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The paper offers a new approach to handling difficult parametric inverse problems in elasticity and thermo-elasticity, formu-

lated as global optimization ones. The proposed strategy is composed of two phases. In the first, global phase, the stochastic

hp-HGS algorithm recognizes the basins of attraction of various objective minima. In the second phase, the local objective

minimizers are closer approached by steepest descent processes executed singly in each basin of attraction. The proposed

complex strategy is especially dedicated to ill-posed problems with multimodal objective functionals. The strategy offers

comparatively low computational and memory costs resulting from a double-adaptive technique in both forward and inverse

problem domains. We provide a result on the Lipschitz continuity of the objective functional composed of the elastic energy

and the boundary displacement misfits with respect to the unknown constitutive parameters. It allows common scaling of

the accuracy of solving forward and inverse problems, which is the core of the introduced double-adaptive technique. The

capability of the proposed method of finding multiple solutions is illustrated by a computational example which consists in

restoring all feasible Young modulus distributions minimizing an objective functional in a 3D domain of a photo polymer

template obtained during step and flash imprint lithography.
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1. Motivation

Considerable progress has been achieved recently in the

field of inverse problems and, as a result, this area is one

of the fastest growing domains in applied mathematics

and computer science. It is concerned with problems that

consist in finding an unknown property of a medium, or an

object, from the observation of a response of this medium,

or object, to a probing signal. A general framework for

inverse problems provides analytical means of estimating

constants in mathematical models given appropriate

measurements, building mathematical models, and giving

insight into the design of experiments (see, for instance,

the works of Banks and Kunisch (1989), Isakov (2006),

Tarantola (2005) and the references therein). Typically,

inverse problems lead to mathematical models which

are not well-posed in the sense of Hadamard, i.e., their

solution might not be unique and/or might be unstable

under data perturbations, and therefore they pose severe

numerical difficulties.

The growth of the area of inverse problems has

largely been driven by the needs of applications both in

sciences and in industry. We refer to Engl et al. (2000),

Samarski and Vabishchevich (2007) or Tikhonov et al.

(1995) for a description of inverse problems of different

types, including inverse problems in which the equation

is not specified completely as some equation coefficients

are unknown, boundary inverse problems in which

boundary conditions are unknown, and evolutionary

inverse problems in which initial conditions are unknown.

In this paper, we deal with a class of inverse

problems in linear elasticity in which the coefficients

of the partial differential equations are the unknowns.

Problems of this class have been frequently formulated

and solved in the frame of structural health monitoring

(SHM). The general scope of SHM contains a variety of

theoretical results, methods and technologies to design,
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run and supervise monitoring systems that allow on-line

detection of structure damages. The particular SHM

tasks are designing and optimizing a system of sensors

set on the structure body, verification, statistical analysis

and classification of data obtained from sensors, finding

weakened structure regions by solving inverse problems

properly formulated. The survey of such results may be

found in many books (see, e.g., Garibaldi et al., 1999) and

scientific journals (see, e.g., Structural Health Monitor-

ing, http://shm.sagepub.com/).

An interesting characterization of inverse problems

in mechanics (hereafter referred to as IPMs) appearing

in SHM is given by Friswell and Mottershead (2001).

A typical IPM is associated here with the discrete

forward problem of elastic system vibration with or

without viscous damping. The system is assumed to

be already discretized, or is discrete itself (e.g., frame,

lattice). Usually, the decrement of some stiffness

matrix coefficients represents the damage. The IPM

consists in finding a weakening coefficient distribution by

minimizing the functional being the misfit of the answer

of the structure for vibrational forcing or/and the misfit of

eigenfrequencies. The damage identification in SHM is

sometimes called model updating.

The main difficulty in solving such IPMs is the

huge dimension of the admissible set. This problem

might be partially overcome by an initial selection of the

structure part (region, subdomain) in which the damage

may occur. In order to speed up the solving process,

the objective is frequently linearized and regularized.

The other problem is to obtain a discrete system in the

case of a massive, lumped structure. Proper FEM or

FDM approximation might be helpful, but the results

of monitoring are very sensitive to the quality of this

approximation. Chase Geoffrey et al. (2004) show sample

results of the least square regularization method tested

on the American Society of Civil Engineers (ASCE)

benchmarks of SHM problems.

As far as steepest descent (e.g., gradient) methods are

applicable for solving well posed IPMs, other methods

replacing or/and supporting these are in frequent use.

In the paper of Kirikera et al. (2008) a structural

artificial neural network (ANN) prototype AI system

with a parallel implementation identifying damages in

composite materials is presented. An input ANN layer

is connected to sensors, while the output layers deliver the

data classification information.

The application of machine learning for detecting

structural damages using a vibration-based damage

identification procedure is presented by Figueiredo et al.

(2011). Four learning algorithms are compared during the

process of learning an auto-associative neural network.

The Bayesian inference approach to solving the

inverse problem of locating structural damage based

on measured vibrational parameters is presented by

Huhtala and Sven (2011). The identified stiffness

coefficient decrements were improved by a-posteriori

stochastic analysis assuming a known distribution of the

measurement errors. Some examples of solving IPMs

motivated by SHM by genetic stochastic search are given

by Meruane and Heylen (2009) as well as Caicedo and

Yun (2011).

Perhaps the most tiring phenomenon appearing when

defining and solving an IPM is the multimodality of the

objective function, i.e., the existence of multiple local

minima. The main causes of multimodality may fall into

three groups:

• Inherent causes. The mathematical formulation of

the problem allows multiple solutions. Sometimes,

such a possibility might be formally proven (see, e.g.,

Cabib et al., 1990) and, more frequently, it is either

anticipated from the physical evidence or reflects

simply our inability to prove the uniqueness.

• Uncertainty of the objective function representation.

It appears because of both insufficient knowledge of

the problem and the errors in data measurements and

representation (see, e.g., Koper et al., 1999; Meruane

and Heylen, 2009; Caicedo and Yun, 2011).

• Uncertainty of methods for problem solving. Some

global optimization strategies (both deterministic and

stochastic) may produce artefacts in the form of

local objective extrema (see, e.g., Barabasz et al.,

2011b). Moreover, an unavoidable error of objective

evaluation makes it difficult to distinguish the global

extrema among many local ones.

One way of solving ill-posed inverse problems is

by using metaheuristics, which are solution methods that

orchestrate an interaction between local improvement

procedures and higher level strategies to create a pro-

cess capable of escaping from local optima and per-

forming a robust search of a solution space (Osman

and Kelly, 1996). There are multiple methods that

fulfill the above definition, for example, scatter search,

tabu search, simulated annealing, genetic algorithms, ant

colony optimization, and many others. An overview of

metaheuristics is given, e.g., by Osman and Kelly (1996)

or Glover and Kochenberger (2002); for an extensive list

of references on this topic, see the work of Osman and

Laporte (1996).

Among the existing metaheuristic search strategies,

we highlight evolutionary algorithms (EAs), which have

been applied to solve inverse problems (see Burczyński

and Beluch, 2011; Burczyński et al., 2004). In particular,

they deal with multiple material defects in mechanical

systems and identification of the shape and the position

of a tumour region in a biological tissue domain. Inverse

problems in engineering mechanics were the subject of
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many international symposia (see, e.g., Tanaka, 2003).

EAs were also applied to inverse problems, e.g., by

Rocca et al. (2009) (inverse scattering problems), Singh

et al. (2006) (inverse groundwater modelling), Lashin

and Likoshvai (2004) (gene networks identification) and

Xavier et al. (2006) (cardiac bidomain equations), who

compare two parallel genetic algorithms; for details

concerning this type of algorithms, refer to Cantú-Paz

(2000).

Meruane and Heylen (2009) applied a real-coded

genetic algorithm to solve the SHM inverse problem

formulated as a nonlinear, global optimization one. The

main goal of this computationally expensive stochastic

approach is to handle the local minima. Fitness was based

on operational model data—it considers the initial errors

in the numerical model. False damage detection is avoided

by using damage penalization. A parallel implementation

prevents enormous execution time.

Our particular interest is devoted to EAs, which

can handle multimodality by finding all “reasonable”

local extrema and then perform proper post-processing

in order to distinguish essential ones. Some of them,

e.g., niching and sequential niching strategies (see, e.g.

Mahfoud, 1997), the hierarchic genetic strategy (HGS)

(see Schaefer and Kołodziej, 2003), adaptive, stochastic

multi-start (see, e.g., Cabib et al., 1998), are especially

robust when handling multimodality in the objective

function.

A novel evolutionary algorithm for finding multiple,

alternative solutions of the model update of a structural

system in the SHM process was presented by Caicedo and

Yun (2011). The genetic algorithm identifies global and

local minima of the objective function, giving the analyst

the option to choose the updated model from a set of

plausible ones.

Perhaps the main disadvantage of stochastic global

optimization strategies is their enormous computational

cost caused by a huge number of objective evaluations.

In the case of parametric inverse problems, the objective

evaluation requires the solution of a forward problem,

which is usually costly itself. The way of reducing

the computational cost of stochastic strategies is then to

reduce the number of objective evaluations and possibly

decrease the computational cost of the forward problem

solver.

