
A Hundred Impossibility Proofs for Distributed Computing

Nancy A. Lynch *
Lab for Computer Science

MIT, Cambridge, MA 02139
lynchQtds.Ics.mit.edu

1 Introduction

This talk is about impossibility results in the area of
distributed computing. In this category, I include not
just results that, say that a particular task cannot be
accomplished, but also lower bound results, which say
that a task cannot be accomplished within a certain
bound on cost.

I started out with a simple plan for preparing this
talk: I would spend a couple of weeks reading all the
impossibility proofs in our field, and would categs
rize them according to the ideas used. Then I would
make wise and general observations, and try to pre-
dict where the future of this area is headed. That
turned out to be a bit too ambitious; there are many
more such results than I thought. Although it is of-
ten hard to say what constitutes a “different result”, I
managed to count over 100 such impossibility proofs!
And my search wasn’t even very systematic or ex-
haustive.

It’s not quite as hopeless to understand this area as
it might seem from the number of papers. Although
there are 100 different results, there aren’t 100 dif-
ferent ideas. I thought I could contribute something
by identifying some of the commonality among the
different results.

So what I will do in this talk will be an incomplete
version of what I originally intended. I will give you

*This work wm supported in part by the National Science

Foundation (NSF) under Grant CCR86-11442, by the Office of
Naval Research (ONR) under Contract NOO01~35-K-0168 and

by the Defense Advauced Research Projects Agency (DAFU’A)
under Contract NOUO1483-K-0125.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 1989 ACM 0-89791-326-4/89/0008/0001 $1.50

a tour of the impossibility results that I was able to
collect. I apologize for not being comprehensive, and
in particular for placing perhaps undue emphasis on
results I have been involved in (but those are the ones
I know best!). I will describe the techniques used, as
well as giving some historical perspective. I’ll inter-
sperse this with my opinions and observations, and
I’ll try to collect what I consider to be the most im-
portant of the-se at the end. Then I’ll make some
suggestions for future work.

2 The Results

I classified the impossibility results I found into the
following categories: shared memory resource allo-
cation, distributed consensus, shared registers, com-
puting in rings and other networks, communication
protocols, and miscellaneous.

2.1 Shared Memory Resource Alloca-
tion

This was the area that introduced me not only to
the possibility of doing impossibility proofs for dis-
tributed computing, but to the entire distributed
computing research area.

In 1976, when I was at the University of Southern
California, Armin Cremers and Tom Hibbard were
playing with the problem of mutual exclusion (or al-
location of one resource) in a shared-memory envi-
ronment. In the environment they were considering,
a group of asynchronous processes communicate via
shared memory, using operations such as read and
write or test-and-set.

The previous work in this area had consisted of
a series of papers by Dijkstra 1383 and others, each
presenting a new algorithm guaranteeing mutual ex-
elusion, along with some other properties such as
progress and fairness. The properties were specified
somewhat loosely; there was no formal model used for

1

describing algorithms and specifying problems to be
solved. Each paper, in fact, seemed to solve a slightly
different problem (involving different fairness, perfor-
mance and fault-tolerance properties). It was difficult
to compare the results in the different papers.

Cremers and Hibbard thought about inherent lim-
itations on the solvability of mutual exclusion in that
environment, for the special case where memory was
accessible via powerful test-and-set primitives. (Their
version of test-and-set was very general, allowing one
atomic access to shared memory to read, compute and
write a value back.) An obvious complexity measure
to study was the size of shared memory; they con-
sidered the very simple problem of achieving mutual
exclusion between two processes, using a single shared
variable, and asked how many values the shared vari-
able would need to take on. A a-valued semaphore is
plenty if there are no fairness requirements; however,
if fairness is included then 3 values were the best they
could do. They proved the simple result that 2 values
were insufficient.

In order to do this, they had to embark on a major
modeling effort. (To see how important the modeling
work was here, note that the title of their paper [35]
emphasizes their model rather than their combinato
rial result.) The algorithms work had proceeded quite
far without anyone having defined a formal model
or being too precise about problem statements. But
in order to give a formal proof of even a very sim-
ple impossibility result, Cremers and Hibbard needed
the rigor of a formal model. This model needed to
have two separate components - a careful descrip-
tion of the correctness conditions (mutual exclusion,
progress and fairness), and a careful description of
the space of allowable implementations, i.e., processes
and shared memory.

Defining the model was hard work, especially the
problem statement. The mutual exclusion condition
was easy to define, but the progress and fairness
conditions were not. For instance, the requirements
involved the system “continuing to make progress”.
But clearly no system could guarantee progress if the
processes were permitted to stop at arbitrary times
during their protocols. They needed a notion of ad-
missible execution that described exactly when pro-
cesses were required to continue taking steps (e.g.,
while engaging in a protocol to obtain a resource, but
not necessarily at other times).

They also needed to capture some ideas about who
controls each action. For example, they needed to
capture the idea that each process “might request
the resource at any time”, i.e., that the requesting
actions were not under the control of the mutual ex-
clusion algorithm. Otherwise, they would risk having

a trivial problem statement that permits the solution
algorithm to prevent processes from making requests.

They also needed to express conditional statements
like “the system is required to guarantee progress if
the environment cooperates in that progress” - e.g.,

the system will repeatedly grant the resource pro-
vided the environment always returns it, They ended
up with a carefully-crafted and delicate set of axioms
for their problem statement.

They proved their impossibility result for 2 values
by assuming that memory was 2-valued, and carry-
ing out a proof by contradiction using a case analysis.
This involved constructing several finite runs of the
algorithm, in which the processes request the resource
and take steps in various orders. Consider the values
that the memory takes on at the end of all of these
runs. Since there are only two values, the pigeonhole
principle implies that there are many situations in
which the memory must have the same value. They
showed by case analysis that no matter how values
get assigned, there must be two “incompatible” situ-
ations in which shared memory has the same value,
and in which one of the processes also has the same
state, even though these two situations require differ-
ent behavior from the process in order to satisfy the
correctness conditions. For example, suppose that
shared memory could have the same value and pro-
cess p1 have the same state, in two situations - one
where p2 is in its critical region and one where it is
not requesting anything. In the second situation, pl
must eventually go to its critical region on its own,
whereas in the first, that would violate mutual ex-
clusion. These two situations are indistinguishable to
~1, and so it must behave in the same way in both
situations. But then one or the other situation would
lead to incorrect behavior, a contradiction.

This simple result already demonstrated the basic
idea upon which all the 100 impossibility proofs in
distributed computing are based - the limitations im-
posed by local Knowledge. (A process in this shared
memory architecture could be said to “know” only
what is in its local state and in the shared mem-
ory, since that is all that it can see directly.) It also
demonstrated the importance of formal models for
stating and proving impossibility results.

This early work influenced two different kinds of
later work: that on mutual exclusion upper and lower
bounds, and that on models for distributed comput-
ing.

A couple of years later, at Georgia Tech, I began
working in distributed computing, mainly because
there was a lot of activity there on design of dis-
tributed systems. With Mike Fischer and Jim Burns,
I began trying to understand what the interesting the-

2

oretical ideas were in this new research area. One of

the first things we did was to go back and look at the
mutual exclusion work, in particular, that of Cremers

and Hibbard.

In [26], we extended the results of [35] to n pro-

cesses rather than 2 (but still considered just one

shared variable). The extended results turned out

to be very sensitive to assumptions about fairness:

1.

2.

3.

Any solution that exhibits bounded waiting,

where there is a bound on how many times any

process can bypass any other while the latter is

waiting, requires at least 12 + 1 values.

Even if no such bound is required, if no lockout

is required, then s2(m values are required.

Adding a technical assumption to the preced-

ing case, that processes cannot remember what

they did on previous times through the proto-

col, raises the lower bound to n/2. (It is an
open question whether this technical assumption

is necessary.)

The arguments are basically similar to those of 1351,

based on the pigeonhole principle applied to values of

shared memory, only in place of case analysis there is

a more systematic examination of executions.

The first result uses a version of the following idea.

Suppose p1 enters the system and goes to its critical

region. Then ~2, . . . , p,, enter the system in turn, each

stopping at a point where it is waiting for a chance to

enter its critical region. Consider all the values of the

variables immediately after the steps of pz, . f . , p,, .
If any pi and pj leave the variable with the same

value, i < j, then the situation Cj in which ~1, . . . ,pj

all enter “looks like” the situation Ci in which only

Pl,..., pi enter, to pl,. . . ,pi. Starting from situation

(27 Pl,“‘,Pi are able on their own to enter and leave

the critical region arbitrarily many times; therefore,

they are also able to do this starting from Cj. But

this means that in situation Cj they can bypass a

stopped pj arbitrarily many times, more times than
allowed by the bound for bounded waiting. This is a

contradiction.

This proof doesn’t work if the fairness assumption

is weakened to allow unbounded bypassing but no

lockout. A violation of bounded waiting occurs in
finite time, so in showing that such a violation oc-

curs it suffices to construct a finite bad execution. A
demonstration of lockout, however, requires an infi-

nite admissible execution in which some process gets

locked out. We can’t modify the construction above

topermitpr,..- , pi to bypass pj infinitely often, while

pj just sits there, because pj is required to take steps
every so often. In the situation above, as soon as

pj takes its next step, it might reveal its presence to

Pl,“‘, pi, so they no longer have the requisite limited
knowledge.

The lower bounds for no lockout use trickier con-

structions. The contradictions involve the constcuc-

tion of incompatible infinite admissible executions

that look the same to particular processes, who get

fooled thereby and exhibit incorrect behavior. The

proper treatment of admissibility was one of the most

difficult aspects of this work.

This work is a good example of the interesting

“game” of working on conflicting positive and neg-

ative results at the same time. We were working on

trying to raise the lower bound of n/2 for no lock-

out algorithms to n, since it seemed very unlikely

that n processes could arbitrate among themselves

fairly if there weren’t even enough values of shared

memory for all the processes to uniquely record their

presence. But that intuition turned out to be false -

we came up with a complicated algorithm that used

only around n/2 values! The algorithm arose in the

course of trying to prove impossibility - carefully ex-

amining the reasons why all the plausible ideas for

impossibility proofs failed suggested what features a

correct algorithm would have to have - and then one

with these features actually worked. This algorithm
was not practical; rather, it was a kind of algorithm I

will call a counterexample algorithm, because it is de-

signed not for its intrinsic interest or practical value,

but rather to serve as a counterexample to an impos-

sibility conjecture. There are many other such ex-
amples in the impossibility result literature (some of

which get picked on unfairly for not being practical).

As for Cremers and Hibbard, a lot of our work

was devoted to formulating the model and correct-

ness conditions. Their definitions were not sufficiently

clean for us to be able to use them easily in our

proofs. Our proofs involved constructing complicated

bad executions; the properties comprising the prob-

lems statement are invoked repeatedly to justify the

existence and properties of these executions. In or-

der to use the properties in this way, we needed clean

problem statements, so we had to simplify, general-

ize and polish the model. The details of the model

description added a lot of overhead to the paper -
so much overhead that it might serve as a significant

obstacle for a reader.

The modeling considerations that arose in this
work led directly to my own interest in formal mod-

els of concurrency, and especially in models that are

suitable for use in impossibility proofs. In fact, the

second piece of work I did in this area was the de-

sign (with Mike Fischer) of a general formal model

for asynchronous shared-memory systems [SI].

3

Soon thereafter, we obtained another collection of
impossibility results [57, 531, this time for the Iz-
exclusion problem, a generalization of mutual exclu-
sion to some number L > 1 of resources. We showed
that a strong simulation of a shared queue requires
n(n2) values of shared memory. We also obtained
lower bounds for fault-tolerant versions of the prob-
lem, where the kinds of faults considered were just
stopping faults. The techniques we used were similar
to those in [26].

In [27], we considered what happens if memory is
accessed via read and write operations rather than
test-and sets. In this case, it turns out that mutual
exclusion cannot be done at all using a single shared
variable! It does not matter how many values the
variable can take on. Moreover, this impossibility
does not depend on fairness assumptions, but just on
the two properties of mutual exclusion and continued
system progress. More generally, n processes cannot
achieve mutual exclusion with progress, with fewer
than n separate shared variables). The proof again
involves constructing incompatible admissibIe execu-
tions that look the same to some of the processes,
so they behave incorrectly in some cases. This time,
the key ideas are that (1) a process must write some-
thing in order to move to its critical region (to inform
others), and (2) a writing process obliterates any in-
formation previously in the variable.

Using similar techniques, Rabin [92] proved a lower
bound of st(n’/3> on the size of the range of test-
and-set shared variables in any asynchronous shared-
memory algorithm that solves the choice coordinafion
problem. In this problem, processes share a common
set of variables but do not have a common scheme for
naming the variables; it is required that a marker be
placed in exactly one of the variables.

2.2 Distributed Consensus

Around 1980, Leslie Lamport visited Georgia Tech,
bringing along a copy of his new manuscript on the
Albanian Generals Problem. Although superficiall:
quite different from the resource allocation problems
we had been working on, this problem had a similar
‘Teel” . As before, independent processes with sep-
arate inputs were required to accomplish some kind
of coordinated action, in the presence of uncertainty
about the rest of the system. In the case of dis-
tributed consensus problems, the uncertainty arises
primarily because of the possibility of faults, rather
than because of asynchrony. Local knowledge is again
limited, this time not by bounds on the size of shared
memory, but by the fact that all information must be
conveyed via point-to-point message channels.

From the beginning, the area of distributed consen-
sus has been a fruitful source of impossibility results.
Some reasons for this are that the basic problem has
a clean statement, and that there are many inter-
esting variations of the problem, based on different
assumptions about faults, timing, and kinds of agree-
ment. The impossibility results in this area are based
on just a few ideas, though. In what follows, I will
group together results with related statements and
techniques.

