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Abstract: Determining the risk priorities for the building stock in highly seismic-prone regions and
making the final decisions about the buildings is one of the essential precautionary measures that
needs to be taken before the earthquake. This study aims to develop an Artificial Neural Network
(ANN)-based model to predict risk priorities for reinforced-concrete (RC) buildings that constitute a
large part of the existing building stock. For this purpose, the network parameters in the network
structure have been optimized by establishing a hybrid structure with the Genetic Algorithm (GA).
As a result, the ANN model can make accurate predictions with maximum efficiency. The suggested
ANN model is a feedforward back-propagation network model. It aims to predict the risk priorities
for 329 RC buildings in the most successful way, for which the performance score was calculated
using the Turkey Rapid Evaluation Method (2013). In this paper, a GA-ANN hybrid model was
implemented in which the ANN, using the most successful gene revealed by the model, produced
successful results in calculating the performance score. In addition, the required input parameters
for obtaining more efficient results in solving such a problem and the parameters that need to be
used in establishing such an ANN network structure have been optimized. With the help of such a
model, the operation process will be eliminated. The created hybrid model was 98% successful in
determining the risk priority in RC buildings.

Keywords: existing reinforced-concrete buildings; rapid visual screening; ANN; genetic algorithm

1. Introduction

Significant loss of life and property due to structural damages and failures is frequently
caused by earthquakes and similar natural disasters that strike different world regions.
Especially, the large-scale damages after earthquakes reveal the importance of precautionary
measures that can be taken before earthquakes [1–4]. Designing earthquake-resistant
structures and prioritizing existing vulnerable structures for further retrofitting plans are
among the prominent measures that can extensively mitigate the following disasters since
it does not seem possible to predict earthquakes with current technology [5–7]. Rocketing
populations in urban areas and expanding building stocks day-by-day can pose severe
risks of damage or failure depending on the characteristics of existing structures. In this
context, determining the earthquake safety levels of buildings before a possible earthquake
helps make accurate and fast decisions on the existing building stock [8–11]. Many existing
building stocks make it difficult to evaluate them in a reasonable timeframe and present
challenges—like lack of qualified personnel and economic resources [12,13]. Even a detailed
examination of the seismic safety level of a building can take days. Therefore, it does
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not seem reasonable to examine every existing structure in detail. As a solution, risk
priorities can be decided on a regional basis using methods that will provide faster and
more accurate results than time-consuming techniques for individual structures. In this
regard, rapid screening methods are used to determine the risk priorities of buildings.
Therefore, the preliminary earthquake safety levels of the building stock in any region
can be determined, and risk priorities can be decided on a regional basis [14–16]. The
data obtained as a result of these methods can decide which buildings will be subjected to
detailed structural analyses within the scope of performance-based earthquake engineering.
This will significantly reduce the number of risky buildings subjected to detailed structural
analyses. In order to overcome the destructive effects of earthquakes on the structural
parameters and responses of buildings and reduce human losses, different countries have
developed various approaches and methodologies related to rapid screening techniques.
These methods enable decision-makers to adopt vital measures available in a modern pre-
disaster management sense while also playing a pivotal role in spatial planning and urban
transformation [17–20]. These approaches were first put on a legal basis with the regulation
published officially by the Ministry of Environment and Urbanization in 2013 in Turkey
(PDRB-2013). With this regulation, the evaluation of risky structures and their regional
prioritization are explained extensively for different structural systems. The performance
scores for each building can be calculated based on the parameter values in this method.
In this study, the performance scores were determined for 329 RC buildings to assess the
earthquake risk priority using the Turkish rapid screening method by the authors within
the scope of this study.

Soft Computing (SC) techniques, including ANN, GA, and Machine Learning (ML)
tools, have found many opportunities in different science and engineering applications.
These methods can make more enhanced predictions while also being applied to solve
intricate problems very fast with high levels of efficiency and performance. When it comes
to structural and earthquake engineering applications, these techniques play a pivotal role
in simulation, modelling, optimization, regression and classification, etc. [21–25].