The main goal of this paper is to propose a

two-phase strategy that possesses an asymptotic guarantee

of success (see, e.g., Horst and Pardalos, 1995)

and can handle objective multimodality. Moreover,

the strategy can deliver high final accuracy with a

moderate computational cost for solving parametric

inverse problems in elastostatics.

The first, global phase is performed by the hierarchic

genetic strategy (Schaefer and Kołodziej, 2003) combined

with the hp-adaptive finite element method hp-FEM

(Demkowicz, 2006; Demkowicz et al., 2007). The

hp-HGS develops a tree of dynamically adjustable

dependent demes. It starts with a root deme which

performs the most chaotic search with low accuracy. After

the metaepoch (the fixed number of epochs) the best fitted

individuals form a seed of a child deme. Sprouting child

demes is repeated concurrently for the root and all other

demes excluding leaves. It is performed conditionally, if

there is room among existing demes at the same level of

the hp-HGS tree (the distance of a seed to the centers of

existing demes is sufficiently large). Moreover, demes at

each level are periodically checked, and redundant demes

are reduced. Searches performed by child demes are

stopped if no progress in the evolution is observed. The

whole strategy is stopped if a sufficient number of well

fitted leaves is obtained.

In the second, local phase the satisfactorily fitted

individuals (at most one per leaf deme) are improved

by a quasi-Newton method, namely, the limited-memory

bound-constrained version of the very well-known

Broyden–Fletcher–Goldfarb–Shanno (L-BFGS-B) algo-

rithm (Zhu et al., 1997).

The imposed tree structure of demes decreases

the total fitness evaluations in comparison with a

single population algorithm searching with the maximum

accuracy (see, e.g., Schaefer and Kołodziej, 2003;

Wierzba et al., 2003). The root deme searches

permanently while branch and leaf demes, being much

smaller than the root-deme, are invoked only in the

promising regions found by their parental demes. Child

demes are quickly terminated, just after they stop to search

effectively. Two mechanisms, i.e., redundancy reduc-

tion and conditional sprouting, significantly reduce the

number of active demes. Finally, well fitted leaf demes

concurrently cover separate basins of attractions of local

and global minimizers.

The main computational cost reduction is caused

by precise accuracy control of the forward self-adaptive

hp-FEM solver, which performs misfit evaluation

(fitness). This accuracy is adapted to the inverse error

at the particular level of the hp-HGS tree, which makes

the global phase significantly cheaper. An extensive but

necessary mathematical and algorithmic motivation for

this procedure is given in Section 2 and Appendix.

Furthermore, only the necessary minimal number of

local searches is activated for finding all minimizers with

high accuracy. The local gradient searches are expensive

in the case of numerical gradient evaluation, which is

necessary if, for some reasons, it cannot be obtained

analytically (e.g., misfit irregularity or lack of its algebraic

formula).

Summing up, in contrast to traditional inversion

algorithms producing a unique solution, our two-phase

strategy may deliver multiple solutions, which enables an

expert in the field to determine the best possible one as
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well as its uncertainty level.

The idea of the hp-HGS was introduced by Paszyński

et al. (2007). Analysis of the asymptotic guarantee of

success and computational cost reduction with respect to

single- and multi-deme strategies without the common

scaling of forward and inverse errors is performed by

Schaefer and Barabasz (2008). Barbasz et al. (2011b;

2009) show the theory necessary for applying the hp-HGS

to inverse, parameter problems in heat flow. They also

give computational examples of finding multiple solutions

by the hp-HGS method.

The novelty of this paper consists in applying the

two-phase strategy combining the hp-HGS and local

methods to inverse problems in elastostatics. Moreover,

we extend the formal verification of the hp-HGS to

the particular class of inverse parametric problems in

elastostatics. A crucial role in this analysis is played

by the verification of the Lipschitz continuity of the

elastic energy functional with respect to the unknown

parameters (see Theorem A1 and Corollary A1). Some

results of this paper were communicated by Barabasz

et al. (2011a). We also attach a benchmark example

consisting in solving a thermo-elastic IPM associated

with the step-and-flash imprint lithography process, which

illustrates the advantages coming from the adaptive

genetic search and the control of accuracy in the case

of ill-posed, inverse problems with the multimodal

functional being the composition of elastic energy and

boundary displacement misfits.

2. Forward and inverse problems

2.1. Definition of a forward problem. The class of

IPMs to be solved is related to the following class of

forward problems.

Let an open, bounded, and connected subset

Ω ⊂ R
d, d = 1, 2, 3 coincide with the undeformed

configuration of a linear elastic body. Consider the

Sobolev space

V = { v ∈ H1(Ω; Rd) | tr(v) = 0 on ΓD },

where ΓD ⊆ ∂Ω with meas(ΓD) > 0 corresponding to

the mixed (Dirichlet and Neumann) boundary conditions.

Assuming small deformations, the weak equilibrium

(variational residual) equation takes the following form:

Find u ∈ V such that

a (g; u, v) = l (v) , ∀v ∈ V, (1)

where g ∈ L∞(Ω; Kγ) is the stiffness tensor parameter.

Moreover, a(g; ·, ·) : V × V → R is bilinear, symmetric,

continuous and coercive form with respect to the second

and third variables uniformly for all g ∈ L∞(Ω; Kγ).
The right-hand side mapping l : V → R is linear and

continuous.

The space L∞(Ω; Kγ), γ > 0 gathers all symmetric

bounded tensor functions of fourth order,

Kγ = { k ∈ Md | k τ : τ ≥ γ ‖τ‖2
Sd ∀τ ∈ S

d },

and σ : τ is the product of tensors given by σij τij for σ,

τ ∈ S
d. Moreover, for a constant 0 < Mk < +∞, we

define

S
d ⊃ Md = { k = (kijhl) | kijhl = kjihl = khlij ,

kijhl ≤ Mk, i, j, h, l = 1, . . . , d },

where S
d is the space of symmetric d × d matrices.

The above conditions are sufficient for the

well-posedness of (1) for each g ∈ L∞(Ω; Kγ) and

enable us to rewrite (1) in the equivalent form

arg min
u∈V

E (g; u) , (2)

where

E(g; u) =
1

2
a(g; u, u)− l(u) (3)

stands for the total energy of the modelled physical

system; see, e.g., the work of Ciarlet (1978, Chapter 1),

and Appendix with references herein for an explanation

of necessary mathematical details.

2.2. Self hp–adaptive finite element method.

The finite element method (FEM) consists of

constructing a subspace Vh,p ⊂ V with a finite basis

{ei
h,p}i=1,...,Nh,p

, Nh,p < +∞. The subspace Vh,p is

constructed by partitioning the solution domain Ω into

a finite number of nonintersecting polyhedra (called

elements) and defining basis functions as polynomials

satisfying prescribed conditions over their vertices, edges,

faces, and interiors. Each non-zero restriction of the basis

function ei
h,p to the element is called the shape function.

Usually, we restrict the representation of the stiffness

tensors (forward problem parameters) to some admissible

set D ⊂ L∞(Ω; Kγ) for both forward and inverse

numerical computations. Typically, D is a set of stepwise,

uniformly bounded functions on the predefined, regular

decomposition of the solution domain Ω.

Assuming a value of the parameter g ∈ D, an

approximate solution uh,p to (1) is obtained by using a

linear combination of the basis functions

uh,p =

Nh,p∑

i=1

ui
h,p ei

h,p. (4)

Using (4) and a similar representation for v ∈ Vh,p ⊂ V ,

we can obtain for (1) the system of linear equations

Nh,p∑

i=1

ui
h,p a

(
g; ei

h,p, e
j
h,p

)
= l

(
ej

h,p

)
,

j = 1, . . . , Nh,p. (5)



A hybrid algorithm for solving inverse problems in elasticity
869

The coefficients ui
h,p are called the degrees of freedom. A

detailed mathematical description of the FEM applied to

elliptic variational problems may be found in the work of

Ciarlet (1978, Chapter 2), while the convergence of this

method for various FEM spaces is discussed by the same

author (Ciarlet, 1978, Chapters 3 and 4) or by Descloux

(1973).

The accuracy of the approximation depends on the

quality of the basis functions. The self-adaptive hp
finite element method is an algorithm for automatic

construction of the basis function delivering exponential

convergence of the accuracy with respect to the mesh size.

The algorithm has been formulated by Rachowicz et al.

(2006), Demkowicz (2006) and Demkowicz et al. (2007).

It can be summarized in the following steps:

1. Generate an initial basis function {ei
h,p}i=1,...,Nh,p

span over the so-called initial mesh. The initial

mesh becomes the so-called coarse mesh for the first

iteration.

2. Solve the coarse mesh problem by computing the

degrees of freedom {ui
h,p}i=1,...,Nh,p

. After that

step, we obtain the coarse mesh approximate solution

uh,p =
∑Nh,p

i=1 ui
h,p ei

h,p.

3. Generate the fine basis {ei
h
2

,p+1
}i=1,...,N h

2
,p+1

spanned over the so-called fine mesh. The fine

mesh is obtained from the coarse mesh by breaking

each coarse mesh element into eight elements and

incrementing the polynomial order of approximation

uniformly by one.