2.2.1 Number of Processes

The first group of results show how many processes
are required to reach various kinds of consensus.

The first impossibility result in this area, the im-
possibility of reaching agreement among 3t processes
in the presence oft Byzantine faults, appeared in the
original papers [89] [73] on Byzantine agreement. The
idea is based on processes “‘fooling” other processes,
making them ‘<believe” they are in different systems.
The most pleasing proof I know for this result is not
the original, but the scenatio proof I did with Mike
Fischer and Mike Merritt [54].

The following argument is for the case of t = I,
i.e., 3 processes and 1 fault. Suppose that p, q, and
P comprise a 3-process solution that can tolerate 1
fault. Consider a system composed of two copies each
of p, q and T joined into a ring, in order pa, qc, ro,

P11 41 IpI* Let cy be an execution of this system (a
“scenario”) in which each process with subscript 0 is
started with initial value 0 and each with subscript 1
is started with initial value 1. Although the problem
statement does not directly imp’ose any conditions on
scenario a, such conditions can be deduced.

EuaJL scrnarlos for folpomlbulty of colunw
1fault : L

for 3 prcccsscs and , ’

Consider another scenario, CY’, consisting of ont
copy each of p, q and T, where both p and q are
started with initial value 0. Process r is faulty in
Q’, and sends to p exactly what ri sends to po in Q

‘ and to q exactly what ra sends to qo in 01. In a’,
p and q behave exactly like pe and qo do in a, and
receive exactly the same messages on their incoming

4

channels. In Q’, p and Q are required by the problem
statement to eventually output 0; therefore, po and ~0
will do the same in cr. By similar reasoning, ~1 and r1
eventually output 1 in cr. However, it looks to pe and
r1 as if they are in another three-process scenario o”
in which Q is faulty; the problem statement requires
them to eventually output the same value in o”, and
so they will also do so in cr. This is a contradiction.

The idea of the proof in [89] is basically the same
as in this example, except that instead of describ-
ing the scenario as the execution that is generated
by a certain system started with certain initial val-
ues, Lamport et al construct the scenario explicitly.
It seems to me that the higher level of abstraction of
the [54] proof makes much clearer what is really going
on. Perhaps there are other impossibility proofs con-
taining explicit constructions of bad executions that
could be made more understandable by describing the
bad executions implicitly, by a simple way of gener-
ating them.

A related impossibility result for low connectivity
networks appears in [39]; it says that at least 2t + 1
network connectivity is required to tolerate t faults.
The proof is essentially another scenario argument
similar to the one above (using a different scenario

4.
Lamport also proved another impossibility result

for 3 processes and 1 fault, this time for a weaker
version of Byzantine agreement where the decision is
only predetermined for executions in which no faults
occur [72]. The proof in that paper is quite complex,
but it is again essentially another scenario argument.

In his invited address at the 1983 PODC sym-
posium [75], Lamport posed a problem about syn-
chronizing clocks in a fault-prone distributed sys-
tem. The processes are assumed to have separate
physical clocks that can proceed at different rates;
the object is for processes to compute adjustments
to their physical clocks so that the nonfaulty pro-
cesses’ adjusted clocks remain close to each other
(e.g., within a constant), and also so that they re-
main (approximately} within the range of the phys-
ical clocks. Dvlev, Halpern, and Strong proved the
impossibility of solving this problem with 3 processes
and 1 fault 1441. I found this to be an immensely inter-
esting result, but unfortunately I couldn’t understand
the proof; the main problem I had with it was that it
was not based on a rigorous formal model. To help me
explain the proof to my distributed algorithms class,
I redid the.provf-using a scenario argument. (It was
the need to redo this proof that led to the work in

PW
The following is a very sketchy outline of the impos-

sibility proof for synchronizing 3 clocks in the pres-

ence of 1 possible fault. Suppose p, q and r are pro-
cesses that solve the problem. Consider scenario a
composed of a large number of processes pl, 41, ~1,

P2, 42, r27 "'f arranged in a ring. The processes
are supplied with physical clocks that run at con-
stant rates, but the rates ark different for different
processes. The processes at one portion of the ring
(say the top) have clocks that run slowly, while the
processes at the greatest distance from the slow pro-
cesses have clocks that run fast; in between, there are
only tiny differences in rate between neighbors (but
of course eventually the physical clocks of any two
neighbors diverge).

Each pair of consecutive neighbors thinks it is in a
3-process scenario, so must synchronize clocks appro
priately. Each neighboring pair ends up with adjusted
clocks that are close in value. This requires either
svme slow processes to set their clocks far ahead or
some fast ones to set them far back. Assume the for-
mer, without loss of generality. Then there are two
slow neighbors that will set their adjusted clocks to
be far ahead, which will take them out of the range
of their physical clocks. But a comparison of Q with
a 3-process scenario that looks the same to these two
neighbors shows that they must keep their adjusted
clocks within the range of their physical clocks in a,
a contradiction.

The paper [54] presents a collection of results about
the number of processes and connectivity required for
various consensus problems; these include the results
just described. This was the first paper to organize
the proofs using explicit and rigorous scenario argu-
ments (although the same approach was implicit in
the other papers I mentioned). As I said earlier, this
approach is nice because it provides a high-level way

of looking at the constructions, and because it unifies
a lot of different-looking previous work. The paper
does not contain one general theorem that implies all
the results (which would be still better) but rather a
general technique. ,

Some interesting modeling issues arose here. I usu-
ally like to present impossibility proofs using an ex-
plicit operational model, describing processes and the
message system as some kind of state machines. Dv-
ing that for the ordinary or weak Byzantine agree-
ment setting seems straightforward. But it is not
clear what kind of model is appropriate for processes
with physical clocks that move at different rates. It
seemed at the time that if we gave all the details of
such a model, it would be so complicated, and add so
much overhead to the paper that no one would ever
read it.

Our solution here was to give an axiomatic model
(without saying what kind of mathematical object is

5

supposed to serve as a model for the axioms). This
approach tends to impose the fewest possible con-
staints on the system, making the result potentially
applicable to more systems. On the other hand, such
an approach is also potentially applicable to RO sys-
tems - when proving impossibility results with an
axiomatically-described model, one should be sure
to check that some interesting models satisfy the ax-
ioms!

Another result that can be proved using the same
techniques is the impossibility result proved by Kar-
lin and Yao [68] for probabilistic Byzantine agree-
ment using randomized algorithms. Knowing that
n processes can’t reach agreement with t faults when
n < 3t, they asked with what probability such a small
number of processes are able to agree. Their result
shows that probability 2/3 is the best that can be
achieved. Again, they used direct constructions of
bad executions, but the proof can be done more sim-
ply using a scenario argument similar to the first one
above.

It, is an interesting open question whether this
bound is tight (for symmetric Byzantine agreement
algorithms, in which each process starts with an ini-
tial value), and how it extends to arbitrary values of
n and t. Even though an answer to this open ques-
tion may not have much direct practical significance,
an answer to this question may give important ia-
sight into the power of randomized algorithms. (So
far, there itre very few results in the literature giv-
ing impossibility results for randomized algorithms.)
Impossiblity results for some additional special cases
of this problem are proved in the new paper [60] the
proofs appear to be based on detailed analysis of the
properties of randomized algorithms. The paper [40]
extends the Karlin-Yao bound to hold even under cer-
tain restrictions on the power of the “adversary”.

The paper [46] contains some lower bounds on the
number of processes required to reach consensus in
various fault and timing models. Proof techniques
are based on scenarios.

The paper [31] contains lower bounds for the num-
ber of processes required to solve the Byzantine firing
squad problem, using various fault and timing mod-
els. A nice touch here is that one of the results is
proved by reducing weak Byzantine agreement to it
rather than by a direct proof. For the other results,
scenario arguments are used, this time based on a se-
quence of scenarios, al, a2, . . .; each successive pair
of scenarios looks the same to some process, which
therefore behaves in the same way in both cases. This
leads to a contradiction when the constraints imposed
by the problem statement are applied to some of the
scenarios.

Thus, we have a collection of impossibility results
for the number of processes and connectivity for con-
sensus problems, all proved using scenario arguments.
Several different kinds of models are used in this work.
For the results about synchronous systems, the early
work such as that in [89] used specially tailored for-
mal models. The later work used more general and
familiar-looking state machine models. These models
are a lot simpler than those used for asynchronous
systems, because the notions of timing and admissi-
bility are much simpler. For the results about par-
tially synchronous systems (e.g., the results on clock
synchronization), it is not so clear what the proper
model should be. Some of the proofs for partially
synchronous systems are done informally and am-
biguously. Some have very detailed and complicated
special models, and some are done axiomatically.

2.2.2 Number of Rounds

My first reaction to Leslie’s paper on Albanian agree-
ment was that the clever algorithms in the paper ran
too long! Surely, I thought, there must be a way to
reach consensus in fewer than the t+l rounds their al-
gorithm required. (From my experience, this is most
often the way impossibility proofs originate - one of-
ten doesn’t start out thinking that the impossible task.
is impossible.)

Mike Fischer and I soon were able to prove a t + 1
lower bound on number of rounds required for Byzan-
tine agreement [56]. 0 ur work on this result was an-
other good example of the game of working on con-
flicting positive and negative results at the same time.
We went back-and-forth, working alternately on algo-
rithms and impossibility proofs, for several days. A
counterexample arose for each algorithm we thought
of, until finally one counterexample was extended to
an impossibility proof.

The basic idea of the proof is pretty simple. Con-
sider the case of two faults, i.e., where t = 2; we must
show that two rounds can’t suffice to reach agree-
ment. We can assume without loss of generality that
the algorithm consists of every process broadcasting
its value, then repeatedly receiving messages from ev-
eryone and relaying everything that it received. So
after two rounds, each process can record the infor-
mation it has received as a matrix of values.

If a process sees a matrix of all O’s, it must decide
0, and similarly for 1. Also, it is possible to construct
a chain of matrices, Ml, M2, . . a , kfk, starting with a
matrix of all O’s and ending with a matrix of all l’s,
where for each i, there is some execution with at most
2 faulty processes, in which some nonfaulty process
sees A4i and some nonfaulty process sees Mi+l (SO

6

the decisions wouid have to be the same). This is a
contradiction. The successive matrices in the chain
can be constructed by converting one 0 entry to a
1 at each step, moving down the columns; at each
step, two faults are necessary to produce an execu-
tion in which the two views can be presented to two
processes.

This construction was done using an explicit con-
struction of the executions; I don’t know whether an
implicit construction via a simple generator might be
possible, as it was for the scenario work.

This lower bound was extended to the case where
the processes participating in the algorithm are per-
mitted to authenticate messages, in [43] and [37]. The
proofs in those papers are also chain constructions;
however, these constructions are much more compli-
cated than the one in [56]. There is also some diEi-
culty in defining what it means for a system to permit
authentication of messages.

The lower bound was further extended to the case
where the only kind of fault permitted was simply a
stopping fault. Versions of this result appeared in sev-
eral unpublished notes (by Hadzilacos, by Fischer and
Lamport and by Merritt), so that it became part of
the folklore, before it was finally written up by Dwork
and Moses. They incorporated this work into their
work on knowledge [47], believing that using explicit
formal definitions of the “knowledge” that a process
has during an execution would provide a helpful way
of looking at constructions such as these chain argu-
ments. (For example, if a process can see a certain
matrix in either of two executions constructed for the
chain in [56], we can say that, the process does not
“know” which of the two executions it’s in.) It’s still
not clear to me whether or not the formal knowledge
definitions help in explaining the combinatorial con-
struction for the stopping fault lower bound; however,
Dwork and Moses were able to generalize this lower
bound to yield results for other problems of reaching
“common knowledge” in synchronous systems. (In
fact, they were able to do more, in particular, to an-
alyze exactly which patterns of failures required the
protocol to run for t + 1 rounds.)

Moses and Tuttle extended the work in [47] to other
fault models [86]. They obtained algorithms that ter-
minate as quickly as possible in all executions; in fact,
they were led to these algorithms by considering the
impossibility results. (Along the way, they produced
a simpler version of the t + 1 round lower bound for
stopping faults.)

Coan proved a t + 1 round worst-case lower bound
for consensus for randomized algorithms, assuming
that no erroneous answers are allowed [34]. In this
case, the result for deterministic algorithms carried

over fairly easily. (For comparison, note that Feldman
and Micali [52] h ave a new constant expected time
randomized Byzantine agreement algorithm for the
case where a small probability of error is allowed.)

Babaoglu, Stephenson and Drummond [17] showed
similar lower bounds for models in which broadcast
communication, rather than point-to-point communi-
cation, is used. Their bounds depend on the “broad-
cast degree”.

The paper [36] contains a lower bound for the
number of rounds required for distributed processes
to reach approximate agreement on a real number
(rather than exact agreement, on a value). A chain
argument is used to show that no approximate agree-
ment algorithm can converge too fast, in the case of
Byzantine faults: for any k-round approximate agree-
ment algorithm, there must be some executions such
that the ratio of the range of output values to the
range of initial values is at least (t/nk)k.

The simplest style of approximate agreement alge
rithm, one that repeats a simple l-round averaging
algorithm k independent times, does not meet this
bound, but rather achieves a ratio of around (t/n)‘.
(It converges more slowly than the lower bound indi-
cates). Another lower bound in [36] shows that this
is the best that can be achieved by an algorithm with
such a round-by-round structure. The argument is
another chain argument.