ANNs have been developed based on the concept of imitating the behaviour of bi-
ological systems and the human brain in terms of learning, adaptation, and memory
ability. General architectures that can be considered for a neural network are Feedforward
(single-layer and multiple-layer), Feedback (Recurrent), and Mesh architectures [26]. Some
examples of ANN applications in the field of structural engineering include developing pre-
diction models for the compressive strength and slump of concrete [27,28], prediction of the
strength capacities of reinforced concrete members under different internal stresses [29,30],
shear strength of reinforced masonry walls [31], a prediction model for lateral–torsional
buckling resistance of slender steel cellular beams [32], structural crack detection [33],
design and compression capacity prediction of concrete-filled steel tubular columns [34,35],
compressive strength prediction of self-compacting and high-performance concrete [36],
predicting the mechanical behaviour of semi-rigid steel structure connections [37], predict-
ing cyclic hysteresis behaviour of reduced beam sections in steel buildings [38], damage
assessment of pre-stressed concrete beams [39], fire resistance prediction of RC T-beams
strengthened with carbon fibre reinforced polymers [40], structural health monitoring and
damage identification of bridges [41,42], seismic damage prediction of RC buildings [43],
and establishment of prediction models for the damage state, damage ratio, and seismic
vulnerability assessment of buildings [44–47]. Additionally, Esteghamati and Flint (2021)
determined that the most influential parameters resulting from machine learning are floor
area, building height, lateral-resisting frame weight, and average beam section dimen-
sions by making simulation-based seismic and environmental assessments of 720 mid-rise
reinforced-concrete office buildings in South Carolina [48]. Abdullahi et al. (2022) proposed
a framework that is sensitive to the uncertainties found in the optimization of engineer-
ing structures. The algorithm proposed for optimal shape design for gravity dams in
this study includes a series of local and global time-varying/invariant performance in-
dices [49]. Omoya et al. (2022) created a database to support post-earthquake damage
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and recovery modelling by considering 3695 buildings affected by the 2014 South Napa,
California earthquake. The Napa dataset indicated the usability of different modelling
techniques to validate post-earthquake recovery simulation methodologies and predict
damage [50]. Esteghamati et al. (2020) have created an open-access Inventory of Seismic
Structural Evaluations, Performance Functions, and Taxonomies for Buildings (INSSEPT)
that includes evaluations in terms of performance-based earthquake engineering for 222
buildings. The study provides data to determine the regional seismic risk analysis for
buildings [51]. Ahmad et al. (2022) developed a new stacked long-short-term memory
(LSTM) network for fragility curves that vary depending on many properties. In this
network, where overlapping data with the previous stack is taken into account to connect
each stack, the temporal dimension and time for training are shortened. The flexible model
can be used in different structures [52]. Yuan et al. (2022) developed a multivariate classifier
with multiple IMs to estimate earthquake intensity and diversity in a fragility estimation.
The generating classifier, seismic fragility, and earthquake damage estimations can be
made [53]. De-Miguel-Rodriguez et al. (2022) proposed a massive method to reveal the
seismic vulnerability of the existing building stock. With the help of neural networks, the
capacity curves of low-rise RC buildings can be obtained with a minimum error [54]. Kim
and Song (2022) proposed a deep neural network (DNN)-based framework to determine
post-earthquake structural damage. In the study, a steel structure was chosen as a sample
building and two different earthquake records were applied to this structure. With the
proposed framework, the damage that may occur after the earthquake is correctly defined
in time [55].

On the other hand, GA is a subset of evolutionary computing techniques that are
metaheuristic algorithms with key characteristics of being bio-inspired, population-based,
and stochastic. Inspired by biological mechanisms for operations on chromosomes, re-
production, crossover, and mutation, this algorithm can perform parallel mathematical
computations, examine several input variables and their fitness simultaneously, and refine
the search and find the best candidate solution that satisfies the objective function [21].
Owing to its capabilities in manipulating many variables, discrete variables, consideration
of constraints on possible solutions, and simultaneous search and provision of alternative
solutions for a single problem, GA has found a variety of applications in identification,
multi-objective optimization, and simulation problems. The dynamic and static identi-
fication of base-isolated bridges [56], optimal sensor placement for the identification of
structural parameters [57], structural damage detection [58,59], topology and shape opti-
mization of free-form space frames [60,61], optimal design of a passive control strategy for
seismic protection of a wall-frame system [62], and the optimization of fuzzy rule weights
for the development of global damage levels of buildings [63] can be mentioned among
many other applications of GA in structural and earthquake engineering.

In the studies conducted in the literature, the input parameters used in the ANN
network structure, the number of hidden layers, the number of neurons in the hidden
layers, the activation functions used in the neurons, and the learning algorithm of the
network are determined by trial-and-error methods. The network parameters found here
are directly effective in producing the most successful results of the network [64]. Different
ANN network structures built on the same problem produce different results. In the
network structure used in this study, the network parameters form a five-dimensional
solution space. Determining the parameters to produce the best results for the network
within this solution space is almost impossible by trial and error because there are nearly
infinite solutions in such a solution space. Even if the models established according to the
network parameters determined by trial and error in the literature achieve an inevitable
success, studies on whether the established network is the most successful network or a
network structure close to the most successful network structure are insufficient. In such
a solution space, the most successful network structure or network structure parameters
close to the most successful network structure can be determined through optimization
algorithms. In determining the desired ANN structure for solving a problem, establishing
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hybrid structures with optimization algorithms is mandatory to produce the most successful
result [65].

Within the scope of this study, it aims to predict the most successful risk priorities by
implementing the results obtained from 329 RC buildings using an ANN and a GA. For this
purpose, all suitable parameters found in an ANN network have been determined by estab-
lishing a hybrid structure with the GA. The chromosomes in each gene in the GA constitute
the parameters in the network structure. The network model established to obtain the
best network parameters is a feedforward back-propagation network model. Feedforward
back-propagation networks are frequently used in the literature and can achieve successful
results [65]. Thanks to the capability of the hybrid structure, the necessary network param-
eters for the rapid evaluation of reinforced-concrete buildings and the input parameters
that should be used in solving such a problem are optimized. The proposed hybrid model
enables rapid evaluations of existing RC buildings while decreasing classical approaches’
time, energy, and costs.

