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A hybrid algorithm for in® nitely constrained optimization

CORRADO GUARINO LO BIANCO{ and AURELIO PIAZZI{

In® nitely constrained (or semi-in® nite) optimization can be successfully used to solve a

signi® cant variety of optimization-based engineering design problems. In this paper a

new algorithm for the numerical global solution of nonlinear and nonconvex, in® nitely

constrained problems is proposed. At the upper level this hybrid algorithm is a partially

elitist genetic algorithm that uses, at the lower level, an interval procedure to compute a
penalty-based ® tness function. The deterministic nature of the interval procedure,

whose global convergence with certainty is established by using concepts of interval

analysis, guarantees the feasibility of the estimated global solution provided by the

hybrid algorithm. Computational results are reported for three test problems and the

hybrid algorithm is applied to the optimal worst-case H2 design of a proportional±
integral± derivative (PID) controller for an uncertain nonminimum-phase plant.

1. Introduction

In the literature it has already been recognized that

many optimization-based engineering designs can be

transformed into in® nitely constrained optimization

problems (Polak 1987, Hettich and Kortanek 1993). In
particular, in control systems design it would be espe-

cially useful to have an e� cient tool to solve nonlinear

nonconvex semi-in® nite problems (Polak et al. 1984).

With this aim, consider the following optimization prob-

lem:

min
x2X

f …x† : gi…x ;q† 4 0 8q 2 Q; i ˆ 1 ;2 ; . . . ; lf g ; …1†

where f …x† is the objective function and

gi…x ;q† ; i ˆ 1 ; . . . ; l, are the semi-in® nite constraint

functions with X and Q being compact multidimen-
sional intervals of R n and R m respectively. All the

functions involved in (1) are, in general, nonlinear and

non-convex with the constraint functions assumed to be

continuously diŒerentiable. No particular assumptions

are made upon the objective function which can be, for
example, discontinuous and may admit many local

minima into the feasibility region of X , denoted by

FX :ˆ x 2 X : gi…x ;q† 4 0 8q 2 Q ; i ˆ 1 ;2 ; . . . ; lf g:

The problem addressed in this paper is to obtain a

global solution for (1), that is to ® nd x* 2 FX such

that f …x*† 4 f …x† for all x 2 FX .

Existing algorithms for solving (1) can be roughly

divided into two broad classes: ® rstly, descent methods

for non-diŒerentiable optimization and, secondly, recur-

sive nonlinear programming methods. The former

methods are mainly based on generalized gradients

used with extended steepest-descent procedures; the
papers by Polak (1987), Polak and Mayne (1985) and

Polak and Wardi (1992) contain numerous references on
this subject. The latter methods are based on the reduc-

tion to a sequence of constrained nonlinear program-

ming problems, for example exchange methods,

discretization methods, and sequential quadratic pro-

gramming; see the paper by Hettich and Kortanek

(1993) which has a fairly complete bibliography on the

subject and Fiacco and Kortanek (1983) and Hettich

(1979) for further coverage. All these algorithms, apart

from invoking special assumptions (e.g. linearity and

convexity), can only determine local solutions for (1).

In this paper a global approach to solve (1) is pursued

by means of a hybrid algorithm which bene® ts from the

combined use of tools borrowed from stochastic global

optimization and deterministic global optimization,

speci® cally genetic algorithms and interval algorithms.

The former are designed by mimicking biological evolu-

tion: populations of individuals, representing tentative

solutions for the given problem, evolve over the genera-

tions to maximize a ®̀ tness’ function which captures the

aim of the problem. Genetic algorithms started with a
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fundamental study on arti® cial adaptation by Holland

(1975), which was followed by many studies on both

optimization and arti® cial intelligence applications

(Goldberg 1989, Davis 1991, Michaelwicz 1992).

The method based on interval algorithms is one of the
most promising approaches to deterministic optimiza-

tion. It relies on the mathematical tools of the interval

analysis (Moore 1996), which is an extension of the

s̀tandard’ analysis over the arithmetic of intervals of

R . Excellent references on these global optimization

techniques are the books of Ratschek and Rokne
(1988) and Hansen (1992). Recent applications of

interval algorithms to control theory and trajectory

planning have been given by Jaulin and Walter (1996),

Piazzi and Marro (1996), Malan et al. (1997) and Piazzi

and Visioli (1998).
Problem (1) is clearly equivalent to the following non-

smooth constrained optimization problem:

min
x2X

f …x† : ¼i…x† 4 0; i ˆ 1 ; . . . ; lf g ; …2†

with ¼i…x† :ˆ maxq2Q gi…x ;q†f g. Problem (2) can be

transformed, by means of a penalty method, into the

unconstrained minimization problem

min
x2X

f …x† ‡
l

iˆ1

F…¼i…x†† ; …3†

where the penalty function F…¢† is parametrized with

M ;T > 0 and given by

F…¼† ˆ
0 if ¼ 4 0 ;

’…¼† if 0 < ¼ < T ;

M if ¼ 5 T ;

…4†

with ’…¼† being a monotonically increasing continuous
user-chosen function satisfying the continuity conditions

’…0† ˆ 0 and ’…T† ˆ M (see remark 1 in } 2.2).

A solution to the unconstrained problem (3) consti-

tutes an approximate solution for (2) and hence for (1),

which is as close as desired to an exact solution x*,
provided that M is su� ciently large while T is su� -

ciently small.

Roughly speaking, the proposed approach is the fol-

lowing. A genetic algorithm is adopted to solve the

unconstrained problem (3) and the necessary computa-
tion of the penalty term F…¼i…x†† is performed by a

speci® c interval procedure. In many cases, this pro-

cedure, owing to the structure of function F…¼†, can

compute F…¼i…x†† directly as a whole, that is without

determining explicitly ¼i…x† (see } 3). Indeed, it is not

necessary to evaluate ¼i…x†, which corresponds to a
single global bound-constrained maximization problem,

for any required x 2 X with the sole exception for the

points lying in proximity of the boundary de® ned by

¼i…x† ˆ 0. This feature of the interval procedure is deci-

sive for the practical eŒectiveness of the proposed hybrid

algorithm.