These impossibility results left open the question
of whether a better algorithm might be possible if
it were not required to be round-by-round. Fekete
answered this question positively [50], giving a clever
counterexample algorithm that uses information from
prior rounds: some fault detection is carried out and
then the results of processes known to be faulty are
ignored. This is one of the first examples where de-
tection of Byzantine faults was shown to Iead to im-
proved results; it came about because of an impossi-
bility conjecture.

Fekete’s work in [50] and [Sl] contains lower bounds
on the rate of convergence for crash and omission
fault models, analogous to those for Byzantine faults.
Again, chain arguments are used.

Thus, there are many lower bound results for the
number of rounds required to solve consensus prob-
lems, all based on chain arguments. The kinds of
models used here are primarily fairly straightforward
synchronous state machine models, augmented in
some cases with knowledge definitions,

2.2.3 Number of Messages

Dolev and Reischuk [42] p roved lower bounds on the
number of messages and number of signatures re-

7

quired for Byzantine agreement algorithms that use
authentication, using scenario-style arguments.

2.2.4 Asynchronous Impossibility Results

So far, the bounds I’ve described for consensus pro-
tocols have been mainly for synchronous algorithms,
and they have all been quantitative (lower bound}
results. There has also been a lot of work on ab-
solute impossibility results for purely asynchronous
algorithms.

The “Two Generals” result in [61] should proba-
bly be classified as the first impossibility result for
consensus in an asynchronous distributed system, al-
though it isn’t so much the asynchrony that is im-
portant here, but rather the uncertainty of message
delivery. This result says that it is impossible for two
distributed processes communicating via an unreli-
able message system to reach consensus.

The proof presented in [SI] is pretty informal; when
I worked it out formally it looked like a chain argu-
ment, but of a slightly different sort from the chains
constructed for the round bounds.

Starting from an execution in which both processes
decide, say on value V, a chain of executions is con-
structed by successively removing the last message
receipt event. Each pair of consecutive executions
looks the same to one of the processes, and the two
processes must decide on the same value in each exe-
cution; it follows that a decision of II is reached by
both processes, in all the executions in the chain.
Among the executions in the chain is a “null” exe-
cution in which no messages are ever received; start-
ing from this null execution, the chain can be further
extended to produce another null execution in which
neither process starts with initial value V, and yet
a decision of u is reached by both processes. Un-
der some reasonable assumptions about initial values
and their relationship to the final decisions, it can be
shown that such an execution should not result in a
decision of II.

A siniilar argument is used by Koo and Toueg [69]
to show the impossibility of achieving any knowledge
gain in an asynchronous network, in the presence of
even transient communication failures.

Halpern and Moses [64] have used formal notions
of knowledge to describe the result of [61]. They also
show that, in a precise sense, common knowledge can-
not be gained in an asynchronous system. The tech-
niques are basically similar to Gray’s, Chandy and
Misra [29] also show a similar result.

The next impossibility result I know about for
asynchronous consensus is my result with Mike Fis-
cher and Mike Paterson in [55]. This result shows the

impossibility of reaching consensus in asynchronous
systems, even when the message system is reliable,
and even if the processes communicate via broadcast
primitives, if there is the possibility of even a single
stopping fault.

Just as for the t + 1 lower bound on rounds, we
began our work on this problem by guessing that a

solution was. possible (for t faults, if n was sufficiently
large relative to i). We had already had experience
extending some synchronous agreement algorithms to
the asynchronous setting; in the asynchronous set-
ting, processes can wait to hear from all but t pro-
cesses, so adding some extra processes sometimes per-
mits an algorithm to compensate for the uncertainty
of the missing messages. Again, we worked on both
directions alternately, until the final result arose from
a counterexample.

The version of our proof that I like best was devel-
oped by Bridgeland and Watro; similar ideas appear
in recent work of Taubenfeld, Katz and Moran [98].

For simplicity, we restrict attention here to Booiean
values only.

If v is a Boolean value, we say that a configura-
tion C is “v-vale&,” if u is the only possible decision .
value reachable from C; we say that C is “bivalent” if
both values are reachable. First, it is shown that any
asynchronous consensus protocol that is resilient to a
single fault has a bivalent initial configuration. Next,
it is shown that any asynchronous consensus proto-
col that has an initial bivalent configuration and that
works correctly when there are no faults must have a
reachable configuration C in which there is a decider
process p. This means that from C, it is possible for
p to take some finite sequence of steps leading to a
“0-valeat” configuration, and also some other finite
sequence of steps leading to a “1-valent” configura-
tion; that is, p can make the decision on its own.

C

P oni7 A. P only

o-v;rlenl I-tnlcnt

Etmnr?l’ Adechrpmc-

The reason this is true is roughly as follows. The
problem statement implies that we can’t have an in-
finite execution consisting of bivalent configurations
in which all processes continue taking steps and all
messages eventually get delivered. Therefore, there’s

.

a

a reachable bivalent configuration C and a particu-
lar message m in the message system such that any
configuration resulting from delivering m is univa
lent. Then there are two “neighboring” configure,
tions D and E (that is, one a child of the other) such
that delivering m from one leads to O-valence and the
other leads to l-valence. This can only happen if the
“neighbor edge” corresponds to a step of the same
process p that is the recipient of m. 3ut this means
that p is a decider.

/
dcitver m

1-valellt

- Neh$lbotUq conQmUon~ D and E leading 10
con.RguraUons of opposite Mlcnct

But such an algorithm with a decider, sayp starting
from configuration C, cannot be resilient to a single
fault. This is because the rest of the system, operat-
ing on its own starting from C, is required to decide
either 0 or 1, but it can’t tell whether p has already
decided differently.

Here again, as for the shared memory work and
all other work on asynchronous algorithms, it is im-
portant to be careful about stating and using admis-
sibility assumptions (the liveness assumptions about
how the system runs). Here, the admissibility as-
sumptions are that the non-failed processes continue
to take steps (as long as there are steps to be per-
formed), and that all messages eventually get deliv-
ered. It is possible to get much easier proofs, for ex-
ample, if messages are not required to be delivered;
one such proof is given in [ZS].

Our original proof was similar to this one, but it
turned the ideas around; we assumed the existence
of a resilient algorithm and arrived at a contradic-
tion. As usual, the contradiction involved construct-
ing a bad admissible execution. The new proof or-
ganization is better because it is not just a proof by
contradiction, but also gives some positive informa-
tion about (non-fault-tolerant) asynchronous consen-
sus protocols.

The general technique used here is to analyze the
ways in which the system configuration can move
from being bivalent to being univalent, showing that
none of them can work properly in all cases. Or,
turning the proof around, starting with a bivalent
configuration, construct an admissible execution in

which the configuration stays bivalent (by analyzing
the ways in which decisions are made).

The modeling issues were interesting here. As in
the earlier papers on shared memory, this paper con-
tains a carefully-developed formal model for asyn-
chronous computation, but this time specially tai-
lored to message communication. The model isn’t
very complicated, but it is a little annoying that the
modeling work starts from‘scratch, borrowing nothing
from previous work in model development for asyn-
chronous shared memory systems. Since both kinds
of systems deal with ideas such as admissibility and
control of actions, it seems that a common foundation
could have been used. It would be very nide if there
were some body of common definitions that people
could use for asynchronous computing impossibility
results, that would remove some of the overhead of
the model section of each paper.

Another problem with the model in this paper is
that some of the particular aspects of the model, such
aa the particular protocol used by the nodes in in-
teracting with the message system, seem very spe-
cial. Perhaps a more general model could have been
useful here, in trying to apply this result to slightly
different settings. I have since redone this proof for
my class using the general “I/O automaton” model
for asynchronous concurrent computation, (defined in
[79, SO]), but I can’t yet tell how much of an improve-
ment this is.

This paper, unlike most impossibility results, has
had lots of attention, even from practitioners. For ex-
ample, one system designer’s reaction was to say “of
course” - this theorem formalized an intuition that
she had already had about distributed systems. This
doesn’t mean that she “knew” the result in the sense
that theoreticians mean (that they can prove it), but
rather that her experience with things like commit
protocols had led her to believe that this kind of
thing could not be done. She probably would not
have known ezactly what couldn’t be done - farmu-
lating the precise assumptions on which such results
depend is the sort of delicate analytical task that will
probably always be left to the theoreticians.

Distributed system designers do seem now to be
generally aware of the limitation expressed by this
result. I sometimes hear people describing their sys-
tem designs by saying that the system cannot achieve
a certain behavior because of this known limitation;
they then go on to describe the weaker guarantees
that their systems do make. In one case, system de-
signers were surprised that what they believed their
system was guaranteeing was in fact impossible; they
did not give up on their project, though - rather, they
used the new knowledge to help them clarify their

9

claims about what their system did. So it seems that
this impossibility result has had the beneficial effect
of helping (or forcing) system designers to clarify their
claims about their system.

This result has seen some follow-on technical work.
There have been positive results, including counterex-
ample algorithms for variations of the problem and
some algorithms that may be interesting in them-
selves. There have also been related impossibility
results.

For example, Ben-Or [19] and later Rabin [91] de-
vised interesting randomized algorithms that circum-
vent the impossibility result; these algorithm even-
tually decide with probability one, and never violate
safety properties. Also, Dwork, Lynch and Stock-
meyer [46] devised consensus algorithms for the case
where the problem definition is weakened to allow
nontermination if certain nice timing conditions (i.e.,
upper bounds on message delivery time) fail. (An in-
teresting technical open question remains about the
time requirements for consensus in the model of [46] .)

Dolev, Dwork and Stockmeyer [41] noticed that
there were several different kinds of asynchrony in
the execution model of [55], e.g., asynchrony of mes-
sages and of processes. They classified systems, based
on the various combinations of these factors, and ob-
tained impossibility results for many of these cases
(and algorithms for some). The impossibility results
were proved using bivalence arguments similar to that
in [55].

Their proofs proceed by contradiction, construct-
ing bad executions; these executions had to be care-
fully designed not only to satisfy admissibility as-
sumptions like the ones for asynchronous systems, but
also to satisfy additional requirements of partial syn-
chrony as required by the various cases. They ana-
lyzed the ways in which decisions must be made, e.g.,
locally to a single process, and showed that none of
them can work correctly in all cases, e.g., a resilient
protocol must be able to proceed without the deciding
process. In some cases, they obtained impossibility of
S-resilient consensus, rather than l-resilient consen-
sus (because analysis of the decision point showed
that the rest of the system might have to proceed
without 2 processes, in order to produce a contradic-
tion).

The models used in [41] are quite detailed and spe-
cialized, for example, in their assumption that time
has a minimum granularity; it makes me think that a
more abstract or general model could have been used
here. For example, some recent work on impossibil-
ity results for atomic register problems seems quite
similar to some of the work in [41]; if the earlier work
were stated in a more general way, perhaps it would

imply some of the new register results.
Attiya, Dolev and Gil [9] extended some of the work

in [41] to consider Byzantine faults, not just stopping
faults. They considered asynchronous processes with
time-bounded communication. They gave an impos-
sibility result that shows that a process cannot be
guaranteed to decide in a bounded number of its own
steps. The argument is a simple bivalence argument,
similar to arguments in [41]. They also proved a 3t
vs. t process impossibility result, using a scenario
argument.

Welch [loo] presented a nice reducibility argument
that yields one of the main impossibility results of
[41] directly from the result of [55]. The reducibility
uses a fault-tolerant version of Lamport’s distributed
clock idea 1741.

Moran and Wolfstahl [85] gave two generalizations
of the result of [55], one using a similar proof and
one using a reducibility from the result of [55]. They
defined two graphs to represent the problem being
solved: an input graph for the possible input vectors,
and an output graph for the allowable decision vectors.
(In each graph, an edge joins two vectors if they differ
in exactly one component.) Their results show the
impossibility, in the presence of one faulty process,
of performing any task that has a connected input
graph and a disconnected decision graph.

Bridgeland and Watro 1241 presented more impos-
sibility results generalizing [55], using similar proofs.
Their work also originated the notion of a “decider”,
described above.

Attiya, Bar-Noy, Dolev, Koller, Peleg and Reischuk
[lo] presented three impossibility results for the “pro-
cess renaming problem”, wherein anonymous pro
cesses that start with distinct names from a large ID
space are supposed to decide on distinct names from
a fixed (smaller) ID space. They showed that renam-
ing with n names is impossible; the argument is again
very similar to that of [55], using generalizations of
the sort obtained in [85]. (Some special argument
is needed to show the bivalence of an initial config-
uration.) There is a very interesting open question
remaining here, about whether the lower bound for
t faults can be extended from n + 1 to n + t names.
An algorithm in their paper shows that n + t names
suffice.

They also showed that the problem cannot be
solved with 2t processes, using a simple scenario ar-
gument. Finally, they considered an order-preserving
version of the problem, which they showed to have
an interesting and large lower bound (for which they
have a matching upper bound). The reason so many
names are required is that processes sometimes have
to decide on names for themselves while there are still

10

t silent processes; in this case, they need to reserve
enough space for all possible relative orderings among
those processes and between those processes and the
others.

Biran, Moran and Zaks [20] extended the [85] work
to a characterization of what can be done with one
faulty process. Their characterization has a pleas-
ing graph-theoretic flavor, in terms of input graphs
and decision graphs. More specifically, they proved
a-variant of the [85] impossibility results, plus a new
result giving a second graph-theoretic condition im-
plying impossibility. On the other hand, they were
able to obtain a protocol for the case where both of
these conditions fail. They also utilized the graph
characterization to get a lower bound on the number
of messages require. Taubenfeld, Katz and Moran
[98] have made preliminary attempts to extend the
work in [85] to characterize what can be done in the
presence of t faulty processes.

