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Abstract Since Markowitz’s seminal work on the mean-
variance model in modern portfolio theory, many stud-
ies have been conducted on computational techniques
and recently meta-heuristics for portfolio selection prob-
lems. In this work, we propose and investigate a new
hybrid algorithm integrating the population based in-
cremental learning and differential evolution algorithms
for the portfolio selection problem. We consider the
extended mean-variance model with practical trading
constraints including the cardinality, floor and ceiling
constraints. The proposed hybrid algorithm adopts a
partially guided mutation and an elitist strategy to pro-
mote the quality of solution. The performance of the
proposed hybrid algorithm has been evaluated on the
extended benchmark datasets in the OR Library. The
computational results demonstrate that the proposed
hybrid algorithm is not only effective but also efficient
in solving the mean-variance model with real world con-
straints.

Keywords Mean-Variance Portfolio Optimization ·

Constrained Portfolio Selection Problem · Cardi-
nality Constrained Portfolio Selection · Differential
Evolution · Population Based Incremental Learning

1 Introduction

The portfolio selection problem (PSP) is concerned with
the allocation of limited capital to a number of po-
tential assets (investments) for a profitable investment
strategy. The pioneering work to the PSP is the con-
cept of efficient set developed by Nobel Laureate Harry
Markowitz [32][52]. In his seminal work [32] which sets

the foundations of modern portfolio theory (MPT), Ma-
rkowitz viewed portfolio selection as a mean-variance
optimization problem with regard to two criteria: to
maximize the reward of a portfolio (measured by the
mean of expected return), and to minimize the risk of
the portfolio (measured by the variance of return). More
formally, a desirable portfolio is defined to be a trade-
off between risk and expected return.

With the continuous efforts of many researchers, Marko-
witz’s seminal work has been widely extended. Markow-
itz et al [34], Pang [37] and Best and Hlouskova [8]
adopted the mean-variance approach to compute the ef-
ficient frontier (see Section-2.1) of the PSP without tak-
ing into consideration of practical constraints. A num-
ber of exact approaches had also been proposed to solve
the basic mean-variance PSP [33][35].

Although the Markowitz mean-variance model is the
fundamental theory of MPT, direct application of this
model is not of much practical uses mainly due to the
fact that it is simplified with some unrealistic assump-
tions. It assumes a perfect market without taxes or
transaction costs where short sales are not allowed, and
securities are infinitely divisible, i.e. they can be traded
in any (non-negative) fraction. From the practical point
of view, real-world investors commonly face restrictions
such as cardinality and bounding constraints. The car-
dinality constraint imposes a limit on the number of
assets in the portfolio either to simplify the manage-
ment of the portfolio or to reduce transaction costs. The
bounding constraint restricts the proportion of each as-
set in the portfolio to lie between the lower and uppper
bounds in order to avoid very small (or large) and un-
realistic holdings. The more the model is extended to
include relevant practical constraints the more it be-
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comes difficult to solve.

Many researchers have investigated a variety of tech-
niques to solve the constrained PSP. Some research has
been conducted to solve the PSP with cardinality con-
straints by using different exact techniques [7][9][29][43]
[54]. However, these exact techniques may fail to find an
optimal solution in a reasonable time and are compu-
tationally ineffective when applied to large-scale prob-
lems.

Extending the PSP with cardinality constraint already
transforms the model from quadratic optimization mod-
el to quadratic mixed-integer problem (QMIP) which
is proved to be NP-hard [36]. Since QMIPs are hard to
solve optimally, many researchers have applied different
heuristic optimization methods to the constrained PSP.
Some research uses heuristic to solve the constrained
PSP in the mean-variance framework. Fernandez et al
[19] applied a Hopfield neural network heuristic to the
PSP with cardinality and bounding constraints. Jobst
et al [26] proposed two heuristics (integer restart and
reoptimisation) using FortMP solver [17] for the con-
strained PSP. Perold [38] proposed a piecewise linear
convex approximation of the cost function to locate ef-
ficient frontier for large-scale PSP considering a number
of constraints.

Recent research on the constrained PSP with the mean-
variance framework has also investigated local search
based algorithms. Shearf [39] applied a hill climbing al-
gorithm for the constrained PSP. Arriaga and Valenzue-
la-Rend [2] presented a Steepest Ascent Hill Climbing
algorithm. The results indicated that it is competitive
against genetic algorithms in terms of performance and
execution time. Carama and Schyns [12][40] adopted
simulated annealing (SA) to solve the Markowitz model
with real-world constraints. It was claimed that the
proposed algorithm can approximate the efficient fron-
tier for medium size problems in a reasonable runtime.
Busetti [10] also investigated tabu search (TS) to solve
the PSP with cardinality, bounding and transaction
cost constraints. Shearf [39], Chang et al [11] and Wood-
side-Oriakhi et al [56] presented TS and SA to solve
PSP with cardinality and bounding constraints. Com-
putational results on the OR-libraray datasets [5][6]
were presented. Gaspero et al [22] proposed a hybrid
technique that combined local search with a quadratic
programming procedure to solve the constrained PSP.

In recent years, a majority of work in the literature
had been focused on the population based metaheuris-
tic algorithms for the PSP in mean-variance framework.

Several works had applied genetic algorithms (GAs) to
solve PSP with various constraints [11][19][45][56]. Ex-
perimental results showed that GA outperformed SA
and TS. Some works had also applied the particle swarm
optimization algorithms (PSOs) to compute the con-
strained efficient frontier of PSP [24][57][13].

Moral-Escudero et al [36] proposed a hybrid strategy
to solve the PSP with cardinality constraints. The pro-
posed hybrid method used GA to select the optimal
subset of the available assets and quadratic program-
ming to determine the proportion of capital to be in-
vested in each asset. The results outperformed TS in
several benchmark problems. Xu et al [58] also pre-
sented a hybrid algorithm to solve the PSP with car-
dinality and bounding constraints. The proposed algo-
rithm hybridizes a population based incremental learn-
ing algorithm and a continuous population based in-
cremental learning algorithm to optimize the selection
and the proportion of assets respectively. The experi-
mental results showed that the proposed algorithm was
competitive to GA and PSO and achieved good results
in searching efficient portfolios with high expected re-
turns.

Several works had also been carried out for the PSP
using multiobjective approaches. Ehrgott et al [16] ap-
plied a GA to optimize the PSP with objectives which
are aggregated via user-specified utility functions. Skol-
padungket et al [44] and Streichert et al [48] proposed
various types of multiobjective GAs to solve the con-
strained PSP. Krink et al [27][28] proposed a differen-
tial evolution (DE) algorithm for multiobjective portfo-
lio optimization. The proposed algorithm was compared
with quadratic programming and NSGA-II. A compre-
hensive review of metaheuristics in portfolio selection
problem could be found in [15] and [30].