It would be conceptually possible to try to solve prob-

lem (1) by devising a purely deterministic global method

(e.g. an interval algorithm) or a purely stochastic global

method (e.g. a genetic algorithm). In the former case the

algorithm evaluates arbitrarily good lower and upper
bounds of the global extremum f …x*† and converges

with certainty to a global solution x*. Unfortunately

this approach has a prohibitive computational com-

plexity so that it would be hardly useful for anything
but trivial problems. In the latter case, by using the

penalty formulation (3), a sequence of maximization

problems is solved by means of a stochastic global algor-

ithm and then the ® nal minimization problem can be

solved with the same algorithm. The stochastic global

convergence of the algorithm does not oŒer guaranteed
lower and upper bounds of the global extremum at any

given stage of iterations (see the paper by Rudolph

(1994) on the concept of stochastic convergence to the

global optimum for canonical genetic algorithms) but

the main drawback of the purely stochastic approach

applied to problem (1) is on the ® nal solution that
may not be feasible. Moreover, the feasibility of the

® nal solution cannot be ascertained with sureness. On

the contrary, the hybrid algorithm proposed in this

paper, because of the deterministic interval procedure,

guarantees the feasibility of the obtained ® nal solution.
On the other hand, this hybrid approach cannot again

determine guaranteed lower and upper bounds of f …x*†
but it oŒers an estimated global solution that can often

be, in practice, an excellent solution of (1) (see } 4).

Moreover, the related computational burden is mod-

erate, permitting non-trivial problems to be solved, as
long as the dimension of Q is low (e.g. m 4 3-5).

Informally, this hybrid algorithm can be viewed as an

`optimal’ mix of the stochastic and deterministic

approaches that is particularly useful when feasibility

is a crucial aspect of the underlying problem, such as
in control system design problems where robust stability

has to be guaranteed (see } 4.2).

The paper is organized as follows. In } 2 the partially

elitist genetic algorithm for inequality constrained opti-

mization, which is the upper level of the hybrid algor-

ithm, is given. In } 3 the interval procedure to compute

F…¼i…x†† is reported and the global convergence of such

a procedure is established (theorem 1). Application

examples are included in } 4. In } 4.1, computational

results for three test problems including a multimodal

example (i.e. a problem with many local minima) are
reported. In } 4.2 the application of the hybrid algorithm

to the optimal worst-case H2 design of a proportional±

integral± derivative (PID) controller for an uncertain

nonminimum-phase plant is presented. Conclusions

are drawn in } 5.
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2. A genetic approach for inequality-constrained

optimization

In the following the genetic algorithm is designed to

solve inequality constrained optimization. It uses a

two-phases procedure for searching the feasible optimal

solution. First it neglects the objective function f …x† and

attempts to ® nd a population whose individuals satisfy

all constraints. Later, if the feasible region FX is reached,

it starts solving the complete problem (3). This two-

phase idea originated in the work of Box (1965) and

was reproposed by Schwefel (1977, pp. 134± 135, 176)

in the context of evolutionary algorithms and by

Schoenauer and Xanthakis (1993) for genetic algor-

ithms.

In this work the genetic algorithm is based on the

concept of partial elitism (already successfully used

by Menozzi et al. (1996)) and on a dynamically scaled

penalty-based ® tness function. The genetic algorithm

has been developed to deal with semi-in® nite optimiza-

tion but, obviously, it can also be used for standard

(® nite) inequality-constrained optimization. The outline

of the algorithm is given below followed by explanations

in }} 2.1± 2.8.

Algorithm:

Step 1. Generate randomly the initial population P

composed of ® individuals (phase I starts).

Step 2. Evaluate or update the ® tness of each individ-

ual of P.

Step 3. Select, with a stochastic ® tness-biased pro-

cedure, « 4® individuals of P to create the

oŒspring population P
0
.

Step 4. Apply genetic operators (crossover and muta-

tion).

Step 5. Evaluate the ® tness of P
0

and, if phase II is

active, update the ® tness of P (see } 2.2).

Step 6. Apply a local improvement operator to the

best individual of P
0
.

Step 7. From P randomly choose ²® individuals such

that « ‡ ²® 5® and add them to P
0
(² 2 ‰0 ;1Š

is the elitist factor; see } 2.3).

Step 8. Apply a local improvement operator to the

best ¹ individuals of P
0
.

Step 9. Replace the population P with the best ® indi-

viduals of P 0.

Step 10. If phase I is active and more than ¶% indi-

viduals of P are feasible, switch to phase II.

Step 11. If the stopping criterion is not satis® ed go to

step 2.

Step 12. Display the ® nal report and exit.

2.1. The population

A simple binary encoding has been adopted to repre-

sent the real vector x :ˆ ‰x1 ¢ ¢ ¢ xnŠT 2 X . The coded

representation of x is stored into a vector of integers

and denoted by x ˆ ‰x1 ¢ ¢ ¢ xnŠT 2 P. Each component

of x is coded by using bc bits, so that the underlying
chromosome structure of x is equivalent to a string of

nbc genes.

2.2. The ® tness

Two diŒerent ® tness functions are used, depending on

the advancement of the algorithm. During phase I the
® tness function is

¡ :ˆ
l

iˆ1

M ¡ F…¼i…x†‰ †Š: …5†

At this stage the choice of M is not critical and, for
example, it can be set to unity; the t̀hreshold’ parameter

T is here set to a relative large TI. Phase I terminates if

at least ¶% individuals of P are feasible: x 2 P is feasible

when F…¼i…x†† ˆ 0 for all i ˆ 1; . . . ; l.
With phase II the ® tness function is

¡ :ˆ N ¡ f …x†‰ Š ‡
l

iˆ1

M ¡ F…¼i…x††‰ Š: …6†

During this phase the threshold T is set to a small

constant TII compatible with the required precision.

