

3.2 Connections with Formal Model- 
ing 

The work of doing impossibility proofs is tightly in- 
tertwined with the work of defining formal models. 

First, impossibility proofi need to be based on rig- 
orous and well-designed formal models. It may be 
possible to avoid using formal models if one is inter- 
ested only in designing algorithms. But it is not possi- 
ble to fake an impossibility proof - such a proof makes 
no sense at all without rigorous description. That is 
not to say that one shouldn’t work on an impossibility 
proof at an informal level; the final product, however, 
needs to be carefully described. 

There are many features that make a model appro- 
priate for impossiblity proofs. Of course, it needs to 
be rigorous. It must permit separate descriptions of 
the problems to be solved and of the allowable imple- 
mentations. It must provide a proper treatment of 
admissibility and control of actions. Problem state- 
ments must be sufficiently “tight” to serve as a rea- 
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sonable contract between a specifier and an imple- 
mentor. (They should neither say too little nor too 
much.) Problem statements must be sufficiently clean 
to be invoked repeatedly as justifications for steps of 
a construction. Finally, implementation models need 
to be clean and simple. (It is neither feasible nor in- 
teresting to prove impossibility results about a messy 
implementation model.) 

A by-product of work on impossibility proofs is the 
development of formal models with the nice features 
listed above. If an area has only algorithms, but no 
impossibility results, I don’t believe it is likely that 
the models that arise are likely to have the same fea 
tures. In particular, the problem statements are not 
likely to be either tight or clean. 

When many people get involved, in proving upper 
and lower bound results in an area, the problem state- 
ments and implementation assumptions used in that 
area tend to get a lot of careful discussion, which in 
turn helps lead to convergence on good sets of as- 
sump tions. 

The use of formal models forces people to make 
their assumptions explicit. This helps to expose sub- 
tle differences in assumptions, which often leads to 
many variations on the same problem, with corre- 
sponding different results. 

On the negative side, it is certainly true that the 
use of rigorous formal models imposes overhead on 
the presentation of results; for impossibility results, I 
think this is unavoidable. 

3.3 Problem Statements 

I have some general remarks about appropriate kinds 
of problem statements for impossibiIity results. 

First, the problems must be stated precisely. This 
does not mean that they have to be stated in a formal 
language such as temporal logic. It does mean that 
they must make sense in terms of a basic mathemati- 
cal model that can be used for describing implementa 
tions and for carrying out the necessary mathematical 
arguments. 

It is not enough for the problem statements to be 
precise; the problems also need to be well-chosen - 
crisp and simple. This makes it a lot easier to invoke 
the problem statements when carrying out construc- 
tions of bad executions. It also makes it more likely 
that the results obtained will be fundamental. 

It is very hard to work on a direct impossibility 
proof for solving a very complex distributed com- 
puting problem, e.g., for implementing a fancy dis- 
tributed UNIX in the presence of certain faults of the 
implementing processors, perhaps with a certain cost. 
One needs to extract simple prototype problems from 

an area to carry out the basic proofs. (Sometimes 
complex and specialized problems can be shown to 
be impossible using reducibilities, or by being special 
cases of a result about simple, more general systems.) 

It is also important for problem statements to be as 
general as possible, although generality seldom comes 
on the first try. 

In a paper with contrasting possibility and impos- 
sibility results, it is not unusual to find two different 
statements for the “same” problem - a strong state- 
ment for the algorithms and a weak statement for 
the impossibility results. This strategy is a way of 
making each result as strong as possible. 

3.4 The Process of Working on Such 

Proofs 

How does one go about working on an impossibility 
proof? The first thing to do is to try to avoid solv- 
ing the problem, by using a reducibility to reduce 
some other unsolvable problem to it. If this fails, 
you next consider your intuitions about the problem. 
This might not help much either: in my experience, 
my intuitions about which way the result will go have 
been wrong about 50% of the time. 

Then it is time to begin the game of playing the 
positive and negative directions of a proof against 
each other. My colleagues and I have often worked al- 
ternately on one direction and the other, in each case 
until we got stuck. It is not a good idea to work just 
on an impossibility result, because there is always the 
unfortunate possibility that the task you are trying 
to prove is impossible is in fact possible, and some 
algorithm may smface. 