In this work, we propose a hybrid algorithm to com-
pute efficient frontier for the mean-variance model with
the cardinality and bounding constraints. The rest of
the paper is organized as follows. Section 2 presents
the basic Markowitz mean-variance model and extends
the model with cardinality, floor and ceiling constraints.
Section 3 provides a detailed description on the com-
ponents of the hybrid algorithm based on population
based incremental learning and differential evolution
algorithms. Section 4 presents experiments performed
and the computational results. Conclusions are given in
Section 5.
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2 Problem Statement

2.1 The Markowitz Mean-Variance Model

The Markowitz mean-variance model (MV model) is
formulated as an optimization problem over real-valued
variables with a quadratic objective function and linear
constraints as follows.

minimize

N
∑

i=1

N
∑

j=1

wiwjσij (1)

subject to

N
∑

i=1

wiµi =R∗ (2)

N
∑

i=1

wi = 1 (3)

0 ≤ wi ≤ 1, i= 1, ...,N (4)

where N is the number of available assets, µi is the ex-
pected return of asset i (i= 1...N), σij is the covariance
between assets i and j (i= 1...N ; j = 1...N), R∗ is the
desired expected return, and wi (0 ≤ wi ≤ 1) is the de-
cision variable which represents the proportion held of
asset i. Equation(1) minimizes the total variance (risk)
associated with the portfolio whilst Equation(2), the
return constraint, ensures that the portfolio has a pre-
determined expected return of R∗. Equation(3) defines
the budget constraint (all the money available should
be invested) for a feasible portfolio while Equation(4)
requires that all investment should be positive, i.e., no
short sales are allowed. We could trace out the set of
efficient portfolios by solving the model (Eq(1)-(4)) re-
peatedly with different value of R∗ at each time.

By introducing a risk aversion parameter λ ∈ [0,1], the
sensitivity of the investor to the risk can be defined in
the model as follows.

minimize λ

[

N
∑

i=1

N
∑

j=1

wiwjσij

]

+ (1−λ)

[

−

N
∑

i=1

wiµi

]

(5)

subject to

N
∑

i=1

wi = 1 (6)

0 ≤ wi ≤ 1, i= 1, ...,N (7)

In Equation(5), when λ is zero, the model maximizes
the mean expected return of the portfolio regardless of

the variance (risk). On the other hand, when λ equals
one, the model minimizes the risk of the portfolio re-
gardless of the mean expected return. For the portfolio
selection problem in Eq(5)-(7), a portfolio is considered
to be efficient based on the concept of the Pareto op-
timality [21]. In other words, for a given level of risk,
compared to an efficient portfolio, there should be no
portfolio with a higher expected return, or conversely
for a given expected return there should be no portfo-
lio with a lower risk. The complete set of these efficient
portfolios forms the efficient frontier that represents
the best trade-offs between the mean return and the
variance (risk).1 Figure-1 shows the unconstrained ef-
fcient frontier derived for the Hang Seng dataset (see
Section-4.1) from the OR-library [5][6].

Fig. 1 The unconstrained Efficient Frontier for the Hang Seng
dataset.

2.2 The Mean Variance Model with Cardinality and
Bounding Constraints (CCMV)

The basic mean variance model has several limitations
which prohibit its use in practice. As a result several
extensions and modifications have been developed in
the literature to address real world constraints. In this
work, we consider two common trading constraints, nam-
ely the cardinality and bounding constraints. Cardinal-
ity constraint specifies the maximum number of assets
that a portfolio can hold to simplify the management
of the portfolio and to reduce transaction costs. Bound-
ing constraints2 specify the lowest and highest limits on
the proportion of each asset that can be held in a single
portfolio. With these two constraints, the model can be
described as follows.

1 For an analytic derivation of the efficient frontier, see [35]
2 In some literature, it is also known as quantity constraints

or buy-in threshold constraints
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minimize λ

[

N
∑

i=1

N
∑

j=1

wiwjσij

]

+ (1−λ)

[

−

N
∑

i=1

wiµi

]

(8)

subject to

N
∑

i=1

wi = 1, (9)

N
∑

i=1

si =K, (10)

ǫisi ≤ wi ≤ δisi, i= 1, ...,N, (11)

si ∈ {0,1} , i= 1, ...,N (12)

where K is the desired number of invested assets in
the portfolio, si denotes whether asset i is invested or
not. If si equals to one, asset i is chosen to be invested
and the proportion of capital wi lies in [ǫi, δi], where
0 ≤ ǫi ≤ δi ≤ 1. Otherwise, asset i is not invested and
wi equals to zero. The above stated CCMV model is
a mixed integer quadratic programming problem for
which there exists no efficient algorithm. It may be
seen as two subproblems: the selection of assets and
the determination of the proportions of the selected as-
sets. A new hybrid algorithm is presented in Section-3
to address these problems. When the basic model is
extended to include the cardinality and bounding con-
straints the resultant efficient frontier might be discon-
tinuous [11][26].

3 A Hybrid Algorithm (PBILDE) for the

Portfolio Selection Problem

In this work, we propose a new hybrid approach based
on evolutionary algorithms which iteratively evolve a
population of candidate solutions towards better solu-
tions. Inspired by the works in the literature [4][50][51][53]
[58], our hybrid approach, PBILDE, combines popula-
tion based incremental learning (PBIL) and differential
evolution (DE) to solve the CCMV model.

Population Based Incremental Learning (PBIL), pro-
posed by Baluja [3][4], is one of the simplest yet ef-
fective Estimation of Distribution Algorithms (EDAs).
It is based on the idea of evolving the individuals of
the population based on statistical information gath-
ered during evolution. Assuming there is no dependence
between the variables, PBIL uses a probability vector to

represent the distribution of all individuals. The proba-
bility vector is learnt towards the values that represent
the best solution. The population of random samples is
then generated based on the probabilites specified in the
probability vector. For more comprehensive overviews
of PBIL, see [3][4][25][41].

Differential Evolution (DE), proposed by Stron and Pri-
ce [46][47], is one of the most successful evolutionary al-
gorithms (EAs) for continuous optimization problems.
Like a typical EA, DE has a random initial population
that is then improved using mutation, crossover and re-
combination operations. DE mutates a (parent) vector
in the population with a scaled difference of other ran-
domly selected individual vectors. The resultant vector
is then crossed over with the parent vector to generate
a trial or offspring vector. The offspring vector replaces
the parent vector if it has a better fitness value. Oth-
erwise, the parent vector survive and is passed on to
the next generation. There are several variants of DE in
the literature [46][47]. They are varied by using different
types of solution, different number of solutions to calcu-
late the mutation values and different types of recombi-
nation operators. In this work, we use the scheme which
can be classified as DE/rand/1/bin, where ”rand” indi-
cates that individuals are selected randomly to compute
the mutation values, ”1” denotes the number of pairs
of solutions chosen and finally ”bin” means that bino-
mial recombination is used. For more comprehensive
overviews of DEs, see [14][18][31][46][47].

3.1 Overview of the Hybrid Algorithm

We propose a hybrid algorithm, PBILDE, to efficiently
address the CCMV model described in Section-2.2. PBI-
LDE maintains a population of chromosomes, each rep-
resenting a potential solution to the portfolio selection
problem with cardinality and bounding constraints. It
also maintains a real-valued probability vector to de-
note the probability of each asset being selected in high
quality portfolios. As mentioned in the previous sec-
tion, the portfolio selection problem can be seen as two
sub-problems, the determination of the selection of as-
sets and the allocation of capital to each asset. In each
iteration of PBILDE, the probability vector is used to
generate a population of solutions determining which
assets are included in each solution. The DE offspring
generation scheme (see Section-3.2.7) is used to allocate
the proportions of assets.

In each iteration, PBILDE maintains an archive of the
best solutions found during the evolution (see Section-
3.2.4). A partially guided mutation (see Section-3.2.6)
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is also adopted to guide further search towards selecting
favorable set of assets. The evolution process continues
until a stopping criterion is met (i.e, the current best
objective function value is better than a given value or
it reaches to a certain number of generations). The de-
tailed description of the algorithm and pseudocode (see
Figure-2) are described in Section-3.2.