The parameters N and M are calculated dynamically

at each iteration. At step 2 the ® tness evaluation is
based on

N :ˆ max
x2P

f …x†f g M :ˆ max
x2P

N ¡ f …x†f g; …7†

whereas at step 5

N :ˆ max
x2 P[P0

f …x†f g ; M :ˆ max
x2 P[P0

N ¡ f …x†f g ; …8†

with x being the point of X corresponding to the coded

individual x of P or P
0
. The rules (7) and (8) guarantee

that all l ‡1 terms composing the ® tness are not nega-

tive and equally scaled so that the objective and con-

straint functions are properly emphasized.

Remark 1: The given de® nitions of the ® tness function

in phase I and phase II show the reason for adopting a
parametrized continuous penalty function F…¼† instead

of a standard discontinuous function (usually de® ned as

F…¼† ˆ 0 if ¼ 4 0 and F…¼† ˆ M > 0 if ¼ > 0). Indeed,

in order to foster the emergence of potentially good
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individuals over the generations, it is useful especially

during phase I, but also to a certain extent during

phase II, not to penalize individuals heavily that are

close to the feasible region FX .

2.3. The partially elitist model

A partially elitist model is adopted. The step towards

obtaining the next population P is the merging of the

oŒspring population P
0
with a given percentage of indi-

viduals randomly drawn from the current population P.
This is done by using the elitist factor ² 2 ‰0 ;1Š. Finally,

after the local improvement in step 8, the deterministic

selection of the best ® merged individuals de® nes the

new population P. In practice, the appropriate tuning

of ² permits obtaining a reasonably high probability of
converging to a global solution within a moderate

number of generations.

2.4. Selection

A classic roulette wheel selection with a linear scaling

® tness ranking is used (Goldberg 1989). The associated

linear scaling coe� cient is denoted by Csca.

2.5. Crossover

Because of the partially elitist model, a crossover

probability equal to unity 1 is chosen, that is the cross-

over operator acts over all individuals of the oŒspring

population. The crossover adopted is an uniform multi-

point crossover (Ackley 1987, p. 79). By considering a
and b, two randomly chosen individual of P 0 corre-

sponding to points a;b 2 X , the crossover is made

between the homologous components ai and bi as is

shown in ® gure 1. The crossover point is chosen ran-

domly for each component with an uniform probability

distribution. This crossover operator has a neat geome-
trical insight. The aim is the same as pursued by

MuÈ hlenbein et al. (1991); depending on the crossover

point, some components may change almost completely,

so that new regions of the searching area are investi-

gated, while some others may change just a little because

only the less important bits are aŒected. In this way,

some important information may be retained while

new solutions are tested.

2.6. Mutation

The adopted gene mutation probability is not uniform

and, moreover, it depends on the generation being pro-

cessed. At the generation g, the mutation probability of

a generic gene at the position c in the chromosome string

is given by the equation

Pmut…c ;g† ˆ PM e¡‰¯…c;g†Š2 ; …9†

where PM is the maximum allowed probability and

¯…c;g† ˆ 3

nbc

1 ¡ c ‡nbc ¡ 1

gM

g : …10†

In (10), gM is the maximum allowed number of

generations. The genes (bits) in the chromosome string

are arranged with decreasing importance order; the most

important bits are placed at the beginning of the string

whereas the least important bits can be found at the end.

To understand the meaning of (9), the shapes of Pmut

corresponding to three diŒerent g values are shown in

® gure 2. During the ® rst generations the mutation prob-

ability of the most important bits is the highest (about

PM) because the algorithm aims to investigate an area as

wide as possible, while the least signi® cant bits have a

much smaller probability of mutating. The opposite

situation can be observed in later generations.
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Figure 1. Example of crossover between two individuals.

Figure 2. Mutation probability of gene c for three diŒerent

generations. It is drawn with PM 5 0:05, gM 5 500 and

nbc ˆ 300.



2.7. Local improvement

A local investigation is used to speed up the conver-

gence of the algorithm. It is used two times during each

iteration (steps 6 and 8). The ® rst time, the local search

attempts to improve the best individual in the oŒspring

population P
0
. The second time it works over the ¹ best

individuals of the ® nal population. The search direction

is chosen taking into account the discrete encoding of x.

In ® gure 3 a two-dimensional example is shown. An

integer ¾i ; i ˆ 1 ;2 ; . . . ;n ; is randomly drawn out, for

each coordinate direction, from the interval

‰¡Lstep ;Lstep Š with uniform probability. The resulting

vector ¾ ˆ ‰¾1 ¾2 ¢ ¢ ¢ ¾nŠT represents the searching

direction taken from a starting discrete grid de® ned by

Lstep . If along that direction the ® tness decreases, the

opposite direction is selected. On the contrary, if the

® tness increases, the step used for the next attempt is

doubled. A particular solution is provided if the paral-

lelepiped boundary of X is reached. In that case the

algorithm projects the searching direction along that

boundary and carries on trying to increase the ® tness.

The local investigation terminates if the ® tness stops

improving.

2.8. Stopping criterion

During phase I the algorithm ends only if the maxi-

mum number gM of generations is reached. In that case

the genetic algorithm has to warn that no optimal fea-

sible solution has been found. During phase II, the stop-

ping criterion is based on genetic saturation (Goldberg

1989). Considering the current population if the diŒer-

ence between the average population ® tness and the

® tness of the best individual is less than a given "end,

then the algorithm has to halt. The individual x*

which is the best, in terms of objective function,

among the feasible individuals evaluated all over the

generations of phase II is the estimated global solution

provided by the genetic algorithm.