In this study, a hybrid model was used for the first time for the Turkish Rapid Assess-
ment Method, which is used to determine regional risk priorities in RC buildings. The
performance score was obtained for each building using the parameters considered in this
method. Since the method is a rapid evaluation method, detailed structural analyses were
not needed at this stage. The hybrid model created with the ANN-GA was realized by
obtaining the network parameters through the GA optimization technique rather than trial
and error, which is familiar to the classical method. The obtained results demonstrated
the success of the proposed hybrid model for the rapid evaluation of existing RC building
stocks. This model has a flexible structure that can easily be applied to different problems.
Feedforward back-propagation ANN networks are frequently used in the literature. There
were significant challenges in trial and error in determining the most successful network
structure. Some of them were to find the required number of inputs to establish the most
successful ANN network structure, the number of hidden layers and neurons in the hidden
layers, the activation functions used in each layer, and the learning algorithm used in the
network structure. The main difference of this study from other studies in the literature is
that all parameters in the established ANN network structure are determined in a hybrid
structure with a GA to produce the most successful result. Thanks to the established ANN-
GA hybrid structure, the ANN network is created in the most optimal way to produce the
most successful result.

2. Rapid Visual Screening Technique

Conducting detailed and advanced finite element (FE) analyses to evaluate dynamic
responses and seismic risk conditions of the large building stock in a vast area has a
substantial computational burden and is very time-consuming. Therefore, applying a rapid,
reliable, and efficient approach for a seismic vulnerability assessment of building stock,
determining risk priorities, and filtering out buildings with high-risk levels for further
analyses is vital for seismic risk mitigation and post-disaster crisis management plans [66].
To overcome these problems, Rapid Visual Screening (RVS), a preliminary survey to observe
and record structural parameters, evaluate damage grades of buildings, and prioritize them
for further comprehensive analyses, has proven to be a successful means [67–70].

A performance score is assigned to a building through the survey outside or partially
inside the building. Although there are many different methods, the main logic is based
on obtaining the final score by taking into account the parameters that affect the seismic
behaviour of the structure. Various approaches can be applied to analyse the data obtained
from an RVS method for further risk prioritization and damage level classifications. A
detailed review of different AI and SC techniques that have been used in the literature to
conduct an RVS and damage classification of existing buildings can be found in [23].

Within the scope of this study, the 2013 Turkish Rapid Evaluation method has been
taken into consideration as a rapid evaluation method for RC buildings [71]. The parameters
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considered in this research, which can be used for existing 1–7 stories RC buildings, are
given below:

• Number of stories
• Type of structural system
• Current status and apparent quality
• Soft story/weak story
• Vertical irregularity
• Heavy overhangs
• Irregularity/torsion effect in plan
• Short column effect
• Adjacent/pounding effect
• Hill/slope effect
• Seismicity of the region and local soil class

The structural system type is one of the parameters in this research. The type of
structural system directly affects the behaviour of a building under a seismic event. The
inclusion of RC shear walls increases the earthquake resistance significantly compared
to the pure RC frame. This study considers two types of commonly used RC structures,
namely RC frame (RCF) and RC frame + shear wall (RCFW). The structural system score
(YSP) is obtained depending on the structural system type of the building, and takes into
account the total number of stories. There is no contribution when it is RCF, and the
YSP value is taken as zero in this case. However, if it is RCFW, a positive YSP is added
depending on the total number of stories. The basic logic here is based on the positive
contribution of the RC shear walls to the seismic behaviour of the building. The types
of structural systems considered are given in Figure 1. In order to determine whether
there are RC shear walls in any building, a decision is made by entering the building and
making observations. If it cannot be determined exactly whether RC shear walls exist in
the building, the structural system should be considered RCF.

Figure 1. Structural system type (A) RC Frame (RCF) and (B) RC Frame with Shear Walls (RCFW).

The number of stories is the sum of all stories, including the foundation [71]. Studies
conducted after previous earthquakes revealed that the damage to a building had a linear
relationship with the number of stories [72]. The part with the most significant number of
stories is considered in gradual structures. Figure 2 shows how to calculate the number of
stories in the rapid assessment method considered in this study.

Figure 2. Determination of the number of stories (ns).
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The strength of the materials that make up the building directly affects its seismic
performance. The performance of workmanship and material quality during and after the
construction process reveals the quality of the building [73–75]. The importance given to
the quality of materials, workmanship, and the maintenance of the building is determined
by the present condition and apparent quality. Therefore, it is classified as good, medium,
and bad, respectively.