Loui and Abu-Amara [76] proved results about the
impossibility of resilient consensus in shared-memory
rather than distributed models, in case the allowable
operations on shared memory are reads and writes,
and also in case they are test-and-sets. The ideas
used here are very similar to those used for the related
distributed results. The similarity between the ideas
used in these two settings reinforces my intuition that
there is an awful lot that is fundamentally the same
in the two environments.

They proved the impossibility of l-resilient consen-
sus for read-write shared memory. The construction
is very similar to that in [55] and [41]: a bivalence ar-
gument with a simple case-analysis about the decision
point. They also proved impossibility for 2-resilient
consensus for test-and-set shared memory, in the spe-
cial case of binary values. This is another bivalence
argument, but, as in [41], this time analysis of the de-
cision point shows that all except 2 processes might
have to proceed in order to produce a contradiction.
Both of these results extend immediately to fully re-
silient algorithms - algorithms that tolerate arbitrary
numbers of faults - a fact that wits useful in the work
on atomic registers that I will describe later. Chor,
Israeli and Li [30] also proved the first of the two
impossibility results in [76].

In the asynchronous consensus work based on
shared memory, admissibility considerations are sim-
pler than they are in the distributed work. Here it is
only necessary to ensure that (non-failed) processes
continue to take steps, it is not necessary to worry
about ensuring message delivery.

Thus, there are many closely related results that
describe what cannot be done in fault-tolerant asyn-
chronous systems. Nearly all of these results are

proved using similar bivalence arguments.

2.2.5 Commit

The commit problem is a particular kind of binary-
valued consensus problem, where the two values are
known as “commit” and “abort”. This problem re-
quires agreement and termination; in addition, a
“commit rule” should be satisfied, e.g., saying that
if any initial values are “abort” the decision must be
“abort”, while if all initial values are “commit” and
there are no failures, then the final result is “com-
mit”. The impossibility result of [55] implies that the
commit problem cannot be solved in an asynchronous
setting, so it is usually considered in synchronous and
partially synchronous models.

Dwork and Skeen [48] considered the commit prob-
lem in a synchronous complete network model. They
proved a lower bound of 2n - 2 messages for every

failure-free execution that results in a commit de-
cision. This proof is based on a simple argument
that there must be a path of messages from every
process to every other (or a wrong decision could
result). This proof was redone using formal no
tions of knowledge by Hadzilacos [62]. Dwork and
Skeen also proved lower bounds on the number of
rounds required in failure-free executions, based on
the same fact (the existence of paths of messages be-
tween pairs of processes) and an assumption about
bounded bandwidth. Segall and Wolfson [96] gen-
eralized the Dwork-Skeen message bound result to
give a lower bound on the number of message hops
needed for solving the commit problem in incomplete
networks.

Coan and Welch [33] considered the commit prob-
lem in a partially synchronous model, for randomized
algorithms for which eventual termination is required
with probability 1. Also, a commit decision is only re-
quired in case all processes have initial value “abort”,
the execution is failure-free and all messages are de-
livered within a fixed bound time b that is known to
the processes. The main point of their paper is actu-
ally an upper bound result: a fast randomized com-
mit protocol for n > 2t; in order to argue that this
protocol is close to optimal, they showed two limita-
tions. First, they showed that no solution is possible
if n < 2t. This proof does not seem to be a scenario
argument like the other proofs of lower bounds on
the number of processes (at least not obviously); it’s
a complex explicit construction of bad admissible ex-
ecutions. (Perhaps a higher-level argument might be
possible.)

The second impossibility result in [33] says that
it is not possible for each process to make a deci-

11

sion within a bounded expected number of its own
steps. (The time bound for the protocol in the pb
per is measured in terms of a non-local asynchronous
round measure.) The proof of this result is a bivalence
argument that allows construction of not just a single
non-deciding execution, but of lots of long nondecid-
ing executions. (This is in order to obtain a bound for
the average.) This is an interesting extension of the
bivalence technique. Note that the two impossibility
results of [33] are among the very few impossibility re-
sults that make interesting claims about randomized
protocols.

2.2.6 Synchronization

I am here grouping certain synchronization problems
together with the consensus problems, since they in-
volve processes agreeing on when to perform actions.

Arjomandi, Fischer and Lynch [8] proved a lower
bound on the time for an asynchronous, reliable net-
work to carry out a simple synchronization task - to
perform s “sessions”, in each of which all the pro-
cesses in the network must perform at least one out-
put event. The result is a lower bound of approxi-
mately sd on the time for performing s sessions, where
d is the diameter of the network. Since a synchronous
system would only require time s, this amounts to
a provable difference in the time complexity of syn-
chronous and asynchronous systems.

The proof idea is simple. First, note that an ex-
ecution can be represented by a diagram with time
lines for processes and connecting edges for messages.
These time lines and connecting edges represent de-
pendencies among events. Such a diagram can be
“stretched” without violating the dependencies, and
processes will not be able to tell the difference. Now,
if an execution takes too little time, it can be parti-
tioned into r- 1 short intervals, in&, 1 5 i 5 r- 1, in
each of which there is insufficient time for a message
to propagate between a certain pair of processes, pi
and qi. Then it is possible to modify the execution
by stretching its diagram so that all steps of pi fol-
low all steps of qi in interval im!i; if the pi and qi ate
chosen appropriately, the modified execution will not
contain r sessions.

This result demonstrates that lower bounds can be
proved on time, even in asynchronous networks. This
is not usually done, but I see no good reason why
not. Appropriate ways of measuring time are avail-
able for asynchronous systems, such as those defined
in [90],[81],[79]. and [83]. Proving such lower bounds
is a good area for future research.

Awerbuch [16] proved a time/communication
tradeoff lower bound for any network synchronizer,

i.e., a program designed to adapt synchronous algo-
rithms for use in (reliable) asynchronous networks.
The techniques are generally similar to those used in
[8], and are based on the necessity of communication
between various pairs of nodes between pulses of the
synchronous algorithm being simulated. This proof,
however, uses some fancier graph theory.

Lundelius and Lynch [77] proved a lower bound on
how closely software clocks of (nonfaulty) distributed
processes can be synchronized, in terms of the uncet-
tainty in the message delivery time between pairs of
processes. In particular, we obtained an interesting
tight bound of 2c(l- l/n) for complete graphs. The
idea is to represent an execution by a diagram as in
[8], but with message edges tagged with message de-
livery times. This diagram can be “stretched” as be-
fore, but this time keeping the new message delivery
times within the allowable bounds, and everything
will still look the same to all the processes. Applying
inequalities representing the constraints of the prob-
lem to the various stretched diagrams gives a contra-
diction.

Dolev, Halpern and Strong 1441 gave a lower bound
similar to that in [77], b u c aracterizing the closeness t h
of synchronization obtainable along the0 real time
axis. That is, they proved a lower bound on how
close the real times can be when two processes’ ad-
justed clocks have the same value, whereas our result.
is a lower bound on how close the adjusted clock val-
ues can be at the same real time.

Halpern, Megiddo and Munshi [63] extended the te-
sults of [77] to other kinds of graphs besides just com-
plete graphs, using the same basic kind of stretching
arguments. (The characterization for general graphs
is not as nice as for complete graphs, however.)

2.3 Shared Registers

Now I reconsider shared memory asynchronous algo-
rithms, in a setting similar to the one I started this
talk with. In the past couple of years, there has been
a lot of interest in problems about implementing dif-
ferent kinds of shared registers in terms of other kinds
of shared registers, generally in a “wait-free” manner.

Lamport’s paper [71] includes one impossibility te-
sult - a result that says that atomic registers can-
not be implemented in terms of regular registers un-
less the readers write. The proof is based on a new
axiomatic partial ordering model introduced in [71].
The proof is only sketched, and involves an explicit
construction of bad executions. Although the result
is probably correct, I do not believe that it actually
follows as claimed from the axiomatic model given in
that paper.

12

Herlihy’s interesting paper [65] contains impossi-
bility results and also universality results. He noted
a connection between (fully-resilient) consensus re-
sults and the (wait-free) implementation of atomic
registers. Namely, if one type of data object can im-
plement fully resilient consensus and another cannot,
then the first data object cannot be implemented in
terms of the second, in a wait-free manner. (There
is a close connection between the full resiliency prop-
erty and the wait-free property, although they origi-
nated in different contexts.) In particular, the objects
I described above in connection with [76], (read-write
objects and binary test-and-set objects) plus others
described by Herlihy, cannot provide wait-free imple-
mentations of objects with more powerful operations
such as general test-and-set.

The proofs are bivalence arguments, but they are
actually somewhat simpler than the proofs in [76],
because the notion of admissibility used here is less
restrictive than that used in the results on l-resilient
and 2-resilient consensus. The full resiliency assumed
here means that the only liveness condition needed
for admissibility is that some process continue taking
steps, i.e., that the execution be infinite. It is some-
what easier to construct infinite non-deciding execu-
tions than non-deciding executions satisfying some
extra admissibility conditions.

Again turning the proof around in the style of [24],
implicit in this work is a lemma that says that fully
resilient consensus implies the reachability of another
kind of “decider” configuration: one that is bivalent
but for which any step of any process leads to a uni-
valent state (in one step). This is a different notion
of a decider from the one used by Bridgeland and Wa-
tro; theirs involves a particular process forcing either
of two different decisions in some number of its own
steps, whereas Herlihy’s means that any process can
force a decision in one step. This simplified notion of
decider leads to simpler proofs here than in [24] and

[551.
Thus, the bivalence technique is useful (indirectly)

in getting more than just consensus impossibility re-
sults. Here, reducibilities show its utility in proving
that some kinds of objects can’t be implemented in
terms of other kinds.

Some interesting modeling issues arise. For exam-
ple, Lamport’s impossibility proof sketch in [71] is
based on his axiomatic partial ordering model. Her-
lihy’s work, on the other hand, uses I/O automata.
His method of using I/O automata to model registers
differs from the way they are used to model regis-
ters in [21] and 1951 Herlihy uses special “scheduler”
machinery not used in the other work. Some work
still seems needed to determine the best way to use

this general model to describe registers. It is also not
clear whether the axiomatic model or the I/O au-
tomaton model is better for describing these results,
or whether the two should somehow be combined.

The I/O automaton model is not often used for
reasoning about shared memory algorithms. This is
because that model handles input and output events
separately; for reasoning about shared memory algo-
rithms, one would often like to avoid handling these
two kinds of events separately, treating an invocation
of an operation on a shared objects and a correspond-
ing response as indivisible. (For example, the models
in [81] and in [76] do this.) However, in the work on
wait-free shared registers, It is appropriate to handle
these two events separately, making I/O automata a
reasonable model. The major point about atomic ob-
jects is that they make it appear “as if’ accesses were
performed indivisibly; this suggests that it might be
useful to have two models (or two instances of one
general model), one like [81] in which the accesses are
indivisible and one like I/O automata in which they
are not; connections between the two models should
be proved.

It is still not clear to me what the proper formal
definition of the “wait-free” property should be. Per-
haps it should be defined (as in [65]) in terms of a
bounded number of process steps, perhaps in terms of
an asynchronous time measure, and perhaps in terms
of failure resiliency. This needs more work.

2.4 Computing in Rings and Other
Networks

Now I switch to another area in which the proofs
are very different from the ones I have considered so
far. This area contains many impossibility results,
most involving the message cost of carrying out vari-
ous computations in a network. The case most com-
monly studied is that of a ring network.

Some of these results are based on a distance ar-
gument: in a ring, it takes many messages to get in-
formation from one place to another. Another basic
idea is symmetry. For instance, a ring containing in-
distinguishable processes is a very symmetric configu-
ration; if it is to accomplish a task involving breaking
symmetry, some process p must send a message; then
because of symmetry, all processes indistinguishable
from p will also send messages.

There are so many results in this area that I
couldn’t really classify them very well. Many of the
results seem related; for instance, there are many re-
sults giving lower bounds of Q(n log n) on the number
of messages required to solve certain problems in a
ring. Some work still seems to be required in unify-

ing these results.

2.4.1 Absolute Impossibility Results Based
on Symmetry

The earliest paper giving impossibility results in this
area seems to be the very interesting paper of An-
gluin [7], which proves the impossibility of electing a
leader in various graphs. The processes in her model
are indistinguishable, and they have no inputs, so all
that can be used to distinguish them is their posi-
tion in the network graph. But many graphs have
symmetries that will prevent a guarantee of distin-
guishing any process - anything that one process can
do, the others symmetric to it might do also. The
paper ideutifies symmetry properties of graphs that
lead to impossibility of leader election. This paper
can be credited for the now well-known and simple
folk theorem that says that it is impossible to elect a
leader in a ring (with a non-randomized algorithm),
if processes do not have unique ID%.

One unusual feature of this paper is that it uses a
model based on Hoare’s CSP. This is the only example
I can think of, of CSP being used for an impossibility
result. It has many features that seem to me to be
too distracting for such proofs.

Johnson and Schneider [67] gave impossibility re-
sults related to Angluin’s for several different prob-
lems using several different models; the models are
based on CSP, read-write shared memory, and vari-
ables with locks. Other related results appear in [23].

2.4.2 Lower Bounds for Rings

Many lower bound results have been proved expressly
for ring networks.

Burns [25] proved an Q(n log n) lower bound on the
number of messages required to elect a leader in an
asynchronous ring. The key idea is the limitation
of local knowledge based on how far information can
travel - it takes k messages to propagate information
to a process distance k away. The proof does not
require any special assumptions about process ID’s:
processes can have distinct ID’s chosen from any ID
space.