3.2 The Hybrid Algorithm

Let

N = number of available assets
NP = number of individuals in the population
K = number of selected asset(s) in a portfolio,
i.e. the cardinality
ǫi = minimum limit on the proportion of the ith

asset
δi = maximum limit on the proportion of the ith

asset

si =
{

1 if the ith (i= 1, ...,N) asset is chosen
0 otherwise

wi = proportion invested in the ith asset
υi = probability of the ith asset being selected
M = number of portfolio(s) in the archive
GBest = the archive maintaining the M best
portfolio(s) found so far
best = the best portfolio in the archive GBest
cbest = the best individual of the current popu-
lation
cworst = the worst individual of the current
population
scbest

i = si of the best portfolio of the current
population
scworst

i = si of the worst portfolio of the current
population
LR = learning rate
NEG LR = negative learning rate
MP = mutation probability
MR = mutation rate
CR = crossover rate
F = scaling factor
P g = population of generation g
Rand[x,y]=uniform random integer in the range
[x,y]
rand[x,y]=uniform random real-value in the range
[x,y]

Pseudocode: PBILDE Algorithm

BEGIN

INITIALIZATION:
for i := 1 to N

υi = 0.5
end for

for each portfolio pj , j := 1 to NP do

randomly generate an individual
if constraints are violated

repair by Constraint Handling Techniques
(see Section-3.2.8)

end for

Repeat until certain number of generations
EVALUATE:

for j := 1 to NP do

evaluate f(pj) \\see Eq-(13)
end for

CREATE ARCHIVE:
GBest ← Maintain the M best portfolio(s)

found so far
cbest← best portfolio of the current population
if (f(cbest) > f(best))

Replace the M worst individuals of the
current population by the M best
individuals from the archive, GBest

end if

UPDATE:
update υi by learning from the best and worst
individuals of the current population
(see Section-3.2.5)

MUTATE:
Perform Partially Guided Mutation
(see Section-3.2.6)

GENERATE OFFSPRING: (see Section-3.2.7)
Generate a trial population by DE offspring
generation scheme.
Determine individuals of the next population
using greedy selection.

END

Fig. 2 Pseudocode of the Proposed PBILDE Algorithm.

3.2.1 Solution representation and encoding

In our solution representation, one probability vector of
size N is used to determine which assets are included
in the portfolio. The probability vector v is updated
throughout the evolution by learning from the best so-
lutions obtained from the population. Two vectors of
size N are used to define a portfolio p: a binary vec-
tor si, i= 1, ...,N denoting whether asset i is included
in the portfolio, and a real-value vector wi, i= 1, ...,N
representing the proportions of the capital invested in
the assets. Some existing research adopts the same en-
coding method to define a portfolio [1][49].
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v 0.5 0.5 0.5 0.5 0.5

s 1 0 0 1 0
w 0.69 0.0 0.0 0.57 0.0

p1

...

s 0 1 0 1 0
w 0.0 0.29 0.0 0.87 0.0

pNP

⇓ Normalize

s 1 0 0 1 0
w′ 0.55 0.0 0.0 0.45 0.0

p1

...

s 0 1 0 1 0
w′ 0.0 0.25 0.0 0.75 0.0

pNP

Fig. 3 Example of an initial population and probability vector
v.

3.2.2 Initialization

In PBILDE, the evolution is carried out on a population
of a predefined number of individuals p which are rep-
resented by si and wi. The probability vector υi, which
is maintained, is used to determine if asset i is selected
in a portfolio, i.e. si = 1 or si = 0. An initial popula-
tion of the predetermined number of portfolios from the
N available assets is randomly generated. Initially, the
probability vector υi is set to 0.5 to give equal chances
to each asset being selected. The proportions of the se-
lected assets in each solution are then randomly gener-
ated from the given lower and upper bounds by adopt-
ing Gaussian distribution. The randomly constructed
portfolio could violate the constraints in the model and
the constraint handling scheme described in Section-
3.2.8 is applied to adjust and normalize the weights.
(See Figure- 3)

3.2.3 Evaluation

To differentiate good and bad portfolios, the fitness of
a portfolio p is evaluated as follows:

f(p) = λ
∗

[

N
∑

i=1

N
∑

j=1

wiwjσij

]

+
(

1−λ
∗
)

[

−

N
∑

i=1

wiµi

]

(13)

where f(p) denotes the fitness of individual p, λ∗ de-
notes the value of λ, wi and wj denotes the ith and
jth dimension of the proportion vector in individual p,

respectively. The smaller the fitness value the better is
the portfolio.

3.2.4 Maintain of the Archive

During the evolution, an archive (GBest) reserves the
M best portfolios. At each iteration during the evolu-
tion, the archive is updated to maintain the best indi-
viduals found so far. If the best individual in the new
sampled population (cbest) at the current generation
is worse than the global best individual found so far
(best), then the M worst individual(s) of the current
population are replaced by the M global best individ-
ual(s) from the archive. The strategy promotes the con-
vergence of the algorithm. The idea to maintain the
archive is to ensure that the global best solutions found
by the algorithm are not lost and to exploit the global
best solution(s) found during the search to help find
better soultions.

3.2.5 Update of the probability vector

In PBILDE, the probability vector υ is used to store
statistic information collected during the evoluation to
guide the generation of the following populations. At
each generation, the learning rate (LR) and negative
learning rate (NEG LR) are used to update the prob-
ability vector (υ). They control not only the speed at
which the probability vector is shifted to resemble the
best solution vector but also the portion of the search
space that will be explored [20][42]. The probability vec-
tor is updated by learning from the best solution of the
current population scbest

i at a learning rate LR as fol-
lows:

υi = υi × (1−LR)+scbest
i ×LR

In addition, after the probability vector is updated at
the learning rate LR, if the ith asset is selected in the
best solution but it is not selected in the worst solution
or vice versa (i.e, scbest

i 6= scworst
i ) then the ith asset has

a higher probability of being selected or not selected.
Hence, the probability vector is updated by a negative
learning rate NEG LR in order to move away from
bad solutions i.e. learn from the bad individuals. When
scbest

i 6= scworst
i , it is updated in the same way as PBIL

in [58] as follows:

υi = υi × (1−NEG LR)+scbest
i ×NEG LR

3.2.6 Mutation of the probability vector

One of the factors to consider in designing the model
in the population-based approach is to find an effective
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way to generate offspring. The approximate optimal-
ity principle [23] assumes that good solutions tend to
have similar structure. This assumption is reasonable
for many real-world problems. Based on this assump-
tion, an ideal offspring generator aims to produce a so-
lution which is close to the best solutions found so far
in the hope that the resultant solution will be not far
from the best solution and fall into a promising area of
the search space [59].

At each itearation of the evolution, each dimension of
the probability vector (υ) is updated according to a
certain mutation probability (MP ). By taking into ac-
count of the balance between the exploitation and ex-
ploration of the search space, we adopt a new partially
guided mutation. It gives an equal chance to mutate
the probability vector (υ) either randomly or based on
the global best solution at a mutation rate MR (i.e.,
guided mutation). The aim is to strike a balance be-
tween exploiting good structures in the best solutions
and exploring other area of the search space. The pseu-
docode of the guided mutation is decribed in Figure-4.