The presented partially elitist genetic algorithm can be

considered as a generalization of the simple genetic

algorithm of Goldberg (1989). For the latter, Rudolph

(1994) presented a convergence analysis. He emphasized

that stochastic convergence to the global optimum is

secured provided that the best solution found over the

generations is retained. The actual eŒectiveness of a

given genetic algorithm depends on its parameter and

probability rate settings (DeJong and Spears 1990).

With regard to the exposed partially elitist genetic algor-

ithm, experience in setting genetic parameter values has

been gained by Menozzi et al. (1996) and Menozzi and

Piazzi (1996) and re® ned with experiments on an opti-

mization test battery taken from MuÈ hlenbein et al.

(1991).

3. The interval procedure for computing the penalty

terms

The interval procedure to compute the penalty term

F…¼…x†† (for simplicity in this section the subscript i is

dropped) is now determined for a generic semi-in® nite

constraint function g…x ;q†.

3.1. Notation

The set for positive real numbers is R ‡. Q ;D³ R m

denote ® nite multidimensional real intervals or

`boxes’ ; considering the box D :ˆ ‰d1 ;d1Š £ ‰d2 ;d2Š £ ¢ ¢ ¢
£‰dm ;dmŠ, then mid…D† 2 D is the so-called midpoint

of D whose ith component is given by …d i ‡d i†=2

and w…D† :ˆ maxiˆ1 ;... ;m d i ¡ d i is the width of

D. The set of real intervals is denoted by

I :ˆ ‰a ;bŠ : a ;b 2 R ;a 4 bf g.

gx…q† ² g…x ;q† denotes the semi-in® nite constraint

function for which x acts as ® xed parameter. The

image set of D under function gx…q† is denoted by

gx…D† :ˆ y 2 R : y ˆ gx…q† ;q 2 Df g;

the continuity of gx…q† implies that gx…D† 2 I . The

global maximum value of gx over Q is denoted by

g*x :ˆ ¼…x† ˆ maxq2Q gx…q†f g; g*x is the upper endpoint

of gx…Q†. Moreover, Q¤ :ˆ g* 2 Q : gx…q*† ˆ g*xf g
denotes the set of global maximizers which may have

cardinality greater than one. The lower and upper

bounds of g*x are denoted by lb and ub respectively.

Kpre 2 N denotes the precision factor to be used by the

termination test of the interval procedure ( N is the set

for positive integers).
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x. In this case, t 5 [2 3]
T

with Lstep 5 4.



3.2. Interval computation of upper bounds

An inclusion function with respect to gx is an interval-

valued function Gx : D : D³ Qf g ! I satisfying

gx…D†³ Gx…D† 8D³ Q:

Once an inclusion function is known, an upper bound of

the global maximum of gx…q† over D³ Q, denoted by

ub…gx ;D†, can be easily determined as the upper end-

point of Gx…D†. Interval analysis is a straightforward

tool to obtain a variety of inclusion functions. The sim-
plest of these is the so-called natural interval extension.

Roughly speaking, it is obtained by evaluating a given

form of gx with the substitution of the usual arithmetic

with the interval arithmetic. This is summarized as

follows:

‰a ;bŠ ‡‰c;d Š ˆ ‰a ‡c ;b ‡d Š;
‰a ;bŠ ¡ ‰c;d Š ˆ ‰a ¡ d ;b ¡ cŠ;

‰a ;bŠ‰c;d Š ˆ ‰minfac ;ad ;bc ;bdg ;max fac ;ad ;bc ;bdgŠ;
‰a ;bŠ
‰c;d Š

ˆ ‰a ;bŠ ¢ 1

d
;
1

c
if 0 62 ‰c;d Š:

As an example consider gx…q† ˆ q1 ‡3q1q2
2 ¡ q2

1q2 and

D ˆ ‰0 ;2Š £ ‰1 ;3Š. Hence, by using the natural interval

extension we have

Gx…D† ˆ ‰0 ;2Š ‡3‰0 ;2Š‰1;3Š2 ¡ ‰0 ;2Š2‰1 ;3Š
ˆ ‰0 ;2Š ‡3‰0 ;2Š‰1;9Š ¡ ‰0;4Š‰1 ;3Š
ˆ ‰0 ;2Š ‡‰0;54Š ¡ ‰0 ;12Š
ˆ ‰¡12;56Š:

Other noteworthy inclusion functions are the `mean-

value forms’ and `Taylor forms’ ; both forms belong to
the class of `centred forms’ introduced by Moore (1966).

For the purpose of the interval procedure to follow, the

optimal mean-value form of Baumann has been chosen

as the inclusion function for its sharp bounds and mod-

erate computational burden. An introduction to inclu-
sion functions with details on the Baumann form has

been given by Ratschek and Rokne (1988).

3.3. Interval procedure to compute F…¼…x††
Procedure:

Step 1. Locally maximize the function gx…q† with

starting point mid…Q† to obtain q and set

lb :ˆ gx…q†. (q 2 Q and gx…q† 5 gx…mid…Q††.)
Step 2. Set ub :ˆ ub…gx ;Q†.
Step 3. Initialize the list, denoted List, inserting the

pair …Q ; ub†.

Step 4. If lb 5 T , then set F…¼…x†† :ˆ M and termi-

nate.

Step 5. If ub 4 0, then set F…¼…x†† :ˆ 0 and terminate.

Step 6. If ub ¡ lb 4 T=Kpre, then set F…¼…x†† :ˆ
F …lb ‡ub†=2… † and terminate.

Step 7. The ® rst pair of the List is popped out and its

box, by halving the largest edge, is split into

boxes D1 and D2.

Step 8. For i :ˆ 1 ;2 do.