Roughly speaking, Burns’ proof shows inductively
on n that there are a large number of segments
of length n each of which is capable of generating
n(n log n) messages on its own (without any commu-
nication arriving from the endpoints). For the induc-
tive step, suppose there are many segments of size
n/2 each of which can generate lots of messages, and
try to get some of size n that also can generate many
messages. Suppose they don’t exist. Consider all pos-
sible ways of concatenating pairs of the segments of

size n/2. If such a double segment is unable to gen-
erate lots of messages on its own, then consider an
execution in which the two halves first quiesce, then
some additional messages flow starting at the merge
point. Because of the limitation on number of mes-
sages, information about the merge cannot propagate
as far as the middle of either of the two halves before
the double r^-*?gment quiesces.

So this means that there must be a large set S of
length n/2 segments such that any double segment
composed of segments in S quiesces without infor-
mation about the merge propagating as far as the
midpoint of either half. Now consider what happens
when any number of segments in S are formed into a
ring. They have executions in which the length n/2
segments quiesce first, then the additional messages
propagate from merge points (but not as far as the
midpoints of the S segments), until quiescence occurs.
This means that each individual process’ decision can
only depend on local information: information about
its own S segment and about its nearest adjacent S
segment. But then inconsistencies can arise based
on different ring arrangements: the fact that some of
these rings elect a leader implies that others can elect
more than one leader.

Much attention is devoted in this paper to the
design of an appropriate formal model for message-
passing systems, as is suggested by the paper’s title.

Pachl, Korach and Rotem 1871 extended the
Q(nlog n) lower bound of [25] to the overage case,
for asynchronous deterministic leader-election algo-
rithms. The techniques are similar. They also proved
a lower bound for unidirectional rings in which pro
cesses are interrupt-driven, using a different style of
argument based on the special structure of such al-
gorithms. Such algorithms are essentially determinis-
tic; what happens at each process can be viewed as a
transformation from input strings to output strings.
Pachl [88] extended the results of [87] to the case of
randomized algorithms where a nonzero probability
of erroneous outputs is permitted. Related results
were proved by Duris and Galil [45] and Bodlaender

PA *
Burns’ proof depends heavily on the asynchrony;

for instance, construction of bad executions involves
forcing subsegments to quiesce separately, then to
quiesce around the merge points. Frederickson and
Lynch [58] considered the same problem for syn-
chronous rings. In the synchronous case, the absence
of a message might be regarded as a special “null
message” , and used to communicate something. We
showed that this apparent extra capability doesn’t
help - an Q(n log n) lower bound still holds.

Now special restrictions are needed on the algo-

14

rithm in order to obtain the lower bound. Namely,
the algorithm is required either to be comparison-
based, or to use a very large ID space relative to the
running time. The result for the second assumption
follows by a reducibility from the result for the first,
by a Ramsey’s Theorem argument; the argument says
that with enough ID’s, the algorithm must behave like
a comparison algorithm on some subset of the ID%.

The idea of the first, proof is that many mes-
sages are required to break symmetry. Consider for
example the ring consisting of processes with ID’s
0,4,2,6,1,5,3,7.

This ring is very symmetric, up to comparisons.
In particular, adjacent segments of length 2& are
comparison-equivalent. So everything looks the same
(up to comparisons) to processes 2k apart until some
chain of (real, not null) messages spans a distance of
at least 2&. Until then, if one process sends a message,
so does every process a multiple of 2” away.

It is easy to produce highly symmetric rings of size
equal to any power of 2. Much of the effort in the
paper is devoted to producing highly symmetric rings
when tz is not a power of 2.

This paper also contains a counterexample aigo-
rithm. This algorithm shows that you cannot remove
all assumptions about ID’s or running time. For oth-
erwise there is a very time-consuming algorithm (its
time complexity depending exponentially on the ID’s
actually in use) with only O(n) messages. This alg+
rithm does not seem to be very interesting in itself,
but it is interesting because it demonstrates the need
for the assumptions in the lower bound.

Attiya, Snir and Warmuth, in [14] used similar
ideas to those in [58] but took them much further.
They considered the case where there are no ID’s built
in, but (for certain problems) processes may start
with input values. The object is for the processes
to compute some function (invariant under circular
shifts} of the input vector.

They considered both asynchronous and syn-
chronous rings. For the asynchronous case, they ob-
tained an n(n2) message lower bound for many in-

teresting computable functions, including AND and
MAX. This bound contrasts with the O(nlogn)
bounds that hold for the case where the processes
have distinct ID’s.

The proof involves constructing a “fooling pair” of
rings, RI and R2, where RI is very symmetric, but R2
need not be, together with a process p which has a big
neighborhood that is the same in both rings but which
is required to decide differently in the two rings. Then
messages must propagate to p from outside the com-
mon neighborhood (in both rings). However, when
a process sends a message in RI, many symmetric
processes must also send messages.

The proof for the synchronous case uses a simi-
1a.r argument, but now it only yields a lower bound
of R(nlog n), because of the possible utility of null
messages. Now a stronger definition is needed for a
fooling pair, in which both RI and RZ must be very
symmetric. Then it can be shown that the algorithm
causes many messages to be sent in both RI and R2.

The lemmas used in [14] are slightly different from
those used in [58]; instead of analyzing chains of mes-
sages in detail, they are stated in terms of less de-
tailed information about the number of rounds at .
which some message is sent. As in [58], much effort
is devoted here to producing the strong symmetries
needed for rings whose sizes are not powers of two.

Several other recent papers contain results re-
lated to those in [14]. Moran and Warmuth [84]
proved a lower bound of C!(n log n) for the number
of bits required to compute any ‘“nontrivial” function
on a deterministic ring. with indistinguishable pr+
cesses. Attiya and Mansour [12] gave a proof that
any ‘hen-quasi-permutation-f&e” regular language
requires C?(n log n) messages, using the synchronous
theorem from [f4]. Attiya and Snir [13] considered
the avernge case for deterministic algorithms, in the
asynchronous setting. They showed a lower bound
of Q(n log n) for the average number of messages re-
quired by any deterministic algorithm for computing
an arbitrary ‘honlocal” function. Roughly speaking,
they showed that there are many sequences of pro-
cesses of any given length Ic in which messages are
sent by the center process in the sequence at round
Ic (in a synchronous execution of the algorithm); this
implies that many messages are generated in an “av-
erage ring”. This lower bound extends easily to ran-
domized algorithms that admit no probability of er-
ror, using a simple reduction. However, if nonzero
error probability is allowed, then the lower bounds
fail (and an O(n> algorithm exists).

Abrahamson, Adler, Higham and Kirkpatrick
proved a collection of amazing lower bounds for ran-
domized algorithms for solving certain problems, e.g.,

15

“solitude detection”, in a ring. They allowed a
nonzero probability of error, and measure the commu-
nication bit complexity. The model is asynchronous,
but it’s unidirectional and interrupt-driven, so (as in
[87]) its behavior is very constrained.

They studied many different cases, e.g., in which
the ring s&is either known or unknown, and in which
decisions are revocable or irrevocable. The lower
bounds are quite complicated-looking functions, but
what’s most amazing is that they are tight.

One key idea is the following. If the expected cost
of computations in a particular ring is low, then for
some fixed boundary in the ring, and for some fixed
short sequence of messages, computations having that
sequence at that boundary occur with reasonably
high probability. Then it is possible to splice together
multiple copies of that ring, by cutting and splicing at
the designated boundary. Then with reasonably high
probability, solitude will be verified erroneously in the
spliced ring. This argument can be thought of as a
sophisticated form of symmetry-breaking, incorporat-
ing ideas reminiscent of crossing sequence arguments
in Turing machine theory. (Some of the techniques
used in this work dso extend to proving lower bounds
on the best case bit complexity for a nondeterministic
algorithm.)

The model definitions are an important part of this
work, because the results are very sensitive to slight
variations in assumptions. Unfortunately, these def-
initions do impose a lot of overhead on the reader.
This work contains different sets of problem state-
ments, strong ones for the algorithms and correspond-
ing weak ones for the impossibility results, thus mak-
ing each result as strong as possible.

Mansour and Zaks [82] considered the case where
the ring starts with a leader, but where the ring size
is unknown. Even with a leader, interesting lower
bounds still hold for other reasons. They showed that
recognition of any nonregular set requires Q(n log n)
bits of communication.

Finally, Goldreich and Shrira [59] proved an
R(n log n) lower bound on the number of messages
for function computation in an asynchronous ring in
which one link might fail, even if the ring has a leader
and the ring size is known. The basic idea is that the
leader needs to hear from everyone; to ensure this,
it must initiate messages in both directions, which
need to propagate until they reach the broken link (if
any), and then responses must come back. But a node
doesn’t know if it’s adjacent to a broken link; to be
safe, it might have to behave as if it were even if it is
not, and send messages back toward the leader. This
means that the leader might get messages reflected
back from ‘fake extremities” and still not have heard

from all processes. In that case, the leader needs to
initiate messages again. The paper [59] also contains
an n(n”) lower bound for the case where the ring size
is unknown.

Thus, I have described a collection of bounds for
ring computations that depend mainly on symmetry,
on the distance messages have to travel, and oncross-
ing sequence arguments. It seems to me that there is
some good work still to be done in coalescing, gener-
alizing and simplifying this work.

2.4.3 Lower Bounds for Complete Graphs

Some lower bounds on the number of messages have
also been proved for complete graphs. Korach,
Moran and Zaks [70] proved tight lower and up-
per bounds for some distributed problems in a com-
plete asynchronous network of processes. They ob-
tain Q(nlogn) lower bounds for leader election and
spanning tree determination, and sZ(n2) for certain
matching problems. Afek and Gafni [3] proved simi-
lar bounds to those in [70], for leader election; theirs,
however, extend to the synchronous case, and they
also prove time bounds.

2.4.4 Lower Bounds for Meshes

Abu Amara [2] showed a lower bound of (57/32)n,
on the number of messages required for comparison-
based leader election in a synchronous mesh consist-
ing of n nodes.

2.4.5 Lower Bounds for General Graphs

Other related bounds have been proved for gen-
eral graphs. Santoro [94] proved a lower bound of
Q(n log n + e) for leader election in general graphs.
The n log n component results from the correspond-
ing bound for rings. The e component is based on a
“folk argument” that all edges need to be traversed,
in order to ensure that no other nodes are hidden in
the middle.

Awerbuch, Goldreich, Peleg and Vainish [15]
proved a very nice lower bound that says that it’s nec-
essary to “involve” all the edges in a network in order
to solve certain problems, such as broadcast commu-
nication, election, constructing a minimum spanning
tree, or counting the number of nodes in the net-
work. This implies that the number of fixed-length
messages needed is at least e. The argument is for
comparison-based algorithms, but can be extended to
more general algorithms using Ramsey Theory tech-
niques similar to those used in [58]. This result builds
on an earlier weaker result by Reischuk and Koshors
in [93].

16

The result follows as in [94] in case no one knows
identity of neighbors, so this work supposes that each
node knows the identity of its immediate neighbors.
Then it cannot be proved, as in [94], that a mes-
sage actually gets sent on each edge; however, bad
executions based on duplicate graphs with pairs of
crossover edges demonstrate that a node must some-
how find out additional information about its neigh-
bor; roughly speaking, this involves the node receiv-
ing a message containing the identity of the neighbor,
to use for comparison. An extension of the result
gives a weaker lower bound on the number of mes-
sages if nodes know about their neighbors to distance
up to b,b > 1.

Yamsshita and Kameda [lOl, 1021 proved impossi-
bility results about computation in general graphs in
which the nodes are indistinguishable and have par-
tial information about the graphs.

2.5 Communication Protocols

There have been some isolated impossibility results
about communication protocols; it seems as if there
is much more to be done here.

Aho, Ullman, Weiner and Yannakakis [4] showed
that certain kinds of data link behavior cannot be
achieved with protocols composes of finite-state ma,
chines of particular sizes. The arguments are based on
the limitations imposed by small numbers of states.
Arguments use case analysis.

Lynch, Mansour and Fekete [78] gave impossibil-
ity results for implementing desirable data link be-
havior (reliable message delivery) in terms of typical
physical channel behavior (less reliable packet deliv-
ery), in either of two cases: (1) if crashes can occur
that cause a loss of memory, or (2) if there are only
a;. bounded number of packet headers for use on the
physical channel and a besl case bounded number of
packets are required to deliver each message.

The basic idea of the proofs is that the physical
channel can “steal” some packets, while it accom-
plishes the delivery of messages. This is because the
algorithms are supposed to tolerate packet loss. Then
the “stolen” packets can be used to fool the receiver
process into thinking another message is to be deliv-
ered.

These theorems have apparently seemed natural to
people in the practical communication protocols com-
munity, in fact almost part of the “‘folk wisdom”. Our
proofs serve to make these intuitions rigorous. They
also make the necessary assumptions explicit, some-
thing that network designers might not think about
because they take them for granted. For instance, I
doubt that a network designer would have realized

that a bound on the best case number of packets per
message would have been needed for a result such
as our second. We as theoreticians are supposed to
identify such hidden assumptions.

In fact, although we did not think so at the time,
it turns out that this technical-sounding assumption
is necessary! For, Attiya, Fischer, Wang and Zuck
[ll] have recently devised a counterexample algo
rithm that works with finitely many headers, but does
not have such a best-case bound! (At the time we
found out about this result, we were trying to prove
that such an algorithm was impossible.) Although
this algorithm, is very interesting as a counterexam-
ple algorithm it not practical, since it uses more and
more packets, even in the best case, to send later and
later messages. This means the network operation
must get slower, and s lo w e r, and s
1 0 w e r . . . Some interesting open
questions remain about the rate at which the num-
ber of packets required must grow with the number
of messages delivered.