According to the ASCE-41 (American Society of Civil Engineers, 2017) [76], any story
with a lateral stiffness less than 70% of its above story or less than 80% of the average
stiffness of its immediate above stories is defined as a soft story. Given that the base floor
is usually used for commercial purposes, the absence of sufficient stiffness in this floor
compared to upper stories will result in a “soft story” in many buildings. In addition to the
differences in stiffness and strength between stories, the variation in story height within
a building is considered in the soft story/weak story parameter. Almost all earthquakes
that occurred in Turkey have caused damage to structures with soft stories, and in case
the structure did not have sufficient strength, total collapse of the structure and the soft
story was induced [75,77–79]. Another parameter that has been taken into account to
reflect the effect of the frame and changing story areas that do not continue vertically is
the vertical irregularity. In other words, this phenomenon can be considered as the case
of a substantial change in the stiffness, mass, and dimensions or interruption of vertical
structural elements, such as columns, or lateral resisting systems, such as RC shear walls
within the structure [62,77,80]. Some instances of vertical irregularity are depicted in
Figure 3.

Figure 3. Instances of vertical irregularity.

Another parameter is heavy overhangs, which indicate differences in story areas.
Especially, heavy parapet balconies or overhangs made out of the frame systems of the
buildings will create irregularity in the building mass. Buildings that are left towed on
the ground story are also in the category of heavy overhangs. Therefore, it causes a
change in the centre of mass of the buildings and increases the earthquake’s effect on the
building [75,78,81]. Examples of heavy overhangs are shown in Figure 4.

Figure 4. Examples of overhangs (A) with overhang, (B) no overhangs, and (C) balcony with
no overhangs.

For the plan (horizontal) irregularity/torsion effect parameter, irregularities that will
cause torsion in the zoning plan are assumed. This parameter is decided by considering
the external geometric features of the building. In structures with irregular geometry or
out-of-plane discontinuity of the lateral resisting system [80,82], additional torsion occurs
due to torsional effects, which force the structure to twist [83–85]. Examples of this case of
irregularity are shown in Figure 5.
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Figure 5. Samples of regular and irregular plans of the buildings.

Filling RC frames with half-height infill walls, creating band windows, and using
intermediate beams on stairwells are the foremost causes of short column formation. The
main factors causing the formation of the short column can be counted as mezzanines,
mechanical stories, sloping land, stepped foundations, spans adjacent to the column,
and stair landings. This negativity parameter is one of the leading causes of earthquake
damage [86,87]. Some examples of short columns are illustrated in Figure 6.

Figure 6. Samples of short column.

Another parameter is the hill/slope effect. If the building is clearly on a hill or on a
slope with a high slope (more than 30◦) it increases the effects of earthquakes to a certain
extent. This situation, which can easily be observed from the street, should be taken into
account when calculating the earthquake score of the building [71,88]. The relation of the
building to the neighbouring structures has also been taken into account in this study.
The location of adjacent buildings can affect seismic performance due to collision. The
buildings located on the side are adversely affected by this situation, and, if the story
levels of the adjacent building are different, this negativity increases even more. External
observations will determine the situations where the collision effect is in question. For this
parameter, first of all, the situation of the building with the neighbouring buildings should
be determined (Figure 7).

Figure 7. The location of a sample building relative to the neighbouring buildings.

After determining the position of the building relative to the adjacent buildings
according to Figure 7, it should be decided whether the story levels in neighbouring
buildings are the same or different, as sketched-up in Figure 8.
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Figure 8. Story levels in neighbouring buildings.

It is a known fact that the local conditions of the underlying soil will directly affect and
change the characteristics of seismic waves and may cause damage to existing overlaying
structures. Local soil groups and local site classes considered in this study are shown in
Tables 1 and 2, respectively. For the 329 RC buildings considered in this study, local soil
classes were determined by considering the soil survey reports made by the relevant public
institutions and organizations.

Table 1. Local soil groups [89].

Soil Group Description of
Soil Group

Standard
Penetration (N/30)

Relative
Density (%)

Unconfined.
Compressive

Strength (kPa)

Drift Wave
Velocity (m/s)

A

1. Massive volcanic rocks,
non-weathered sound
metamorphic rocks, stiff
cemented sedimentary rocks

− − >1000 >1000

2. Very dense sand, gravel >50 85–100 − >700
3. Hard clay and silty clay >32 − >400 >700

B

1. Soft volcanic rocks such as
tuff and agglomerate,
weathered cemented
sedimentary rocks with
planes of discontinuity.

− − 500–1000 700–1000

2. Dense sand, gravel. 30–50 65–85 − 400–700
3. Very stiff clay, silty clay 16–32 − 200–400 300–700

C

1. Highly weathered soft
metamorphic rocks and
cemented sedimentary rocks
with planes of discontinuity

− − <500 400–700

2. Medium dense sand and
gravel. 10–30 35–65 − 200–400

3. Stiff clay and silty clay 8–16 − 100–200 200–300

D

1. Soft, deep alluvial layers
with high ground water level − − − <200

2. Loose sand. <10 <35 − <200
3. Soft clay and silty clay <8 − <100 <200

Table 2. Local site classes [89].