4. Solve the fine mesh problem by computing the

degrees of freedom {ui
h
2

,p+1
}i=1,...,N h

2
,p+1

. After

that step, we obtain the fine mesh approximate

solution

u h
2

,p+1 =

N h
2

,p+1∑

i=1

ui
h
2

,p+1
ei

h
2

,p+1
.

5. Select an optimal refinement strategy for each finite

element from the coarse mesh. That should be

based on the error estimations ‖erel‖
2, where erel =

u h
2

,p+1−uh,p, computed by using the coarse and fine

mesh solutions (see Demkowicz, 2006). The norm

‖ · ‖ is equivalent to the energetic norm on the space

V (cf. Section 5 for details). The optimal refinements

contain a list of h refinements (requests to break

some elements into either two, four, or eight new

elements) or p refinements (raising some polynomial

orders of approximations by one).

6. Execute all required h refinements.

7. Execute all required p refinements.

8. If the maximum relative error of the solution is

greater than the required accuracy, then go to Step 2.

The new optimal mesh becomes the coarse mesh for

the next iteration.

It has been proven that an appropriate selection of

element sizes h and polynomial orders of shape functions

p obtained using the above automatic hp-FEM results

in exponential convergence of the numerical error with

respect to the number of basis functions (degrees of

freedom) (Babuška, 1986a; 1986b; Schwab, 19998).

No matter how the convergence of hp-FEM holds by

h → 0 and p → +∞, both parameters are dependent.

They should satisfy the syntactic rules of element mesh

refinement, taking the approximation appropriate for its

topology. In the computational practices p rarely exceeds

10, while h is bounded from below by the arithmetic error

of the particular implementation.

The self-adaptive hp-FEM algorithm has been also

redesigned by using the graph grammar approach (Ryszka

et al., 2013; Paszyński, 2009a; Strug et al., 2013;

Paszyńska et al., 2008; 2012a; 2012b; 2009) and

efficiently implemented on parallel machines (Paszyński,

2009b; Paszyński and Schaefer, 2010; Paszyński and

Demkowicz, 2006).

2.3. Rate of hp-FEM convergence. In particular, the

exponential convergence of the self-adaptive goal oriented

hp-FEM is experimentally confirmed as the straight line

y = −ax + b in the system of coordinates, where the

horizontal axis represents the cube root of the number

of degrees of freedom x = N1/3 and the vertical

axis represents the logarithm of the relative error y =
log10(‖erel‖), ‖erel‖ < 1, where erel = u h

2
,p+1 − uh,p

denotes the relative error being the difference between two

consecutive approximate solutions, ‖·‖ denotes the proper

norm in the space problem solutions. The constants a
and b are positive and problem dependent. This implies

the relation log10(‖erel‖) = −a(N1/3) + b, which in

turn entails N = −c1(log10(c2 ‖erel‖))
3 for ‖erel‖ < 1,

where the constants are problem specific c1 = a−3, c2 =
10−b > 0. The computational cost of the solution

of the problem by using a forward solver over the two

dimensional mesh depends on the structure of the hp
refined mesh. For a regular mesh the cost is of order

O
(
N3/2

)
. For meshes with pointwise singularities the

cost can be reduced down to linear O (N). Finally,

cost = O
(
−c1(log10(c2 ‖erel‖))

3r
)
, ‖erel‖ < 1, (6)

where r ∈ [1, 3/2], and now c1 = a−3r, c2 = 10−b > 0.

2.4. Definition of a class of inverse problems. Let us

denote hereafter by u(g) ∈ V and uh,p(g) ∈ Vh,p the

unique solutions to (1) and its FEM approximation in the
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space Vh,p obtained for the particular parameter g ∈ D,

respectively.

We assume that we can observe the total strain energy

Ê and the boundary displacement γ̂ of the deformable

elastic body Ω.

The inverse problem under consideration consists in

finding (approximating) an unknown physical parameter

ŝ ∈ L∞(Ω; Kγ) resulting in the value of the strain

energy E(ŝ; u(ŝ)) = Ê (see the formula (3)) and the

boundary displacement tr(u(ŝ)) = γ̂, where u(ŝ) ∈ V
stands for the exact solution to (2) for the parameter ŝ
and tr : H1(Ω; Rd) → L2(∂Ω; Rd) is the trace operator

(see, e.g., Denkowski et al., 2003b). The exact value

of energy Ê can be measured in situ or in a laboratory

or computed by highly accurate molecular calculations,

while the observed value of γ̂ can be obtained by laser

scanning of the body surface ∂Ω.

We will formulate the misfit functional J : D → R+

such as

J(g) =
∣∣ E(g; u(g)) − Ê

∣∣

+ ω ‖tr(u(g)) − γ̂)‖
2
L2(∂Ω;Rd) ,

(7)

where ω ≥ 0 is a scaling factor. Note that the internal

strain energy (see (3)) is a square form of the forward

solution, so both misfit components are of the same

degree.

Since, in general, it is impossible to compute the

exact value of (7) for each ŝ ∈ L∞(Ω; Kγ) effectively

(it would be available only if ŝ ∈ D), we intend to

find an approximation ĝ ∈ D of the exact parameter

ŝ ∈ L∞(Ω; Kγ) so that for all g ∈ D we have

lim
h→0, p→+∞

Jh,p(ĝ) ≤ lim
h→0, p→+∞

Jh,p(g), (8)

where

Jh,p(g) =
∣∣ E(g; uh,p(g)) − Ê

∣∣

+ ω ‖tr(uh,p(g)) − γ̂)‖
2
L2(∂Ω;Rd)

(9)

and E(g; uh,p(g)) stands for the energy of the approximate

solution uh,p(g) obtained for the parameter g ∈ D.

The inverse problem (8) may be classified as a global

optimization one because of the frequent ambiguity of

its solution (multiple solutions), manifested as objective

multimodality caused by its physical nature and/or the

uncertainty of the mathematical model, as well as errors

in numerical objective evaluation. As a result, not

only the global minimizers, but also the local ones with

sufficiently low objective values may represent physically

meaningful solutions. The other difficulty is often a high

computational cost of the approximated evaluation of the

misfit (9).

3. hp-HGS overview

3.1. Primitives. The HGS produces a tree-structured

dynamically changing set of dependent demes (see Fig. 1).

The depth of the HGS tree is bounded by m < +∞. The

low-order demes (those closer to the root) perform a more

chaotic search with lower accuracy, while the high-order

demes perform a more accurate, local search.

Each deme, except leaf demes, sprouts a new child

deme after a constant number K of genetic epochs

called the metaepoch. A new child deme is activated

in a promising region of the evolutionary landscape

surrounding the best fitted individual, distinguished from

the parental deme at the end of the metaepoch.

The HGS also implements two mechanisms that

allow reduction in search redundancy. The first one,

called conditional sprouting, disables the sprouting of

new demes in regions already occupied or explored by

the brother-deme (another child-deme of the same order

sprouted by the same parent). The second mechanism,

called branch reduction, reduces the branches of the same

order that perform searches in the common landscape

region or in the regions already explored.

The HGS stopping policy is composed of a local

branch stopping condition that terminates the evolution in

leaves and branches and a global stopping condition that

evaluates the total maturity of the global search. Local

stopping conditions monitor the evolution progress in a

deme and stop it if it is unsatisfactory. The whole strategy

might be stopped if no new demes are sprouted after a

sufficiently large number of metaepochs and all active

leaves were stopped. The other possibility is to stop

the strategy when the satisfactory number of well fitted

individuals was already found.

We apply an HGS in order to solve the inverse

problem (8). The fitness function for the particular deme

should be based on the misfit functional (9). We utilized

two type of encodings, obtaining two separate types of

strategies.

In the case of the binary encoding, the evolution

of each deme is governed by a separate instance of the

simple genetic algorithm (SGA) (see Vose, 1999). The

search accuracy is dictated by encoding precision and by

the length of binary strings used as the genotypes, which

are different for different-order demes. The unique deme

of the first order (the root) utilizes the shortest genotypes,

while the leaf utilizes the longest ones. To obtain search

coherency for demes of different orders, a special kind of

hierarchical and nested encoding is used. First, the densest

mesh of phenotypes in D for the demes of the m-th

order is defined. Next, the meshes for the lower order

demes are recursively defined by selecting some nodes

from the previous ones. The maximum diameter of mesh

δj associated with the demes of order j determines the

search accuracy at this level of the HGS tree. Obviously,
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Fig. 1. HGS tree and corresponding two-dimensional meshes.

the mesh parameters satisfy δm < · · · < δ1.

In the real-number encoding version of the HGS, a

genotype is a vector of floating point numbers. In order

to introduce a sequence of increasing genetic spaces for

subsequent orders of branches, we use a sequence of

scaling coefficients +∞ > η1 ≥ η2 ≥ · · · ≥ ηm = 1. Let

us denote by D =
∏N

i=1[ai, bi] ⊂ R
N a search domain,

where ai, bi; ai < bi are the lower and upper bounds for

the i-th decision variable. The genetic space at the i-th
level is defined as

∏N
i=1[0, bi−ai

ηi
] ⊂ R

N . In this way,

we obtain genetic spaces that are smaller for lower level

branches, closer to the root. The genetic space for leaves∏N
i=1[0, (bi − ai)] is of the same size as the admissible

domain D, and has the richest numerical representation. If

a target search accuracy in leaves equals δm, the accuracy

in the underlying demes will be reduced to δj = ηj δm,

for j = 1, . . . , m − 1.