If gx…mid…Di†† > lb, then locally maximize the

function gx…q† with starting point mid(Di) to

obtain q and set lb :ˆ gx…q†. (q 2 Q and

gx…q† 5 gx…mid…Di††:†
Step 9. For i :ˆ 1 ;2 do.

If ub…gx ;Di† 5 lb, then insert pair …Di ;
ub…gx ;Di†† in the List, in such a way that the

second elements of the pairs be placed in
decreasing order.

Step 10. Discard from the List, without perturbing the
decreasing order, any pair such that its second

element is smaller than lb.

Step 11. Set ub :ˆ the second element of the ® rst pair of

the List.

Step 12. Go to step 4.

Step 13. End.

Remark 2: The exposed procedure is based on the

branch-and-bound principle where the bounding is

made via inclusion functions and the branching is
made by splitting the box which has the largest upper

bound. In this way, at the core of the procedure, an

interval algorithm emerges which can compute g*x with

arbitrary precision. However, not always g*x is computed

within the precision given by T=Kpre because of steps 4
and 5. &

Remark 3: The function F…¼†, de® ned in (4), uses

the parabolic interpolation given by ’…¼† :ˆ M¡
M…T ¡ ¼†2=T 2 but other choices could be made as well.

&

Remark 4: At steps 1 and 8 a local maximization is
simply performed with the steepest-ascent method

(Luenberger 1989, p. 214). This accelerates the pro-

cedure convergence because it helps to discard portions

of Q not containing global maximizers (see step 10).

&

3.4. Convergence analysis

The considered assumption of gx…q† being continu-

ously diŒerentiable on the compact Q implies that

gx…q† is Lipshitzian as well as continuous on Q. The
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following properties are essential to establish the main

result of this section (theorem 1).

Property 1: For any mean-value form the following

limit holds uniformly for D³ Q:

lim
w…D†!0

‰ub…gx ;D†Š ˆ max
q2D

gx…q†f g; …11†

moreover assuming that the gradient of gx…q† is

Lipschitzian on Q, limit (11) has convergence order 2.

&

Property 2: The following limit holds uniformly for

D³ Q:

lim
w…D†!0

‰gx…mid…D††Š ˆ max
q2D

gx…q†f g: …12†

&

Property 1 is a well-known result in the interval analy-

sis literature (see for example Ratschek and Rokne

(1988), and property 2 is an obvious consequence of

the continuity of function gx…q† over Q.

Theorem 1: For any T 2 R ‡ and Kpre 2 N the interval

procedure converges with certainty. At any stage of itera-

tions, g*x belongs to ‰lb ;ubŠ.
The proof of theorem 1 can be derived from standard

interval analysis reasoning (Ratschek and Rokne 1988).

For reader’ s convenience a succinct self-contained proof

follows.

Proof: The List at the ith iteration is composed of hi

boxes Bi such that:

List ˆ f…B…i†
1 ;ub

…i†
1 † ;…B…i†

2 ;ub
…i†
2 † ; . . . ;…B…i†

hi
;ub

…i†
hi

†g ;

where ub
…i†
j :ˆ ub…gx ;B…i†

j †, j ˆ 1 ;2 ; . . . ;hi. By virtue of

steps 9 and 10 the upper bounds ub
…i†
j are placed in the

List with decreasing order:

ub
…i†
1 5 ub

…i†
2 5 ub

…i†
3 5 ¢ ¢ ¢ 5 ub

…i†
hi

: …13†

Also denote by l
…i†
b and u

…i†
b the values of variables lb and

ub at the ith iteration. First note that l
…i†
b is a lower

bound of g*x at any iteration i: l
…i†
b 4 g*x. Indeed l

…i†
b is

the maximum of all the gx function values computed up

to the ith iteration.

The procedure searches exhaustively the box Q.
Speci® cally at the ith iteration, and subsequent itera-

tions, the procedural action is performed over
hi

jˆ1 B…i†
j ³ Q because, by virtue of steps 9 and 10, the

discarded region Q ¡ hi

jˆ1 B…i†
j does not contain any

global maximizer, that is

q* 62 Q ¡
hi

jˆ1

B…i†
j ; 8q* 2 Q*: …14†

Indeed a subbox of Q is discarded from the List only

when the upper bound of the global maximum over such

subbox is less than the lower bound l
…i†
b of the global

maximum over Q (bounding principle). As a conse-

quence of (14) it is inferred that

Q*³
hi

jˆ1

B…i†
j : …15†

Step 11 determines the equality u
…i†
b

ˆ ub
…i†
1 , so that

ordering (13) leads to u
…i†
b

ˆ maxjˆ1 ;2;...hi
fub

…i†
j g. Hence

the

set inclusion (15) implies that g*x 4 u
…i†
b .

The branching mechanism issued at step 7, in the

absence of the exit tests 4± 6, permits us to write

lim
i!1

‰w…B…i†
1 †Š ˆ 0: …16†

Property 1 implies that for any given " > 0 there exists

¯u > 0 such that for any B…i†
1 satisfying w…B…i†

1 † < ¯u it

follows that

ub…gx ;B…i†
1 † ¡ max

q2B…i†
1

fgx…q†g < ";

which is equivalent to

ub
…i†
1 ¡ " < max

q2B…i†
1

fgx…q†g: …17†

On the other hand, with property 2, for any given

" > 0 there exists ¯m > 0 such that for any B…i†
1 satisfying

w…B…i†
1 † < ¯m it follows that

max
q2B…i†

1

fgx…q†g ¡ gx…mid …B…i†
1 †† < ";

max
q2B…i†

1

fgx…q†g < " ‡gx…mid < …B…i†
1 ††: …18†

By considering that function gx…q† is evaluated at the

midpoint of every box inserted in the List (see steps 1

and 8), it is clearly veri® ed that gx…mid …B…i†
1 †† 4 l

…i†
b .

