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ABSTRACT An algorithm making use of hybrid features of Hilbert transform (HT) and Stockwell

transform (ST) to identify the single-stage and multiple (multi-stage) power quality disturbances (PQDs)

is introduced in this manuscript. A power quality index (PI) and time location index (TLI), based on

the features computed from the voltage signal by the use of HT and ST are proposed for recognition

of the PQDs. Four features extracted from the PI and TLI are considered for classification of the PQDs

achieved using decision tree driven by rules. The algorithm is tested on the PQDs generated with the help of

mathematical models (in conformity with standard IEEE-1159). Performance is evaluated on 100 data set of

every disturbance computed by varying various parameters, and efficiency is found to be greater than 99%.

It is established that an algorithm is effective for recognition of PQ events with an efficiency greater than

98% even in the presence of high-level noise. Algorithm is faster compared to many reported techniques

and scalable for application to voltages of all range. Results are validated through comparison with the

results of the algorithms reported in the literature. Performance of the algorithm is effectively validated on

the practical utility network. This algorithm can be effectively implemented for designing the power quality

(PQ) monitoring devices for the utility grids.

INDEX TERMS Hilbert transform, rule based decision tree, power quality disturbance, power quality

index, Stockwell transform, time location index.

ABBREVIATIONS

DT Decision tree

FCM Fuzzy C-means clustering

GSS Grid sub-station

HT Hilbert transform

IEC International Electro-technical Commis-

sion

IEEE Institute of Electrical and Electronics En-

gineers

IT Impulsive transient

LG Line to ground fault

MAF Maximum amplitude factor

MF Median factor

MI Momentary interruption

MN Multiple notches

MS Multiple spikes

OT Oscillatory transient

PI Power quality index

PP Power plant

PQ Power quality

PQD Power quality disturbance

PSO Particle swarm optimization

RBDT Rule based decision tree

RE Renewable energy

SF Summation factor

SNR Signal to noise ratio

ST Stockwell transform

SVM Support vector machine

TPP Thermal power plant

TTT Time-time transform
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TLI Time location index

I. INTRODUCTION

T
HE utilities are aiming to feed good quality electric

power to the loads continuously at an economical

rate with high reliability. Disturbances such as swell, sag,

momentary interruption (MI), harmonics, flicker, multiple

spikes (MS), multiple notches (MN) and transients, which

degrade the quality of the power are caused due to switching

of heavy loads, use of power electronic loads (non-linear

nature) and short circuits [1]. Hence, it becomes essential

to identify the sources and causes of the PQDs, so that a

mitigation action may be taken to supply good quality power

to the customers. Methods and procedures, for identification

and classification of the PQDs are defined in the standards,

which include the IEEE-1159, the EN 50160 and the IEC

61000-4-30 [2]. Mathematical, smart signal processing and

intelligent techniques play an important role in the identi-

fication and classification of the PQDs. Mahela et al. [3],

presented a detailed study for the identification and classi-

fication of the PQDs and impact of noise on performance

of the PQD recognition algorithms. This paper presented a

detailed comparison between the different PQ recognition ap-

proaches, their suitability to identify a PQD, merits & demer-

its, limitations, computational complexity and effectiveness

for implementation in PQ monitoring devices. A detailed

comparative study of various techniques presented helps to

select a method, which is the most effective for a particular

application. A method using ST and time-time transform

(TTT) for identification as well as feature extraction of the

PQDs and ant colony optimization approach for classification

of the PQDs is reported in [4]. This method achieved high

accuracy by eliminating redundant features using a set of 15

synthetic signals of PQDs. A hybrid technique using Wavelet

multiclass combined with the support vector machine (SVM)

for identification and classification of the PQDs, simulated on

practical power system network modelled IEEE-14 bus test

system, is reported in [5]. This method is effective to reduce

the processing time of the PQDs by simplifying the design

architecture. Hooshmand et al. [6], introduced an approach

using particle swarm optimization (PSO) and fuzzy logic for

recognition of a set of 15 synthetic PQDs generated using

mathematical models. This approach is effective for identi-

fication of the single and multiple PQDs with high accuracy

and low computational burden. In [7], authors introduced a

Stockwell transform supported method for recognition of the

PQDs associated with operating events in the utility grid with

penetration of wind energy. These events are emulated using

a hardware set-up in the laboratory. Different operational

events are rated in terms of power quality (PQ) using the

proposed PQ index. Zhong et al. [8], designed an algorithm

for identification of the PQDs using time-frequency evalu-

ation and classification using decision tree supported rules.

Algorithm tested on a set of 12 synthetic PQDs generated

in MATLAB using mathematical models. This method gives

better accuracy even in the presence of a noise level of 30-

50dB signal to noise ratio (SNR). A technique for recogni-

tion of PQDs using ST based multi-resolution analysis and

decision tree is reported in [9]. This method is validated

by recognizing 16 synthetic PQDs generated in MATLAB

using mathematical models. This method used adjustment

factors for achieving controllable time-frequency resolution

of the signals, which results in high accuracy of PQ detection.

Lin et al. [10], introduced a technique for recognition of 8

kinds of synthetic PQDs using image enhancement approach

and feature importance analysis. This method has merits of

high accuracy, reduced number of redundant features and re-

duced computational complexity. The recognized PQDs can

be mitigated using PQ improvement methods, and detection

approaches help to initiate a suitable mitigation action. A

detailed study on PQ mitigation method is available in [11].

A technique using ST based processing of the voltage

signal to recognize both the single-stage and multiple PQDs

is reported in [12] and [13] respectively, where the classifica-

tion of the PQDs is achieved using RBDT. This technique is

effective to identify the PQDs having transient-nature such

as oscillatory transient (OT) and impulsive transient (IT)

with high accuracy. However, this method is less effective

to identify the PQDs related to amplitude. A technique using

HT based processing of voltage signal with both single-stage

and multiple PQDs is reported in [14] and [15] respectively,

where the classification of the PQDs is achieved using rule

based decision tree (RBDT). This technique is effective for

identifying the amplitude-related PQDs such as sag, swell,

MI, MS and MN. However, this is less effective for identify-

ing the transient-related PQDs. Hence, this paper is aimed to

design a hybrid algorithm, which combines the merits of both

the HT and ST algorithms. This helps to detect all the PQDs

related to the amplitude, transients and frequency with high

accuracy. Main contributions of this paper are as follows:

• An algorithm making use of a hybrid combination of the

features of voltage signal computed using the Hilbert

transform and Stockwell transform is proposed. This

method is effective to identify both the single-stage (one

disturbance at a time) and multiple (two or more distur-

bances at a time) PQDs. This is achieved by keeping the

number of features to the minimum.

• Both the single-stage and multiple PQDs are classified

using the RBDT. This is achieved with high efficiency

greater than 99% by the use of features of PQDs, ex-

tracted using HT and ST.

• Performance of the algorithm is least affected by the

availability of noise.

• Algorithm performs better compared to the ST & RBDT

algorithm, ST & DT + FCM (Fuzzy C-means clustering)

and HT & RBDT algorithm.

• This approach has the low computational complexity.

• Algorithm has scalability for application to voltages of

all range.

All contents in the paper are divided into eight sections.

The introductory part is included in Section I. Generation of
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the single-stage, and multiple PQDs is detailed in Section II.

It also describes the proposed algorithm used for recognition

of PQDs. Simulation results describing the identification of

the PQDs are detailed and discussed in Section III, whereas

the classification results of the PQDs are included in Section

IV. Performance computation of the proposed algorithm is

included in Section V. Section VI illustrates the results to

establish the suitability of the algorithm to recognize the

PQDs associated with the practical power system network. A

comparative study between the performance of the proposed

algorithm and algorithms reported in the literature is included

in Section VII. Detailed results for analysis of effect of noise

on performance and computational complexity of algorithm

are also discussed in this Section. The concluding remark of

the algorithm is incorporated in Section VIII.