In PBILDE, the probability vector (υ) in the main eval-
uation is maintained by the update and mutation based
on the best and worst individuals in the population. It
is then utilized to influence the selection of assets in
the next generation of portfolios. The proportion of the
asset is generated by DE offspring generation scheme,
as explained next.

Pseudocode: Partially Guided Mutation

for i := 1 to N do

if rand(0,1] < MP \\MP: mutation probability
if rand(0,1] < 0.5

r = Rand[0,1]
υi = υi× (1−MR) + r×MR

else

υi = scbest
i

end if

end if

end for

Fig. 4 Pseudocode of Partially Guided Mutation

3.2.7 DE Offspring Generation

The offspring generation scheme in PBILDE works with
a population of solutions evolved during evolutions. The
population of the next generation, P g+1, is created
based on the current population of the generation P g

with NP individuals (portfolios). It first generates a

trial population P
g+1

. Each individual trial portfolio
pg+1

j contains two vectors:

wg+1

j,i , j ∈ {1, ...,NP}; i ∈ {1, ...,N}

sg+1

j,i , j ∈ {1, ...,NP}; i ∈ {1, ...,N}

where wj,i denotes the proportion of the ith asset in
the jth portfolio and sj,i denotes whether the ith asset
in the jth portfolio is selected or not.

A trial population is generated as described in Figure-
5. For each trial portfolio, if the ith asset is selected
then the weights of ith asset is generated by the mu-
tation and crossover operations. Firstly, three mutually
different indexes, r1, r2 and r3, which are also different
from the index j of the current trial portfolio pg+1

j , are
randomly selected from the parent population. The in-
dexes r1, r2 and r3 are randomly selected for each trial
vector in the trial population.

In the mutation operation, the difference between two
of the randomly selected vectors (r1 and r2) from the
current population is multiplied by an amplification fac-
tor, F , and it is added to the third randomly selected
vector (r3) from the current population.

The binary crossover is performed to yield the trial vec-
tor. The crossover probability CR represents the prob-
ablility of mutating the value of the trial vector. The
condition i== r′ is to ensure that at least one element
of the trial vector is different compared to the elements
of the parent vector from the current generation. Sim-
ilar to the initialization process, if the trial solution
generated violate the constraints in the model, the con-
straint handling scheme (see Section-3.2.8) is applied.

Pseudocode: Generate Trial Population

for j := 1 to NP do

r′ := Rand[1,N ]
for i := 1 to N do

Randomly select r1, r2, r3 ∈ {1, ...,NP},
r1 6= r2 6= r3 6= j

if rand(0,1] < vi

s
g+1

j,i
= 1

if rand(0,1] < CR OR i == r′

w
g+1

j,i
= w

g
r3,i

+ F × (wg
r1,i
−w

g
r2,i

)
else

w
g+1

j,i
= w

g
j,i

end if

end if

end for

end for

Fig. 5 Pseudocode of Generating Trial Population
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The population of the next generation P g+1 is selected
from the current population P g and the trial popula-
tion P

g+1
. Each individual of the trial population is

compared with the corresponding individual of the cur-
rent populaion. PBILDE adopts the greedy selection in
DE [47]. Under the greedy criterion, the better indi-
vidual with the lower fitness value becomes a member
individual of the next generation’s population:

pg+1

j =

{

pg+1

j if f(pg+1

j )< f(pg
j )

pg
j otherwise

3.2.8 Constraint Handling

During the population sampling, each constructed indi-
vidual must be repaired if the representative portfolio
does not satisfy the constraints of the problem. If the
number of the selected assets is smaller or larger than
K, then a repair operator selects or deletes an asset by
using a heuristic which prioritizes the assets [13]. The
idea is that the asset with a higher expected return and
a lower covariance with other assets is believed to have
higher chances to be in the best portfolio. The repair
process continues untill the number of assets in a port-
folio equals K, i.e. it satisfies the cardinality constraints
(Eq-(10)).

The budget constraint in (Eq-(9)) is satisfied by firstly

normalizing the weights: wi =wi/
N
∑

j=1

wj over those as-

sets selected based on the probability vector υ. More-
over, the bounding constraint in Eq-(11) requires the
proportion of asset i to be in the range [ǫi, δi]. If the
proportion of asset after the normalization violates the
upper or lower bound constraints, then it is adjusted as
follows:

wi =























wi +ψ× (θi/δ
∗) if δi >wi

δi if δi <wi

wi −φ× (ϕi/ǫ
∗) if wi > ǫi

ǫi if wi < ǫi

where,

θi = δi −wi

ϕi = wi − ǫi

δ∗ =
N

∑

i=1

θi where θi > 0,

ψ =
N

∑

i=1

|θi| where θi < 0,

ǫ∗ =
N

∑

i=1

ϕi where ϕi > 0

φ=
N

∑

i=1

|ϕi| where ϕi < 0.

The same repair strategies have been used in the lit-
erature [11][13][58] to adjust the number of assets and
the weight of assets in the portfolio. We adopt these
strategies for a fair comparison in the experiments.

4 Computational Results

In this section, we describe the experiments performed
and present computational results on both unconstrained
and constrained PSP. The proposed PBILDE hybrid
algorithm described in Section 3 has been firstly com-
pared to two other approaches, DE and PBIL.

The DE approach differs from PBILDE in such a way
that it performs selection of assets randomly before de-
termining the proportions of assets in the weight vector.
In other words, instead of using the probability vector,
it makes no effort to learn from the population in order
to decide which assets are favorable to be included.

The PBIL approach adopted in our experiment is orig-
inally proposed by Xu et al [58]. Xu et al [58] proposed
a hybrid algorithm called PBIL CCPS by integrating a
PBIL and a continuous PBIL for the constrained PSP.
It first builds a probabilistic model about the distribu-
tion of good individuals in the search space and then
samples a new generation of population using the prob-
ablistic model. It maintains three vectors, a probability
vector, a mean vector and a standard deviation vector,
to learn from the previous generation. Like PBIL in [58],
our adapted PBIL uses the same three vectors, proba-
bility vector, the mean and standard deviation vectors,
and allocates a random proportion for the selected as-
set by Gaussian distribution. Unlike Xu et al [58], our
PBIL approach with the archive of the best individuals
(the elite) replaces the M worst solutions of the current
populaion with the M global best solutions. Moreover,
we introduce a partially guided mutation to exploit the
information obtained during the evolution about the
search space.

All three algorithms (PBILDE, PBIL and DE) in our
study are applied with the elitism and partially guided
mutation to demonstrate the effectiveness and efficiency
of the hybrid PBILDE against the PBIL and DE with
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the same settings.

The proposed PBILDE has also been compared to a
number of state-of-the-art approaches in the literature
using the same evaluation methods to demonstrate the
effectiveness of the hybrid algorithm for both the con-
strained and unconstrained PSP. All of our experiments
are coded in C# and run on a core2duo with a 3.16GHz
processor and 2GB RAM. The experimental results ob-
tained for each algorithm are the average of 20 runs.

4.1 DataSets

A test data for the portfolio optimization problems from
the OR-library [5][6] is used to evaluate the perfor-
mance of the algorithms described above. These datasets
contain the estimated returns and the covariance ma-
trix of five different stock market indices: Hang Seng in
Hong Kong, DAX 100 in Germany, FTSE 100 in UK,
S&P 100 in USA and Nikkei 225 in Japan. For each
set of the test data, the number of assets N is 31, 85,
89, 98 and 225, respectively. In the current literature of
portfolio selection problem, this set of dataset has been
widely adapted and tested, and is recognized as the
benchmark to evaluate computational algorithms. All
information of the dataset itself and their best known
solutions can be accessed online [6].