Local Site Class Soil Group According to Table 1 and Topmost Soil Layer
Thickness (h1)

Z1 Group (A) soils
Group (B) soils with h1 ≤ 15 m

Z2 Group (B) soils with h1 > 15 m
Group (C) soils with h1 ≤ 15 m

Z3 Group (C) soils with 15 m < h1 ≤ 50 m
Group (D) soils with h1 ≤ 10 m

Z4 Group (C) soils with h1 > 50 m
Group (D) soils with h1 > 10 m
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The seismicity of the region was also taken into account in this work. On the map
shown in Figure 9, regions with ground accelerations of 0.40 g and greater are considered as
the first-degree earthquake zone, regions with expected ground accelerations of 0.30–0.40 g
are the second-degree earthquake zone, regions with expected ground accelerations of
0.20–0.30 g are the third-degree earthquake zone, regions with expected ground accelera-
tions of 0.10–0.02 g represent the fourth-degree earthquake zone, and regions with expected
ground accelerations of less than 0.10 g indicate the fifth-degree earthquake region [90,91].

Figure 9. Earthquake zones map of Turkey [92].

The structural system type is taken into account as a positive base point. No additional
score is given for buildings with the RCF system, but a positive base score (Op) is given for
buildings with the RCFW structural system. The structural system and baseline scores are
shown in Table 3.

Table 3. Base and structural system scores [71].

Total Number of
Stories

Base Score
Structural System Score (YSP)

Structural System

Danger Zone
RCF RCFW

I II III IV

1 and 2 90 120 160 195 0 100
3 80 100 140 170 0 85
4 70 90 130 160 0 75
5 60 80 110 135 0 65

6 and 7 50 65 90 110 0 55

While determining the danger zone for the examined building, the local soil classes
and earthquake zones recommended in the previous earthquake code (TSDC-2007) are
taken into account, and the selection is made according to Table 4. The danger zone is
determined according to Table 4 by taking into account the local soil classes obtained from
public institutions and the earthquake zone.

For all negative parameters, except the apparent quality, determinations will be made
as “yes” or “no”. Negative parameter values (Oi) corresponding to these determinations
will be taken as 1 and 0 for “yes” and “no” states, respectively. Suppose the apparent
quality rating is “good”. In that case, the negativity parameter value (Oi) will be taken as 0;
if it is “moderate”, 1 will be considered; and if it is “poor”, 2 will be taken. The negative
coefficients corresponding to each parameter are shown in Table 5.
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Table 4. Earthquake zones determined according to TSDC-2007 [71].

Danger Zone Earthquake Zone According to
TSDC-2007

Soil Class According to
TSDC-2007

I 1 Z3/Z4

II
1 Z1/Z2
2 Z3/Z4

III
2 Z1/Z2
3 Z3/Z4

IV
3 Z1/Z2
4 All soil types

Table 5. Negative parameter values (Oi) [71].

Negativity
Parameter

Case 1 Case 2

Parameter
Detection

Parameter
Value

Parameter
Detection

Parameter
Value

Soft story None 0 Available 1
Heavy overhangs None 0 Available 1
Apparent quality Good 0 Moderate (bad) 1 (2)

Short column None 0 Available 1
Hill/slope effect None 0 Available 1

Irregularity in plan None 0 Available 1

The suggested values for each parameter are shown in Table 6, and the selection is
made according to the number of stories.

Table 6. Negativity parameter score (OPi) [71].

Total
Number

of
Stories

Negativity Parameter Scores (OP)

Soft
Storey

Apparent
Quality

Heavy
Over-
hangs

Storey Level/Building Status
Vertical

Irregularity

Irregularity/
Torsion
Effect in

Plan

Short
Column

Hill/Slope
EffectSame Same Different Different

Middle Corner Corner Middle

1, 2 −10 −10 −10 0 −10 −5 −15 −5 −5 −5 −3
3 −20 −10 −20 0 −10 −5 −15 −10 −10 −5 −3
4 −30 −15 −30 0 −10 −5 −15 −15 −10 −5 −3
5 −30 −25 −30 0 −10 −5 −15 −15 −10 −5 −3

6, 7 −30 −30 −30 0 −10 −5 −15 −15 −10 −5 −3

The building performance score (PP) is calculated according to Equation (1) after the
total negativity score is determined by multiplying the negativity parameter values given
in Table 3 by the negativity parameter points given in Table 4.

TP = PP +
n

∑
i=1

Oi
x OPi + YSP (1)

Here, TP is the base score; YSP indicates the structural system score. The flowchart of
the 2013 Turkish Rapid Screening Method (PDRB-2013) [71] has been presented in Figure 10.

Within the scope of this study, a total of 329 existing RC buildings in the province of
Bitlis (Turkey) were taken into account. The distributions of RC buildings according to the
considered parameters in this study are shown in Figure 11.
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Figure 10. The flowchart of Turkish Rapid Screening Method (PDRB-2013).

Figure 11. Distributions of the buildings.

In this work, a hybrid model will be created based on ANN and GA approaches to
determine the risk priorities of RC buildings. It is aimed that the intended hybrid structure
will most successfully predict the structural system scores given in Figure 12, which are the
performance scores obtained for the 329 buildings considered in this study.
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Figure 12. Distribution of performance scores.