II. GENERATION OF PQDS AND PROPOSED

ALGORITHM

This section describes the generation of the PQDs and algo-

rithm designed for detection and classification of these dis-

turbances. Mathematical and signal processing tools utilized

for designing the proposed algorithm are also detailed in this

section.

A. GENERATION OF PQ DISTURBANCES

Signals having a power frequency of 50 Hz with superim-

posed single-stage PQDs are generated in MATLAB software

with the help of mathematical formulation. These PQDs

are generated in conformity with IEEE-1159 standard using

models reported in [16], [17]. These signals are used to estab-

lish the performance of the algorithm. Mathematical equa-

tions of voltage signals with single-stage PQDs, standard

parameters and their simulated values are tabulated in Table 1

[17]. In this table symbol, PQD1 represents the voltage signal

without any disturbance. The symbols PQD2 to PQD10 are

used to represent the single-stage PQ disturbances where

only one disturbance is associated with the signal. Multiple

PQDs are generated by various combinations of mathemat-

ical equations of single-stage PQDs as detailed in Table

1 [17]. The combination of single-stage PQDs formulates

multiple PQDs (two or more PQDs are associated with the

signal). The mathematical formulation, standard parameters

and simulated parameters of multiple PQDs are tabulated in

Table 2, where simulated values are also represented. In this

table, symbols PQD11 to PQD12 are used to represent the

multiple PQDs.

B. PROPOSED ALGORITHM

A block scheme of the algorithm proposed for recognition of

the PQDs is described in Fig. 1. This algorithm is based on

the use of features of the voltage signal extracted using the

Hilbert transform and Stockwell transform. Per unit values of

the voltage signal are used by this algorithm and PQ issues

are investigated using distortions in the voltage signals from

the standard pure sinusoidal nature, magnitude from unity

and frequency from the standard value of 50 Hz. Hence,

this algorithm has scalability for application to voltages of

all range. Further, tuning procedure is not required for the

parameters and features used by the algorithm because algo-

rithm uses deviations of parameters from standard values.

START

Generate PQ disturbances using
Mathematical Models in MATLAB

Decompose voltage signal using
Stockwell transform and
obtain output ST-matrix

Calculate absolute ST-matrix

Compute PI and TLI indices from features F1 to F4

Obtain plots of PI & TLI and recognize the PQDs by
analysis of different patterns of these plots

END

Use feature F5 to F8 to classify the PQDs using RBDT

Decompose voltage signal using
Hilbert transform and

extract feature F1

Compute Features F2, F3 & F4
from absolute ST-matrix

Compute features F5, F6, F7 & F8 from the PI & TLI
by the use of statistical techniques

FIGURE 1. Hybrid algorithm for recognition of PQ disturbances

The voltage signals with PQDs are sampled at a sampling

frequency of 3.2 kHz (64 samples per cycle) for a period of

10 cycles. The Hilbert transform (HT) is used for processing

the PQDs. This helps in the computation of the momen-

tary frequencies, as well as amplitudes, which can be used

for description of the signal. The mathematical formulation

reported in [18] is used for HT based decomposition of

a voltage signal with PQD. The HT gives instantaneous

physical frequencies for the special class of function. As

an example, functions having non-zero mean values will

results in negative frequency contributions with the help of

HT. Hence, signals analysed with the help of HT should

be restricted in such a manner that evaluated instantaneous

frequency functions should have physical meaning [18]. The

voltage signals with PQDs are decomposed using Hilbert

transform, and absolute values of output are evaluated and

designated as Feature F1, which is described below.

F1 = abs(hilbert(S)) (1)

Voltage signal with PQDs is also decomposed using multi-

resolution analysis of ST at a sampling frequency of 3.2kHz

and S-matrix is computed, which gives time-frequency repre-

sentation of the signal. ST is effective to extract information
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TABLE 1. Mathematical Modeling of Simulated single stage PQ Disturbances

PQ Symbol Mathematical model Parameters of PQ Disturbances

of PQD As per Standard Used in Simulation

Voltage without

PQD

PQD1 V (t) = Asin(ωt) ω = 2πf A = 1pu, f = 50Hz

Voltage with sag PQD2 V (t) = (1 − α(u(t − t1) − u(t − t2)))sin(ωt) 0.1 ≤ α ≤ 0.9, T ≤ t2 − t1 ≤ 9T α = 0.3, t1 = 0.06, t2 =
0.14

Voltage with swell PQD3 V (t) = (1 + α(u(t − t1) − u(t − t2)))sin(ωt) 0.1 ≤ α ≤ 0.8, T ≤ t2 − t1 ≤ 9T α = 0.3, t1 = 0.06, t2 =
0.14

Voltage with MI PQD4 V (t) = (1 − α(u(t − t1) − u(t − t2)))sin(ωt) 0.9 ≤ α ≤ 1.0, T ≤ t2 − t1 ≤ 9T α = 0.95, t1 = 0.06, t2 =
0.14

Voltage with

Flicker

PQD5 V (t) = (1 + αfsin(βωt))sin(ωt) 0.1 ≤ αf ≤ 0.2, 5 ≤ β ≤ 20Hz αf = 0.15, β = 15

Voltage with OT PQD6 V (t) = sin(ωt) + αe

(t−t1)
τ sinωn(t − t1){u(t2 − u(t1))} 0.1 ≤ α ≤ 0.8, 0.05T ≤ t2 − t1 ≤

3T, 8ms ≤ τ ≤ 40ms, 300 ≤ fn ≤
900Hz

α = 0.8, t1 = 0.08, τ =
0.02, t2 = 0.10

Voltage with IT PQD7 V (t) = sin(ωt) + αe

(t−t1)
τ − αe

(t−t1)
τ {u(t2 − u(t1))} 1 ≤ α ≤ 10, 0.05T ≤ t2 − t1 ≤

3T, 8ms ≤ τ ≤ 40ms

α = 10, t1 = 0.085, τ =
0.02, t2 = 0.088

Voltage with Har-

monics

PQD8 V (t) = α1sin(ωt) + α3sin(3ωt) + α5sin(5ωt) + α7sin(7ωt) 0.1 ≤ α3, α5, α7 ≤ 0.15 α3 = 0.05, α5 =
0.10, α7 = 0.15

Voltage with MN PQD9 V (t) = sin(ωt) − sign(sin(ωt)) ×
[

∑9
n=0 K × {u (t − (t1 + 0.02n)) − u (t − (t2 + 0.02n))}

]

0.1 ≤ K ≤ 0.4, 0 ≤ t1, t2 ≤
0.5T, 0.01T ≤ t2 − t1 ≤ 0.05T

K = 0.4, t1 = 0.006, t2 =
0.0065

Voltage with MS PQD10 V (t) = sin(ωt) + sign(sin(ωt))×
[

∑9
n=0 K × {u (t − (t1 + 0.02n)) − u (t − (t2 + 0.02n))}

]

0.1 ≤ K ≤ 0.4, 0 ≤ t1, t2 ≤
0.5T, 0.01T ≤ t2 − t1 ≤ 0.05T

K = 0.4, t1 = 0.002, t2 =
0.0023

A: amplitude; f: frequency; V: voltage; T: time period; τ : time constant; ω: angular frequency; u(t): unit step function