An interesting interplay often arises when you work 
alternately on both directions. The limitations you 
find in designing an algorithm - e.g., the reason a par- 
ticular algorithm fails - may be generahzable to give a 
limitation on all algorithms. This is how we found the 
lower bound in [56]. Conversely, the reasons that an 
impossibility proof fails can sometimes be exploited 
to devise counterexample algorithms. This is how we 
found the no lockout algorithm in [26]. 

Arriving at a careful statement of the problem is 
usually an iterative process. It usually takes a while 
just to get it correct: it’s easy to make the prob- 
lem statement too strong (e.g., by requiring that a 
resource be granted without saying that the envi- 
ronment must always return the resource), in which 
case impossibility results might hold for trivial rea 
sons. It’s also easy to make the statement too weak, 
in which case trivial counterexample algorithms can 
arise. 

With some luck, this iterative process eventually 



leads to an interesting problem statement and a corre- 

sponding impossibility result; then the problem state- 
ment should be “polished”. Assumptions that are 
not needed can be eliminated, so that impossibility 
is proved based on the weakest possible set of re- 
quirements. The problem statement should be made 
as general and elegant as possible. (For example, 
in the impossibility result of [55], we weakened the 
usual consensus validity conditions after the fact to 
include any algorithm with the option of reaching ei- 
ther of two different, decisions. This meant that the 
result was strong enough to apply to commit algo- 
rithms. We also noticed after the fact that we could 
strengthen the power of the message system f’rom in- 
dividual sends to atomic broadcast; this strengthen- 
ing weakens the requirements of the algorithm, since 
it now is only required to work in a stronger environ- 
ment.) 

I find that one of the hardest aspects of work- 
ing out problem statements and impossibility proofs 
(especially for asynchronous systems) is the proper 
treatment of admissibility. The definitions and proofs 
must ensure that all (non-failed) processes continue 
to take steps, or all messages are delivered, or that 
other appropriate liveness conditions are satisfied, in 
the bad admissible executions that are constructed. 

3.5 What Good Are Impossibility Re- 
sults? 

What good are impossibility results, anyway? They 
don’t seem very useful at first, since they don’t allow 
computers to do anything they couldn’t previously. 

Most obviously, impossibility results tell you when 
you should stop trying to devise or improve an algo- 
rithm. This information can be useful both for theo- 
retical research and for systems development work. 

It is probably true that most systems developers, 
even when confronted with the proved impossibility 
of what they’re trying to do, will still keep trying to 
do it. This doesn’t necessarily mean that they are ob- 
stinate, but rather that they have some flexibility in 
their goals. E.g., if they can’t accomplish something 
absolutely, maybe they can settle for a solution that 
works with “sufficiently high probability”. In such a 
case, the effect of the impossibility result might be 
to make a systems developer clarify his/her claims 
about what the system accomplishes. 

Proving impossibility results causes us to take a 
very analytical approach to understanding the area. 
It causes us to state carefully exactly what assump- 
tions (about the execution environment and the prob- 
lems) the results depend on. This sort of detailed in- 
formation does not normally arise from or algorithm 

or system development work alone. 
Sometimes impossibility proofs lead to interesting 

work on ways of getting around the inherent limi- 
tation. For example, many randomized algorithms 
have been produced in order to get around the in- 
herent cost previously proved for deterministic and 
nondeterministic algoritb. Examples include Ben- 
Or’s asynchronous fault-tolerant consensus algorithm 
in [19], Itai and Rodeh’s randomized algorithms for 
leader election without identifiers in [SS] and Feldman 
and Micali’s fast algorithm for synchronous consensus 

The close connections between impossibility proofs 
and modeling means that impossibility results help in 
the development of formal models. Models produced 
for impossibility proofs have many nice features, as I 
discussed earlier. They are not only useful for prov- 
ing impossibility results; they also have other uses, 
such as specification and verification of algorithms 
and software. 

Finally, I think that an understanding of impossi- 
bility results in an area is an important part of un- 
derstanding the fundamental ideas of that area. 