We found defining the model to be a difficult part
of the work in [78]. We used I/O automata; in fact,
this was our first attempt to use I/O automata to
prove impossibility results. We found getting the for-
mal definitions right to be exceedingly tricky, espe-
cially compared to the informal way in which we first
discussed the ideas. Much of the difficulty, as usual,
involved the proper handling of admissibility. An-
other difficulty involved modeling the interaction of
algorithms; the components about which we prove
impossibility results interact with other components,
the “physical channels”. Thus, constructing a coun-
terexample requires not only giving a bad execution,
but also constructing a particular physical channel
that interacts with the algorithm to generate the bad
execution. Admissibility must also be handled prop-
erly for the physical channels.

It is not clear what impact the choice of the I/O
automaton model had on the difficulty of this work.
My feeling is that the model worked rather well, even
though the definitions in [?8] are not easy to under-
stand. I think that some of the difficulty is due to the
subtlety of the concepts and some due to the fact that
our definitions could still use some polishing. But I
think the basic model is well suited to expressing all
the required concepts.

Spinelli [97] also proved essentially the same im-
possibility result as the first one in [78], on crash-
tolerance. A completely different style of irnpussibil-
ity result about communication protocols appears in
[18]; the authors prove a linear lower bound on the
amount of time required for deterministic broadcast
in a multiaccess medium.

17

2.6 Miscellaneous

Coan, Kolodner and Oki [32] proved the only exam-
ple I have of an impossibility result for concurrently-
accessible databases. It gives simple proofs of limita-
tions on what types of transactions can execute in a
partitioned network. This looks like a good area for
future work.

Yao [103] and many others have written a series
of papers about the communication complexity of
computing particular functions, where the inputs are
distributed between several (usually 2) participants.
The results are lower bounds on the number of bits
that need to be transmitted. The arguments are
information-theoretic.

The one example I know involving cryptographic
protocols (outside of the authenticated Syzantine
agreement work) is the work of Dwork and Stock-
meyer 1491 giving limitations of the power of interac-
tive proof systems in which the components are finite
automata. The limitations are based on the structure
of finite-state machines.

Chandy and Misra [29] showed that termination
detection requires at least as many messages as the
underlying computation whose termination is being
detected. They also proved a simple lower bound
on the number of messages required for distributed
solutions to the dining philosophers problem. The
proofs use formal reasoning about knowledge.

Finally, Anderson and Gouda [S] devised a new
proof of the impossibility of building an arbiter out of

Boolean gates (the “arbiter glitch”) problem. Their
proof is based on discrete bivalence considerations
rather than continuous considerations such as the
other proofs in the literature. They make a restrictive
assumption that there not be any gates with outgo-
ing wires connected back to inputs of the same gate
(even with delay on the wire). It would be interest-
ing to understand what happens if this restriction is
removed.

3 General Comments

So what can be distilled from this survey?

3.1 The Basic Ideas That Make The
Proofs Work

There is only one fundamental underlying idea on
which all of the proofs in this area are based, and
that is the limitation imposed by local knowledge in a

disitibuied system. If a process sees the same thing
in two executions, it will behave the same in both.

Ideas related to local knowledge have been used im-
plicitly in proofs since the beginning, although in the
past few years there has been some work in trying to
make the use of knowledge explicit.

There are many reasons for the limits on local
knowledge in distributed settings. Uncertainty arises
from asynchrony, failures, and unknown inputs. In-
formation about other parts of the system might not
be communicated quickly because of limitations on
communication media, e.g., the size of shared mem-
ory, the bandwidth of message channels, or the dis-
tance information must travel.

Many specific techniques are used, all manifesta-
tions of the limitation of local knowiedge. I have
mentioned pigeonhole arguments for bounds on the
number of values of shared memory, scenario argu-

ments for bounds on the number of processes, chain

urguments, primarily for lower bounds on rounds for
consensus problems, bivalence arguments for impos-
sibility of decision problems, communication diagram

stretching arguments for time and message bounds
for synchronization problems, symmetry arguments

for impossibility and message lower bounds for net-
work computations, especially for ring computations,
distance arguments for message bounds in low-degree
networks such as rings, crossing sequence arguments

for ring computations, message-stealing arguments

for communication protocols, and finite-state argu-’

ments for FSA-based algorithms.
Also, some proofs make use of reducibiiities to infer

impossibility results from others that have previously
been proved.

3.2 Connections with Formal Model-
ing

The work of doing impossibility proofs is tightly in-
tertwined with the work of defining formal models.

First, impossibility proofi need to be based on rig-
orous and well-designed formal models. It may be
possible to avoid using formal models if one is inter-
ested only in designing algorithms. But it is not possi-
ble to fake an impossibility proof - such a proof makes
no sense at all without rigorous description. That is
not to say that one shouldn’t work on an impossibility
proof at an informal level; the final product, however,
needs to be carefully described.

There are many features that make a model appro-
priate for impossiblity proofs. Of course, it needs to
be rigorous. It must permit separate descriptions of
the problems to be solved and of the allowable imple-
mentations. It must provide a proper treatment of
admissibility and control of actions. Problem state-
ments must be sufficiently “tight” to serve as a rea-

18

sonable contract between a specifier and an imple-
mentor. (They should neither say too little nor too
much.) Problem statements must be sufficiently clean
to be invoked repeatedly as justifications for steps of
a construction. Finally, implementation models need
to be clean and simple. (It is neither feasible nor in-
teresting to prove impossibility results about a messy
implementation model.)

A by-product of work on impossibility proofs is the
development of formal models with the nice features
listed above. If an area has only algorithms, but no
impossibility results, I don’t believe it is likely that
the models that arise are likely to have the same fea
tures. In particular, the problem statements are not
likely to be either tight or clean.

When many people get involved, in proving upper
and lower bound results in an area, the problem state-
ments and implementation assumptions used in that
area tend to get a lot of careful discussion, which in
turn helps lead to convergence on good sets of as-
sump tions.

The use of formal models forces people to make
their assumptions explicit. This helps to expose sub-
tle differences in assumptions, which often leads to
many variations on the same problem, with corre-
sponding different results.

On the negative side, it is certainly true that the
use of rigorous formal models imposes overhead on
the presentation of results; for impossibility results, I
think this is unavoidable.

3.3 Problem Statements

I have some general remarks about appropriate kinds
of problem statements for impossibiIity results.

First, the problems must be stated precisely. This
does not mean that they have to be stated in a formal
language such as temporal logic. It does mean that
they must make sense in terms of a basic mathemati-
cal model that can be used for describing implementa
tions and for carrying out the necessary mathematical
arguments.

It is not enough for the problem statements to be
precise; the problems also need to be well-chosen -
crisp and simple. This makes it a lot easier to invoke
the problem statements when carrying out construc-
tions of bad executions. It also makes it more likely
that the results obtained will be fundamental.

It is very hard to work on a direct impossibility
proof for solving a very complex distributed com-
puting problem, e.g., for implementing a fancy dis-
tributed UNIX in the presence of certain faults of the
implementing processors, perhaps with a certain cost.
One needs to extract simple prototype problems from

an area to carry out the basic proofs. (Sometimes
complex and specialized problems can be shown to
be impossible using reducibilities, or by being special
cases of a result about simple, more general systems.)

It is also important for problem statements to be as
general as possible, although generality seldom comes
on the first try.

In a paper with contrasting possibility and impos-
sibility results, it is not unusual to find two different
statements for the “same” problem - a strong state-
ment for the algorithms and a weak statement for
the impossibility results. This strategy is a way of
making each result as strong as possible.

3.4 The Process of Working on Such

Proofs

How does one go about working on an impossibility
proof? The first thing to do is to try to avoid solv-
ing the problem, by using a reducibility to reduce
some other unsolvable problem to it. If this fails,
you next consider your intuitions about the problem.
This might not help much either: in my experience,
my intuitions about which way the result will go have
been wrong about 50% of the time.

Then it is time to begin the game of playing the
positive and negative directions of a proof against
each other. My colleagues and I have often worked al-
ternately on one direction and the other, in each case
until we got stuck. It is not a good idea to work just
on an impossibility result, because there is always the
unfortunate possibility that the task you are trying
to prove is impossible is in fact possible, and some
algorithm may smface.

An interesting interplay often arises when you work
alternately on both directions. The limitations you
find in designing an algorithm - e.g., the reason a par-
ticular algorithm fails - may be generahzable to give a
limitation on all algorithms. This is how we found the
lower bound in [56]. Conversely, the reasons that an
impossibility proof fails can sometimes be exploited
to devise counterexample algorithms. This is how we
found the no lockout algorithm in [26].

Arriving at a careful statement of the problem is
usually an iterative process. It usually takes a while
just to get it correct: it’s easy to make the prob-
lem statement too strong (e.g., by requiring that a
resource be granted without saying that the envi-
ronment must always return the resource), in which
case impossibility results might hold for trivial rea
sons. It’s also easy to make the statement too weak,
in which case trivial counterexample algorithms can
arise.

With some luck, this iterative process eventually

leads to an interesting problem statement and a corre-

sponding impossibility result; then the problem state-
ment should be “polished”. Assumptions that are
not needed can be eliminated, so that impossibility
is proved based on the weakest possible set of re-
quirements. The problem statement should be made
as general and elegant as possible. (For example,
in the impossibility result of [55], we weakened the
usual consensus validity conditions after the fact to
include any algorithm with the option of reaching ei-
ther of two different, decisions. This meant that the
result was strong enough to apply to commit algo-
rithms. We also noticed after the fact that we could
strengthen the power of the message system f’rom in-
dividual sends to atomic broadcast; this strengthen-
ing weakens the requirements of the algorithm, since
it now is only required to work in a stronger environ-
ment.)

I find that one of the hardest aspects of work-
ing out problem statements and impossibility proofs
(especially for asynchronous systems) is the proper
treatment of admissibility. The definitions and proofs
must ensure that all (non-failed) processes continue
to take steps, or all messages are delivered, or that
other appropriate liveness conditions are satisfied, in
the bad admissible executions that are constructed.

3.5 What Good Are Impossibility Re-
sults?

What good are impossibility results, anyway? They
don’t seem very useful at first, since they don’t allow
computers to do anything they couldn’t previously.

Most obviously, impossibility results tell you when
you should stop trying to devise or improve an algo-
rithm. This information can be useful both for theo-
retical research and for systems development work.

It is probably true that most systems developers,
even when confronted with the proved impossibility
of what they’re trying to do, will still keep trying to
do it. This doesn’t necessarily mean that they are ob-
stinate, but rather that they have some flexibility in
their goals. E.g., if they can’t accomplish something
absolutely, maybe they can settle for a solution that
works with “sufficiently high probability”. In such a
case, the effect of the impossibility result might be
to make a systems developer clarify his/her claims
about what the system accomplishes.

Proving impossibility results causes us to take a
very analytical approach to understanding the area.
It causes us to state carefully exactly what assump-
tions (about the execution environment and the prob-
lems) the results depend on. This sort of detailed in-
formation does not normally arise from or algorithm

or system development work alone.
Sometimes impossibility proofs lead to interesting

work on ways of getting around the inherent limi-
tation. For example, many randomized algorithms
have been produced in order to get around the in-
herent cost previously proved for deterministic and
nondeterministic algoritb. Examples include Ben-
Or’s asynchronous fault-tolerant consensus algorithm
in [19], Itai and Rodeh’s randomized algorithms for
leader election without identifiers in [SS] and Feldman
and Micali’s fast algorithm for synchronous consensus

The close connections between impossibility proofs
and modeling means that impossibility results help in
the development of formal models. Models produced
for impossibility proofs have many nice features, as I
discussed earlier. They are not only useful for prov-
ing impossibility results; they also have other uses,
such as specification and verification of algorithms
and software.

Finally, I think that an understanding of impossi-
bility results in an area is an important part of un-
derstanding the fundamental ideas of that area.

3.6 Unified Models

A pet question of mine is what we can do to reduce
the need for so much definitional and modeling work’
for impossibility results. Those of us who prove im-
possibility results get tired of writing those long and
formalism-laden definitions sections, and I am sure
most people are tired of reading them. Since such
precision is necessary, it seems that the only hope is
to try to avoid repeated work by using a standard
model as the foundation. I am not sure yet how suc-
cessful that will be.

A unified model could provide a standard way of
coping with ideas that appear repeatedly. For exam-
ple, the I/O automaton model provides more-or-less
standardized ways of presenting algorithms and prob-
lem statements (for an asynchronous setting), and has
a built-in treatment of admissibility and of control of
actions. These considerations arise in many differ-
ent results, in many areas, including shared memory
algorithms, distributed consensus and network algo-
rithms.

Use of a unified model that spans several areas
could facilitate the application of results from one
area to another area, e.g., the application of consen-
sus results to mutual exclusion or register problems.
(This is true not just for impossibility results.)

I have tried using both of the general models I
have been involved with, in impossibility proofs. The
model of [81] was not that successful for this purpose,

20

but in retrospect I think it was mainly because it is
a shared-memory model and we were trying to use
it for inappropriate settings such as message-passing
systems. The I/O automaton model has been used
recently, and seems reasonably successful.

I have considered recasting some earlier results in
terms of I/O automata. In the early work on mutual
exclusion, the definitions did not establish a clean
boundary around the algorithms, allowing their inter-
active behavior to be clearly specified at that bound-
ary and making it possible to compose the algorithms
with others to build a system. I/O automata could
remedy this. On the other hand, I/O automata have
one drawback for this area: the fact that they treat in-
puts and outputs as separate events means that they
might tend to treat some things non-atomically that
could be treated atomically. This could complicate
the proofs.