4.2 Parameter Settings

In the parameter settings, the value of λ in the ob-
jective function Eq-(5) is set as λi = (i− 1)/49 where
i = 1,2, ...,50. For each value of λ, each algorithm car-
ried out in total 1000N fitness evaluations excluding
the initializations.

Unconstrained PSP:
We set K =N , ǫi = 0 (i= 1, ...,N), δi = 1 (i= i, ...,N)
and NP = 20 for the unconstrained problem.

For PBIL, the values of the learning rate (LR) and the
negative learning rate (NEG LR) are 0.1 and 0.075,
respectively. The mutation probability (MP ) and mu-
tation rate (MR) in the partially guided mutation, see
Figure-4, are 0.05 and 0.05, respectively. The number of
the best M portfolios is set as NP/4. The probability
of the learning rate of the mean vector and standard
deviation vector PLR, is linearly increased from the
range [0.05,0.4]. The above parameter values are set by
referring those in [58] and testing.

In DE, the two parameters CR and F are set as 0.8

and 0.9, respectively, as proposed in [55]. The number
of the best M portfolios is set as NP/4.

In PBILDE, the values of the learning rate (LR) and
the negative learning rate (NEG LR) are the same as
those in PBIL. CR, F and M values are the same as
those in DE. The mutation probability (MP ) and mu-
tation rate (MR) are 1/N and 0.05 respectively.

Constrained PSP:
In all three algorithms, we set K = 10, ǫi = 0.01 (i =
1, ...,N) and δi = 1 (i= i, ...,N) for constrained test. For
PBIL and DE, the population size (NP) is set as 20. For
PBILDE, we set mutation probability MP = 1/N and
number of population NP =N/4.

4.3 Performance Evaluation

To compare the efficiency of the algorithms, we com-
pared the efficient frontier obtained by each algorithm
with the optimal solutions provided by OR-library [5][6].
We adopt the same approach as previously used by
Chang et al [11] to calculate the percentage deviation
of each portfolio. It is evaluated by measuring the dis-
tance of the obtained efficient portfolio from the opti-
mal efficient frontier. As mentioned in Section-4.2, 50
weighting parameter (λ) values are used to calculate
the efficient frontier of the portfolio selection problem
(see Eq-(8)). We maintain a set V which consists of
the best solution found for each λ. Each portfolio in
set V is used to evaluate the percentage deviation from
the optimal efficient frontier for the unconstrained PSP.

For the constrained PSP, the efficient frontier becomes
discontinuous when the cardinality constraint is included
in the problem (see Section-2.2). It is therefore consid-
ered to be inappropriate to use only set V to evalu-
ate the performance of the algorithms. Another set H
is thus defined to store all efficient portfolios during
the evolution. For each value of λ, let p(λ) be the cur-
rent best portfolio found by the algorithm. During the
course of iteration, a newly found portfolio is added
to H if it is better than p(λ). Those portfolios which
are dominated by other portfolio in the set are then
removed from the set H. The resulting set H and set
V are used to calculate percentage deviation errors for
the constrained PSP.

The same evaluation method of percentage deviation
errors in Chang et al [11] has been adopted. Each ob-
tained portfolio in the set H and set V is evaluated by
measuring its distance (i.e, horizontally and vertically)
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from the optimal efficient frontier. The horizontal dis-
tance (x) from the efficient frontier is measured by con-
sidering the portfolio’s expected return as fixed. Simi-
larly, the vertical distance (y) from the efficient frontier
is measured by considering the portfolio’s risk as fixed.
The final percentage deviation error is then measured
by taking the minimum of these two values.

4.4 Experimental Results

4.4.1 Unconstrained PSP

It has been observed that the population size of the al-
gorithms does not lead to significantly different result
for the unconstrained PSP. We therefore set the popula-
tion size as 20. Table-1 provides the comparison on the
results of set V of three algorithms, namely PBILDE,
DE and PBIL. PBILDE performed the best and ob-
tained better results on 4 out of 5 datatsets. We can
conclude from the results that PBILDE is an efficient
algorithm. DE is the second best in three algorithms.
By allocating the same number of evaluations to all
three algorithms, similar CPU time is required.

Instance PBILDE DE PBIL
Index N V V V

Hang Seng 31
MPE( %) 0.0002 0.0280 0.2385

MedPE( %) 2.63E-06 2.81E-06 0.0257
Time(s) 109 105 134

DAX 100 85
MPE( %) 0.0052 0.0089 1.1849

MedPE( %) 2.11E-05 2.15E-05 0.4292
Time(s) 1445 1522 2103

FTSE 100 89
MPE( %) 0.0059 0.0049 0.9813

MedPE( %) 2.11E-06 1.98E-06 0.0799
Time(s) 1643 1898 2145

S&P 100 98
MPE( %) 0.0078 0.0094 1.2361

MedPE( %) 3.54E-06 3.72E-06 0.1443
Time(s) 2094 2479 2700

Nikkei 225
MPE( %) 0.2733 0.2503 3.7411

MedPE( %) 2.25E-05 2.61E-05 2.0514
Time(s) 24823 28795 31903

Table 1 Comparison Results of PBILDE with DE and PBIL
for the Unconstrained PSP.

We also compare PBILDE with the results from Chang
et al [11] and Xu et al [58] in Table-2, where MedPE and
MPE denote the average values of the obtained median
percentage error (MedPE) and mean percentage error
(MPE) of set V in 20 runs. The comparison results
show that PBILDE can achieve better solution in most
instances.

Instance PBILDE Chang-GA Chang-TS Chang-SA Xu-GA Xu-PSO Xu-PBIL
Index N V V V V V V V

Hang Seng 31
MPE( %) 0.0002 0.0202 0.8973 0.1129 0.0191 0.1422 0.0003

MedPE( %) 2.63E-06 0.0165 1.0718 0.016 0.0166 1.07E-05 1.24E-05

DAX 100 85
MPE( %) 0.0052 0.0136 3.5645 0.0394 0.035 1.1044 0.0023

MedPE( %) 2.11E-05 0.0123 2.7816 0.0033 0.0124 4.77E-5 3.51E-05

FTSE 100 89
MPE( %) 0.0059 0.0063 3.2731 0.2012 0.0109 1.143 0.0186

MedPE( %) 2.11E-06 0.0029 3.0238 0.0426 0.002 0.0084 2.45E-05

S&P 100 98
MPE( %) 0.0078 0.0084 4.428 0.2158 0.043 2.0249 0.0137

MedPE( %) 3.54E-06 0.0085 4.278 0.0142 0.0085 0.5133 2.85E-05

Nikkei 225
MPE( %) 0.2733 0.0085 15.9163 1.7681 0.3715 8.1781 0.0606

MedPE( %) 2.25E-05 0.0084 14.2668 0.8107 0.0068 4.7023 2.69E-05

Table 2 Comparison results of PBILDE with Chang et al [11]
and Xu et al [58] for the Unconstrained PSP.