3.2. Dynamic accuracy adjustment. Let us assume

that g represents the parameter value decoded from the

genotype that appears in the HGS deme of the j-th order,

j ∈ {1, . . . , m}. Lemma A6 (see Appendix A.4) delivers

the following misfit evaluation:

Jh
2

,p+1(g)

=
∣∣E(g; u h

2
,p+1(g)) − Ê

∣∣

+ ω
∥∥∥tr(u h

2
,p+1(g)) − γ̂)

∥∥∥
2

L2(∂Ω;R3)

≤ A1 ‖uh,p(g) − u h
2

,p+1(g)‖2
H1(Ω;Rd)

+ A1 ‖uh,p(g) − u(g)‖2
H1(Ω;Rd)

+ A2 ‖g − ŝ‖L∞(Ω;Kγ ),

(10)

where u(g) is the solution to the problem (1),

Ê = E(ŝ; u(ŝ)) are the real displacement and energy,

respectively, and A1, A2 > 0 are two positive constants.

The first right-hand side component of (10)

contains the square of the error decrement ‖erel(g)‖ =

‖u h
2

,p+1(g) − uh,p(g)‖ in the single hp-FEM step (see

Demkowicz, 2006), while the last component represents

the error of the inverse problem solution that characterizes

the individuals belonging to the HGS demes of the j-th

order.

The main idea of the hp-HGS is to adjust

dynamically the accuracy of the misfit evaluation to

the particular value of the parameter g encoded in an

individual’s genotype, as well as to the unavoidable error

of solving the inverse problem that characterizes the

current HGS branch. This may be obtained by balancing

the first and third components of the right-hand side of the

formula (10).

Assuming δj to be the accuracy of the inverse

problem solved by the branch of the j-th order, we

will perform the hp-adaptation of the FEM solution

of the forward problem while ‖erel‖ is greater than

Ratio
√

δj . The value of the strategy parameter Ratio

should correspond to the constant
√

A2/A1, in view

of the rapid diminishing of the middle right-hand side

component of (10) as a consequence of the fast hp-FEM

convergence.

Corollary A2 verifies the same error scaling rule

for the case of the SFIL inverse problem discussed in

Section 4.

Algorithm 1. Pseudo-code of the hp-HGS.

1: Initialize the root deme Proot;

2: AD = {Proot};

3: while global stop condition() = false do

4: AW = AD;

5: for P ∈ AW do

6: Execute in parallel Metaepoch(P );
7: end for;

8: end while;

9: STOP;

3.3. Algorithmic description. A draft of hp-HGS

activity is depicted in the pseudo-codes Algorithms 1 and

2. The function global stop condition() checks whether

a satisfactory solution has been found or if the hp-HGS

cannot find any more local extremes. The function

branch stop condition(P) returns true if it detects a

lack of evolution progress of the current deme P . The

generic function fitness(i) computes fitness accordingly

to the position of P in the hp-HGS tree.

The conditional sprouting mechanism

is implemented as follows. The procedure

children comparison(x ) compares the phenotype

averages (centroids) of all child demes with the phenotype

of the best fitted individual x distinguished from the

parental deme P . This procedure returns true if x is

sufficiently close to the centroids of the existing child
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demes. The generic function sprout(x, P ) returns a new

child deme surrounding x using proper encoding and

sampling, according to the position of the parental deme

P in the hp-HGS tree.

Algorithm 2. Pseudo-code of the Metaepoch function.

1: t = 0;

2: repeat

3: for (i ∈ P ) do

4: solve the forward problem for g = code(i) on

the coarse and fine FEM meshes;

5: compute ‖erel(g)‖;

6: while (‖erel(g)‖ > Ratio × sqrt(δj)) do

7: execute one step of hp adaptivity;

8: solve the problem on the new coarse and fine

FEM meshes;

9: compute ‖erel(g)‖;

10: end while;

11: compute fitness(i) using the FEM mesh finally

established;

12: end for

13: if (P �= Proot) then

14: if (branch stop condition(P)) then

15: AD = AD \ {P};

16: end if

17: end if

18: if ((t = K) ∧ (P is not a leaf)) then

19: distinguish the best fitted individual x from deme

P ;

20: if (¬ children comparison(x )) then

21: AD = AD ∪ {sprout(x, P )};

22: end if

23: end if

24: perform proportional selection, obtaining a

multiset of parents;

25: perform SGA genetic operations on the multiset of

parents;

26: establish a new contents of population P after the

genetic epoch;

27: t = t + 1;

28: until (t = K)

Statements 15 and 21 in Algorithm 2 are mutually

exclusive among all instances of Metaepoch(P ) function

processing in parallel, because the set of active demes

AD constitutes common, shared data. A particular

implementation-based mechanism of critical section

handling is applied. The modifications of the set of

alive demes AD imposed by the particular deme P (see

Statements 15 and 21 in the Metaepoch routine) do not

affect changes performed by other demes, because of

their tree structure (see Fig. 1). The branch reduction

mechanism is omitted in Algorithms 1 and 2 for the sake

of simplicity.

The presented general algorithmic description

constitutes a basis for various implementations. The

serial, trivial one forces to execute the loop 5–7 in

Algorithm 1 sequentially.

4. Case study

As a case study, we take step-and-flash imprint

lithography (SFIL) being a patterning process utilizing

photopolymerization to replicate the topography of a

template onto a substrate. During the SFIL process, the

shape of the template is transferred into the feature by

utilizing the photopolymerization process of the liquid

polymer (cf. Paszyński et al., 2010a). Because of different

chemical compounds of the liquid polymer, we assume

that the resulting feature consists of two layers with

different mechanical properties, and the resulting material

may be described as the 3D linear elastic body loaded

by the thermal stresses (cf. Paszyński et al., 2010a).

The inverse problem consists of an identification of

all feasible Young modulus distributions minimizing the

misfit functional (7) for the two layers of the material,

while the Poisson ratio is assumed to be known.

Paszyński et al. (2010a) deliver also a reliable value

of energy Ê obtained by the exhaustive, highly accurate

simulation with a nanoscale molecular statics model with

different values of interparticle interactions for two layers

of the material (see Fig. 2).

Fig. 2. Results of the nonlinear nano-scale molecular statics

model allowing large deformations with quadratic po-

tentials.

4.1. Step-and-flash imprint lithography. Step and

flash imprint lithography (SFIL) is a patterning process

utilizing photopolymerization used to replicate the

topography of a template onto a substrate (cf. Ahopelto

and Haatainen, 2002; Colburn et al., 2001; Burns

et al., 2004; Paszyński et al., 2005). Nanolithography

methods like SFIL are utilized for the production of

microprocessors. The SFIL process can be described in

the following six steps, as illustrated in Fig. 3.

1. Dispense. The SFIL process employs a

template/substrate alignment scheme to bring
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Fig. 3. SFIL process.

Fig. 4. Example shrinkage of the feature measured after remov-

ing the template.

a rigid template and substrate into parallelism,

trapping the etch barrier in the relief structure of the

template.

2. Imprint. The gap is closed until the force that ensures

a thin base layer is reached.

3. Exposure. The template is then illuminated through

the backside to cure the etch barrier.

4. Separate. The template is withdrawn, leaving

low-aspect ratio, high resolution features in the etch

barrier.

5. Breakthrough etch. The residual etch barrier (base

layer) is etched away with a short halogen plasma

etch.

6. Transfer etch. The pattern is transferred into the

transfer layer with an anisotropic oxygen reactive

ion etch, creating high-aspect ratio, high resolution

features in the organic transfer layer.

The steps mentioned above include various kinds of

physical processing: depositing a low viscosity, silicon

containing, photocurable etch barrier on to a substrate;

bringing the template into contact with the etch barrier;

curing the etch barrier solution through UV exposure;

releasing the template, while leaving high-resolution

features behind; a short, halogen break-through etch;

and finally an anisotropic oxygen reactive ion etch

to yield high aspect ratio, high resolution features.

Photopolymerization, however, is often accompanied by

densification. Densification of the SFIL photopolymer

(the etch barrier) may affect both the cross sectional

shape of the feature and the placement of relief

patterns. Example shrinkage of the feature measured after

removing the template is presented in Fig. 4. The linear

elasticity model with a thermal expansion coefficient

is used to verify the material response of polymerized

networks in cured etch-barrier layers that are formed

during the exposure and after removal of the template.

We focus on the simulation of the deformation of the

feature after removal of the template. It is assumed that the

polymer network has been damaged during the removal of

the template, and thus the interparticle forces are weaker

in one region. The problem has been solved in a 3D cube

shape domain, presented in Fig. 5.

Fig. 5. SFIL problem domain.