I think that impossibility results about atomic reg-
isters could expressed well using I/O automata. For
consensus, the result of [55] and other related results
can also be redone using I/O automata; the new pre-
sentations seem to me to be a little simpler than the
old. The synchronization result of [8] can also be
redone using I/O automata rather than our shared-
memory model, and the new presentation seems much
simpler and more natural than the old.

I don’t expect a unified model to be a panacea.
There are many ideas that are not common to all work
in the area, such as special assumptions about timing
and failures. Each result would probably still need to
be preceded by a description of its own set of special
conditions. But perhaps these might constitute less
overhead than before. Perhaps the use of a general
model might help to identify which of the differences
are essential, and remove the others.

It does not actually seem that thinking about a

general model such as the I/O automaton model has
yet been very helpful in getting insight while working
on the combinatorial results. So far, their use has
been solely in producing clear and rigorous presenta-
tions (and finding mistakes in intuitions).

3.7 Randomized Algorithms

So far, there have been very few interesting impos-
sibility results for randomized algorithms. The main
examples I have mentioned are [68, 60, 33, l]. Of
course, one would expect fewer impossibility results
for randomized algorithms, because less is impossi-
ble with such algorithms, but some more should be
provable than exist currently.

It is much harder to reason about the limitations
of randomized algorithms than about those of de-

terministic algorithms; it seems necessary to analyze
very complex probabilistic interactions between the
algorithms and adversaries having various amounts of
knowledge and power. The area of adversarial com-
puting is one that really could use improved under-
standing, and impossibility results for randomized al-
gorithms would surely contribute to that understand-
ing.

3.8 They’re Easy

Impossibility proofs are much easier in our area than
in most others. This is because the limitation of local
knowledge is the fundamental fact about the setting
in which we work, and it is a very powerful limitation.

4 Future Directions

4.1 Technical Open Questions

I mentioned a few open questions earlier. These are
summarized here.

1.

2.

3.

4.

5.

6.

7.

In the no-lockout mutual exclusion work in [26],
is the “forgetting” assumption necessary?

In the consensus work in [46], where some as-
sumptions are made about time for message de-
livery, what are the exact time bounds required
for consensus?

With what probability can consensus be guaran-
teed by randomized algorithms, in the presence
of a large number t of faults relative to the total
number II of processes?

What is the exact number of process names re-
quired by the process renaming problem of [lo];
is it n + 1 or it + t or somewhere in between?

In the data link work of [78], how fast must the
number of packets grow with time? (Some new
results appear in [99], in the current PODC.)

More results in the style of [65] should be possi-
ble. Exactly what objects can and can’t be im-
plemented in terms of what other objects, in a
wait-free manner, or not in a wait-free manner?
What are the associated time bounds?

Can the result in [S] be extended to the case in
which the circuit does not have a loop-free re-
striction?

21

4.2 Other Areas

Impossibility results in distributed computing theory
have been concentrated into a few subareas. It should
be possible to expand the set of problems being con-
sidered, by looking at other areas. There will be some
initial work required to identify crisp problems suit-
able for impossibility results.

Although some of these areas have already been
well “mined” for basic algorithms, the same is not
true for impossibility results (and counterexample al-
gorithms). Some results could arise based on the folk
wisdom of the areas. Some suggestions for areas are: :

1. Communication protocols: Not very much has
been done yet. There is still more to under-
stand about the relationship between the data
link layer and the physical layer, and there are
lots of other layers to consider.

2. Real-time processing: It would be nice to have a
theory to describe the fundamental combinato-
rid properties of real-time systems. Impossibil-
ity results should be an important part of this.
Note that both this and the preceding area re-
quire models for timing-dependent algorithms.

3. Parallel computing: There has been lots of com-
binatorial work in this area, but the models
(PRAM’s, etc.) are different from those com-
monly used in our area. We might want, to con-
sider models for parallel computing that are sim-
ilar to the models that have been considered in
our area - involving asynchrony and failures, for
example.

4. Databases: Little has been done so far. This area
is characterized by complex problems and a.lg*
rithrns; it is necessary to identify simple, crisp
problems. It might be possible to prove limita-
tions on the ability of systems to guarantee se-
rializability with liveness, e.g., based on limited
information provided to each object, or based on
kinds of faulty behavior. Results might be ob-
tained about specific data types or transaction
types.

4.3 Other Styles of Results

I would like to see more lower bounds on time for
asynchronous algorithms, such as [8]. Such bounds
have been underemphasized so far. Time mea-
sure definitions appropriate for asynchronous sys-
tems, such as those in [90, 81, 79, 831 must be used.
More work is also needed on impossibility results for

randomized algorithms. More work is needed on con-
cepts relating different problems, such as reducibili-
ties and complexity or computability classes. (Such
classes have been very useful elsewhere in complexity
theory.)

4.4 Modeling

More work is needed in developing good models for
use in proving impossibility results for distributed
computing. A general model is desirable; I/O au-
tomata are one possibility, but there may be others.
If I/O automata are to be used, they need to be aug-
mented in various ways, e.g., with time definitions as
in [83].. It will stiH sometimes be necessary to develop
models tailored for specific areas. Perhaps a general
model can be used, with special structure added on
to fit it to each area.

4.5 Unifying and Generalizing Results

It may be useful to try to unify the work that’s al-
ready been done, in the way that [54] unified a large
collection of n 5 3t lower bounds. In particular, the .
results about ring computation could use such coa-
lescing. There seem to be too many G?(n log n) lower
bounds!

There seems to be something very similar about
the problems of mutual exclusion, consensus, serializ-
ability, leader election, and even global snapshots. So
there should be similar inherent limitations on solving
these problems. Are there common proof techniques,
or even reducibilities here?

Although there are 100 proofs, maybe there are
only six ideas - perhaps it is possible to prove the
Six Fundamental Theorems of Distributed Comput-
ing, from which all of these other results will follow!

5 Conclusions

I’ve tried in this talk to give you a good picture of the
history, status and flavor of research in impossibility
proofs for distributed computing. I hope you’re con-
vinced that it is an interesting and fruitful area for
research. Now with some luck, skill and inspiration,
we can continue to make great strides, proving more
and more things to be impossible!

Acknowledgements: I would like to thank Hagit
Attiya, Liuba.Shrira and Mark Tuttle, who corrected
many inaccuracies and tracked down several results.

References

PI

PI

131

PI

[51

161

PI

181

PI

K. Abrahamson, A. Adler, L. Higham, and D.
Kirkpatrick. Probabilistic Solitude Detection II:

Ring Size Known Exactly. Technical Report 87-
11, University of British Columbia, Vancouver,
B.C., Canada, April 1987.

Hosame Abu-Amara. Fault-tolerant Distributed
Algorithms for agreeement and election. Phd
Thesis UILU-ENG-88-2242, ACT-95, Univer-
sity of Illinois at Urbana-Champaign, August
1988.

Y. Afek and E. Gafni. Time and message
bounds of election in synchronous and asyn-
chronous complete networks. In Proceedings of
the 4’h Annual ACM Symposium on Principles

of Distributed Computing, pages 186-195, Mi-
naki, Ontario, Canada, August 1985.

A. V. Aho, J. D. Ullman, A. D. Wyner,
and M. Yannakakis. Bounds on the size and
transmission rate of communication protocols.
Computers and Mafhemotics with Applications,

8(3):205-214, 1982. This is a later version of 151,

A. V. Aho, J. D. Ullman, and M. Yan-
nakakis. Modeling communication protocols by
automata. In Proceedings of the 20” IEEE

Symposium on Foundations of Computer Sci-

ence, pages 267-273, 1979.

J. Anderson and M. Gouda. A new expla-
nation of the Glitch Phenomenon. Techni-
cal Report TR88-23, Department of Computer
Science, The University of Texas at Austin,
Austin, TX 78712-1188, June, 1988.

D. Angluin. Local and global properties in net-
works of processors. In Proceedings of 18th

STOC, pages 82-93, 1980.

E. Arjomandi, M. Fischer, and N. Lynch. Effi-
ciency of synchronous versus asynchronous dis-
tributed systems. J. ACM, 30(3):449456, July
1983.

A. Attiya, D. Dolev, and J. Gil. Asynchronous
Byzantine consensus. In Proceedings of the
Third Annual ACM Symposium on Principles

of Distributed Computing, pages 119-133, Van-
couver, B.C., Canada, August 1984.

23

WI

WI

PI

Cl31

WI

PI

WI

[171

WI

1191

1201

H. Attiya, A. Bar-Noy, D. Dolev, D. Keller,
D. Peleg, and R. Reischuk. Achievable cases
in an asynchronous environment. In Proceed-

ings of 28ih Annual Symposium on Foundations

of Compuder Science, pages 337-346, October
1987.

H. Attiya, M. Fischer, D. Wang, and L.
Zuck. Reliable communication over an unre-
liable channel. In progress.

H. Attiya and Y. Mansour. Language complex-
ity on the synchronous anonymous ring. Theo-

retical computaer science, 53(3):167-185, 1987.

H. Attiya and M. Snir. Better computing on an
anonymous ring. Submitted to publication.

Hagit Attiya, Marc Snir, and Manfred K. War-
muth. Computing on an anonymous ring. Oc-
tober 1988.

B. Awerbuch, 0. Goldreich, D. Peleg, and
R. Vainish. A tradeoff between information
and communication in broadcast protocols. In
3rd Aegean workship on theory of computing,

pages 369-379, Springer-Verlag, 1988.

Baruch Awerbuch. Communication-time trade-
offs in network synchronization. In Proceedings

of the 4 ” Annual ACM Symposium on Princi-
ples of Distributed Computing, pages 272-276,
ACM, August 1985.

0. Babmglu, P. Stephenson, and R. Drum-
mond. Reliable broadcasts and communica
tion models: tradeoffs and lower bounds. Dis-
tributed Computing, 2:177-189, 1988.

R. Bar-Yehuda, 0. Goldreich, and A. Itai.
On the time-complexity of broadcast in radio
networks: an exponential gap between deter-
minism and randomization. In Proceedings of

the 6th Annual ACM Symposium on Pn’nciples

of Distributed Computing, Vancouver, British
Columbia, Canada, August 1987.

M. Ben-Or. Another advantage of free choice:
completely asynchronous agreement protocols.
In Proceedings of 2nd ACM Symposium on
Principles of Distributed Computing, pages 27-
30, August 1983.

Ofer Biran, Shlomo Moran, and Shmuel Zaks.
A combinatorial characterization of the dis-
tributed tasks which are solvable in the pres-
ence of one faulty processor. In Proceedings of

the 7th Annual ACM Symposium on Principles

of Disiributed Computing, pages 263-275, Au- In Proceedings of the 17’h Annual ACM Sym-
gust 1988. posium on Theory of Computing, Providence,

[21] B. Bloom. Constructing two-writer atomic reg-
isters. In Proceedings of 6th ACM Sympo-

sium on Principles of Distn’buted Computing,

pages 249-259, Vancouver, British Columbia,
Canada, August 1987. Also, to appear in spe-
cial issue IEEE Transactions On Computers.

[22] H.L. Bodlaender. Distributed algorithms,
structure and complexity. 1986. Ph.D. Thesis.

1231 L. Bouge. On the existence of symmetric alge
rithms to find leaders in networks of commu-
nication sequential processes. Rept. No. 86-18,
LITP, Univ. Paris 7, Paris(1986). To appear in
Acta Informatica.

[24] M, Bridgeland and R. Watro. Fault tolerant
decision making in totally asynchronous dis-
tributed systems. In Proceedings of the 6th

Annual ACM Symposium on Principles of Dis-

tribuied Computing, pages 52-63, August 1987.

[25] J. Burns. A formal model for message passing

systems. Technical Report TR91, Computer
Science Dept., Indiana University, May 1980.

[26] J. Burns, M. Fischer, P. Jackson, N. Lynch,
and G, Peterson. Data requirements for imple-
mentation of n-process mutual exclusion using
a single shared variable. Journal of the ACM,

29(1):183-205, 1982.

[27] J. Burns and N. Lynch. Mutual exclusion using
indivisible reads and writes. In Proceedings of

18th Annual Atlerton Conference on Commu-

nications, Conirol, and Computing, pages 833-
842, 1980. Revision in progress.

[28] K. M. Chandy and J. Misra. On the nonexis-
tence of robust commit protocol. January 1987.
Manuscript.

[29] K. Mani Chandy and Jayadev Misra. How pry
cesses learn. Distributed Computing, 1(1):4&
52, 1986.

[30] Benny Chor, Amos Israeli, and Ming Li.
On processor coordination using asynchronous
hardware. In Proceedings of the sth Annual

ACM Symposium on Principles of Distributed

Computing, pages 86-97, Vancouver, British
Columbia, Canada, August 1987.

[31] B. Coan, D. Dolev, C. Dwork, and L. Stock-
meyer . The distributed firing squad problem.

Rhode Island, pages 335-345, May 1985.

/32] B. Coan, B. Oki, and E. Kolodner. Limita-
tions on database availability when networks
navtitinn Tn Proceedings of the 5’h Annual r”“*‘AYY. AU
ACM Symposium on Principles of Distributed

Computing, pages 187-194, Calgary, Alberta,
Canada, August 1986.

[33] B. Coan and J. Welch. Transaction commit in
a realistic fault model. In Proceedings of the

5’“. Annual ACM Symposium on Principles of
Distributed Computing, pages 40-51, Calgary,
Alberta, Canada, August 1986.

[34] B.A. Coan. Achieving Consensus in Fault-

Tolerant Distributed Computer Systems: Proto-

cols, Lower Bounds, and Simulaiions. PhD the-
sis, Massachusetts Institute Technology, June
1987.

[35] A.B. Cremers and T.N. Hibbard. An algebraic
approach to concurrent programming control
and related complexity problems. Symposium

on Algorithms and Complexity, April 1976.