TABLE 2. Mathematical Modeling of Simulated multiple PQ Disturbances

PQ Symbol Mathematical model Parameters of PQD

of PQD As per Standard Used in Simulation

Voltage with sag

& harmonics

PQD11 V (t) = (1−α(u(t−t1)−u(t−t2)))sin(ωt)+α3sin(ωt)+α5sin(ωt)+
α7sin(ωt)

ω = 2πf; 0.1 ≤ α ≤ 0.9, T ≤
t2−t1 ≤ 9T ; 0.1 ≤ α3, α5, α7 ≤
0.15

f = 50Hz;α = 0.3, t1 =
0.06, t2 = 0.14;α3 =
0.05, α5 = 0.10, α7 = 0.15

Voltage with

flicker &

harmonics

PQD12 V (t) = (1+αfsin(βωt))sin(ωt)+α3sin(ωt)+α5sin(ωt)+α7sin(ωt) 0.1 ≤ αf ≤ 0.2, 5 ≤ β ≤

20Hz; 0.1 ≤ α3, α5, α7 ≤ 0.15

αf = 0.15, β = 15;α3 =
0.05, α5 = 0.10, α7 = 0.15

Voltage with

flicker & OT

PQD13 V (t) = (1 + αfsin(βωt))sin(ωt) + αe

(t−t1)
τ sinωn(t − t1){u(t2 −

u(t1))}

0.1 ≤ αf ≤ 0.2, 5 ≤ β ≤

20Hz; 0.1 ≤ α ≤ 0.8, 0.05T ≤
t2 − t1 ≤ 3T, 8ms ≤ τ ≤
40ms, 300 ≤ fn ≤ 900Hz

αf = 0.15, β = 15;α =
0.8, t1 = 0.08, τ =
0.02, t2 = 0.10, fn = 400Hz

Voltage with har-

monics & IT

PQD14 V (t) = sin(ωt) + α3sin(ωt) + α5sin(ωt) + α7sin(ωt) + αe

(t−t1)
τ −

αe

(t−t1)
τ {u(t2 − u(t1))}

0.1 ≤ α3, α5, α7 ≤ 0.15; 1 ≤
α ≤ 10, 0.05T ≤ t2 − t1 ≤
3T, 8ms ≤ τ ≤ 40ms

α3 = 0.05, α5 = 0.10, α7 =
0.15;α = 10, t1 =
0.085, τ = 0.02, t2 = 0.088

Voltage with MS

& sag

PQD15 V (t) = (1 − α(u(t − t1) − u(t − t2)))sin(ωt) + sign(sin(ωt)) ×
[

∑9
n=0 K × {u (t − (t3 + 0.02n)) − u (t − (t4 + 0.02n))}

]

0.1 ≤ α ≤ 0.9, T ≤ t2 − t1 ≤
9T ; 0.1 ≤ K ≤ 0.4, 0 ≤ t3, t4 ≤
0.5T, 0.01T ≤ t4 − t3 ≤ 0.05T

α = 0.3, t1 = 0.06, t2 =
0.14;K = 0.4, t3 =
0.002, t4 = 0.0023

Voltage with OT,

sag, harmonics &

IT

PQD16 V (t) = (1−α1(u(t− t1)−u(t− t2)))sin(ωt) +α2e

(t−t3)
τ1 sinωn(t−

t3){u(t4−u(t3))}+α3sin(ωt)+α5sin(ωt)+α7sin(ωt)+βe

(t−t5)
τ2 −

βe

(t−t5)
τ2 {u(t6 − u(t5))}

0.1 ≤ α1 ≤ 0.9, T ≤ t2 − t1 ≤
9T ; 0.1 ≤ α2 ≤ 0.8, 0.05T ≤
t4 − t3 ≤ 3T, 8ms ≤ τ1 ≤
40ms, 300 ≤ fn ≤ 900Hz; 0.1 ≤
α3, α5, α7 ≤ 0.15; 1 ≤ β ≤
10, 0.05T ≤ t6 − t5 ≤ 3T, 8ms ≤
τ2 ≤ 40ms

α1 = 0.3, t1 = 0.06, t2 =
0.14;α2 = 0.8, t3 =
0.09, τ1 = 0.02, t4 =
0.11, fn = 400Hz;α3 =
0.05, α5 = 0.10, α7 =
0.15; β = 10, t5 =
0.098, τ2 = 0.02, t6 = 0.101

A: amplitude; f: frequency; V: voltage; T: time period; τ : time constant; ω: angular frequency; u(t): unit step function

of both the phase and amplitude of the spectrum. The output

of ST is obtained in the form of a complex matrix which

is represented as S-matrix. Each row element in this matrix

corresponds to a frequency, and each column corresponds

to a time instant. Matrix of ST-amplitude (STA) is formed

from absolute values of this S-matrix. ST is utilized with the

help of a multi-resolution based on window width, which is

changing inversely proportional to the frequency and power

data changing with time. Hence, a great resolution of time at a

high frequency and a low time resolution at a low frequency

are achieved. There are different methods of achieving the

ST [19]. If the window of ST is wide in the time domain,

the ST can be used to provide high resolution of frequency

when lower frequency components are present in the signal.

Similarly, the window is narrow for achieving good time

resolution at the moments of high-frequency components

available with the signal. Information related to the frequency

and amplitude of the signal can be derived from the S-

matrix [20], [21]. The features F2, F3 and F4, have been

extracted from this matrix which is used to define the PI and

TLI. Features F2 to F4 are extracted from this matrix and

described as below:

F2: Summation factor (SF). It is computed using the

summation of each column of the S-matrix.

F2 = sum(abs(S −matrix)) (2)

F3: Maximum amplitude factor (MAF). It represents the

maximum amplitude in each column of the S-matrix.

F3 = max(abs(S −matrix)) (3)

F4: Median factor (MF). It represents the median of the

S-matrix concerning columns.

F4 = median(abs(S −matrix)) (4)

1) Power Quality Index

A power quality index (PI) is introduced to detect various

PQDs. It is computed by multiplying the features F1, F2 and

F3 sample by sample as detailed below:

PI = abs(F1. ∗ F2. ∗ F3) (5)

4 VOLUME 4, 2016
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This index is plotted for a period of 10 cycles of PQDs.

Patterns of these plots are utilized to identify all the inves-

tigated PQDs. This index is effective to recognize all types

of disturbances. However, its performance might be limited

for disturbances of low frequency and low magnitude. This

limitation can be overcome by combining the patterns of time

location index (TLI).

2) Time Location Index

An index is introduced to localize the PQ events with respect

to time and designated as the time location index (TLI). This

is computed by multiplying the features F1, F2, F3 and F4

sample by sample. TLI is detailed below.

TLI = (F1. ∗ F2. ∗ F3. ∗ F4). ∗ (1000); (6)

Here a weight factor of 1000 is used to obtain results with the

high resolution because feature F4 has an additive advantage

of detecting the patterns observed at the time of initiation

and end of a PQD, but its magnitude is low. Hence, the

weight factor helps to increase the magnitude of TLI for

clear visibility. Further, this value of weight factor for TLI

effectively detects all the types of PQ disturbances in a real-

time network of the utility grid and can be used universally.

During a healthy condition, the TLI has nearly zero value

and a non-zero value for the incidence of a PQ disturbance.

The TLI is plotted for a period of 10 cycles. Analysis of

the patterns of TLI indicates the location of PQDs. This

index is also effective to identify high-frequency PQDs. The

index effectively localizes the voltage magnitude related to

PQDs. However, multiple spikes are observed for frequency-

dependent PQDs. This limitation is overcome if patterns of

PI and TLI are used together to recognize the PQDs. This

index might be useful for recognition of the operational

events such as islanding, outage of renewable energy (RE)

generators and grid synchronization of RE generators. This

will be considered as future scope of work.