4.2. Linear elasticity model with a thermal expan-

sion coefficient. The problem of linear elasticity with a

thermal expansion coefficient can be formulated as in the

work of Hughes (2000). We use the notation introduced

in Section 5. The elastic domain Ω is an open unit cube in

R
3. The part of the boundary ΓD = {x ∈ Γ | x1 = 0}

constitutes the bottom face of Ω and ΓN = Γ \ ΓD . Given

θ ∈ R, αij ∈ R and fi ≡ 0 for i, j = 1, 2, 3, the

problem under consideration reads as follows: Find the

displacement vector field u ∈ C2(Ω; R3) ∩ C1(Ω̄; R3)
satisfying Eqn. (A1), the boundary conditions

ui = 0 on ΓD,

σijnj = 0 on ΓN , (11)

and the constitutive law

σij = kijhl (εhl(u) + θαhl) , i, j, h, l = 1, 2, 3, (12)

where kijhl are the elasticity coefficients (known for a

given material), θ is the temperature, and αhl are the

thermal expansion coefficients.

The solutions of the weak formulation for the SFIL

model will be sought in the space V = {v ∈ H1(Ω; R3) |
tr(v) = 0 on ΓD}. For convenient implementation,

we use the notation equivalent to the one introduced in

Appendix 5, in which the strain tensor is rearranged into
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the following form:

ε̄(u) =

(
∂u1

∂x1
,
∂u2

∂x2
,
∂u3

∂x3
,
∂u2

∂x3
+

∂u3

∂x2
,

∂u1

∂x3
+

∂u3

∂x1
,
∂u1

∂x2
+

∂u2

∂x1

)⊤

, (13)

and the elasticity coefficients are represented by the

second order tensor field of the form

D

=
E

(1 + ν)(1 − 2ν)

×

⎛

⎜⎜⎜⎜⎜⎜⎝

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

⎞

⎟⎟⎟⎟⎟⎟⎠
.

(14)

The relation between the coefficients Dij and kijhl

may be found in the work of Hughes (2000). We are

looking for u ∈ V satisfying

a(D; u, w) = l(D; w) for all w ∈ V , (15)

where

a(D; u, w) =

∫

Ω

ε̄(w)⊤ D ε̄(u) dx

l(D; w) = − θ

∫

Ω

ε̄(w)⊤ Dα dx.

(16)

In the following numerical simulation, we assume the

Poisson ratio ν = 0.3, as provided by Colburn (1978).

We also assume θ = 1 (the thermal expansion coefficient

expresses the volumetric contraction of the feature when

the temperature gradient is equal to 1 oC). Finally, based

on the results presented by Paszyński et al. (2007), we

set αkl = −0.0615 δkl. The distribution of the Young

modulus E is subject to the inverse analysis.

In the following experiments, there are nine

parameters, see Fig. 6, g ∈ D ⊂ R
9. The first three

values of the Young modulus E1, E2, E3 correspond to

the undamaged polymer, while the next six values E4
to E9 of the Young modulus correspond to the damaged

material, on one half of the feature, from 20% to 40% of

its height. The top and bottom layers of the polymer are

assumed to have a constant value of the Young modulus

equal to Etop = Ebottom = 109. The SFIL problem with

damaged material has also been solved by a molecular

statics model with weaker interparticle forces assumed

in the area of the domain where the damaged material

is present (Paszyński, 2005; 2010a). The reference

energy Ê has been computed based on molecular statics.

Displacements obtained in this way are shown in Fig. 2.

Fig. 6. Location of nine Young modulus being subject to inverse

analysis.

4.3. Experiments. Through a computational example

we illustrate the advantages of the presented strategy

hp-HGS/L-BFGS-B. In particular, we selected a problem

with important and practical application and a high

computational difficulty. Its difficulty is mainly caused

by the irregularity and the shape of the landscape which

may result in many solutions, and thus mislocalization of

the solution by less accurate methods.

In our experiments we utilized the hybrid strategy

for the nine-parameter case, where the hp-HGS algorithm

with real-number encoding was used for the location

of candidate starting points for a local gradient

optimization method. Then, as a second phase, we

executed a limited-memory bound-constrained version of

the Broyden–Fletcher–Goldfarb–Shanno algorithm (Zhu

et al., 1997). It is a quasi-Newton method utilizing a

limited-memory approximation of the Hessian matrix.

The hp-HGS instance utilized in the a first phase

has two levels. The relative energy error accuracy of

the self-adaptive hp-FEM algorithm on particular levels

(see Section 2.3) was set to 70 and 30, respectively. We

used the real-number encoding of the Young modulus

(genotypes) in HGS populations (see Section 3). The

parameters of the hp-HGS (see Section 3) are summarized

in Table 1. Scaling coefficients ηj shows accuracy

degradation at the consecutive HGS levels: the root

level and the leaf level. Population sizes on both the

levels are small to reduce the number of forward solver

calls. The crossing rate is the probability of selecting

a genetic individual for reproduction. Analogously,

the mutation rate is the probability of selecting an

individual for mutation. During the mutation a

new (mutated) individual is sampled according to the

normal distribution centered in the parent and with

the given standard deviation. The sprout distance and

the sprout standard deviation parameters are used in

procedures children comparison(x ) and sprout(x, P ) of
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Table 1. Parameters of the hp-HGS tree.

Root Leaves

Scaling coefficients ηj 128.0 1.0

Population size 12 6

Crossing rate 0.5 0.5

Mutation rate 0.1 0.01

Mutation standard deviation 1.0 0.2

Sprout distance 0.5

Sprout standard deviation 0.1

Solver accuracy 70 30

Fig. 7. Individuals found by the first phase (the genetic algo-

rithm). All presented points were taken from the second

level of the tree of populations and calculated with accu-

racy 30.

Algorithm 2.

After several metaepochs we collected individuals

from the leaves of the tree of populations. These

individuals are presented in Fig. 7. The self-adaptive

hp-FEM accuracy for all of these individuals was better

than 30. Clearly, all the results have a larger Young

modulus in the E7-E9 area, and the lowest Young

modulus in the E1-E6 area, as expected. The fitness

of these 12 individuals is presented in Table 4.3. The

absolute fitness values are so high because the parameters

of the fitness formula (7) are expressed in nano-scale

physical units.

In the second phase, the L-BFGS-B local method

was started from the twelve points obtained from the first

phase, and converged on five of them. The self-adaptive

solver relative accuracy was set to 10 percent, e.g.,

Table 2. Fitness of the individuals found by the first phase.

Point Fitness Point Fitness Point Fitness

1 79335 2 82995 3 89526

4 75204 5 34031 6 96797

7 79220 8 89871 9 74177

10 72895 11 48410 12 24984

Fig. 8. Convergence of the fitness in the local phase for five in-

dividuals found by the first phase.

Fig. 9. Relative fitness during convergence in the local phase for

five individuals found by the first phase.

Fig. 10. Results of the second phase.
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Fig. 11. Second phase convergence history for the first individ-

ual found in the first phase.

100% ∗ ‖u h
2

,p+1 − uh,p‖
2/‖u h

2
,p+1‖

2 = 100% ×

‖erel‖
2/‖u h

2
,p+1‖

2 = 10%. This is the percentage of the

relative error between the coarse and fine mesh solutions.

The summary of the L-BFGS-B convergence results

is presented in Fig. 8, where we plot the convergence of

the fitness function as well as in Fig. 9, in which we show

the evolution of the relative fitness (the difference of the

fitness value between two particular individuals from two

consecutive iterations). The plot reflects the fact that we

reached the minimum value of the fitness function that

can be provided by the hp-FEM algorithm with relative

accuracy of 10%. In that sense all five results converged

to the lowest fitness value possible to obtain with such

accuracy of the hp-FEM solver.

Let us now focus on the analysis of the values of

the parameters obtained after the second phase. All

five individuals that converged in the second phase

are presented in Fig. 10. Their final fitness values

are presented in Table 4.3. This fitness represents an

integral computed at nano-scale on the boundary of the

cubic domain from the difference between the known

reference displacement field and the field coming from the

numerical experiment.

We may observe that the displacement fields for

two sets of parameters computed with the same hp-FEM

relative accuracy 10% looks similar (see Figs. 12 and

13). Thus such values of the fitness of the order of 104

guarantee small differences between the obtained results

and the reference solution. To illustrate the converge

process, in Fig. 11 we present exemplary iterations for

the first point found at the global stage. We can

clearly see that there are three parameters representing the

undamaged material and six parameters representing the

damaged material. The differences in distribution of small

and big values of the Young modulus obtained by these

five results illustrate that the problem has many solutions.

4.3.1. Computational cost. We conclude the

experimental section with the discussion on the

computational cost of the proposed algorithm. The

cost of the first phase is related to the number of calls

Table 3. Fitness of the individuals found by the first phase.

Point Fitness Point Fitness Point Fitness

1 28587 2 54730 7 42163

8 61891 9 57880

to the self-adaptive hp-FEM solver, as well as to the

requested accuracy. The experimental measurements of

the computational time for six example individuals are

presented in Fig. 14.

Fig. 12. x, y, z components of the displacement vector field for

the first individual.

The hp-HGS algorithm is parallelizable on the level

of metaepochs, which means that the total execution time

can be reduced to the number of required metaepochs

multiplied by the execution time needed to obtain the

solution with assumed accuracy. For example, for the

accuracy of 30 percent of the relative objective error, the

time is of the order of 100 seconds, and the number of

metaepochs is around 8. This implies 8 × 100 seconds

which is about 14 minutes. The execution time can

be further reduced by using the parallel self-adaptive

hp-FEM code (Paszyński et al., 2006; Paszyński and

Demkowicz, 2006), delivering 60% efficiency over 16

cores. In other words, the computational time can be

further reduced to 14/(16 × 60%) = 14/9.6 = 1.5
minutes.
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Fig. 13. The x, y, z components of the displacement vector field

for the second individual.