[36] Dolev D., Lynch N., Pinter S., Stark E., and
Weihl W. Reaching approximate agreement in
the presence of faults. Journal of the ACM,

33(3):449-516, 1986.

[37] R. DeMillo, N. Lynch, and M. Merritt. Cryp-
tographic protocols. In Proceedings of the 14’h
Annual ACM Symposium on Theory of Com-
puting, San Francisco, California, pages 383-
400, May 1982.

1381 E.W. Dijkstra. Solution of a problem in concur-
rent progr amming control. Communications Of

The ACM, 8(9):569, September 1965.

1391 D. Dolev. The Byzantine generals strike again.
Journal of Algorithms, 3:14-30, 1982.

[40] D. Dolev and C. Dwork. A study of communica-
tion primitives. 1989. Unpublished Manuscript.

[41] D. Dolev, C. Dwork, and L. Stockmeyer. On
the minimal synchronism needed for distributed
consensus. Journal of the ACM, 34(1):77-97,
1987.

[42] D. Dolev and R. Reischuk. Bounds on infor-
mation exchange for Byzantine agreement. In
Proceeding of ACM SIGACT-SIGOPS Sympo-

sium on Principles of Distributed Computing,

pages 132-140, Attawa, Canada, August 1982.

24

[43] D. Dolev and H.R. Strong. Authenticated al-
gorithms for Byzantine agreement. SIAM J.

Computing, 12(4):656-666, November 1983.

[44] S. Dolev, J. Halpern, and R. Strong. On the
possiblity and impossibility of achieving clock
synchronization. In Proceedings of 16th Sympo-

sium on Theory of Computing, pages 504-510,
May 1984. Journal of Computer and System
Sciences, 32:230-250, 1986.

[45] P. Duris and Z. Galil. Two lower bounds in asy-
chronous distributed computation. 28’h Annual

Symposium on Foundations of Computer Sci-

ence, 326-330, October 1987.

[46] C. Dwork, N. Lynch, and L. Stockmeyer. Con-
sensus in the presence of partial synchrony.
Journal of the ACM, 35(2):288323, 1988.

[47] C. Dwork and Y. Moses. Knowledge and com-
mon knowledge in a Byzantine Environment
I: crash failures. In Proceedings of Confer-
ence on Theoretical Aspects of Reasoning about

Knowledge, 1986. Submitted to Information

and Computation.

[48] C. Dwork and D. Skeen. The inherent cost
of nonblocking commitment. En Proceedings of
the 2”d Annual ACM Symposium on Princi-

ples of Distributed Computing, Montreal, Que-

bec, Canada, pages l-11, August 1983.

[49] Cynthia Dwork and Larry Stockmeyer. Interac-

tive Proof Systems with Finite State Verifiers.

Research Report RJ 6262, IBM Almaden Re-
search Center, may 1988.

[50] A. Fekete. Asymptotically optimal algorithms
for approximate agreement. In Proceedings of

the 5’h Annual ACM Symposium on Principles

of Distributed Computing, pages 73-87, Cal-
gary, Alberta, Canada, August 1986. Revised
and submitted for Publication.

[51] A. Fekete. Asynchronous approximate agree-
ment. In Proceedings of the 6’h ACM Sympo-

sium on Principles of Distributed Computing,
pages 64-76, August 1987.

[52] Paul Feldman and Silvo Micali. Optimal al-
gorithms for Byzantine agreement, May 1988,
Paul Feldman Phd thesis.

[53] M. Fischer, N. Lynch, J. Burns, and A.
Borodin. Distributed FIFO allocation of iden-
tical resources using small shared space. ACM

Transactions on Prognzmming Languages and
Systems, 11(1):90-114, January 1989.

[54] M. Fischer, N. Lynch, and M. Merritt. Easy
impossibility proofs for distributed consensus
problems. Distributed Computing, 1:26-39,
1986.

[55] M. Fischer, N. Lynch, *and M. Paterson. Im-
possibility of distributed consensus with one
faulty process. In Proceedings of Znd ACM

Symposium on Principles of Database Systems,

pages 1-7, Atlanta, GA, March 1983. Also
appears as Technical Report MIT/LCS/TR-
282, Massachusetts Institute Technology, Lab-
oratory for Computer Science, Cambridge, MA
02139, September 1982. Revised version in J.

ACM, 32(2):374-382, April 1985.

[56] Michael J. Fischer and Nancy A. Lynch. A
lower bound for the time to assure interac-
tive consistency. Information Processing Let-

ters, 14(4):183-186, June 1982.

[57] Michael J. Fischer, Nancy A. Lynch, James E.
Burns, and Allan Borodin. Resource allocation
with immunity to limited process failure. In
Proceedings of the 20 th IEEE Symposium on
Foundations of Computer Science, pages 234-
254, October 1979.

1581 G.N. Frederickson and N. Lynch. Electing a
leader in a synchronous ring. J. ACM, 34(1):98-
115, January 1987.

[59] 0. Goldreich and L. Shrira. The effects of link
failures on computation in asynchronous rings.
In Proceedings of the 5’h Annual ACM Sympo-
sium on Principles of Distributed Computing,

Calgary, Alberta, Canada, August 1986.

[60] R.L. Graham and A.C. Yao. On the improba-
bility of reaching Byzantine agreement. In Pro-

ceedings of 21*’ ACM Symposium on Theory of

Computing, May 1989.

[61] J. Gray. Notes on Data Base Operating
Systems. Technical Report IBM Report
RJ2183(30001), IBM, February 1978. (Also
in Operating Systems: An Advanced Course,
Springer-Verlag Lecture Notes in Computer
Science #60.).

1621 Vassos Hadzilacos. A knowledgeitheoretic anal-
ysis of atomic commitment protocols. In Pro-
ceedings of the 6 th Annual ACM Symposium on

Principles of Database Systems, 1987. Revised
version available, submitted for publication.

25

[631

WI

[651

if361

b71

WI

WI

WI

[711

PI

[731

J. Halpern, N. Megiddo, and A. Munshi. Op-
timal precision in the presence of uncertainty.
Jounrcl of Complezity, 1(2):170-196, December
1985.

Joseph Y. Halpern and Yoram Moses. Knowl-
edge and common knowledge in a distributed
environment. In Proceedings of fhe 3rd An-
nual ACM Symposium on Principles of Dis-
iributed Computing, pages 50-61, 1984. To ap-

pear in JACM. A revised version appears as
IBM Research Repori RJ 4421, Third Revision,
September, 1988.

Maurice Herlihy. Impossibility and universality
results for wait-free synchronization. In Pro-
ceedings of the 7’h Annual ACM Symposium
on Priciples Distributed Compuiing, pages 276-
290, Toronto, Ontario, Canada, August 1988.

A. Itai and M. Rodeh. Symmetry breaking in
distributed networks. In Proceedings of 22nd
Annual ACM Symposium on Foundafions of

Computer Science, pages 150-158, 1981.

Ralph E. Johnson. Symmetry in Distribuied
Systems. Phd Thesis. Technical Report TR-87-
855, Department of Computer Sciene, Cornell
University, Ithaca, New York, 14853-7501, Au-
gust 1987.

A.R. Karlin and A.C. Yao. Lower bounds to
randomized for the Byzantine generals problem.
1984. unpublished.

R. Koo and S. Toueng. Effects of message loss
on the termination of distributed protocols. In-
formation Processing Letters, 27:181-188, April
1988.

E. Korach, S. Moran, and S. Zaks. Tight
lower and upper bounds for some distributed
algorithms for a complete network of proces-
sors. In In Proceedings of 3rd ACM Sympo-
sium on Principles of Distribuied Computing,
pages 199-207, 1984.

L. Lamport. On interprocess communication.
Distributed Compuiing, l(1):77-101, 1986.

L. Lamport. The weak Byzantine generat
problem. Journal of -the ACM, 30(3):669-676,
1983.

L. Lamport, R. Shostak, and M. Pease. The
Byzantine generals problem. ACM Transac-
tions on Progrumming Languages and Systems,
4(3):382-401, July 1982.

[741

L751

[761

1771

1781

t791

WI

WI

WI

I831

Leslie Lamport. Time, clocks, and the ordering
of events in a distributed system. Communica-
tions of the ACM, 21(7):558-564, July 1978.

Leslie Lamport and P. M. Melliar-Smith.
Byzantine clock synchronization. In Jayadev
Misra, editor, Proceedings of the Third An-
nual ACM Symposium on Pn’nciptes of Dis-
tributed Computing, pages 68-74, Association
for Computing Machinery, Inc., New York, Au-
gust 1984.

M. Loui and H. Abu-Amara. Memory require-
ments for agreement among unreliable asyn-
chronous processes. Advances in Computing

Research, 4:163-183, 1987.

J. Lundelius and N. Lynch. An upper and
lower bound for clock synchronization. In-
formation and Control, 62(2-3):190-204, Au-
gust/September 1984.

N. Lynch, Y. Mansour, and A. Fekete. The
data link layer: two impossibility results. In
Proceedings of the Fh Annual ACM Sympo-
sium on Principles of Distributed Computing,
pages 149-170, Toronto, Canada, August 1988.
Also, Technical Memo MIT/LCS/TM-355, Lab
for Computer Science, Massachusetts Institute
Technology, Cambridge, MA, May 1988.

N. Lynch and M.R. Tuttle. Hierarchical cor-

rectness proofs for distributed algorithms, In
Proceedings of the 6th Annual ACM Sympo-
sium on Principles of Disin’buted Computing,
pages 137-151, August 1987.

N. A. Lynch and M. R. Tuttle. An introduction
to input/output automata. To be published in
Cenfrum voor Wiskunde en Informutica Quar-
terly. Also in Technical Memo, MIT/LCS/TM-
373, Lab for Computer Science Massachusettes
Institute of Technology, November 1988.

Nancy A. Lynch and Michael J. Fischer. On
describing the behavior and implementation of
distributed systems. Theoretical Computer Sci-
ence, 13(1):17-43, January 1981.

Yishay Mansour and Shmuel Zaks. On the
bit complexity of distributed computations in
a ring with a leader. Information and Compu-
tation, 75(2):162-177, 1987.

F. Modugno, M. Merritt, and M.R. Tuttle.
Time constrained automata. November 1988.
Unpublished manuscript.

26

[841

I851

WI

1881

WI

WI

WI

WI

WI

I94

[951

S. Moran and M. Warmuth. Gap theorems for
distributed computing. In Proceedings of the

5th Annual ACM Symposium on Principles of
Distributed Computing, pages 131-150, August
1986.

S. Moran and Y Wolfstahl. Extended impos-
sibility results for asynchronous complete net-
works. Information Processing Letters, 26:145-
151, 1987.

Y. Moses and M. R. Tuttle. Programming si-
multaneous actions using common knowledge.
Algorithmica, 3(1):121-169, 1988.

J. Pachl, E. Korach, and D. Rotem. Lower
bounds for distributed maximum-finding alg@
rithms. Journal of ACM, 31(4):905-919, O&o-
ber 1984.

Jan K. Pachl. A lower bound for probabilistic
distributed algorithms. Journal of Algorithms,

8(1):53-65, March 1987.

M. Pease, R. Shostak, and L. Lamport. Reach-
ing agreement in the presence of faults. Journal

of the ACM, 27(2):228-234, April 1980.

G.L. Peterson and M.J. Fischer. Economical
solutions for the critical section problem in a
distributed syste. In Proceedings of 9th STOC,

pages 91-97, May 1977.

M. Rabin. Randomized Byzantine generals. In
Proceedings of 24th Symposium on Foundations

of Computer Science, pages 403-409, November
1983.

M. 0. Rabin. The choice coordination problem.
Actu Informutica, 17(2):121-134, 1982.

R. Reischuk and M. Koshors. Lower bound for
synchronous systems and the advantage of 1~
cal information. In Proceedings of th 2nd Inter-

national Workshop on Distributed Algorithms,

Amsterdam, June 1987.

NicoIa Santoro. On the message complezity of
Distributed Problems. Technical Report SCS-
TR-13, School of Computer Science, Carleton
Univerity, Ottawa, Canada, December 1982.

R. Schaffer. On the correctness of atomic
multi-writer registers. Bachelor’s Thesis, June
1988, Massachusetts Institute Technology. Also,
Technical Memo MIT/LCS/TM-364.

A. Segall and 0 Wolfson. Transaction commit-
ment at mimimal communication cost. In Pro-

ceedings of the 6 th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database

Systems, pages 112-117, San Diego, California,
March 1987.

John Spine&. Reliable Data Communication in

Faulty Networks. Ph.D. Thesis, Massachusetts
Institute of Technology, Cambridge, MA, 1988.

G. Taubenfeld, S. Katz, and S. Moran. Impos-
sibility tesuIts in the presence of multiple faulty
processes. April 1988. Submitted for publica-
tion.

D. Wang and L. Zuck. Tight bound for the
sequence transmission problem. To appear in
PODC 89,

Jennifer L. Welch. Simulating synchronous
processors. Information and Computation,

74(2):159-171, 1987.

M. Yamashita and T. Kameda. Computing
on an Anonymous Network. Technical Re-
port LCCRTR-87-15, Simon Fraser University,
Burnaby, British Columbia, 1987.

M. Yamashita and T. &rneda. Computing on
an anonymous network. In Proceedings of the

7’h Annual ACM Symposium on Priciples Dis-

tributed Computing, pages 131-148, Toronto,
Ontario, Canada, August 1988.

A. Yao. Some complexity questions related to
distributive computing. In Proceedings of the

llth Annual ACM Symposium on Theory of
Computing, pages 209-213, 1979.

27