3. Artificial Neural Network (ANN)

ANN is a learning technique inspired by biological neurons in living organisms.
A network of neurons is formed through many interconnected neurons. This network
is capable of accomplishing complex tasks and processes with impeccable speed and
accuracy [93]. The structure of each neuron cell in an ANN is shown in Figure 13.

Figure 13. Neuron cell structure.

In Figure 13, each input data generated for the network is multiplied by the weights
determined by the network. The obtained results are sent to the addition function in the
neuron. Here, the bias value is added to the values collected with each other. The bias
value provides the translation of the activation function. A net input is obtained for the
neuron by adding the bias value. The net input value obtained for the neuron is passed
through the activation function and the net output for that neuron cell is obtained.

Neuron cells, whose structure is presented in Figure 13, come together to form the
network structure in an ANN. In order to obtain the desired output information in the
created network structures, the network must be trained with the input data presented to the
network. In order to train the network, algorithms that are supervised and unsupervised
have been applied in the literature [94]. A supervised learning algorithm is efficient
for feedforward networks, but back-propagation algorithms can also be applied [95]. A
feedforward back-propagation ANN structure is presented in Figure 14.
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Figure 14. Structure of a feedforward back-propagation ANN.

In the feedforward back-propagation network structure presented in Figure 14, the
outputs obtained from each neuron cell are used as input information for the next neuron
cell. Error detection for each output neuron is done in the last step. The latent weights
between neurons are changed in the backward pass. For neurons, hidden layer errors are
measured and are returned to them. In this study, a feedforward back-propagation ANN
has been implemented to determine the risk priorities of RC buildings.

4. Genetic Algorithm

GA is an adaptive direct probability search optimization method inspired by the
evolutionary theory and the genetic mechanism [96]. Better optimization results can
often be achieved faster when solving more complex combinatorial optimization problems
compared with traditional GA optimization algorithms [97]. The steps in performing a GA
technique are as follows:

Step 1: Set initial parameters and create the initial population.
Step 2: Calculate the fitness value of each individual
Step 3: Perform selection of individuals
Step 4: Perform crossover operation on individuals
Step 5: Apply mutation operation to individuals
Step 6: Return to Step 2 until the stopping criterion is met

GA uses a random initial population of solutions found in the solution space. Each
individual in the population is called a gene. In each generation, the individuals in the
population are subjected to selection, crossover, and mutation processes to form new
individuals. GA is a frequently used technique in the literature to solve multidisciplinary
optimization problems [98,99].

5. The Hybrid Model and Results

In this part of the study, a hybrid structure of the ANN model to evaluate RC buildings
will be created using the GA, and the parameters in the model will be optimized. In a
feedforward back-propagation ANN model, the outputs obtained from each neuron cell are
used as input data for the neuron in the next layer. For this reason, the number of layers and
the number of neuron cells in the network structure directly affect the network performance.
At the same time, the activation functions and training algorithms used in neuron cells
are other factors that affect the performance of the established network structure. In
this framework, it is essential to create the most suitable structure for the problem when
choosing the number of inputs in an ANN network structure, the number of hidden layers,
the number of neurons in each layer, and the activation functions used in each layer, as
well as the training algorithms. In many studies in the literature, network structures are
determined by trial and error while establishing a certain success. In the network structures
established by trial and error, it cannot be guaranteed that the established network is the
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most suitable or even close to it and is a successful network structure for the problem.
Determining suitable structures according to the problems is almost impossible with
classical methods. Even if it can be determined how well an artificial neural network has
performed in experimental observations based on trial-and-error methods, determining a
structure with the best performance is a separate optimization problem. The creation of the
best network structure or a network structure close to the best one will only be possible by
establishing a hybrid structure with optimization algorithms [65]. Validation data for the
ANN network structure to train the network and obtain the optimum parameters for the
suggested hybrid structure are the performance scores presented in Figure 12 that were
obtained from 329 RC buildings in Bitlis, Turkey. A hybrid model was created with ANN
and GA to determine the risk priorities of reinforced-concrete buildings. It is aimed that
the created hybrid structure will most successfully predict the data set given in Figure 12.
The flowchart of the hybrid model created for this purpose is given in Figure 15.

Figure 15. GA-ANN hybrid model.

As the first step in the flowchart of the hybrid structure shown in Figure 15, the initial
population for GA will be created. In GA, each individual will create an ANN network
structure within itself. Here, each individual consists of network parameters that directly
affect the performance of the ANN. Each gene structure contains the parameters shown in
Figure 15. In the individual structures presented in Figure 15, IN is the number of inputs
in the network structure that will occur in each individual, HLN is the number of hidden
layers in the network structure in each individual, NL is the number of neurons in the
hidden layers in the network structure in each individual, AF is the activation function
to be used in each layer in the network structure, and TF represents the training function
to be used in each network. In the proposed hybrid structure, the initial population will
be created as the first step of the GA. While generating the initial population, the IN
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is randomly determined among the input values given in Equation (2) for the network
structures in each individual.

IN =

{
Number of stories, Short column, Soft/weak story, Heavy overhang,

Pounding effect, Hill/slope effect, Visual quality

}
(2)

The HLN value for each gene (G) is determined randomly according to the restriction
functions given in Equation (3) and the NL values in Equation (4).