4.4.2 Constrained PSP

In this section, before we compare the proposed PBILDE
to other heuristic approaches, we outline a number of
tests performed to decide the value of population size
assignment and to adopt the new partially guided mu-
tation and elitist scheme in PBILDE. Different pop-
ulation sizes are tested for the constrained PSP and
the results are shown in Table-3. Unlike for the uncon-
strained PSP where the setting of population size does
not lead to different perfomance, results show that for
constrained PSP, setting population size (NP ) as N/4
is better than both 20 and 2N . It obtains more efficient
points in set H at a much higher computation time.

We tested the role of partially guided mutation (PGM)
in PBILDE. The results shown in Table-4 are the av-
erage results of 20 runs as mentioned above. It is clear
from the Table-4 that adopting the partially guided mu-
tation in PBILDE contributes to better solution quality.
We also tested the contribution of elitist strategy in
PBILDE. Given the result shown in Table-5, we would
conclude that it is an advantage to maintain the archive
scheme in PBILDE.

Table-6 provides the comparison results of PBILDE,
PBIL and DE with population sizeNP =N/4. PBILDE
outperforms DE and PBIL in all instances. Results show
that PBILDE uses up less CPU time on larger problems
compared against PBIL and DE. Furthermore, the lack
of consideration on an efficient selection of assets in
DE penalizes the algorithm performance. Both PBIL
and PBILDE use a probability vector in determing the
selection of assets in a portfolio. Experimental results
of PBIL compared with PBILDE show that the use of
the probablistic model with the mean and standard de-
viation vectors in determining the proportions of the
assets is not as effective as employing the DE within
PBILDE. Figure-6 shows the comparison of the effi-
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Instance NP = 20 NP = 2N NP=N/4
Index N V H V H V H

Hang Seng 31

avg MPE( %) 1.1235 0.8865 1.1101 0.8925 1.1431 0.6196

avg MedPE( %) 1.2283 1.1050 1.2230 1.1060 1.2390 0.4712

Number of EF points 2923 2165 6367

Time(s) 60 99 113

DAX 100 85

avg MPE( %) 2.4481 1.7449 2.4101 1.6597 2.4251 1.5433

avg MedPE( %) 2.5922 1.4291 2.5866 1.3945 2.5866 1.0986

Number of EF points 3347 2021 3378

Time(s) 526 818 1358

FTSE 100 89

avg MPE( %) 1.0322 1.0177 0.9460 0.7204 0.9706 0.8234
avg MedPE( %) 1.0841 0.5443 1.0840 0.5203 1.0840 0.5134

Number of EF points 2919 1574 2957

Time(s) 590 962 1496

S&P 100 98

avg MPE( %) 1.9144 1.7338 1.5688 1.2380 1.6386 1.3902
avg MedPE( %) 1.1617 0.8556 1.1594 0.9085 1.1692 0.7303

Number of EF points 4546 2608 4570

Time(s) 762 1014 1901

Nikkei 225

avg MPE( %) 0.6314 0.5198 0.5995 0.4604 0.5972 0.3996

avg MedPE( %) 0.6017 0.5233 0.5903 0.5262 0.5896 0.4619

Number of EF points 3967 2560 4000

Time(s) 4955 8070 14918
Average of
all instances

avg MPE( %) 1.1805 1.3269 0.9942 1.3549 0.9552

avg MedPE( %) 1.3336 0.8914 1.3287 0.8911 1.3337 0.6551

Table 3 Comparison results of PBILDE with different popu-
lation size (NP) for the constrained PSP.

Instance PBILDE-with PGM PBILDE-without PGM
Index N V H V H

Hang
Seng

31
MPE( %) 1.1431 0.6196 1.1444 0.7609

MedPE( %) 1.2390 0.4712 1.2402 0.7284
Number of EF points 6367 6215

Time(s) 113 111

DAX
100

85
MPE( %) 2.4251 1.5433 2.4701 1.7668

MedPE( %) 2.5866 1.0986 2.6003 1.4315
Number of EF points 3378 3321

Time(s) 1358 1332

FTSE
100

89
MPE( %) 0.9706 0.8234 1.0431 1.0258

MedPE( %) 1.0840 0.5134 1.0841 0.5213
Number of EF points 2957 2937

Time(s) 1496 1453

S&P
100

98
MPE( %) 1.6386 1.3902 1.8451 1.7740

MedPE( %) 1.1692 0.7303 1.1595 0.8161
Number of EF points 4570 4240

Time(s) 1901 1822

Nikkei 225
MPE( %) 0.5972 0.3996 0.6142 0.4476

MedPE( %) 0.5896 0.4619 0.5965 0.4959
Number of EF points 4000 3832

Time(s) 14918 14327

Table 4 Comparison results of PBILDE with and without par-
tially guided mutation.

cient frontiers of PBILDE, PBIL and DE for the con-
strained PSP. We also evaluated the performance of the
algorithms by the average fitness of the efficient port-
folios obtained throughout the evolution. The fitness
of the algorithm in a certain generation is measured

Instance PBILDE-with elitism PBILDE-without elitism
Index N V H V H

Hang
Seng

31
MPE( %) 1.1431 0.6196 1.1241 0.7521

MedPE( %) 1.2390 0.4712 1.2410 0.7612
Number of EF points 6367 6215

Time(s) 113 102

DAX
100

85
MPE( %) 2.4251 1.5433 2.4989 1.7300

MedPE( %) 2.5866 1.0986 2.6026 1.2384
Number of EF points 3378 2817

Time(s) 1358 1232

FTSE
100

89
MPE( %) 0.9706 0.8234 1.0515 1.1300

MedPE( %) 1.0840 0.5134 1.0841 0.5500
Number of EF points 2957 2790

Time(s) 1496 1333

S&P
100

98
MPE( %) 1.6386 1.3902 1.7889 1.7387

MedPE( %) 1.1692 0.7303 1.1609 0.8343
Number of EF points 4570 4177

Time(s) 1901 1702

Nikkei 225
MPE( %) 0.5972 0.3996 0.6125 0.4480

MedPE( %) 0.5896 0.4619 0.5961 0.4930
Number of EF points 4000 3927

Time(s) 14918 11735

Table 5 Comparison results of PBILDE with and without
elitism.

by the average mean percentage error deviation of the
obtained efficient portfolios from the unconstrained ef-
ficient frontier (UCEF). The performance of the algo-
rithms is provided in Figure-7. In all figures, the graphs
represent the average of the mean percentage error in
20 runs. The results clearly demonstrate that our pro-
posed algorithm PBILDE significantly outperforms DE
and PBIL on all problems tested.