C. CLASSIFICATION OF PQDS

The classification of the PQDs is achieved using the rules

supported by a decision tree. The rule-based decision tree

(RBDT) was introduced by the Breiman in 1980 and applied

in the field of power system by the Wehenkel in 1989. In

this technique, decision supported rules are used for clas-

sification of PQ disturbances to predict the data responses.

For achieve this, decisions are followed in the form of a

tree starting from the root (starting point) node to a leaf

node (final decision node). Hence, the leaf node has the final

decision of classification. This classification tree is effective

for giving a response which is effective and nominal and can

be implemented using the ’true’ or ‘false’ decision technique.

Hence, it is supported by a set of rules which can be applied

to a set of data containing the features of signals with PQ

disturbances [22]. Features F5-F8 are used as input to the

decision tree to obtain results for classification of the PQDs.

The features F5 & F6 are computed from the PI plot by

calculating its variance and median, respectively. Similarly,

the features F7 & F8 are computed from the TLI plot by

calculating its variance and median, respectively. These fea-

tures are considered as input to the rule-based decision tree

(RBDT) for classifying the PQDs. RBDT has the merit of low

computational burden due to its single-stage and requirement

of fewer data. These are calculated as detailed below:

F5: It represents the variance of PI plot.

F5 = var(PI) (7)

F6: It represents the median of PI plot.

F6 = median(PI) (8)

F7: It represents the variance of TLI plot.

F7 = var(TLI) (9)

F8: It represents the median of TLI plot.

F8 = median(TLI) (10)

Performance of the algorithm is tested on 100 sets of

data for each PQD computed by varying the parameters

like magnitude, time of incidence of PQD, and frequency

of PQD, frequency of the voltage signal (50 Hz and 60

Hz). Performance is also tested in a noisy environment by

considering a noise level of 20 dB SNR. This algorithm is

effective for implementation in the online PQ monitoring

devices.

III. DETECTION OF PQ EVENTS: SIMULATION RESULTS

This section details the analysis of PQDs using the algorithm

proposed in this paper. The PI and TLI plots obtained with

the help of features F1 to F4 are used for detection of the

PQDs. These plots pertaining to the pure sine wave are

considered as a reference curve for detection and localization

of the PQDs. Patterns of the PI and TLI plots are effective

to identify the parameters associated with the disturbances

such as magnitude of sag, swell, MI, OT, IT etc. Further, the

frequency components associated with the disturbances can

also be recognized using the patterns of PI and TLI plots.

Detailed results are discussed in the following sections.

A. VOLTAGE SIGNAL WITHOUT PQ DISTURBANCE

The voltage signal of a sine wave for a period of 10 cycles,

PI and TLI plots are illustrated in Fig. 2 and these plots

are considered as a reference for detecting the PQDs. Fig.

2 (a) illustrates the pure sine wave where any PQD is not

visible. Fig. 2 (b) indicates that amplitude of the PI plot is

constant at unity value. In the presence of PQD associated

with the sine wave, magnitude of the PI plot either increase,

or decrease depending on the type of PQD. It is inferred from

Fig. 2 (c) that TLI plot also has constant magnitude with zero

value. At the moment of deviation of the waveform from pure

sinusoidal nature, the magnitude of TLI becomes high, which

indicates the incidence of a PQD. Hence, it is established that

PQD is not associated with the voltage signal.
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FIGURE 2. Voltage signal without PQ disturbance (a) voltage signal (b) power

quality index (c) time location index

B. VOLTAGE SIGNAL WITH SAG

The voltage signal of a sine wave with sag for a period of

10 cycles, PI and TLI plots are illustrated in Fig. 3. Fig. 3

(a) indicates that sine wave has a superimposed sag between

0.06s to 0.14s. Fig. 3 (b) indicates that amplitude of the PI

plot has decreased at 0.06s and again regains the original

value at 0.14s. This effectively detects the sag associated

with the voltage signal. Fig. 3 (c) indicates that the TLI plot

has zero magnitudes except at 0.06s (incidence of sag) and

0.14s (end of sag) where there are sharp magnitude peaks.

These sharp magnitude peaks effectively localizes the voltage

sag. Hence, patterns of PI and TLI plots when combined

together, effectively identify and localize the sag associated

with the voltage signal.
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FIGURE 3. Voltage signal with sag disturbance (a) voltage signal (b) power

quality index (c) time location index

Gaussian noise of 10 dB SNR is superimposed on the

voltage signal of a sine wave with sag for a period of 10

cycles. Voltage signal with sag and noise, PI and TLI plots

are illustrated in Fig. 4. Fig. 4 (a) indicates that voltage sag

between 0.06s to 0.14s and noise is observed over the entire

signal period. Fig. 4 (b) indicates that amplitude of the PI plot

has decreased at 0.06s and again regains the original value at

0.14s. However, small magnitude ripples are observed over

entire time range due to noise component. This effectively

detects the sag associated with the voltage signal in noisy

environment. Fig. 4 (c) indicates that the TLI plot has ripples

over entire time period of signal due to available noise.

However, peak magnitudes of high magnitude are observed

at 0.06s (incidence of sag) and 0.14s (end of sag) indicating

the start and end of the sag in voltage. Hence, patterns of PI

and TLI plots when combined together, effectively identified

and localized the sag associated with the voltage signal in the

presence of Gaussian noise of 10 dB SNR. Further, in the

presence of noise level higher than 10 dB SNR, voltage sag

has not been recognized effectively.
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FIGURE 4. Voltage signal with sag disturbance in noisy environment (10 dB

SNR) (a) voltage signal (b) power quality index (c) time location index

C. VOLTAGE SIGNAL WITH SWELL

The voltage signal of a sine wave with swell for a period of

10 cycles, PI and TLI plots are illustrated in Fig. 5. Fig. 5 (a)

indicates that sine wave has a superimposed swell between

0.06s to 0.14s. Fig. 5 (b) indicates that amplitude of the PI

plot has increased at 0.06s and again regains the original

value at 0.14s. This effectively detects the swell associated

with the voltage signal. Fig. 5 (c) indicates that TLI plot

has zero magnitudes except at 0.06s (incidence of swell) and

0.14s (end of swell) where there are sharp magnitude peaks.

These sharp magnitude peaks effectively localize the voltage

swell. Hence, patterns of PI and TLI plots when combined

together, effectively identify and localize the swell associated

with the voltage signal.
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FIGURE 5. Voltage signal with swell disturbance (a) voltage signal (b) power

quality index (c) time location index

D. VOLTAGE SIGNAL WITH MOMENTARY

INTERRUPTION

The voltage signal of a sine wave with momentary interrup-

tion (MI) for a period of 10 cycles, PI and TLI plots are

illustrated in Fig. 6. Fig. 6 (a) indicates that sine wave has a

superimposed MI between 0.06s to 0.14s. Fig. 6 (b) indicates

that amplitude of the PI plot has decreased to shallow values

(below 10%) at 0.06s and again regains the original value

at 0.14s. This effectively detects the MI associated with the

voltage signal. Fig. 6 (c) indicates that the TLI plot has zero

magnitudes except at 0.06s (incidence of MI) and 0.14s (end

of MI) where there are sharp magnitude peaks. These sharp

magnitude peaks effectively localize the momentary interrup-

tion. Hence, patterns of PI and TLI plots when combined

together, effectively identify and localize the MI associated

with the voltage signal.