GaHLNi(x) =


1, x < 1

x, 1 ≤ x ≤ 10
10, x > 20

 (3)

GaNLi(k) =


1, k< 1

k, 1 ≤ k ≤ 10
10, k > 10

 (4)

Equation (3) represents the restriction function used to determine the HLN value of a
gene in every iteration, while Equation (4) is the restriction function used to determine the
NL value of a gene in every iteration. Both restriction functions given in Equations (3) and
4 are used for generating populations of the GA and mutation operations applied to the
genes. AF values in the gene structure are randomly determined from Equation (5), and TF
values are specified from Equation (6).

AF =

{
trainb, trainbr, traincgb, traincgf, traincgp, traingd, traingda, traingdm,

traingdx, trainoss, trainrp, trainscg, rainbfg, trainc, trainr

}
(5)

TF ={tan sig, logsig, hardlim, hardlims, radbas, purelin} (6)

After the initial population was created, the initial parameters of the GA were de-
termined, as presented in Table 7, as a result of the experimental studies. The network
parameters in the ANN structure will be determined using the GA.

Table 7. GA parameter and values.

GA Parameters Values

Population Number (n) 20
Solution Space (D) 5
Selection Rate (c) 0.9

Mutation Rate (m) 0.03
Iteration Number (T) 50

In the next step of the created hybrid model, the fitness value of each gene is calculated
according to the fitness function given in Equation (7). Each gene creates an ANN within
itself. The input parameters in the ANN network structure created for each gene, the
number of hidden layers, the number of neurons in the hidden layers, the activation
functions used in the neurons, and the learning algorithm of the network are determined
by the GA to produce the most successful result in the solution space.

f(Gi)= MSE( ANN i ) (7)

In Equation (7), the definitions are as follows: f(Gi): fitness value of the ith gene; MSE:
Mean squared error; ANNi: Artificial neural network created for the ith gene.

The change in weights in the learning process in ANNs is directly related to the
learning rate. A low learning rate value can cause slow and ineffective training, while a
significant value causes the network to never converge to some weights [100]. Therefore,
the learning rate in the network structures created for each gene was determined as 0.3.
The network’s success created by each gene is measured according to the MSE value. The
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MSE value is determined by taking the average of the squares of the differences in the
earthquake scores to be estimated and the values estimated by the network structures.
Success in fitness values of each gene affects their chances of survival in the next selection
step. The next step is the selection process. The roulette wheel method was chosen in the
selection step because of its ability to select the appropriate parents in the formation of
the new generation by calculating the probability values of the parents [101]. The success
that genes have achieved according to the fitness value of each gene in the roulette wheel
method increases the probability of survival of that gene.

Moving to the next step, i.e., the crossover process, the single-point crossover was
used as the crossover method in the hybrid model. The crossover point between genes
was determined randomly at each crossover. The next step is the mutation process. The
restriction functions given in Equations (3) and (4) were used for the gene to be mutated in
the mutation process. The created hybrid model was run with 50 iterations, as presented
in Table 7. After completion of the iterations, the most successful gene was determined
according to the fitness values. The parameters obtained by the most successful gene in the
hybrid model are presented in Table 8.

Table 8. Network parameters and values created with the most successful gene.

Network Parameters Values

Input
Number of stories, short column, soft/weak

story, heavy overhang, pounding effect,
hill-slope effect, visual quality

Number of hidden layers 6
Number of neurons in hidden layers 8-5-1-10-8-4
Activation functions in hidden layers Tansig-logsig-purelin-tansig-purelin-logsig

Number of neurons in the output layer 1
Activation function in the output layer purelin

Training function trainbr
MSE 15, 35

The ANN network parameters presented in Table 8 have been determined using the ap-
plied GA in a five-dimensional solution space and have produced the most successful results.

Different inputs to the network structures, number of hidden layers, activation func-
tions in the layers, and the parameters’ changes in the learning functions could affect the
success of the proposed hybrid model in reaching the correct results from the same type
of data. The network structure produced by the most successful gene obtained with the
hybrid model is presented in Figure 16.

Figure 16. ANN network structure generated by the most successful gene.

In the ANN model given in Figure 16, different inputs are given to the network. In the
ANN model with six hidden layers, the activation functions used in the middle layers were
determined as shown in Table 8. The performance of the ANN in the hybrid model that is
determined by the most successful gene in terms of learning is shown in Figure 17.
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Figure 17. Performance of the ANN in the hybrid model generated by the most successful gene in
terms of training. (a) Performance, (b) Regression, (c) Network training graphs.