Then inequality (18) implies that

max
q2B…i†

1

fgx…q†g < " ‡ l
…i†
b : …19†

The limit (16) assures the existence of i* 2 N such

that, for any i 5 i*, w…B…i†
1 † < min f̄ u ;¯mg. Therefore

from (17) and (19) we obtain

u
…i†
b ¡ l

…i†
b < 2" 8 i 5 i*:

By choosing " ˆ T=…2Kpre† the above inequality becomes

u
…i†
b ¡ l

…i†
b <

T

Kpre

8 i 5 i*: …20†

If the interval procedure does not halt at step 4 or 5 then

necessarily, by statement (20), it halts at step 6 not

exceeding iteration i*. &
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The following corollary of theorem 1 is acquired by

considering the structure (4) of the penalty function F…¢†
and steps 4± 6 of the above procedure.

Corollary 1: The presented interval procedure computes

F…¼…x†† with arbitrarily good precision.

4. Application examples

The potentiality of the hybrid algorithm proposed in

this work is tested in the following by means of several

examples. In the } 4.1, three test problems are consid-
ered. The ® rst two are drawn from a set of test problems

examined by Watson (1983). The third is the most

demanding, being strongly multimodal for both the

objective function and the constraint function. In } 4.2

a solution to the optimal worst-case H2 design of a PID
controller is given for an example plant that is uncertain

and non-minimum phase.

The parameters of the genetic algorithm have been

chosen via a preliminary investigation made on some

classical unconstrained test problems (MuÈ hlenbein et

al. 1991). The aim was to identify the most critical par-
ameters from the viewpoint of global convergence and

computational time e� ciency. The genetic algorithm

was found to be marginally aŒected by some parameters

while its behaviour rapidly changes depending on some

other parameters. In particular, the choice of ¹ ˆ 4,

¶ ˆ 80, PM ˆ 0:05 and « ˆ 0:8® is satisfactory for all

problems; variations in these parameters lead to only a

small improvement in the e� ciency. Conversely,

depending on the problem, other parameters are more

critical. For example gM, ® , ² and Csca need to be care-
fully chosen in the following ranges: gM ˆ ‰50 ;500Š,
® ˆ ‰30 ;300Š, ² ˆ ‰0:7 ;0:8Š and Csca ˆ ‰1:2 ;2:0Š.
Multimodal functions require, in general, larger values

for gM and ® , while smaller values are needed for ² and

Csca.

The algorithm has been coded in C ‡ ‡ and compiled
for Windows 95 using the Watcom compiler. The com-

putation times reported in the following refer to a

Pentium 120 MHz personal computer.

4.1. Test problems for the genetic± interval algorithm

Problem 1:

min
x2X

ff …x† :ˆ ex1 ‡ex2 ‡ ex3g ; …21†

subject to

g…x ;q† :ˆ 1

1 ‡ q2
1

¡ x1 ¡ x2q1 ¡ x3q2
1 4 0 8q 2 Q ;

…22†
where

x : ˆ ‰x1 x2 x3ŠT 2 X :ˆ ‰¡2 ;2Š3 ;

q : ˆ q1 2 Q :ˆ ‰0 ;1Š: &

Problem 2:

min
x2X

ff …x† :ˆ ¡4x1 ¡ 2
3 …x4 ‡x6†g ; …23†

subject to

g…x ;q† :ˆ x1 ‡ x2q1 ‡x3q2 ‡x4q
2
1 ‡x5q1q2 ‡x6q2

2

¡ 3 ¡ …q1 ¡ q2†2…q1 ‡q2†2 4 0 8q 2 Q …24†

where

x : ˆ ‰x1 x2 x3 x4 x5 x6ŠT 2 X :ˆ ‰¡5;5Š6 ;

q : ˆ ‰q1q2ŠT 2 Q :ˆ ‰¡1 ;1Š2: &

Problem 3:

min
x2X

ff …x† :ˆ 4…x1 ¡ 0:2†2 ‡4…x2 ¡ 0:2†2 ‡ 4…x3 ¡ 0:2†2

¡ 0:2 cos …30px1† ¡ 0:2 cos …30px2†
¡ 0:2 cos …30px3† ‡ 0:6g; …25†

subject to

g…x ;q† :ˆ sin …q1x1 ‡q2x2† ¡ 1
10

…q1 ¡ 5†2 ¡ 1
10

…q2 ¡ 5†2

¡ x2 ¡ x3 ¡ sin…6q1x3† ¡ sin…6q2x3†
¡ 2 4 0 8q 2 Q ; …26†

where

x : ˆ ‰x1 x2 x3ŠT 2 X :ˆ ‰0 ;0:4Š3

q : ˆ ‰q1q2ŠT 2 Q :ˆ ‰1;10Š2: &

In table 1 the settings of the genetic algorithm are

reported. The objective functions of the ® rst two prob-
lems are unimodal. For this reason a low number of

individuals are su� cient to estimate the global mini-

mizer. On the contrary, a larger population has been

chosen for problem 3 owing to its strongly multimodal

objective function. The overall performances of the

hybrid algorithm have been tested by considering 50
runs. For each problem, table 2 reports some related

statistics including total computational times and the

number of convergences to the estimated global

solution. It could be interesting to add that the compu-

tational time spent in the genetic part of the algorithm
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Table 1. Settings for the genetic algorithm.

® « ² Csca gM "end Kpre T I T II bc

Problem 1 30 24 0.7 1.8 300 10¡5 3 10 10¡6 20

Problem 2 30 24 0.7 1.8 200 10¡2 3 10 10¡6 20

Problem 3 200 160 0.7 1.2 80 10¡4 3 1 10¡6 20



is, in the worst case, shorter than 24 s for problem 1 and

shorter than 18 s for problems 2 and 3. The obtained

numerical solutions are summarized in table 3. It

shows the estimated global minima and associated mini-

mizers taken from the best solutions over 50 runs.
Moreover, the average objective function and the

standard deviation of all the solutions for every problem

are included. It is worth stressing that all the obtained

solutions are feasible with certainty.