E. VOLTAGE SIGNAL WITH HARMONICS

The voltage signal of a sine wave with superimposed 3rd, 5th

& 7th harmonics for a period of 10 cycles, PI and TLI plots

are illustrated in Fig. 7. Fig. 7 (a) indicates the sine wave with

superimposed 3rd, 5th & 7th harmonics. Fig. 7 (b) indicates

that there are ripples with regular pattern over entire time

range which effectively detects the harmonics associated with

the voltage signal. Fig. 7 (c) indicates that the TLI plot also

has ripples with regular pattern over entire time range which

effectively detect the harmonics associated with the voltage

signal. Here, both the PI and TLI plots effectively detects the

harmonics superimposed over the voltage signal.

F. VOLTAGE SIGNAL WITH FLICKER

The voltage signal of a sine wave with superimposed flicker

for a period of 10 cycles, PI and TLI plots are illustrated in

Fig. 8. Fig. 8 (a) indicates the sine wave with superimposed

flicker. Fig. 8 (b) indicates that magnitude has increased and
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FIGURE 6. Voltage signal with momentary interruption disturbance (a) voltage

signal (b) power quality index (c) time location index
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FIGURE 7. Voltage signal with harmonics disturbance (a) voltage signal (b)

power quality index (c) time location index

becomes greater than the standard value of 1pu following the

regular pattern of crest and trough with ripples superimposed

on the crest. This specific pattern associated with the PI

plot effectively detects the presence of flicker superimposed

on the signal. Similarly, the Fig. 8 (c) also indicates that

magnitude has increased and becomes greater than the stan-

dard value for a sine wave following the regular pattern

of crest and trough with flicker superimposed on the crest.

This specific pattern associated with the TLI plot effectively

detects the presence of ripples superimposed on the signal.

Here, both the PI and TLI plots effectively detect the flicker

superimposed over the voltage signal.
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FIGURE 8. Voltage signal with flicker disturbance (a) voltage signal (b) power

quality index (c) time location index

G. VOLTAGE SIGNAL WITH OSCILLATORY TRANSIENT

The voltage signal of a sine wave with superimposed OT

for a period of 10 cycles, PI and TLI plots are illustrated

in Fig. 9. Fig. 9 (a) indicates the sine wave with super-

imposed OT between 0.08s to 0.10s. Fig. 9 (b) indicates

that high magnitude has been observed between 0.08s to

0.10s with continuously increasing magnitude from 0.08s to

0.10s where the continuous pattern of ripples is available

on the upper surface of the PI plot. This specific pattern

associated with the PI plot effectively detects the presence of

OT superimposed on the signal. Fig. 9 (c) indicates that sharp

magnitude peaks are associated with the TLI plot at 0.06s
(incidence of OT) and 0.14s (end of OT) which effectively

localize the OT. Hence, patterns of PI and TLI plots when

combined, effectively identify and localize the OT associated

with the voltage signal.

H. VOLTAGE SIGNAL WITH IMPULSIVE TRANSIENT

The voltage signal with superimposed IT for a period of 10

cycles, PI and TLI plots are illustrated in Fig. 10. Fig. 10

(a) indicates that sine wave has a superimposed OT between

0.085s to 0.088s. Fig. 10 (b) indicates that the sharp peak

of very high magnitude has been observed between 0.085s to

0.088s. This very high magnitude peak effectively detects the

presence of IT superimposed on the signal. Similarly, Fig. 10

(c) indicates that sharp peak of very high magnitude has been

observed with the TLI plot between 0.085s to 0.088s which

helps to effectively localize the IT. Hence, it is established

that the rise time and fall time of the disturbances have been

tracked by the PI and TLI plots in the same way as it is

in the actual signal. There is no delay in the tracking of

rising time and fall time of the disturbances. Further, the

speed of response in PI and TLI plots is similar to the actual

disturbance. Hence, the speed of response cannot be adjusted.
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FIGURE 9. Voltage signal with oscillatory transient disturbance (a) voltage

signal (b) power quality index (c) time location index

FIGURE 10. Voltage signal with impulsive transient disturbance (a) voltage

signal (b) power quality index (c) time location index

I. VOLTAGE SIGNAL WITH MULTIPLE NOTCHES

The voltage signal with MN for a period of 10 cycles, PI

and TLI plots are illustrated in Fig. 11. Fig. 11 (a) indicates

that the sine wave has a superimposed MN with a regular

pattern. Fig. 11 (b) indicates that a series of regularly spaced

sharp peaks with two peaks at the top surface is present.

This specific pattern, with two peaks pattern associated with

the high magnitude peaks, effectively detects the presence of

MN superimposed on the signal. Fig. 11 (c) also indicates

that a series of regularly spaced sharp peaks, with two peaks
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at the top surface, is present. However, rise and decay time

for these peaks are lower compared to the peaks observed

in the PI plot. This specific pattern, with two peaks pattern

associated with the high magnitude peaks, effectively detects

the presence of MN superimposed on the signal.
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FIGURE 11. Voltage signal with multiple notches disturbance (a) voltage

signal (b) power quality index (c) time location index

J. VOLTAGE SIGNAL WITH MULTIPLE SPIKES

The voltage signal with MS for a period of 10 cycles, PI

and TLI plots are illustrated in Fig. 12. Fig. 12 (a) indicates

that the sine wave with superimposed MS with the regular

pattern. Fig. 12 (b) indicates that a series of regularly spaced

sharp peaks with a single peak at the top surface is present.

This specific pattern, with single peak pattern associated with

the high magnitude peaks, effectively detects the presence of

MS superimposed on the signal and also discriminated from

the MN. Fig. 12 (c) also indicates that a series of regularly

spaced sharp peaks with a single peak at the top surface is

present. However, rise and decay time for these peaks are

lower compared to the peaks observed in the PI plot. This

specific pattern, with single peak pattern associated with the

high magnitude peaks, effectively detects the presence of MS

superimposed on the signal and also distinguished from the

MN.

K. VOLTAGE SIGNAL WITH SAG AND HARMONICS

The voltage signal of a sine wave with superimposed sag

and 3rd, 5th & 7th harmonics for a period of 10 cycles, PI

and TLI plots are illustrated in Fig. 13. Fig. 13 (a) indicates

the sine wave with superimposed 3rd, 5th & 7th harmonics

with regular pattern and sag between 0.06s to 0.14s. Fig. 13

(b) indicates that amplitude of the PI plot has decreased at

0.06s and again regains the original value at 0.14s, which

detects the sag. Further, the ripples with the regular pattern

observed over the entire time range of PI plot effectively

detect the harmonics. Hence, multiple PQ disturbance of sag
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FIGURE 12. Voltage signal with multiple spikes disturbance (a) voltage signal

(b) power quality index (c) time location index

and harmonics associated with the voltage signal has been

detected effectively.

Fig. 13 (c) indicates that the TLI plot has zero magnitudes

except at 0.06s (incidence of sag) and 0.14s (end of sag)

where there are sharp magnitude peaks. These sharp magni-

tude peaks effectively localize the voltage sag. Further, Fig.

13 (c) indicates that the TLI plot also has ripples with the

regular pattern over the entire time range, which effectively

detects the harmonics associated with the voltage signal.

Hence, multiple PQ disturbance of sag and harmonics asso-

ciated with the voltage signal has been detected effectively

and simultaneously; the sag has been localized with respect

to the time range.

L. VOLTAGE SIGNAL WITH FLICKER AND HARMONICS

The voltage signal of a sine wave with superimposed flicker

and 3rd, 5th & 7th harmonics for a period of 10 cycles, PI

and TLI plots are illustrated in Fig. 14. Fig. 14 (a) indicates

the sine wave with superimposed harmonics and flicker with

the regular pattern. Fig. 14 (b) indicates that there are ripples

with the regular pattern observed over the entire time range of

PI plot, which identifies the presence of harmonics. Further,

the amplitude of the envelope evaluated by joining the peaks

is changing in a regular pattern which detects the presence

of flicker. The similar pattern is also observed in the Fig. 14

(c) where TLI plot also has ripples with the regular pattern

over the entire time range, which identify the presence of

harmonics. Further, the amplitude of the envelope evaluated

by joining the peaks is changing in a regular pattern which

detects the presence of flicker. Hence, multiple PQ distur-

bance of flicker and harmonics associated with the voltage

signal has been detected effectively with the help of both the

PI and TLI plots.