Each gene in the population within the hybrid structure creates an ANN structure
within itself. The success of the genes in the population is determined according to the
MSE values of each network. The closer the MSE value of each gene is to zero, the higher
the success of that network in learning. In Figure 17, the performance of the ANN structure
created by the gene with the lowest MSE value in the population is presented. In the
performance graph presented in Figure 17a, the network has learned from iteration zero
to the 110th iteration. It can be said that the network switches to over-learning in later
iterations. Since the target line and the fit line overlap in the regression graph presented in
Figure 17b, and the data is concentrated in the target and the fit lines region, it can be said
that the rate of estimation in the training process is high. Figure 17c shows the validation
vectors used to stop the network training at the point set by the training algorithm in the
network training graphs. The gradient and mu values indicate how the weight values of
the neural network change during iteration [102]. The graphs presented in Figure 17c show
that the network structure created with these outputs of the training process presents a
successful situation. The performance score predicted by the most successful gene obtained
with the hybrid model has been illustrated in Figure 18.
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Figure 18. Performance scores of RC buildings.

According to the real data, the network structure revealed by the hybrid model in
Figure 18 has been estimated correctly with an average error of 0.04. The estimation success
for each RC building is depicted in Figure 19.

Figure 19. Standard deviation performance of ANN formed by the most successful gene.

The ANN structure obtained from the proposed hybrid model in this study has pro-
duced successful results in estimating the structural performance scoring that is calculated
to determine regional earthquake risks in RC buildings.
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6. Discussion and Conclusions

In the pre-disaster preparation phase of modern disaster management, one of the
processes is to decide whether the seismic performance of the building stock in the region
that might be affected by the earthquake is sufficient. In light of this information, it
is necessary to determine the buildings with insufficient earthquake performance and
decide on demolition and retrofitting when necessary. Many buildings in stock do not
make detailed structural analyses for individual structures possible. Thus, simplified
approaches are specified to minimize the number of buildings in large stock for further
comprehensive, advanced analyses. For the first time in Turkey, risk prioritization of
buildings has been defined under PDRB-2013 for different building types. This study used
the rapid assessment method for RC structures in this regulation. One of the limitations of
using this method is that RC structures are between 1–7 stories. This method is not used in
RC structures with more than 7-stories. Within the scope of this study, 329 RC buildings
in the province of Bitlis, located in the Lake Van Basin, which has a high seismic risk in
Turkey, were considered. While selecting these buildings, each neighborhood in the city
center of Bitlis was taken into account. In order to adequately represent the building stock
in each neighborhood, an average of 25 RC buildings was selected where the method can
be applied. The short column in 58%, soft/weak story in 63%, heavy overhang in 66%,
collision effect in 69%, and hill-slope effect in 22% of the buildings has been examined.
The existence of any or a combination of these negative features in structures will directly
affect their seismic behavior. Since these parameters, which are taken into account in the
rapid assessment method, are obtained using post-earthquake damage data, they provide
information about the behavior of structures under the influence of possible earthquakes.
Especially, the existence of soft story and heavy overhang damages are commonly observed
in earthquakes. In addition, the quality of the building is also significant under the effect of
earthquakes. The negativity score recommended for the soft story and overhang in this
rapid evaluation method reveals the vulnerability of this negativity parameter. Another
vulnerable parameter is the visual quality of the building. The presence of one of them
alone increases the earthquake vulnerability and increases the risk priority. The presence of
several of them together will increase the earthquake vulnerability even more. Therefore,
it is necessary to avoid these parameters as much as possible during the building design
phase. However, if making these negative parameters is necessary, the structural design
should be done by taking the necessary precautions. Care should be taken to ensure that
the criteria, such as sufficient strength, continuity, and ductility, are at the levels stipulated
in earthquake regulations.

Risk priorities can be determined on a regional basis based on performance scores
obtained for the buildings. Therefore, it helps to identify the necessary buildings and
prioritize the detailed analysis. These performance score results can only be used to
determine risk priorities for RC. Therefore, it cannot surely be decided whether the risky
buildings comply with the earthquake regulations. This is just a rapid assessment, as stated
in the earthquake code. Therefore, the final results of the structures are determined from a
detailed analysis.

In line with the purpose of this study, the most optimal ANN model was created
with a hybrid structure to quickly and easily calculate the structural result scores used in
determining the regional earthquake risk priorities of RC buildings. A feedforward back-
propagation ANN model was implemented to estimate the earthquake score within the
created model. The network parameters in the ANN structure directly affect the network’s
efficiency. The input parameters to the ANN structure are those which are applied in
the Turkish rapid assessment method for determining the risk priorities of an existing
RC building stock. In addition to input parameters, the number of hidden layers, the
number of neurons in the hidden layers, the activation functions used in the neurons, and
the learning algorithm parameters of the network were examined to produce the most
successful result in the GA in the solution space. The proposed hybrid structure specified
the most successful network parameters for this problem, which could not be found by a
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trial-and-error method. By establishing this hybrid ANN-GA model, besides determining
the network parameters in the solution space, the input parameters to be used for this
network structure are also optimized.

The earthquake score predictions of the hybrid model were verified with the actual
data, and successful results were obtained. The presented model also determined the input
parameters that should be applied for such a problem. In addition, the suggested hybrid
structure could eliminate the calculations related to the classical methods and helps calcu-
late the earthquake score of any RC building without the need for experts in this field. This
model can be developed for rapid assessment methods used in different countries, and the
general framework can be adapted to other types of structures (e.g., masonry buildings).
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