3.6 Unified Models 

A pet question of mine is what we can do to reduce 
the need for so much definitional and modeling work’ 
for impossibility results. Those of us who prove im- 
possibility results get tired of writing those long and 
formalism-laden definitions sections, and I am sure 
most people are tired of reading them. Since such 
precision is necessary, it seems that the only hope is 
to try to avoid repeated work by using a standard 
model as the foundation. I am not sure yet how suc- 
cessful that will be. 

A unified model could provide a standard way of 
coping with ideas that appear repeatedly. For exam- 
ple, the I/O automaton model provides more-or-less 
standardized ways of presenting algorithms and prob- 
lem statements (for an asynchronous setting), and has 
a built-in treatment of admissibility and of control of 
actions. These considerations arise in many differ- 
ent results, in many areas, including shared memory 
algorithms, distributed consensus and network algo- 
rithms. 

Use of a unified model that spans several areas 
could facilitate the application of results from one 
area to another area, e.g., the application of consen- 
sus results to mutual exclusion or register problems. 
(This is true not just for impossibility results.) 

I have tried using both of the general models I 
have been involved with, in impossibility proofs. The 
model of [81] was not that successful for this purpose, 
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but in retrospect I think it was mainly because it is 
a shared-memory model and we were trying to use 
it for inappropriate settings such as message-passing 
systems. The I/O automaton model has been used 
recently, and seems reasonably successful. 

I have considered recasting some earlier results in 
terms of I/O automata. In the early work on mutual 
exclusion, the definitions did not establish a clean 
boundary around the algorithms, allowing their inter- 
active behavior to be clearly specified at that bound- 
ary and making it possible to compose the algorithms 
with others to build a system. I/O automata could 
remedy this. On the other hand, I/O automata have 
one drawback for this area: the fact that they treat in- 
puts and outputs as separate events means that they 
might tend to treat some things non-atomically that 
could be treated atomically. This could complicate 
the proofs. 

I think that impossibility results about atomic reg- 
isters could expressed well using I/O automata. For 
consensus, the result of [55] and other related results 
can also be redone using I/O automata; the new pre- 
sentations seem to me to be a little simpler than the 
old. The synchronization result of [8] can also be 
redone using I/O automata rather than our shared- 
memory model, and the new presentation seems much 
simpler and more natural than the old. 

I don’t expect a unified model to be a panacea. 
There are many ideas that are not common to all work 
in the area, such as special assumptions about timing 
and failures. Each result would probably still need to 
be preceded by a description of its own set of special 
conditions. But perhaps these might constitute less 
overhead than before. Perhaps the use of a general 
model might help to identify which of the differences 
are essential, and remove the others. 

It does not actually seem that thinking about a 

general model such as the I/O automaton model has 
yet been very helpful in getting insight while working 
on the combinatorial results. So far, their use has 
been solely in producing clear and rigorous presenta- 
tions (and finding mistakes in intuitions). 

3.7 Randomized Algorithms 

So far, there have been very few interesting impos- 
sibility results for randomized algorithms. The main 
examples I have mentioned are [68, 60, 33, l]. Of 
course, one would expect fewer impossibility results 
for randomized algorithms, because less is impossi- 
ble with such algorithms, but some more should be 
provable than exist currently. 

It is much harder to reason about the limitations 
of randomized algorithms than about those of de- 

terministic algorithms; it seems necessary to analyze 
very complex probabilistic interactions between the 
algorithms and adversaries having various amounts of 
knowledge and power. The area of adversarial com- 
puting is one that really could use improved under- 
standing, and impossibility results for randomized al- 
gorithms would surely contribute to that understand- 
ing. 

3.8 They’re Easy 

Impossibility proofs are much easier in our area than 
in most others. This is because the limitation of local 
knowledge is the fundamental fact about the setting 
in which we work, and it is a very powerful limitation. 

4 Future Directions 

4.1 Technical Open Questions 

I mentioned a few open questions earlier. These are 
summarized here. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

In the no-lockout mutual exclusion work in [26], 
is the “forgetting” assumption necessary? 

In the consensus work in [46], where some as- 
sumptions are made about time for message de- 
livery, what are the exact time bounds required 
for consensus? 

With what probability can consensus be guaran- 
teed by randomized algorithms, in the presence 
of a large number t of faults relative to the total 
number II of processes? 