The computational cost of the second phase is

different since we use a sequential gradient algorithm

working for each starting point separately. We can

parallelize the computations on the level of particular

starting points, but the solver calls for a given point for

each iteration of the local algorithms must be performed

in sequential mode.

The number of self-adaptive solver calls is higher

than that of iterations, since the L-BFGS-B algorithm

utilizes the finite difference method for approximation

of the Jacobian in the inverse space. The number of

iterations of the L-BFGS-B algorithm and the number

of calls for particular individuals in the local phase is

summarized in Table 4.3.1. The particular points required

between 77–286 solver calls (150 in average), except the

expensive first point, which we iterated for 12 iterations in

L-BFGS-B without having any significant improvement

of the accuracy after the 4th step. Thus, on the average,

we can estimate the computational time of the second

phase by 150 × 250 seconds (where 250 is the average

time for the solver call with 10 percent accuracy), which

is around 10.5 hours. This time can be further reduced

by using parallel implementation to 10.5/(16 × 60%) =
10.5/9.6 = 1 hours.

It should be emphasized that we actually performed

sequential computations and the above estimates are for

the theoretical parallel execution case. The sequential

Table 4. Number of calls to the self-adaptive hp-FEM solver.

Point Iterations Solver calls

1 12 1221

2 4 286

7 4 110

8 4 77

9 2 234

Fig. 14. Computational times for six example points for differ-

ent accuracies of the self-adaptive hp-FEM solver.

computations took about 8 × 20 × 200 = 32000 s = 8.8
h in the first phase (since we had 8 metaepochs with

around 20 evaluations each), and 5 × 150 × 200 =
150000 = 41.6 h in the second phase (taking the average

number of solver calls equal to 150 and 5 local points

being investigated, not including the first point, which was

iterated much longer).

5. Conclusions

The proposed strategy can recognize multiple objective

minimizers. This allows studying ill-posed inverse

problems, which is difficult or even impossible to obtain

by other methods. In the case of a finite number of

minimizers, all of them can be found. If the set of

minimizers is infinite or even continuous, then its volume

and shape can be characterized and approximated by the

finite number of hp-HGS results.

The hp-HGS minimizes the computational cost in

several ways. The number of forward problem solver

invocations in the global phase decreases due to the

hierarchic structure of demes. The main computational

cost reduction is obtained by common scaling of the

forward and inverse search accuracy (see Section 3.2).

Additional computational cost reduction is obtained by

restricting the number of local searches. Only one local

search is started in each basin of attraction recognized in

the global phase.
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The applicability of the hp-HGS is restricted to

problems with Lipschitz continuous misfit functionals

with respect to the unknown parameters. The current

hp-HGS implementation combined with the local search

method can be applied to problems with a moderate

number of design variables (moderate dimension).

The massively parallel implementation will extend

the applicability of the method to more complicated

problems with a larger number of inverse parameters.

A further significant extension might be obtained by

economical computing of the misfit gradient and Hessian

(Alvarez-Aramberri et al., 2013; Oden and Prudhomme,

2001).

The simple computational example consists in

restoring feasible Young modulus distributions in the 3D

domain of a photo polymer template obtained during

step and flash imprint lithography satisfying the minimum

condition (8). The difficulty of this problem is mainly

caused by the irregularity and shape of the landscape,

which may result in mislocalization of the solution by

less accurate methods. The presented approach allows

a low-cost landscape analysis, hence a more accurate

and expensive search in the most promising regions is

available (see Table 2, Fig. 7 and Table 3, Fig. 10).

We showed that the problem of restoring the

Young modulus based on the energy and boundary

displacement measurements has many solutions, and thus

the application of the classical gradient based method may

produce misleading results.

The hp-HGS algorithm is parallelizable on the level

of metaepochs, and for the accuracy used in the numerical

experiments for 8 utilized metaepochs the computational

time can be reduced down to 14 minutes. Using the

parallel version of the self-adaptive hp-FEM (Paszyński

et al., 2006; Paszyński and Demkowicz, 2006), this time

can be further reduced down to 1.5 minutes.

The reduction of the computational cost can be

obtained by switching to the local gradient search, e.g.,

by means of the L-BFGS-B algorithm in the areas found

in the global phase. In the hybrid case, the second phase

executed per individual requires around 10.5 hours. Using

the parallel version of the self-adaptive hp-FEM, this time

can be also further reduced down to 1 hour per individual.

The hp-HGS can be extended to other cases of global

optimization problems in continuous domains in which

the computational cost of the objective evaluation depends

monotonically on its accuracy.
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Barabasz, B., Gajda, E., Migórski, S., Paszyński, M. and
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Burczyński, T. and Beluch, W. (2001). The identification

of cracks using boundary elements and evolutionary

algorithms, Engineering Analysis with Boundary Elements

25(4–5): 313–322.
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Appendix

Verification of dynamic accuracy adjustment

A.1. Direct problem features. Let us consider a linear

elastic body, which in its undeformed state occupies an

open, bounded, and connected subset Ω of R
d, d ≥ 1.

Within the framework of linear elasticity theory, assuming

small deformations, the equilibrium equation takes the

form
∂σij

∂xj
+ fi = 0 in Ω, (A1)

where f = (fi) is the volume force. The
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strain–displacement relationship can be written as

εij(u) =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)

in Ω, where u = (ui) denotes the displacement. The

constitutive equation is given by the Hooke law,

σij(u) = kijhl εhl(u) in Ω, (A2)

where k = (kijhl), i, j, h, l = 1, . . . , d is the elasticity

tensor. Let S
d be the space of symmetric d × d matrices

and

Md = { k = (kijhl) | kijhl = kjihl = khlij ,

kijhl ≤ Mk, i, j, h, l = 1, . . . , d }, (A3)

with entries uniformly bounded by a constant 0 < Mk <
+∞.

Given γ > 0, we introduce the space L∞(Ω; Kγ) of

admissible fourth order tensors k = k(x) with

Kγ = { k ∈ Md | k τ : τ ≥ γ ‖τ‖2
Sd for all τ ∈ S

d },
(A4)

where the product of tensors is given by σ : τ = σij τij

for σ, τ ∈ S
d. Consider the space V = { v ∈

H1(Ω; Rd) | tr(v) = 0 on ΓD }, where ΓD ⊆ ∂Ω with

meas(ΓD) > 0. This space corresponds to the mixed

boundary conditions in the elasticity problem. Since

meas(ΓD) > 0, the following Korn inequality holds:

‖v‖H1(Ω;Rd) ≤ c ‖ε(v)‖L2(Ω;Sd), (A5)

where c > 0 depends only on Ω and Γ. This implies that

the norm ‖ · ‖ = ‖ε(·)‖L2(Ω;Sd) is equivalent on V to the

norm ‖ · ‖H1(Ω;Rd). For future convenience, let us denote

the norm equivalence constants as 0 < κ0 < κ1 < +∞,

so that

κ0‖v‖H1(Ω;Rd) ≤ ‖v‖ ≤ κ1‖v‖H1(Ω;Rd) for all v ∈ V.
(A6)

The weak formulation of the problem is as follows:

Find u ∈ V such that a(k; u, v) = l(v) for all v ∈ V ,

where a : L∞(Ω; Kγ) × V × V → R and l : V → R are

given by

a(k; u, v) =

∫

Ω

k(x) ε(u) : ε(v) dx

for k ∈ L∞(Ω; Kγ), u, v ∈ V,

(A7)

l(v) =

∫

Ω

f · v dx for v ∈ V, (A8)

where f ∈ V ∗ and f ·v = fivi. Then it is clear that, for all

k ∈ L∞(Ω; Kγ), the form a(k; ·, ·) is bilinear, continuous

on V × V (i.e., |a(k; u, v)| ≤ M ‖u‖ ‖v‖ for u, v ∈ V
with M > 0), coercive uniformly with respect to k (i.e.,

a(k; v, v) ≥ γ‖v‖2 for v ∈ V ) and the linear functional

l is continuous (i.e., l ∈ V ∗). Therefore, by application

of the Lax–Milgram lemma (cf. Denkowski et al., 2003a,

Chapter 2.7), for every f ∈ V ∗ and k ∈ L∞(Ω; Kγ) there

exists u = u(k) ∈ V a unique solution to the problem,

a(k; u, v) = l(v) for all v ∈ V (A9)

and

‖u‖ ≤
‖f‖V ∗

γ
. (A10)

Moreover, since for all k ∈ L∞(Ω; Kγ) the bilinear

form a(k; ·, ·) is symmetric on V × V (i.e. a(k; u, v) =
a(k; v, u) for u, v ∈ V ) and coercive uniformly with

respect to k, it is well known (cf. Denkowski et al., 2003a,

Chapter 2.7) that for all k ∈ L∞(Ω; Kγ) the problem (A9)

is equivalent to the following minimization one:

E(k; u) ≤ E(k; v) for all v ∈ V,

with the elasticity energy functional E : L∞(Ω; Kγ) ×
V → R given by

E(k; v) =
1

2
a(k; v, v) − l(v)

for k ∈ L∞(Ω; Kγ), v ∈ V. (A11)

Let us observe that because both constants Mk and

γ in the formulas (A3) and (A4) defining the set of

admissible parameter functions are universal (Descloux,

1973), we may select the constants γ and M uniform

for the whole family of bilinear forms {a(k; ·, ·)}, k ∈
L∞(Ω; Kγ) such that for all k ∈ L∞(Ω; Kγ) we have

γ ‖v‖2 ≤ a(k; v, v) ≤ M ‖v‖2 for all v ∈ V. (A12)

A.2. Lipschitz continuity of the elastic energy func-

tional.