Instance PBILDE DE PBIL
Index N V H V H V H

Hang
Seng

31
MPE( %) 1.1431 0.6196 1.2150 1.1932 1.3894 1.3737

MedPE( %) 1.2390 0.4712 1.2331 1.2807 1.5780 1.5267
Time(s) 113 79 95

DAX
100

85
MPE( %) 2.4251 1.5433 3.3077 2.9670 2.5129 2.9245

MedPE( %) 2.5866 1.0986 2.7410 2.5293 2.5850 2.6648
Time(s) 1358 1274 1478

FTSE
100

89
MPE( %) 0.9706 0.8234 1.3651 1.6203 1.3190 2.0282

MedPE( %) 1.0840 0.5134 1.0975 0.9832 1.1204 1.2599
Time(s) 1496 1542 1589

S&P
100

98
MPE( %) 1.6386 1.3902 3.2008 3.2170 2.4722 3.1763

MedPE( %) 1.1692 0.7303 1.5970 1.4973 1.2096 1.3810
Time(s) 1901 1943 1992

Nikkei 225
MPE( %) 0.5972 0.3996 1.8934 2.2053 0.7554 0.8086

MedPE( %) 0.5896 0.4619 1.6428 1.7624 0.6592 0.6864
Time(s) 14918 18327 24806

Average of
all instances

avg MPE( %) 1.3549 0.9552 2.1964 2.2406 1.6898 2.0623
avg MedPE( %) 1.3337 0.6551 1.6623 1.6106 1.4304 1.5038

Table 6 Comparison results of PBILDE with population
size(NP) = N/4 against DE and PBIL for the constrained PSP.
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Fig. 6 Comparison of heurisitc efficient frontiers for con-
strained PSP. Fig. 7 Mean performance of the algorithms for constrained

PSP.
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Chang et al [11] present three heurisitc algorithms based
on GA, SA and TS for the constrained PSP and report
GA performs better than SA and TS. Xu et al [58] also
present a hybrid algorithm (PBIL CCPS) and report it
performs better than GA and PSO. We therefore com-
pare PBILDE with the GA proposed by Chang et al [11]
and PBIL CCPS from Xu et al [58] for the constrained
PSP. Both Chang et al [11] and Xu et al [58] adopted
the CCMV model described in Section-2.2. The com-
parison results in Table-7 show that PBILDE outper-
forms GA and PBIL CCPS in most instances.

Instance PBILDE Chang-GA [11] Xu-PBIL CCPS [58]
Index N V H V H V H

Hang
Seng

31
MPE( %) 1.1431 0.6196 1.0974 0.9457 1.1026 0.8472

MedPE( %) 1.2390 0.4712 1.2181 1.1819 1.2190 1.1013
Number of EF points 6367 1317 1540

DAX
100

85
MPE( %) 2.4251 1.5433 2.5424 1.9515 2.5163 2.0781

MedPE( %) 2.5866 1.0986 2.5466 2.1262 2.5739 2.2783
Number of EF points 3378 1270 1933

FTSE
100

89
MPE( %) 0.9706 0.8234 1.1076 0.8784 0.9960 0.7658

MedPE( %) 1.0840 0.5134 1.0841 0.5938 1.0841 0.4132

Number of EF points 2957 1482 1638

S&P
100

98
MPE( %) 1.6386 1.3902 1.9328 1.7157 2.2320 1.6340

MedPE( %) 1.1692 0.7303 1.2244 1.1447 1.1536 0.8453
Number of EF points 4570 1560 2177

Nikkei 225
MPE( %) 0.5972 0.3996 0.7961 0.6431 1.0017 0.6451

MedPE( %) 0.5896 0.4619 0.6133 0.6062 0.5854 0.5596
Number of EF points 4000 1823 1468

Average of
all instances

avg MPE( %) 1.3549 0.9552 1.4953 1.2269 1.5697 1.1940
avg MedPE( %) 1.3337 0.6551 1.3373 1.1306 1.3232 1.0395

Table 7 Comparison results of PBILDE against other existing
algorithms for the constrained PSP.

Various models have been proposed in the literature to
solve the constrained PSP, where different variable defi-
nitions, objective functions, heuristic techniques, bench-
marks and evaluation criteria have been employed. The-
refore, it is very difficult, if not impossible, to conduct a
fair comparison on different modelling approaches. For
the completeness, we next provide the comparisons of
our PBILDE against those of different approaches in
Gaspero et al [22] and Woodside-Oriakhi et al [56] who
use the OR-library instances with the same set of con-
straints.

Gaspero et al [22] present a hybrid technique (SD+QP)
which combines local search metaheuristics and the qua-
dratic programming (QP) procedure. In their work, they
also reimplement the hybrid method based on a Hop-
field neural network, originally proposed by Fernandez
et al [19], and calculate the mean percentage deviation
in set H. We compare PBILDE with this SD+QP ap-

proach [22] and the results are shown in Table-8. The
comparison results show that PBILDE outperforms the
SD+QP approach by Gaspero et al [22]. As reported in
Table-8, the neural network approach by Ferandez et
al [19] performs better than PBILDE in 3 out of 5 in-
stances. However, PBILDE is better with regard to the
overall average percentage error of all instances.

Instance PBILDE Gaspero-SD+QP[22] Fernandez-NN [19]
Index N H H H
Hang Seng 31 MPE( %) 0.6196 0.7000 0.3800

DAX 100 85 MPE( %) 1.5433 2.9300 1.1300

FTSE 100 89 MPE( %) 0.8234 1.9700 1.2500
S&P 100 98 MPE( %) 1.3902 4.1000 2.8000
Nikkei 225 MPE( %) 0.3996 0.3000 0.3600

Average all instances MPE( %) 0.9552 2.000 1.1840

Table 8 Comparison results of PBILDE against Gaspero et al
[22] and Fernandez et al [19] for the constrained PSP.

Recently, Woodside-Oriakhi et al [56] propose a GA
with subset optimization for the constrained PSP. The
constrained portfolio selection problem was reformu-
lated by relaxing constraint Eq(2), where the expected
return may vary within 10% of the desired return range.
The search of the algorithm is thus more flexible to ex-
plore a wider area of the search space of the relaxed
problem. The same mechanism has been applied to de-
velop a SA and TS. The weighted sum approach as de-
scribed in Eq(5) approximates the constrained EF by
accumulating the set of points which are not evenly dis-
tributed along the return axis whereas the Woodside-
Oriakhi et al approach approximates the constrained
EF by accumulating the set of efficient points which
are evenly distributed among 50 values of the expected
return in the prespecifed range.

The comparison results are shown in Table-9. The GA
by Woodside-Oriakhi et al outperforms in all instances
except the Hang Seng dataset. PBILDE outperforms
the SA by Woodside-Oriakhi et al [56] in most instances.
PBILDE is competitive to the TS by Woodside-Oriakhi
et al [56]. However, the maximum and minimum precen-
tage error results show that PBILDE results are stable
compared to those of the three algorithms presented by
Woodside-Oriakhi et al [56].

5 Conclusions

In this work, we have proposed an efficient and effec-
tive hybrid algorithm (PBILDE) to solve the portfolio
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Instance PBILDE Woodside-Oriakhi-GA Woodside-Oriakhi-TS Woodside-Oriakhi-SA
Index N H H H H

Hang Seng 31
MPE( %) 0.6196 0.8501 0.8234 1.0589

MedPE( %) 0.4712 0.5873 0.3949 0.5355
Minimum 0.2816 0.0036 0.0068 0.0349
Maximum 0.6768 2.9034 4.6096 4.6397

DAX 100 85
MPE( %) 1.5433 0.7740 0.7190 1.0267

MedPE( %) 1.0986 0.2400 0.4298 0.8682
Minimum 0.7537 0.0000 0.0149 0.0278
Maximum 1.6804 4.6811 2.7770 4.4123

FTSE 100 89
MPE( %) 0.8234 0.1620 0.3930 0.8952

MedPE( %) 0.5134 0.0820 0.2061 0.3944
Minimum 0.4359 0.0000 0.0019 0.0230
Maximum 0.8695 0.7210 3.4570 10.2029

S&P 100 98
MPE( %) 1.3902 0.2922 1.0358 3.0952

MedPE( %) 0.7303 0.1809 1.0248 2.1064
Minimum 0.4816 0.0007 0.0407 0.8658
Maximum 1.5726 1.6295 3.0061 8.6652