What is the exact number of process names re- 
quired by the process renaming problem of [lo]; 
is it n + 1 or it + t or somewhere in between? 

In the data link work of [78], how fast must the 
number of packets grow with time? (Some new 
results appear in [99], in the current PODC.) 

More results in the style of [65] should be possi- 
ble. Exactly what objects can and can’t be im- 
plemented in terms of what other objects, in a 
wait-free manner, or not in a wait-free manner? 
What are the associated time bounds? 

Can the result in [S] be extended to the case in 
which the circuit does not have a loop-free re- 
striction? 
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4.2 Other Areas 

Impossibility results in distributed computing theory 
have been concentrated into a few subareas. It should 
be possible to expand the set of problems being con- 
sidered, by looking at other areas. There will be some 
initial work required to identify crisp problems suit- 
able for impossibility results. 

Although some of these areas have already been 
well “mined” for basic algorithms, the same is not 
true for impossibility results (and counterexample al- 
gorithms). Some results could arise based on the folk 
wisdom of the areas. Some suggestions for areas are: : 

1. Communication protocols: Not very much has 
been done yet. There is still more to under- 
stand about the relationship between the data 
link layer and the physical layer, and there are 
lots of other layers to consider. 

2. Real-time processing: It would be nice to have a 
theory to describe the fundamental combinato- 
rid properties of real-time systems. Impossibil- 
ity results should be an important part of this. 
Note that both this and the preceding area re- 
quire models for timing-dependent algorithms. 

3. Parallel computing: There has been lots of com- 
binatorial work in this area, but the models 
(PRAM’s, etc.) are different from those com- 
monly used in our area. We might want, to con- 
sider models for parallel computing that are sim- 
ilar to the models that have been considered in 
our area - involving asynchrony and failures, for 
example. 

4. Databases: Little has been done so far. This area 
is characterized by complex problems and a.lg* 
rithrns; it is necessary to identify simple, crisp 
problems. It might be possible to prove limita- 
tions on the ability of systems to guarantee se- 
rializability with liveness, e.g., based on limited 
information provided to each object, or based on 
kinds of faulty behavior. Results might be ob- 
tained about specific data types or transaction 
types. 

4.3 Other Styles of Results 

I would like to see more lower bounds on time for 
asynchronous algorithms, such as [8]. Such bounds 
have been underemphasized so far. Time mea- 
sure definitions appropriate for asynchronous sys- 
tems, such as those in [90, 81, 79, 831 must be used. 
More work is also needed on impossibility results for 

randomized algorithms. More work is needed on con- 
cepts relating different problems, such as reducibili- 
ties and complexity or computability classes. (Such 
classes have been very useful elsewhere in complexity 
theory.) 

4.4 Modeling 

More work is needed in developing good models for 
use in proving impossibility results for distributed 
computing. A general model is desirable; I/O au- 
tomata are one possibility, but there may be others. 
If I/O automata are to be used, they need to be aug- 
mented in various ways, e.g., with time definitions as 
in [83].. It will stiH sometimes be necessary to develop 
models tailored for specific areas. Perhaps a general 
model can be used, with special structure added on 
to fit it to each area. 

4.5 Unifying and Generalizing Results 

It may be useful to try to unify the work that’s al- 
ready been done, in the way that [54] unified a large 
collection of n 5 3t lower bounds. In particular, the . 
results about ring computation could use such coa- 
lescing. There seem to be too many G?(n log n) lower 
bounds! 

There seems to be something very similar about 
the problems of mutual exclusion, consensus, serializ- 
ability, leader election, and even global snapshots. So 
there should be similar inherent limitations on solving 
these problems. Are there common proof techniques, 
or even reducibilities here? 

Although there are 100 proofs, maybe there are 
only six ideas - perhaps it is possible to prove the 
Six Fundamental Theorems of Distributed Comput- 
ing, from which all of these other results will follow! 

5 Conclusions 

I’ve tried in this talk to give you a good picture of the 
history, status and flavor of research in impossibility 
proofs for distributed computing. I hope you’re con- 
vinced that it is an interesting and fruitful area for 
research. Now with some luck, skill and inspiration, 
we can continue to make great strides, proving more 
and more things to be impossible! 
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