The ® rst problem appears to be the simplest. In all the
runs the algorithm has converged to estimated global

minimizers that are very close to each other and all

have approximately the same value for the objective

function, as can be indirectly shown by the small stan-

dard deviation. The shape of the constraint function at

the solution x* is shown in ® gure 4.
Problem 2 is more complex. From the genetic point of

view, the complexity is given by the search box with six

dimensions. From the interval point of view the situa-

tion is complicated by the in® nite number of points in

which the constraint function is active: in q1 § q2 ˆ 0 we

have g…x* ;q† ˆ 0 (® gure 5). For this reason, relatively

longer computational times were obtained in spite of the

small number of individuals used.

In problem 3 the objective function has been designed

with many local minima. Only in three cases (over 50
runs) has the genetic algorithm been entrapped in one of

these local minima. In ® gure 6 the shape of g…x* ;q† is

shown. It is evident that the constraint function is multi-

modal too.

The solutions obtained for problems 1 and 2 are the
same as evaluated by Watson (1983) (only the last digits

diŒer) where an algorithm, globally convergent to a

stationary point of the problem, is proposed. This

algorithm requires a starting point and does not deter-

mine a global solution unless a r̀ight’ starting point is

selected by the user. Problem 3 has also been
checked with the MATLAB optimization toolbox

(Grace 1994). Using the speci® c routine for semi-in® nite

optimization, diŒerent solutions have been obtained

depending on the chosen starting point x0: for

example xin ˆ ‰0 0 0ŠT leads to the local mini-
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Table 2. Statistics for the three test problems.

Generations Computational Convergence

required, time, to the global

average (min± max) average (min± max) solution

Problem 1 285 (251± 300) 1 min 31 s (1 min 16 s± 2 min 2 s) 50 on 50 runs

Problem 2 189 (162± 200) 8 min 34 s (5 min10 s± 13 min 29 s) 49 on 50 runs

Problem 3 67 (59± 80) 4 min 49 s (4 min 07 s± 5 min 54 s) 47 on 50 runs

Table 3. Solutions for the three test problems.

Estimated Average

Estimated global objective Standard

minimizer minimum function deviation

x* f …x*† (on 50 runs) (on 50 runs)

Problem 1 1:0066

¡0:1271

¡0:3795

4:3012 4:3071 7:0259 £ 10
¡3

Problems 2 2:9997

0:0014

¡0:0001

¡0:0034

0:0003

0:0014

¡11:998 ¡11:921 0:1903

Problems 3 0:20001

0:20001

0:26638

1:7702 £ 10
¡2

1:8764 £ 10
¡2

4:2462 £ 10
¡3



mizer xfi ˆ ‰0:20000 0:26637 0:26636ŠT with f …xfi† ˆ
3:5396 £ 10¡2 while on selecting xin ˆ ‰0:4 0:4 0:4ŠT
the routine returns xfi ˆ ‰0:26640 0:33274 0:26642ŠT
with f …xfi† ˆ 10:619 £ 10¡2. The same solution achieved

by the genetic± interval algorithm is only obtained when

the starting point lies in a small neighbourhood of the

genetic minimizer (e.g. choosing xin ˆ ‰0:2 0:2 0:25ŠT).

In fact the MATLAB routine, analogously to

Watson’ s algorithm, can only claim convergence to

local minima. Moreover there is no guarantee on the

feasibility of the reached minimizer because this is

simply checked by means of a grid on Q whose starting

step must be carefully chosen by the user. On the con-

trary, owing to the deterministic interval procedure, the

proposed hybrid algorithm guarantees the feasibility of

the obtained minimizer (see } 2.2).

4.2. Minimax control of an uncertain plant with a PID
controller

Consider the unity-feedback control system of ® gure 7
where the uncertain plant is given by

P…q; s† ˆ q3

…1 ¡ q1s†q2
2

s2 ‡2¯q2s ‡q2
2

; …27†

with uncertain parameter vector q :ˆ ‰q1 q2 q3ŠT 2 Q :ˆ
‰0:007 ;0:010Š £ ‰4 ;6Š £ ‰0:9 ;1:1Š and ¯ ˆ 0:5. The PID

controller transfer function is given by

C…k; s† ˆ k1 1 ‡ 1

k2s
‡ k3s

1 ‡ ½s
; …28†

where k :ˆ ‰k1 k2 k3ŠT 2 K :ˆ ‰0:5 ;50Š £ ‰0:05 ;5Š £
‰0:05 ;5Š and ½ ˆ 1

50
s. Note that, because of realizability

reasons, the derivative action of the PID is ® ltered with
the single pole ¡1=½ .

The addressed PID design problem is the following:

determine the PID parameters ki such that, ® rstly

closed-loop stability holds for every q 2 Q and secondly,

the worst-case objective function maxq2Q fJ…k;q†g is
minimized, where

J…k;q† :ˆ
1

0

‰e…k;q; t†Š2 dt …29†
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Figure 4. Shape of the constraint function g(x*;q) for

problem 1.

Figure 5. Shape of the constraint function g(x*;q) for

problem 2.

Figure 6. Shape of the constraint function g(x*;q) for

problem 3.

Figure 7. Control scheme.



is the integral of the squared error of the unit-step

response.

These robust design speci® cations lead to the fol-

lowing minimax optimization problem:

min
k2K

max
q2Q

fJ…k;q†g ; …30†

subject to

Hi…k;q† 5 " 8q 2 Q ; i ˆ 1 ;2 ;3 ;4 ;

where Hi…k ;q† denotes the Hurwitz determinants as-

sociated with the characteristic polynomial of the

closed-loop system and " is chosen to assure their

strict positivity (e.g. " ˆ 10¡4).