Nikkei 225
MPE( %) 0.3996 0.3353 0.7838 1.1193

MedPE( %) 0.4619 0.3040 0.6526 0.6877
Minimum 0.3739 0.0180 0.0085 0.0113
Maximum 0.4965 1.0557 2.6082 3.9678

Average all
instances

- MPE( %) 0.9552 0.4827 0.7510 1.4391
MedPE( %) 0.6550 0.2788 0.5416 0.9184
Minimum 0.4653 0.0045 0.0146 0.1926
Maximum 1.0591 2.1981 3.2916 6.3776

Table 9 Comparison results of Hybrid Algorithm(PBILDE)
against Woodside-Oriakhi et al [56] for the constrained PSP.

selection problem with cardinality, floor and ceiling con-
straints. The proposed PBILDE algorithm hybridizes
a PBIL and a DE to explore and exploit the complex
and constrained search space of the problem concerned.
It also adopts a partially guided mutation and an eli-
tist strategy to enhance the evolution over the search
space. For the unconstrained problem, PBILDE outper-
forms in almost all instances compared against DE and
PBIL with similiar or higher computational expenses.
It also outperforms other existing approaches in the lit-
erature for the constrained problem. Results justify the
effectiveness of the elitism and partially guided muta-
tion in PBILDE. The comparison results against the
PBIL, DE, as well as several algorithms in the literature
again show that the proposed hybrid algorithm is highly
competitive in most cases. The proposed PBILDE algo-
rithm may be further extended to solve different PSP
models with various constraints in our future work.
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URL http://orbi.ulg.ac.be/bitstream/2268/

11831/1/MSthese.pdf

41. Sebag M, Ducoulombier A (1998) Extending
population-based incremental learning to continu-
ous search spaces. Parallel Problem Solving from
Nature-ŮPPSN V Berlin, Germany pp 418–427

42. Shapiro J (2003) The sensitivity of pbil to its learn-
ing rate and how detailed balance can remove it.
Foundations of Genetic Algorithms 7:115–132

43. Shaw D, Liu S, Kopman L (2008) Lagrangian relax-
ation procedure for cardinality-constrained portfo-
lio optimization. Optimisation Methods & Software
23(3):411–420

44. Skolpadungket P, Dahal K, Harnpornchai N (2007)
Portfolio optimization using multi-objective genetic
algorithms. In: Evolutionary Computation, 2007.
CEC 2007. IEEE Congress on, IEEE, pp 516–523

45. Soleimani H, Golmakani H, Salimi M (2009)
Markowitz-based portfolio selection with minimum
transaction lots, cardinality constraints and regard-

http://dces.essex.ac.uk/research/CSP/finance/papers/GoJiTs-Pbil_vs_GA-csm401_2004.pdf
http://dces.essex.ac.uk/research/CSP/finance/papers/GoJiTs-Pbil_vs_GA-csm401_2004.pdf
http://dces.essex.ac.uk/research/CSP/finance/papers/GoJiTs-Pbil_vs_GA-csm401_2004.pdf
http://ideas.repec.org/p/mod/wcefin/08012.html
http://ideas.repec.org/p/mod/wcefin/08012.html
http://orbi.ulg.ac.be/bitstream/2268/11831/1/MSthese.pdf
http://orbi.ulg.ac.be/bitstream/2268/11831/1/MSthese.pdf


16

ing sector capitalization using genetic algorithm.
Expert Systems with Applications 36(3):5058–5063

46. Storn R, Price K (1995) Differential evolution-
a simple and efficient adaptive scheme for
global optimization over continuous spaces.
Tech. Rep. TR-95-012, Berkeley, CA, URL
http://www.icsi.berkeley.edu/ftp/global/

global/pub/techreports/1995/tr-95-012.pdf

47. Storn R, Price K (1997) Differential evolution–a
simple and efficient heuristic for global optimiza-
tion over continuous spaces. Journal of global opti-
mization 11(4):341–359

48. Streichert F, Ulmer H, Zell A (2003) Evolutionary
algorithms and the cardinality constrained portfo-
lio optimization problem. In: Operations Research
Proceedings 2003, Selected Papers of the Inter-
national Conference on Operations Research (OR
2003), Springer, pp 3–5

49. Streichert F, Ulmer H, Zell A (2004) Evaluat-
ing a hybrid encoding and three crossover opera-
tors on the constrained portfolio selection problem.
In: Evolutionary Computation, 2004. CEC2004.
Congress on, IEEE, vol 1, pp 932–939

50. Sun J, Zhang Q, Tsang E (2005) De/eda: A new
evolutionary algorithm for global optimization. In-
formation Sciences 169(3):249–262

51. Vafashoar R, Meybodi M, MomeniÂăAzandaryani
A (2012) Cla-de: a hybrid model based on cellu-
lar learning automata for numerical optimization.
Applied Intelligence 36:735–748, DOI 10.1007/
s10489-011-0292-1, URL http://dx.doi.org/10.

1007/s10489-011-0292-1

52. Varian H (1993) A portfolio of nobel laureates:
Markowitz, miller and sharpe. The Journal of Eco-
nomic Perspectives 7(1):159–169

53. Vesterstrom J, Thomsen R (2004) A comparative
study of differential evolution, particle swarm opti-
mization, and evolutionary algorithms on numeri-
cal benchmark problems. In: Evolutionary Compu-
tation, 2004. CEC2004. Congress on, IEEE, vol 2,
pp 1980–1987

54. Vielma J, Ahmed S, Nemhauser G (2007) A
lifted linear programming branch-and-bound algo-
rithm for mixed integer conic quadratic programs.
Manuscript, Georgia Institute of Technology

55. Winker P, Lyra M, Sharpe C (2011) Least me-
dian of squares estimation by optimization heuris-
tics with an application to the capm and a multi-
factor model. Computational Management Science
8(1):103–123

56. Woodside-Oriakhi M, Lucas C, Beasley J (2011)
Heuristic algorithms for the cardinality constrained
efficient frontier. European Journal of Operational

Research 213(3):538–550
57. Xu F, Chen W, Yang L (2007) Improved parti-

cle swarm optimization for realistic portfolio se-
lection. In: Software Engineering, Artificial Intelli-
gence, Networking, and Parallel/Distributed Com-
puting, 2007. SNPD 2007. Eighth ACIS Interna-
tional Conference on, IEEE, vol 1, pp 185–190

58. Xu R, Zhang J, Liu O, Huang R (2010) An es-
timation of distribution algorithm based portfolio
selection approach. In: 2010 International Confer-
ence on Technologies and Applications of Artificial
Intelligence, IEEE, pp 305–313

59. Zhang Q, Sun J, Tsang E (2005) An evolutionary
algorithm with guided mutation for the maximum
clique problem. Evolutionary Computation, IEEE
Transactions on 9(2):192–200

http://www.icsi.berkeley.edu/ftp/global/global/pub/techreports/1995/tr-95-012.pdf
http://www.icsi.berkeley.edu/ftp/global/global/pub/techreports/1995/tr-95-012.pdf
http://dx.doi.org/10.1007/s10489-011-0292-1
http://dx.doi.org/10.1007/s10489-011-0292-1

	Introduction
	Problem Statement
	A Hybrid Algorithm (PBILDE) for the Portfolio Selection Problem 
	Computational Results
	Conclusions