Theorem A1. Let the energy functional E be of the form

(A11) with a and l defined by (A7) and (A8), respectively.

Then there exists a constant L > 0 such that for all k1,

k2 ∈ L∞(Ω; Kγ), we have

| E(k1; u(k1)) − E(k2; u(k2))|

≤ L ‖k1 − k2‖L∞(Ω;Kγ ),

where u(ki) ∈ V is the unique solution to (A9) corre-

sponding to ki for i = 1, 2.

Proof. Let k1, k2 ∈ L∞(Ω; Kγ) and u1 = u(k1), u2 =
u(k2) be the unique solutions to (A9) which correspond

to k1 and k2, respectively.

Since u1, u2 ∈ V are solutions to (A9), we have

a(k1; u1, v) = l(v) and a(k2; u2, v) = l(v) for all v ∈
V . Hence a(k1; u1 − u2, v) = −a(k1 − k2; u2, v) for all
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v ∈ V . From the latter, using the coercivity of the form a,

(A10) and the Hölder inequality, we obtain

γ ‖u1 − u2‖
2

≤ | a(k1 − k2; u2, u1 − u2)|

≤ ‖k1 − k2‖L∞(Ω;Kγ )‖u2‖ ‖u1 − u2‖

≤
‖f‖V ∗

γ
‖k1 − k2‖L∞(Ω;Kγ )‖u1 − u2‖,

which implies the following lemma.

Lemma A1. The solution of the forward problem (A9) is

Lipschitz continuous with respect to the parameter

‖u1 − u2‖ ≤ C0 ‖k1 − k2‖L∞(Ω;Kγ ), (A13)

where C0 = γ−2‖f‖V ∗ and ‖ · ‖ = ‖ε(·)‖L2(Ω;Sd).

Subsequently, using (A10), we have

|a(k1; u1, u1) − a(k2; u1, u1)|

= |

∫

Ω

(k1 − k2) ε(u1) : ε(u1) dx|

≤ ‖k1 − k2‖L∞(Ω;Kγ)

∫

Ω

‖ε(u1)‖
2
Sd dx

= ‖k1 − k2‖L∞(Ω;Kγ)‖u1‖
2

≤
‖f‖2

V ∗

γ2
‖k1 − k2‖L∞(Ω;Kγ). (A14)

From (A13), the triangle inequality for the norm and the

elementary inequality ‖ξ‖2
Sd − ‖η‖2

Sd ≤ ‖ξ − η‖2
Sd for all

ξ, η ∈ S
d, we deduce

|a(k2; u1, u1) − a(k2; u2, u2)|

= |

∫

Ω

k2

(
‖ε(u1)‖

2
Sd − ‖ε(u2)‖

2
Sd

)
dx|

≤ ‖k2‖L∞(Ω;Kγ)

∫

Ω

‖ε(u1 − u2)‖
2
Sd dx

= ‖k2‖L∞(Ω;Kγ)‖u1 − u2‖
2

≤ C 2 ‖k2‖L∞(Ω;Kγ)‖k1 − k2‖
2
L∞(Ω;Kγ)

≤ C 2 ‖k2‖L∞(Ω;Kγ)

(
‖k1‖L∞(Ω;Kγ)

+‖k2‖L∞(Ω;Kγ )

)
‖k1 − k2‖L∞(Ω;Kγ )

≤ 2 β2 C 2 ‖k1 − k2‖L∞(Ω;Kγ ),

where

β = max{‖k‖L∞(Ω;Kγ) | k ∈ L∞(Ω; Kγ)}.

Similarly, from (A13), it follows that

| l(u2 − u1)| ≤ ‖l‖V ∗ ‖u2 − u1‖

≤ C ‖f‖V ∗ ‖k1 − k2‖L∞(Ω;Kγ ). (A15)

Finally, by the inequalities (A14) and (A15), we have

| E(k1; u1) − E(k2; u2)|

=
1

2
|a(k1; u1, u1) − a(k2; u1, u1)|

+
1

2
|a(k2; u1, u1) − a(k2; u2, u2)| + |l(u2 − u1)|

≤
‖f‖2

V ∗

2γ2
‖k1 − k2‖L∞(Ω;Kγ )

+ β2 ‖f‖2
V ∗

γ4
‖k1 − k2‖L∞(Ω;Kγ )

+
‖f‖2

V ∗

γ2
‖k1 − k2‖L∞(Ω;Kγ)

=
(‖f‖V ∗

γ

)2(3

2
+

(β

γ

)2)
‖k1 − k2‖L∞(Ω;Kγ )

which completes the proof. �

A.3. Lipschitz continuity of the energy functional for

the SFIL model. Under the hypotheses that θ and ν
are known positive constants, and α is a known positive

diagonal matrix, both forms a and l can be written as

follows:

a(E; u, w) =

∫

Ω

E ε̄(w)⊤ P ε̄(u) dx

l(E; w) =

∫

Ω

E ε̄(w)⊤ (− θ P α) dx, (A16)

where P is a constant matrix

P =
1

(1 + ν)(1 − 2ν)

×

⎛

⎜⎜⎜⎜⎜⎜⎝

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

⎞

⎟⎟⎟⎟⎟⎟⎠
.

(A17)

We are looking for a Young modulus E that belongs to

the space L∞(Ω; [E, E]), where 0 < E < E < +∞ are

some prescribed positive constants.

Both forms given by (A16) inherit all features

analogously to the proof in Section 5, i.e., a(E; ·, ·) is

bilinear and continuous on V × V , and coercive with the

constant γ > 0, and l(E; ·) is continuous on V for all

E ∈ L∞(Ω; [E, E]). Therefore, by the Lax–Milgram

lemma, there exists u(E) ∈ V a unique solution to the

problem

a(E; u, v) = l(E; v) for all v ∈ V, (A18)

for all E ∈ L∞(Ω; [E, E]), where

V = {v ∈ H1(Ω; R3) | tr(v) = 0 on ΓD}. (A19)
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Furthermore, we have the following uniform estimate:

There is a constant Cl > 0 such that

‖u(E)‖ ≤
1

γ
max

H∈L∞(Ω;[E,E])
‖l(H ; ·)‖V ∗ = Cl. (A20)

The next important property of the functional l is its

Lipschitz continuity with respect to the Young modulus,

i.e. there is a constant Ll > 0 such that for all E1,

E2 ∈ L∞(Ω; [E, E]) and all v ∈ V we have

| l(E1; v) − l(E2; v)|

= | l(E1 − E2; v)|

≤ Ll ‖E1 − E2‖L∞(Ω;[E,E]) ‖v‖. (A21)

From the arguments used in the proof of Theorem

A1, we have the following result:

Corollary A1. Let the energy functional for the SFIL

model be of the form

E(E; v) =
1

2
a(E; v, v) − l(E; v)

for E ∈ L∞(Ω; [E, E]), v ∈ V, (A22)

where a and l are given by (A16), (A17) and V is defined

by (A19). Then there exists a constant L > 0 such that for

all E1, E2 ∈ L∞(Ω; [E, E]), we have

| E(E1; u(E1)) − E(E2; u(E2))|

≤ L ‖E1 − E2‖L∞(Ω;[E,E]), (A23)

where u(Ei) ∈ V is the unique solution of (A18) corre-

sponding to Ei for i = 1, 2.

Proof. It is analogous to the proof of Theorem A1, and

thus we indicate only the main differences with that result.