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3046425, IEEE Access

Kaushik et al.: A Hybrid Algorithm for Recognition of Power Quality Disturbances

0 0.05 0.1 0.15 0.2

(a)

-2

0

2

V
ol

ta
ge

 (
pu

)

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

(b)

0

2

4

P
I

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Time(s) 
(c)

0

10

20

T
LI

FIGURE 13. Voltage signal with sag and harmonics disturbance (a) voltage

signal (b) power quality index (c) time location index
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FIGURE 14. Voltage signal with flicker and harmonics disturbance (a) voltage

signal (b) power quality index (c) time location index

M. VOLTAGE SIGNAL WITH FLICKER AND

OSCILLATORY TRANSIENT

The voltage signal of a sine wave with superimposed flicker

and OT (0.08s to 0.10s ) for a period of 10 cycles, PI and TLI

plots are illustrated in Fig. 15. Fig. 15 (a) indicates that the

sine wave has a superimposed flicker with a regular pattern

and an OT between 0.08s to 0.10s. Fig. 15 (b) indicates that

high magnitude has been observed between 0.08s to 0.10s
with continuously increasing magnitude from 0.08s to 0.10s

where the continuous pattern of ripples is available on the

upper surface of the PI plot which indicates the presence

of the OT. Further, a regular pattern of crest and trough

with ripples superimposed on the crest over the entire time

range indicates the presence of flicker. This specific pattern

associated with the PI plot effectively detects the presence

of multiple PQD comprising of an OT and a flicker. Fig. 15

(c) indicates that sharp magnitude peaks are associated with

the TLI plot at 0.08s (incidence of OT) and 0.1s (end of OT)

which help to effectively localize the OT. Hence, multiple PQ

disturbance comprising of flicker and harmonics associated

with the voltage signal has been detected effectively and

simultaneously, the OT has been localized concerning the

time range.
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FIGURE 15. Voltage signal with flicker and oscillatory transient disturbance

(a) voltage signal (b) power quality index (c) time location index

N. VOLTAGE SIGNAL WITH HARMONICS AND

IMPULSIVE TRANSIENT

The voltage signal with superimposed multiple PQD of 3rd,

5th & 7th harmonics and IT for a period of 10 cycles, PI

and TLI plots are illustrated in Fig. 16. Fig. 16 (a) indicates

that the sine wave has superimposed harmonics with a regular

pattern and IT between 0.085s to 0.088s. Fig. 16 (b) indicates

that the sharp peak of very high magnitude has been observed

between 0.085s to 0.088s. This very high magnitude peak

effectively detects the presence of IT superimposed on the

signal. Further, there are ripples with the regular pattern over

the entire time range, which effectively detects the harmonics

associated with the voltage signal. Fig. 16 (c) indicates that

there is a sharp peak of very high magnitude between 0.085s
to 0.088s, which helps to effectively detect and localize the

IT. Hence, multiple PQ disturbance comprising of IT and har-

monics associated with the voltage signal has been detected

effectively and simultaneously the IT has been localized

concerning the time range.
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FIGURE 16. Voltage signal with harmonics and impulsive transient

disturbance (a) voltage signal (b) power quality index (c) time location index

O. VOLTAGE SIGNAL WITH SPIKE AND SAG

The voltage signal of a sine wave with sag and MS for a

period of 10 cycles, PI and TLI plots are illustrated in Fig.

17. Fig. 17 (a) indicates the sine wave with superimposed

MS and MN with a regular pattern. Fig. 17 (b) indicates

that a series of regularly spaced sharp peaks which have

a single peak at the top surface are present where peak

amplitude of the PI plot has decreased at 0.06s and again

regains the original value at 0.14s. This effectively detects

the sag and MS associated with the voltage signal. Fig. 17

(c) also indicates the similar pattern of a series of regularly

spaced sharp peaks with single peak present at the top surface

and simultaneously the peak amplitude of the PI plot has

decreased at 0.06s and again regains the original value at

0.14s. However, rise and decay time for these peaks is lower

compared to the peaks observed in the PI plot. Hence, mul-

tiple PQ disturbance comprising of spike and sag associated

with the voltage signal has been detected effectively.

P. VOLTAGE SIGNAL WITH OSCILLATORY TRANSIENT,

SAG, HARMONICS AND IMPULSIVE TRANSIENT

The voltage signal of a sine wave with a sag, an OT, 3rd,

5th & 7th harmonics and IT for a period of 10 cycles, PI

and TLI plots are illustrated in Fig. 18. Fig. 18 (a) indicates

that sine wave has 3rd, 5th & 7th harmonics with regular

pattern, sag between 0.06s to 0.14s, an OT between 0.08s
to 0.10s, and an IT between 0.022s to 0.025s. Fig. 18 (b)

indicates that amplitude of the PI plot has decreased at 0.10s
and again regains the original value at 0.16s indicating the

presence of sag. Fig. 18 (b) indicates that high magnitude

has been observed between 0.08s to 0.10s with continuously

increasing magnitude from 0.08s to 0.010s where the con-

tinuous pattern of ripples is available on the upper surface of
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FIGURE 17. Voltage signal with spike and sag disturbance (a) voltage signal

(b) power quality index (c) time location index

the PI plot which indicates the presence of an OT. Fig. 18 (b)

indicates that sharp peak of very high magnitude has been

observed between 0.022s to 0.025s which effectively detects

the presence of IT superimposed on the signal. Further, there

are ripples with the regular pattern over the entire time range,

which effectively detect the harmonics associated with the

voltage signal. Fig. 18 (c) indicates that the TLI plot has sharp

magnitude peaks at 0.06s (incidence of sag) and 0.14s (end

of sag). These sharp magnitude peaks effectively localize

the voltage sag. Fig. 18 (c) indicates that sharp magnitude

peaks are associated with the TLI plot at 0.08s to 0.10s,

which helps to effectively localize the OT. Further, Fig. 18

(c) indicates that there is a sharp peak of very high magnitude

between 0.022s to 0.025s which helps to detect and localize

the IT effectively. Hence, multiple PQ disturbance compris-

ing of sag, OT, harmonics and IT associated with the voltage

signal has been recognized effectively.

Q. MISCELLANEOUS PQ DISTURBANCES

The proposed approach is also tested to recognize the DC

offset and phase jump. It is observed that the algorithm ef-

fectively detects these disturbances. Further, the algorithm is

based on the identification of deviation in the waveform from

pure sinusoidal nature. Hence, it is adequate to recognize

every disturbance associated with a waveform of voltage or

current signals.

IV. RBDT BASED CLASSIFICATION OF PQDS

The features F5 to F8 defined in section II(c) are taken as

input to the decision tree supported by rules for classifying

the PQDs. Numerical values of these features utilized to

design decision rules for classification of the investigated
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PQDs are provided in Table 3. These features are effective for

recognizing the various characteristics of the PQDs. These

are also effective to identify deviation of system voltage

waveform from the nature of pure sine wave. Therefore,

these features are effective in identifying the type of a PQD.