Problem (30) can be easily transformed into the

following equivalent in® nitely constrained problem:

min
x2X

fx4g ; …31†

subject to

gi…x ;q† 4 0 8q 2 Q ; i ˆ 1 ;2 ;3 ;4 ;5 ;

where

x :ˆ ‰x1 x2 x3 x4ŠT

² ‰k1 k2 k3 x4ŠT 2 X :ˆ K‰0:001 ;10Š;
gi…x ;q† ˆ " ¡ Hi…k;q† ; i ˆ 1;2;3;4;

g5…x ;q† ˆ J…k;q† ¡ x4:

This latter constraint is introduced to take into account

the worst-case objective function while performing a stan-

dard semi-in® nite optimization. By denoting, in fact, the

optimal solutions of (30) and (31) by k* and x* re-

spectively it can be veri® ed that x*4 ˆ maxq2Q fJ…k* ;q†g
and, obviously, k*j ˆ x*j for j ˆ 1 ;2 ;3.

Closed-form expressions can be given for both

Hi…k;q† and J…k ;q†. In particular, J…k;q† can be symbo-

lically evaluated using the determinantal method of

Katz (1952) (see also Jury and Dewey (1965)). The

partial derivatives of Hi…k;q† that are needed in order
to use the interval procedure of the hybrid algorithm can

be easily determined because Hi…k;q† is a multivariate

polynomial in both the arguments k and q.

The genetic± interval algorithm has been applied to

(31), executing 50 runs, with ® ˆ 30, « ˆ 24, ² ˆ 0:7,
Csca ˆ 1:8, gM ˆ 200, "end ˆ 10¡6, Kpre ˆ 3, TI ˆ 100,

TII ˆ 10¡5 and bc ˆ 20. The convergence is reached

within 136± 200 generations with computational times

in the interval 3 min 32 s± 8 min 22 s. On average the sol-

ution is obtained in 172 generations with a mean com-

putational time equal to 5 min 17 s. The hybrid
algorithm has converged 44 times (out of 50) to the

same approximate global solution. Also for this problem

the time consumption related to the genetic part of the

algorithm is negligible (it is close to 1 s). The mean value

of the objective function is 4:341 £ 10¡2 with a

standard deviation of 2:422 £ 10¡3. The estimated

global solution is k*1 ˆ 3:62 ;k*2 ˆ 0:139 s, k*3 ˆ 0:412 s

and x*4 ˆ maxq2Q fJ…k* ;q†g ˆ 4:19 £ 10¡2. The optimal

PID zeros of C…k*; s† are equal to ¡1:323 § 3:858 i s¡1.

The behaviour of the optimal closed-loop system has

been analysed for three diŒerent points of the uncertain

box Q. One of them, qb ˆ ‰0:0085 ;5;1Š, refers to the

`nominal’ plant (qb is the midpoint of Q) while the

others, qa ˆ ‰0:010 ;6 ;1:1Š and qc ˆ ‰0:007 ;4 ;0:9Š, corre-

spond to particular vertic of Q. The zeros and poles of

the closed-loop system are reported in table 4. The dom-

inating poles depend only slightly on the variability of

the plant parameters; this is not true for the fastest

poles. As a consequence, the closed-loop system has

two diŒerent dynamics; the slowest of them is nearly

independent of the point q 2 Q considered.

In ® gure 8 the optimal step responses are shown. In

the worst case (plant a), a 50% overshoot has been

detected. The integral of the squared error has been

evaluated by means of simulations; for the nominal

plant J…k* ;qb† ˆ 0:0334 and in correspondence to the

other two vertex points J…k*;qa† ˆ 0:0418 and

J…k* ;qc† ˆ 0:0388. Note that vertex a has the worst-

cost index which is approximately equal to the value

x*4 found by the genetic± interval algorithm. The good
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Table 4. Poles, zeros and gains of theoptimal closed-loop

system.

System Poles Zeros Gain

a ¡11:11 § 56:15i 100.00 ¡31:00

¡1:394 § 3:714i ¡1:323 § 3:858i

b ¡17:84 § 41:93i 117.7 ¡16:63

¡1:347 § 3:724i ¡1:323 § 3:858i

c ¡21:82 § 26:88i 142.9 ¡7:891

¡1:238 § 3:757i ¡1:323 § 3:858i

Figure 8. Optimal step responses of the closed-loop system.



behaviour of the closed-loop system in the steady state is

demonstrated by the velocity constant, which is su� -

ciently large for the three considered plants:

Kv…k* ;qa† ˆ 28:65 ;Kv…k* ;qb† ˆ 26:05 and Kv…k* ;qc† ˆ
23:44:

5. Conclusions

In this paper a hybrid genetic± interval algorithm has

been proposed to obtain an estimate of the global sol-

ution to a non-convex, in® nitely constrained optimiza-

tion problem. Although typically this is a di� cult NP-
hard problem, the algorithm has proved to be robust

and eŒective for non-trivial problems with acceptable

computation times. In particular, the algorithm has

been successfully used to solve test problems, including

a multimodal example where a traditional method can
be easily entrapped in local minima, and to design an

optimal worst-case H2 PID controller for a non-mini-

mum plant with real parametric uncertainties. More ela-

borate control applications have been reported by
Guarino Lo Bianco and Piazzi (1997, 1998, 1999).

To the present authors’ knowledge the proposed

hybrid algorithm for semi-in® nite problems is the ® rst

attempt that conjugates stochastic global optimization

with deterministic global optimization. For this reason it

can be improved by bene® ting from advancements

drawn from both approaches. Future research will be
dedicated to upgrading this hybrid approach.
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