First, we observe that for all E1, E2 ∈ L∞(Ω; [E, E]) and

v ∈ V we have a(E1; u1−u2, v) = −a(E1−E2; u2, v)−
l(E2 − E1; v). Using (A20) and (A21), we obtain

γ ‖u1 − u2‖
2

≤ a(E1; u1 − u2, u1 − u2)

≤ | a(E1 − E2; u2, u1 − u2)|

+ | l(E1 − E2; u1 − u2)|

≤ (Cl + Ll)‖E1 − E2‖L∞(Ω;[E,E])‖u1 − u2‖

so the following inequality, analogous to (A13) in the

proof of Theorem A1, remains valid:

‖u1 − u2‖ ≤
Cl + Ll

γ
‖E1 − E2‖L∞(Ω;[E,E]). (A24)

Next, from (A20) and (A24), we deduce

| a(E1; u1, u1) − a(E2; u1, u1)|

≤ C2
l ‖E1 − E2‖L∞(Ω;[E,E]), (A25)

| a(E2; u1, u1) − a(E2; u2, u2)|

≤ 2 β2

(
Cl + Ll

γ

)2

‖E1 − E2‖L∞(Ω;[E,E]), (A26)

respectively. Moreover, from (A24), it follows that

| l(E2; u2 − u1)|

=
∣∣
∫

Ω

E ε̄(u2 − u1)
⊤ (− θ P α) dx

∣∣

≤ θ E | r(u2 − u1)| ≤ θ E ‖r‖V ∗‖u2 − u1‖

≤ θ E ‖r‖V ∗

(
Cl + Ll

γ

)
‖E1 − E2‖L∞(Ω;[E,E]),

(A27)

where r(v) =
∫
Ω ε̄(v)⊤ P α dx. From the inequalities

(A21), (A25)–(A27), we have

| E(E1; u1) − E(E2; u2)|

≤
1

2
| a(E1; u1, u1) − a(E2; u1, u1)|

+
1

2
| a(E2; u1, u1) − a(E2; u2, u2)|

+ | l(E2; u1 − u2)| + | l(E1 − E2; u1)|

≤
(C2

l

2
+ β2

(
Cl + Ll

γ

)2

+ θE ‖r‖V ∗

(
Cl + Ll

γ

)
+ Cl Ll

)

× ‖E1 − E2‖L∞(Ω;[E,E]),

which completes the proof of the corollary. �

A.4. Misfit estimation. Let us denote by uh,p(k) ∈
Vh,p and u h

2
,p+1(k) ∈ Vh

2
,p+1 two consecutive hp-FEM

solutions obtained in the hp-adaptation process (see

Section 2.1), where k ∈ L∞(Ω; Kγ) is an admissible

parameter function. Notice that hp-adaptation rule forces

Vh,p ⊂ Vh
2

,p+1 ⊂ V (see, e.g., Demkowicz, 2006).

Lemma A2. For all k ∈ L∞(Ω; Kγ) we have

2 |E (k; uh,p(k)) − E (k; u(k))|

≤ M ‖uh,p(k) − u(k)‖2, (A28)

where u(k) is the solution to the exact problem (A9) and

2
∣∣∣E (k; uh,p(k)) − E

(
k; u h

2
,p+1(k)

)∣∣∣

≤ M ‖uh,p(k) − u h
2

,p+1(k)‖2, (A29)

where M is the uniform continuity constant (see (A12)).

Proof. We start the proof with a simple lemma.
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Lemma A3. (Descloux, 1973, Theorem I.1.1.) Let U be

a linear space over R and b : U ×U → R a bilinear, con-

tinuous, symmetric and positively defined form, whereas

φ : U → R is a linear, continuous functional. More-

over, let F : U → R be the quadratic functional given by

F (v) = 1
2b(v, v) − φ(v) for v ∈ U .

If u ∈ U is a solution of the variational equation

b(u, v) = φ(v) for all v ∈ U,

then

F (v)−F (u) =
1

2
b(v−u, v−u) for all v ∈ U. (A30)

Taking into account that Vh,p ⊂ V , Lemma A3,

together with (A12), allows rewriting the left-hand side

of (A28) in the form

2 |E (k; uh,p(k)) − E (k; u(k))|

= a(k; uh,p(k) − u(k), uh,p(k) − u(k))

≤ M‖uh,p(k) − u(k)‖2.

Analogously, since u h
2

,p+1 is a solution of (A9) on Vh
2

,p+1

and since Vh,p ⊂ Vh
2

,p+1, we have

2
∣∣∣E

(
k; u h

2
,p+1(k)

)
− E (k; uh,p(k))

∣∣∣

= a(k; u h
2

,p+1(k) − uh,p(k), u h
2

,p+1(k) − uh,p(k))

≤ M‖u h
2

,p+1(k) − uh,p(k)‖2,

which concludes the proof of Lemma A2. �

Lemma A4. For all k, g ∈ L∞(Ω; Kγ) we have

∣∣∣E
(
g; u h

2
,p+1(g)

)
− E (k; u(k))

∣∣∣

≤ M ′ ‖uh,p(g) − u h
2

,p+1(g)‖2
H1(Ω;Rd)

+ M ′ ‖uh,p(g) − u(g)‖2
H1(Ω;Rd)

+ L ‖g − k‖L∞(Ω;Kγ), (A31)

where u(g) is the solution to the problem (A9) and L the

Lipschitz continuity constant (see Theorem A1). More-

over, M ′ = 1
2Mκ2

1, where M is the uniform continuity

constant (see (A12)) and κ1 norm equivalence constant

(see (A6)).

Proof. The left-hand side of (A31) might be rewritten in

the form

| E
(
g; u h

2
,p+1(g)

)
− E (g; uh,p(g))

+ E (g; uh,p(g)) − E (g; u(g))

+ E (g; u(g)) − E (k; u(k)) |. (A32)

It is enough to apply Lemma A2 to the first and second

difference, the norm equivalence condition in H1(Ω; Rd)
to the second one and Theorem A1 to the last difference.

So, using (A6) we obtain M ′ = 1
2M2κ2

1. �

In the sequel we derive a similar evaluation for the

boundary part of the misfit functional.

Lemma A5. There are constants C1, C2 > 0 such that

for all k, g ∈ L∞(Ω; Kγ) we have

‖tr(u h
2

,p+1(g)) − tr(u(k))‖2
L2(∂Ω;Rd)

≤ C1 ‖uh,p(g) − u h
2

,p+1(g)‖2
H1(Ω;Rd)

+ C1 ‖uh,p(g) − u(g)‖2
H1(Ω;Rd)

+ C2 ‖g − k‖L∞(Ω;Kγ ), (A33)

where u(g) is the solution to the problem (A9).

Proof. Because the trace operator tr : L2(∂Ω; Rd) →
H1(Ω; Rd) is linear and continuous, there exists Ctr > 0
such that

‖tr(u h
2

,p+1(g)) − tr(u(k))‖L2(∂Ω;Rd)

≤ Ctr ‖u h
2

,p+1(g) − u(k)‖H1(Ω;Rd).

Now, by the Lemma A1, we obtain

‖tr(u h
2

,p+1(g)) − tr(u(k))‖L2(∂Ω;Rd)

≤ Ctr ‖uh,p(g) − u h
2

,p+1(g)‖H1(Ω;Rd)

+ Ctr ‖uh,p(g) − u(g)‖H1(Ω;Rd)

+ C0 ‖g − k‖L∞(Ω;Kγ ). (A34)

Applying twice the elementary inequality (a + b)2 ≤
2a2 + 2b2 to the right-hand side of the formula (A34),

we obtain

‖tr(u h
2

,p+1(g)) − tr(u(k))‖2
L2(∂Ω;Rd)

≤ 4C2
tr ‖uh,p(g) − u h

2
,p+1(g)‖2

+ 4C2
tr ‖uh,p(g) − u(g)‖2

H1(Ω;Rd)

+ 2C2
0 ‖g − k‖2

L∞(Ω;Kγ ). (A35)

Finally, it is enough to observe that there exists a constant

C′ > 0 such that ‖g−k‖2
L∞(Ω;Kγ) ≤ C′ ‖g−k‖L∞(Ω;Kγ)

so we have C1 = 4C2
tr and C2 = 2C′C2

0 . �

Summing up the above, we may state the following

inequality, which may be useful in the misfit functional

evaluation (9).

Lemma A6. For all k, g ∈ L∞(Ω; Kγ) we have

∣∣∣E
(
g; u h

2
,p+1(g)

)
− E (k; u(k))

∣∣∣

+ ω ‖tr(u h
2

,p+1(g)) − tr(u(k))‖L2(∂Ω;Rd)

≤ A1 ‖uh,p(g) − u h
2

,p+1(g)‖2
H1(Ω;Rd)

+ A1 ‖uh,p(g) − u(g)‖2
H1(Ω;Rd)

+ A2 ‖g − k‖L∞(Ω;Kγ ), (A36)
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where u(g) is the solution to the problem (A9), ω > 0
an arbitrary positive scaling parameter and A1 = M ′ +
ω C1, A2 = L + ω C2 are two positive constants (see

Lemmas A4 and A5).

Using a similar approach, we may obtain the misfit

evaluation for the case study associated with the forward

SFIL problem (see Section 4). The energy functional in

the SFIL problem (A22) satisfies the same conditions as

(A11) (see Corollary A1) while the space L∞(Ω; [E, E]
is a special case of the space L∞(Ω; Kγ).

Corollary A2. For all E1, E2 ∈ L∞(Ω; [E, E]) it fol-

lows that
∣∣∣E

(
E1; u h

2
,p+1(E1)

)
− E (E2; u(E2))

∣∣∣

+ ω ‖tr(u h
2

,p+1(E1)) − tr(u(E2))‖L2(∂Ω;R3)

≤ A1 ‖uh,p(E1) − u h
2

,p+1(E1)‖
2
H1(Ω;R3)

+ A1 ‖uh,p(E1) − u(E1)‖
2
H1(Ω;R3)

+ A2 ‖E1 − E2‖L∞(Ω;[E,E]), (A37)

where u(Ei) ∈ V is the unique solution of (A18) corre-

sponding to Ei for i = 1, 2 and A1, A2 are two positive

constants.
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