Threshold magnitudes of features F5 to F8 to classify the

PQDs using RBDT are decided after testing the algorithm

for recognition of 100 data sets of each PQD computed by

varying the parameters like magnitude, time of incidence of

PQD, frequency of PQD, frequency of voltage signal (50 Hz

and 60 Hz) and different levels of noise. Selected threshold

magnitude for a feature will help for effective identification

of all the PQDs. The feature F7 initializes the classification.

The PQDs with F7>103 are included in the group PQ1,

whereas the PQDs with F7<103 constitute the group PQ2.

PQ disturbances included in group PQ1 are further sub-

classified using the values of feature F7. The PQDs having

F7>106 constitute the group PQ11, whereas the PQDs with

F7<106 are included in group PQ12. The disturbances in-

cluded in group PQ11 are further classified using feature F6.

The PQD14 (Voltage with harmonics) has values greater than

2, whereas the PQD7 (Voltage with IT) has valued less than 2.

The PQDs included in group PQ12 are further sub-classified

using the feature F5. The PQDs with F5>100 are included in

group PQ121, whereas the PQDs with F5<100 are included

in group PQ122. The disturbances included in the group

PQ121 are further classified one by one. The PQD13 (voltage

with flicker & OT) has F8>5. Subsequently, the PQD with

F6>1.5 is PQD16 (voltage with OT, sag, harmonics & IT)

and disturbance with F6<1.5 is PQD6 (Voltage with OT). The

disturbances included in the group PQ122 are further clas-

sified one by one. The PQD9 (voltage with MN) has F8>2.

Subsequently, the PQD with F5>2.25 is PQD10 (voltage with

MS) and disturbance with F5<2.25 is PQD15 (voltage with

MS & sag).

The PQ disturbances included in group PQ2 are further

sub-classified using the feature F7. The PQDs having F7>50
constitute the group PQ21, whereas the PQDs with F7<50
are included in group PQ22. The disturbances included in

the group PQ21 are further classified one by one. The PQD12

(voltage with flicker & harmonics) has F8>25. Subsequently,

the PQD with F5>0.40 is PQD11 (voltage with sag & har-

monics) and disturbance with F5<0.40 is PQD8 (Voltage

with Harmonics). The PQ disturbances included in group

PQ22 are further sub-classified using the feature F6. The

PQDs having F6>1 constitute the group PQ221, whereas the

PQDs with F6<1 are included in group PQ222. The distur-

bances included in the group PQ221 are further classified one

by one. The PQD5 (voltage with flicker) has F7>5 whereas

the PQD3 (voltage with swell) has F7<5. The disturbances

included in the group PQ222 are further classified one by one.

The PQD4 (voltage with MI) has F5>0.10. Subsequently,

the PQD with F5>0.05 is PQD2 (voltage with sag) and

disturbance with F5<0.05 is PQD1 which pure sine wave

without any disturbance. Decisions supported by rules based

classification of the PQDs are illustrated with the help of a

flow chart in the Fig. 19, where the decision rules are also

included for each step. Threshold magnitudes of features are

decided by testing the algorithm on 100 data set of each PQ

disturbance by changing the different parameters (refer Table

1 and 2).

V. PERFORMANCE EVALUATION

Performance of the algorithm for recognition of the PQDs

supported by the features computed with the help of HT

and ST is evaluated in terms of accurately classified and

inaccurately classified PQDs (in numbers). The algorithm

is tested for recognition of the PQDs, on 100 data set of

each PQ disturbance with a noise level of 10dB SNR, and

without noise. This data set is obtained by changing different

parameters (refer Table 1 and 2). Table 4 demonstrates the

performance of the algorithm in terms of accurately classi-

fied and inaccurately classified PQDs. It is established that

algorithm is effective for recognition of the PQDs with very

high accuracy which is greater than 99% in the absence of

noise and greater than 98% with a noise level of 10 dB SNR

superimposed on the voltage signals in addition to the PQD.

The noise level of 10 dB SNR is the maximum noise level

observed with the electrical signals. Hence, the proposed

algorithm is effective to recognize the PQ disturbances even

when the noise is variable between 10 dB SNR to 100 dB

SNR.

Performance of algorithm is tested for recognition of wide

range of different PQ disturbances. Results for recognition

of voltage sag magnitude ranging from 20% to 80% are

described in Fig. 20. Further, the values of features F5, F6,

F7 and F8 for sag in voltage with 20%, 40%, 60% and 80%

are detailed in Table 5. It is observed that sag in voltage for
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TABLE 3. Numerical Values of Features Used as Input to the RBDT

Type of Features
PQD F5 F6 F7 F8

PQD1 0.0076 0.9792 1.8477 1.5750× 10
−5

PQD2 0.0940 0.9424 1.9076 1.5306× 10
−5

PQD3 0.2619 1.2057 2.1229 4.3233× 10
−5

PQD4 0.2357 0.8763 2.0403 1.4531× 10
−5

PQD5 0.3073 2.6449 14.4868 9.0059

PQD6 126.3743 0.9977 2.0961× 10
5

1.6270× 10
−5

PQD7 104.3131 1.0563 4.9262× 10
6

1.7197× 10
−5

PQD8 0.2230 2.3715 108.1189 0.3574

PQD9 2.5229 1.6177 7.5000× 10
3 7.6866

PQD10 2.6390 1.1562 6.8444× 10
3 0.0177

PQD11 0.6684 2.0034 109.8587 0.3192

PQD12 0.4556 4.0774 347.7807 75.8061

PQD13 132.5229 2.7386 4.3855× 10
5 12.1427

PQD14 88.4428 2.5211 4.1181× 10
6 0.4138

PQD15 1.9798 1.0604 4.6300× 10
3 0.0185

PQD16 154.9560 2.4435 9.7822× 10
5 0.4253

Generate PQ disturbances

Process Voltage Signals using HT & ST to obtain PI and TLI
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FIGURE 19. Decision rules and classification of PQDs

all possible range has been identified effectively and features

F5 to F8 have values in the category of sag in voltage. Voltage

sag with different range of magnitude have been classified in

the category of voltage sag. Similar results are obtained for

wide range of all the investigated PQ disturbances.

VI. VALIDATION OF ALGORITHM TO RECOGNIZE PQ

DISTURBANCES IN PRACTICAL POWER SYSTEM

NETWORK

The algorithm proposed for recognition of power quality

disturbance is tested on a practical power system network of

Rajasthan State of India reported in [23]. A brief description

of the grid sub-stations (GSS) and transmission lines of the
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TABLE 4. Performance of Algorithm for Recognition of PQDs

Type of Accurate PQDs (nos.) Inaccurate PQDs (nos.)
PQD Noise

Absent
Noise
(10dB
SNR)

Noise
Absent

Noise
(10dB
SNR)

PQD1 99 99 1 1

PQD2 99 99 1 1

PQD3 100 99 0 1

PQD4 100 100 0 0

PQD5 99 97 1 3

PQD6 100 100 0 0

PQD7 100 100 0 0

PQD8 100 97 0 3

PQD9 100 98 0 2

PQD10 100 99 0 1

PQD11 99 97 1 3

PQD12 99 98 1 2

PQD13 100 100 0 0

PQD14 100 99 0 1

PQD15 99 97 1 3

PQD16 100 100 0 0

Average
efficiency

99.625% 98.81%
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FIGURE 20. Performance of algorithm to recognize voltage sag of different

magnitudes

TABLE 5. Numerical Values of Features Used as Input to the RBDT for

Different Magnitudes of Voltage Sag

Voltage Features
Sag (%) F5 F6 F7 F8

20% 0.0920 0.9480 1.8984 1.5378× 10
−5

40% 0.09521 0.9322 1.9065 1.5288× 10
−5

60% 0.09678 0.9125 1.9112 1.5232× 10
−5

80% 0.09702 0.9022 1.9207 1.5208× 10
−5

network is provided in Table 6. Generation contribution by

the thermal power plants (TPP), power plants (PP) based on

nuclear, hydro and renewable energy (RE) is detailed in Table

7 [24].

The network designed in the MiPower software and used

for the planning and operational studies are considered for

validation of the proposed PQ recognition algorithm and

study is performed on 132 kV GSS Engineering College,

Jodhpur. There are two 37.5/50 MVA, 132/33 kV transform-

ers installed on this GSS to feed a load of the region. There

TABLE 6. Existing Grid Substation and Transmission Lines in Rajasthan

Voltage level
(kV)

Number of Grid Sub-
station

Total circuit length of
lines (km)

765 kV 6 425.498

400 kV 27 7604.444

220 kV 124 15443.394

132 kV 459 18245.566

Total 616 41718.902

TABLE 7. Generation Contribution by Different Power Plants

Type of Power Plant Capacity
(MW)

Generation contribu-
tion (%)

Coal TPP 11918.45 56%

Gas TPP 824.60 4%

Nuclear PP 456.74 4%

Hydro PP 1961.95 9%

Wind Generation 3734.10 18%

Solar Generation 2178.10 10.29%

Biomass Generation 101.95 0.48%

Total 21175.90 100%

are total eight 33 kV outgoing distribution feeders emanating

from this GSS which are feeding 11 MW (approximate) load

to eight 33/11 kV GSS from where the load is supplied to the

consumers. These outgoing feeders are designed in addition

to the network already used for the planning purpose.

Faulty events are sources of voltage sag and transient

disturbances in the network of the power system. A line to

ground (LG) fault is simulated at time 0.1s at the middle

of the first outgoing feeder which is 4.32 km long. The

voltage signal recorded on the 33 kV bus of the 132 kV GSS

Engineering College is recorded for a period of 10 cycles.

This voltage signal is processed using the proposed algorithm

to compute PI and TLI plots which are described in Fig.

21. Fig. 21 (a) indicates the recorded voltage signal for a

period of 0.2s. It is observed that due to the incidence of LG

fault, the voltage magnitude decreases and fault transients are

associated for the short time duration. Fig. 21 (b) indicates

that amplitude of the PI plot has decreased at 0.1s indicating

the presence of sag in voltage. Further, high magnitude

available in the PI plot at the time of fault incidence indicates

the presence of transients. Fig. 21 (c) indicates that TLI plot

has sharp magnitude peak at the time of fault incidence. This

is due to the combined effect of the initiation of the sag in

voltage, and the presence of transient components. Hence,

patterns of PI and TLI plots when combined together, effec-

tively identify and localizes the sag in the practical network

and also identify the transient components associated with

the fault events. Further, the features F5, F6, F7 and F8 have

values of 0.58, 1.98, 108.32, and 0.35, respectively. Hence,

this disturbance is classified in the category of voltage sag

and harmonic transients. Further, the algorithm is also suc-

cessfully tested to identify the voltage swell due to switching

on of a 2 MVAR capacitor bank.
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power quality index (c) time location index

VII. PERFORMANCE COMPARATIVE STUDY

Performance of the algorithm is compared with the Hilbert

transform and Stockwell transform-based techniques re-

ported in the literature. A technique using variance features

extracted from the amplitude, median and kurtosis plots

obtained by ST based decomposition of voltage signal with

single-stage PQ and multiple PQ is reported in [12] and [13]

respectively, where the classification of PQDs is achieved

using the RBDT. This technique has the average efficiency

of 97.033% and 96.67% for recognition of single-stage and

multiple PQ disturbances, respectively. Further, a technique

using variance features extracted using HT decomposition of

voltage signal with single-stage PQ and multiple PQ is re-

ported in [14] and [15], respectively, where the classification

of PQDs is achieved using the RBDT. This technique has the

average efficiency of 98.20% and 97.33% for recognition of

single-stage and multiple PQ disturbances, respectively. The

algorithm proposed in this paper has combined the Stockwell

transform and Hilbert transform to improve performance

of the PQ recognition, and average efficiency of 99.625%

is achieved which is higher compared to the efficiency of

algorithms reported in [12], [13], [14] and [15]. These papers

have been considered for comparative study because wave-

forms of PQDs investigated in these papers are similar to that

considered in this paper. Further, the algorithm based on ST

and RBDT and reported in [17] has an average efficiency of

98.5% for recognition of single-stage PQ disturbance in the

presence of noise level of 20dB SNR whereas the algorithm

introduced in this paper has an efficiency of 98.81% in the

presence of higher noise level of 10dB SNR. A comparative

study indicating the performance of proposed algorithm and

algorithm reported in [17] in noisy environment is detailed

in Fig. 22. It is inferred that performance of proposed ap-

proach is superior compared to the approach reported in [17]

during the noisy conditions. Hence, it is established that the

proposed algorithm is more effective compared to the various

techniques reported in the literature and can be used for the

design of the online PQ monitoring devices for the utility

grids.
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FIGURE 22. Comparative study for performance of algorithms in identification

of voltage sag in noisy environment

The 640 samples of each investigated PQ disturbances

are generated for comparing computational time of proposed

approach with the method reported in [17]. A laptop of 64-bit

operating system, 4 GB RAM, Intel(I) Core(TM)i5-3230M

CPU@2.60 GHz processor is used to compute the computa-

tional time. The computational time involved in the compu-

tation of PI and TLI plots (detection of PQDs) is observed

to be 0.256791s, and computation time for classification of

PQDs is 0.100326s. Hence, the total computational time for

detection and classification of a PQD using the proposed

approach is 0.357117s. Further, computational time involved

in the computation of different ST based plots (detection of

PQDs) is observed to be 1.8257s, and computation time for

classification of PQDs is 0.34561s using method reported in

[17] which is based on ST and decision tree (DT) initialized

Fuzzy C-means clustering (FCM). A comparative study of

computational time of algorithm with algorithm based on

ST+DT+FCM and reported in [17], using a bar chart is

detailed in Fig. 23. Hence, it is established that proposed

method is more faster compared to the many techniques

reported in literature.
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FIGURE 23. Computational time comparison

VIII. CONCLUSION

This paper introduced an algorithm based on the hybrid

combination of features of voltage signals extracted using the
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Hilbert transform and Stockwell transform for recognition of

the PQ disturbances. Classification of the PQDs is achieved

using rules supported by decisions using various features.

Feature F1 computed using the HT and featured F2 to F4

computed using ST are used to obtain the PI and TLI plots.

PQDs are identified by analysis of the patterns of these plots.

Investigated single-stage PQDs include sag, swell, MI, IT,

OT, flicker, harmonics, MS and MN. These PQDs are used

to obtain the investigated multiple PQDs. The TLI plot is

found to be effective in localization of the PQDs such as

sag, swell, MI and OT. Features F5 to F8 are computed from

the PI and TLI plots are considered as input to the RBDT

for classification purpose. It is concluded that the proposed

algorithm is effective for recognition of both the single-stage

and multiple PQDs with an efficiency of 99.625%. Further,

this algorithm is also effective to recognize both the single-

stage and multiple PQDs with an efficiency of 98.81% in the

presence of higher noise level of 10dB SNR. Performance

of the algorithm is found to be superior compared to the

algorithms based on the Stockwell transform and Hilbert

transform reported in the kinds of literature. Proposed ap-

proach is faster and scalable to all range of voltages. The

algorithm successfully recognized the PQDs associated with

the practical utility network. This algorithm can be used to

design online PQ monitoring devices which can be used to

monitor PQ disturbances in the utility grids.
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